Cryptography and Network Security Chapter 2

Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB)

Chapter 2 – Classical Encryption Techniques

 "I am fairly familiar with all the forms of secret writings, and am myself the author of a trifling monograph upon the subject, in which I analyze one hundred and sixty separate ciphers," said Holmes..

—The Adventure of the Dancing Men, Sir Arthur Conan Doyle

Outline

- We will consider:
 - classical cipher techniques and terminology
 - monoalphabetic substitution ciphers
 - cryptanalysis using letter frequencies
 - Playfair cipher
 - polyalphabetic ciphers
 - transposition ciphers
 - product ciphers and rotor machines
 - steganography

Symmetric Encryption

- or conventional / private-key / single-key
- sender and recipient share a common key
- all classical encryption algorithms are private-key
- was only type prior to invention of publickey in 1970's
- · and by far most widely used

Some Basic Terminology

- · plaintext original message
- ciphertext coded message
- · cipher algorithm for transforming plaintext to ciphertext
- · key info used in cipher known only to sender/receiver
- encipher (encrypt) converting plaintext to ciphertext
- decipher (decrypt) recovering ciphertext from plaintext
- cryptography study of encryption principles/methods
- cryptanalysis (codebreaking) study of principles/ methods of deciphering ciphertext without knowing key
- cryptology field of both cryptography and cryptanalysis

Symmetric Cipher Model

Message X Encryption Y Algorithm Decryption Algorithm Destination Key Source Secure Channel

Figure 2.2 Model of Symmetric Cryptosystem

Requirements

- two requirements for secure use of symmetric encryption:
 - a strong encryption algorithm
 - a secret key known only to sender / receiver
- mathematically have:
 - $\mathbb{Y} = \mathbb{E}\left(\mathbb{K}, \mathbb{X}\right)$
 - X = D(K, Y)
- · assume encryption algorithm is known
- implies a secure channel to distribute key

Cryptography

- can characterize cryptographic system by:
 - type of encryption operations used
 - substitution
 - transposition
 - product
 - number of keys used
 - single-key or private
 - two-key or public
 - way in which plaintext is processed
 - block
 - stream

Cryptanalytic Attacks

- ciphertext only
 - only know algorithm & ciphertext, is statistical, must know or be able to identify plaintext
- known plaintext
 - attacker knows/suspects plaintext & ciphertext
- chosen plaintext
 - attacker selects plaintext and gets ciphertext
- chosen ciphertext
 - attacker selects ciphertext and gets plaintext
- chosen text
 - attacker selects plaintext or ciphertext to en/decrypt

Cryptanalysis

- objective to recover key not just message
- general approaches:
 - cryptanalytic attack
 - brute-force attack
- · if either succeed all key use compromised

More Definitions

- unconditional security
 - no matter how much computer power or time is available, the cipher cannot be broken ... since the ciphertext provides *insufficient information* to uniquely determine the corresponding plaintext
- · computational security
- given limited computing resources (eg. time needed for calculations is greater than age of universe (usually defined via polynomial time algorithms)), the cipher cannot be broken

Brute Force Search

- · always possible to simply try every key
- · most basic attack, proportional to key size
- · assume able to know / recognise plaintext

Key size (bits)	Cipher	Number of Alternative Keys	Time Required at 10 ⁹ decryptions/s	Time Required at 10 ¹³ decryptions/s
56	DES	$2^{56} \approx 7.2 \times 10^{16}$	2 ⁵⁵ ns = 1.125 years	1 hour
128	AES	$2^{128} \approx 3.4 \times 10^{38}$	2^{127} ns = 5.3 x 10^{21} years	5.3 x 1017 years
168	Triple DES	$2^{168} \approx 3.7 \times 10^{50}$	2^{167} ns = 5.8 x 10^{33} years	5.8 x 10 ²⁹ years
192	AES	2 ¹⁹² ≈ 6.3 x 10 ⁵⁷	2^{191} ns = 9.8 x 10^{40} years	9.8 x 10 ³⁶ years
256	AES	$2^{256} \approx 1.2 \times 10^{77}$	2^{255} ns = 1.8 x 10 ⁶⁰ years	1.8 x 10 ⁵⁶ years
26 characters (permutation)	Monoalphabetic	26! = 4 x 10 ²⁶	$2 \cdot 10^{26} \text{ ns} = 6.3 \times 10^9 \text{ years}$	6.3 x 10 ⁶ years

