Tripod: A Comprehensive System for the Management of
Spatial and Aspatial Historical Objects

Tony Griffiths, Alvaro A.A. Fernandes, Norman W. Paton

Department of Computer Science
University of Manchester
Manchester M13 9PL, UK

{griffitt|alvaro|norm@cs.man.ac.uk}

Bo Huang, Mike Worboys, Chris Johnson
Department of Computer Science
University of Keele
Staffordshire ST5 5BG, UK
{b.huang|michael|chrisj@cs.keele.ac.uk}

ABSTRACT

Spatio-temporal databases have been the focus of consider-
able research attention in recent years. To date, much of
this work has focused on the relational data model, with
object data models receiving far less consideration. Where
descriptions of such object models do exist, there is cur-
rently a lack of systems that build upon these models to
produce database architectures that address the broad spec-
trum of issues related to the delivery of a fully functional
spatio-temporal DBMS. This paper presents an overview
of such a system by describing a spatio-historical object
DBMS that utilises a specialised mechanism, called a his-
tory, for maintaining knowledge about entities that change
over time. Key features of the resulting proposal include: (i)
consistent representations of primitive spatial and temporal
types; (ii) a component-based design in which spatial, tem-
poral and historical extensions are formalised incrementally,
for subsequent use together or separately; (iii) compatibil-
ity with mainstream query processing frameworks for object
databases; and (iv) the integration of the spatio-temporal
proposal with the ODMG standard.

1. INTRODUCTION

This paper provides an overview of the Tripod project,
which is developing a spatio-temporal object database sys-
tem that extends the ODMG standard for object databases
[3]. Figure 1 illustrates the relationships between the differ-
ent components in Tripod. At the core is the ODMG object
model, which is extended with primitive spatial and tempo-
ral types. The spatial types are those of the ROSE algebra
[11], and the temporal types are one dimensional versions of
the two dimensional ROSE algebra types Points and Lines.
Past states of all ODMG types, including the spatial and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Keith T. Mason
School of Earth Sciences and Geography
University of Keele
Staffordshire ST5 5BG, UK
k.t.mason@esci.keele.ac.uk

John Stell
School of Computing
University of Leeds
Leeds LS2 9JT, UK
jgs@comp.leeds.ac.uk

Extended OQL

Spatio-Temporal Calculus

Spatio-Temporal Algebra

Histories

Temporal Spatial
Types Types
ODMG Model

Native Language Bindings

Figure 1: Tripod components.

temporal types, can be recorded using histories. Figure 1
from Histories inwards represents a spatio-historical object
model.

Outside Histories in Figure 1, the upper half of the figure
represents the declarative query interface, while the lower
half of the figure represents the imperative programming in-
terface. The query interface is based on OQL, and is given
a semantics and an optimisation infrastructure through a
mapping onto an extension of the monoid comprehension
calculus of [5], as described in [6]. The programming inter-
face follows the ODMG approach by mapping object model
constructs into programming language objects within an ex-
isting object-oriented programming language.

This paper provides an overview of the object model,
query language and programming language facilities of Tri-
pod in Sections 4, 5 and 6, respectively. In each of these
sections, the facilities of Tripod are illustrated using exam-
ples from a land use case study, which is described in Section
3. This case study is representative of many in which the ap-
plication tracks discrete changes to both spatial and aspatial
data over time, as supported by Tripod.

2. ARCHITECTURE

This section describes in more detail the various compo-
nents of the Tripod architecture shown in Figure 1, and in
particular (as shown in Figure 2) how these components in-
teract with each other in the specification of spatio-historical
database applications. There are three main components in
the Tripod architecture: a Persistent Store that is responsi-
ble for loading and saving persistent objects to and from the
database and also for maintaining metadata about a partic-

ular database schema; a Query Processor that is responsible
for optimizing and executing database queries; and a Pro-
gramming Language Binding that is responsible for providing
programming language access to the database.

Query
(0oL

=

. g

N } Triped ODL P{ug_rammlng Language
2 1 Preprocessor Binding

Logical Optimiser | ©
2 Application
o Frogram

Physical Optimiser | = [C++ header and
] urce files]

Evaluater <1 g

rd Persistent Store 2h v
i Persistent o
Triped Metamodel Persistence Store Object Ru,,':.me
(D &ta Dictionang) Layer Funtime Code Library
Librany
& i 3
~, Linker }
¥ 4

Executable
Application

Figure 2: Detailed Tripod Architecture.

The definition of a Tripod database consists of two parts:
a schema (defined using a declarative object definition lan-
guage (ODL)) specifying the structure of the database types
and their behaviour, and an implementation of each of these
behaviours specified using a programming language binding
—in our case this is C++. Since the ODMG model does not
define an object manipulation language (OML), developers
must use a programming language binding to create, update
and delete objects. The Tripod ODL preprocessor lies at the
core of the process of producing a database specification. It
is responsible for analysing an ODL schema specification to
produce: a set of C++ header files whose structure corre-
sponds to that of the types expressed in the ODL schema
definition; an instance of the Tripod metamodel (which is a
superset of the ODMG metamodel) containing high-level in-
formation about the structure of the database schema that is
used by (amongst others) the query processor; and methods
to load and save persistent objects to and from the Tripod
persistent store.

Once the application program and type information is
compiled into object code, it is linked with libraries that
implement the Tripod runtime system, and the persistent
store. The library implements the core ODMG object model
types as well as the Tripod spatial, temporal, and histori-
cal types. The persistent store runtime library contains the
functionality needed to create and manage database connec-
tions, transactions and queries. The output of this process is
an executable application that interacts with the underlying
spatio-historical OODBMS.

3. CASESTUDY: UK NATIONAL LAND USE
DATABASE

In the UK, a project is underway to create a National
Land Use Database (NLUD) (http://www.nlud.org.uk/). The
NLUD aims to provide a complete, consistent and detailed
geographical record of land use in England. In this, land
use parcels (the basic spatial units of the system) will likely
be formed from Ordnance Survey (the UK mapping agency)

Digital National Framework (DNF') ‘atomic polygons’, which
are themselves defined by topographic features and uniquely
referenced by a system of Topographic Identifiers. The NLUD
will be delivered by specific projects that respond to partic-
ular user requirements. The Tripod investigation, although
not officially linked with the NLUD project, builds on one
such initiative, the NLUD Previously