Classical Substitution Ciphers

 letters of plaintext are replaced by other letters or by numbers or symbols

or

 plaintext is viewed as a sequence of bits, and substitution involves replacing plaintext bit patterns with ciphertext bit patterns

Caesar Cipher

- · earliest known substitution cipher
- by Julius Caesar
- · first attested use in military affairs
- replaces each letter by 3rd letter along
- example:

meet me after the toga party PHHW PH DIWHU WKH WRJD SDUWB

Caesar Cipher

• can define transformation as: abcdefghijklmnopgrstuvwxyz

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

- mathematically give each letter a number a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
- then have Caesar cipher as:
 - $c = E(k, p) = (p + k) \mod 26$
 - $p = D(k, c) = (c k) \mod 26$

Cryptanalysis of Caesar Cipher

- only have 25 possible ciphers ... 25 keys
 a maps to (A), B...Z (obviously avoid a → A)
- · could simply try each in turn
- a brute force search
- · given ciphertext, just try all shifts of letters
- · do need to recognize when have plaintext
- eg. break ciphertext "GCUA VQ DTGCM"

	PHHW PH DIWHU WKH WRJD SDUWB
(EY 1	oqqv oq chvqt vjq vqic rctva
2	nffu nf boufs uif uphb obsuz
3	meet me after the toga party
4	ldds ld zesdg sgd snfz ozgsx
5	kccr kc ydrcp rfc rmey nyprw
6	jbbg jb xcqbo qeb qldx mxoqv
7	
1.0	iaap ia wbpan pda pkcw lwnpu
8	hzzo hz vaozm ocz ojbv kvmot
9	gyyn gy uznyl nby niau julns
10	fxxm fx tymxk max mhzt itkmr
11	ewwl ew sxlwj lzw lgys hsjlq
12	dvvk dv rwkvi kyv kfxr grikp
13	cuuj cu qvjuh jxu jewq fqhjo
14	btti bt puitg iwt idvp epgin
15	assh as othsf hvs hcuo dofhm
16	zrrg zr nsgre gur gbtn cnegl
17	yggf yg mrfgd ftg fasm bmdfk
18	xppe xp lqepc esp ezrl alcej
19	wood wo kpdob dro dygk zkbdi
20	vnnc vn jocna cqn cxpj yjach
21	ummb um inbmz bpm bwoi xizbg
22	tlla tl hmaly aol avnh whyaf
23	skkz sk glzkx znk zumg vgxze
24	rjjy rj fkyjw ymj ytlf ufwyd
25	dix di ejxiv xli xske tevxc
	diry dr clyrs yrr yre ceave

Figure 2.3 Brute-Force Cryptanalysis of Caesar Cipher

Monoalphabetic Cipher

- rather than just shifting the alphabet
- · could shuffle (jumble) the letters arbitrarily
- each plaintext letter maps to a different random ciphertext letter
- · hence key is 26 letters long

Plain: abcdefghijklmnopqrstuvwxyz Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN

Plaintext: ifwewishtoreplaceletters Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

Monoalphabetic Cipher Security

- now have a total of $26! = 4 \times 10^{26}$ keys
- · with so many keys, might think is secure
- but would be !!!WRONG!!!
- problem is language characteristics

Language Redundancy and Cryptanalysis

- human languages are redundant
- eg "th lrd s m shphrd shll nt wnt"
- · letters are not equally commonly used
- in English E is by far the most common letter
 followed by T, R, N, I, O, A, S
- other letters like ${\tt Z}$, ${\tt J}$, ${\tt K}$, ${\tt Q}$, ${\tt X}$ are fairly rare
- have tables of single, double and triple letter frequencies for various languages

English Letter Frequencies

Use in Cryptanalysis

- key concept monoalphabetic substitution ciphers do not change relative letter frequencies
- discovered by Arabian scientists in 9th century
- · calculate letter frequencies for ciphertext
- · compare counts/plots against known values
- if caesar cipher look for common peaks/troughs
 - peaks at: A-E-I triple, NO pair, RST triple
 - troughs at: JK, X-Z
- for monoalphabetic must identify each letter
 - tables of common double/triple letters help

Example Cryptanalysis

• given ciphertext:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

- count relative letter frequencies (see text)
- guess ${\tt P}$ and ${\tt Z}$ are ${\tt e}$ and ${\tt t}$
- guess ZW is th and hence ZWP is the
- proceeding with trial and error finally get: it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

Playfair Cipher

- not even the large number of keys in a monoalphabetic cipher provides security
- one approach to improving security was to encrypt multiple letters
- the Playfair Cipher is an example
- invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair

Playfair Key Matrix

- a 5X5 matrix of letters based on a keyword
- fill in letters of keyword (no duplicates)
- · fill rest of matrix with other letters
- eg. using the keyword MONARCHY

Μ	0	N	Α	R	
С	Н	Y	В	D	
Е	F	G	I/J	К	
L	Р	Q	S	Т	
U	V	W	Х	Z	

Encrypting and Decrypting

- plaintext is encrypted two letters at a time
 - 1. if a pair is a repeated letter, insert filler like $\ensuremath{^t\!x}\x$
 - if both letters fall in the same row, replace each with letter to right (wrapping back to start from end)
 - 3. if both letters fall in the same column, replace each with the letter below it (wrapping to top from bottom)
 - 4. otherwise each letter is replaced by the letter in the same row and in the column of the other letter of the pair

Security of Playfair Cipher

- · security much improved over monoalphabetic
- since have 26 x 26 = 676 digrams
- would need a 676 entry frequency table to analyse (verses 26 for a monoalphabetic)
- · and correspondingly more ciphertext
- was widely used for many years
 eg. by US & British military in WW1
- it can be broken, given a few hundred letters
- · since still has much of plaintext structure

Polyalphabetic Ciphers

- polyalphabetic substitution ciphers
- · improve security using multiple cipher alphabets
- make cryptanalysis harder with more alphabets to guess and flatter frequency distribution
- use a key to select which alphabet is used for each letter of the message
- · use each alphabet in turn
- · repeat from start after end of key is reached

Vigenère Cipher

- simplest polyalphabetic substitution cipher
- · effectively multiple caesar ciphers
- key is many letters long $K = k_1 k_2 \dots k_d$
- $\mathtt{i}^{\mathtt{th}}$ letter specifies $\mathtt{i}^{\mathtt{th}}$ alphabet to use
- · use each alphabet in turn
- repeat from start after d letters in message
- · decryption simply works in reverse

Example of Vigenère Cipher

- · write the plaintext out
- · write the keyword repeated above it
- use each key letter as a caesar cipher key
- · encrypt the corresponding plaintext letter
- eg. using keyword deceptive

key: deceptivedeceptive
plaintext: wearediscoveredsaveyourself
ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Aids to Vigenère Encryption

- · simple aids can assist with en/decryption
- a Saint-Cyr Slide is a simple manual aid
 - a slide with repeated alphabet
 - line up plaintext 'A' with key letter, eg 'C'
 - then read off any mapping for key letter
- can bend round into a cipher disk
- or expand into a Vigenère Tableau

Table 2.3 The Modern Vigenère Tableau

Security of Vigenère Ciphers

- have multiple ciphertext letters for each plaintext letter
- · hence letter frequencies are obscured
- but not totally lost

Figure 2.6 Relative Frequency of Occurrence of Letters

Attacking Vigenère Ciphers

- start with letter frequencies
 see if they look monoalphabetic or not
- if not, then need to determine number of alphabets
- · then can attack each in turn

Kasiski Method

- method developed by Babbage / Kasiski
- · repetitions in ciphertext give clues to period
- so find same plaintext an exact period apart
- · which results in the same ciphertext
- · of course, could also be random fluke
- eg repeated "VTW" in previous example key: deceptivedeceptive plaintext: wearediscoveredsaveyourself ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ
- suggests size of 3 or 9
- then attack each monoalphabetic cipher individually using same techniques as before

Autokey Cipher

- ideally want a key as long as the message
- Vigenère proposed the autokey cipher
- · with keyword is prefixed to message as key
- · knowing keyword can recover the first few letters
- · use these in turn on the rest of the message
- eg. given key deceptive

key: deceptivewearediscoveredsav
plaintext: wearediscoveredsaveyourself
ciphertext:ZICVTWQNGKZEIIGASXSTSLVVWLA

• but can still attack frequency characteristics ...

Vernam Cipher

- ultimate defense is to use a key as long as the plaintext
- · with no statistical relationship to it
- invented by AT&T engineer Gilbert Vernam in 1918
- originally proposed using a very long but eventually repeating key

Figure 2.7 Vernam Cipher

Crucial Properties of Exclusive OR

 $0 \oplus 0 = 0$, $1 \oplus \underline{1} = 0$, $0 \oplus 1 = 1$, $1 \oplus 0 = \underline{1}$, (and symmetrically) $b \oplus b = 0$, $b \oplus \overline{b} = 1$, $b \oplus 0 = b$, $b \oplus 1 = \overline{b}$, (and symmetrically).

Choose plaintext bit P, and key bit K. Then ciphertext bit $C = P \oplus K$, and $C \oplus K = (P \oplus K) \oplus K = P \oplus (K \oplus K) = P \oplus 0 = P$.

Now choose plaintext bit P, and ciphertext bit C. Then there is a key bit K , such that $C=P\oplus K$, namely $K=C\oplus P$.

And $C \oplus K = C \oplus (C \oplus P) = (C \oplus C) \oplus P = 0 \oplus P = P$.

So for ANY P and C, there is a K that works.

One-Time Pad

- if a truly random key equally as long as the message is used, the cipher will be secure
- called a One-Time pad
- is unbreakable since ciphertext bears no statistical relationship to the plaintext
- since for any plaintext and any ciphertext there exists a key mapping one to other
- can only use the key once though
- problems in generation & safe distribution of key

Transposition Ciphers

- now consider classical transposition or permutation ciphers
- these hide the message by rearranging the letter order
- · without altering the actual letters used
- can recognise these since have the same frequency distribution as the original text

Rail Fence cipher

- write message letters out diagonally over a number of rows
- · then read off cipher row by row
- eg. message: meetmeafterthetogaparty
- then write message out as: mematrhtgpry etefeteoaat
- giving ciphertext MEMATRHTGPRYETEFETEOAAT

Row Transposition Ciphers

- · a more complex transposition
- write letters of message out in rows over a specified number of columns
- then reorder the columns according to some key before reading off the cols

Product Ciphers

- ciphers using substitutions or transpositions are not secure because of language characteristics
- hence consider using several ciphers in succession to make harder, but:
 - two substitutions make a more complex substitution
 - two transpositions make more complex transposition
 - but a substitution followed by a transposition makes a new much harder cipher
- · this is bridge from classical to modern ciphers

Rotor Machines

- before modern ciphers, rotor machines were most common complex ciphers in use
- widely used in WW2
 - German Enigma, Allied Hagelin, Japanese Purple
- implemented a very complex, varying substitution cipher
- used a series of cylinders, each giving one substitution, which rotated and changed after each letter was encrypted
- with 3 cylinders have 26³=17576 alphabets

Hagelin Rotor Machine

Rotor Machine Principles

Steganography

- an alternative to encryption
- · hides existence of message
 - using only a subset of letters/words in a longer message marked in some way
 - using invisible ink
 - hiding in LSB in graphic image or sound file
- · has drawbacks
 - high overhead to hide relatively few info bits
- advantage is can obscure encryption use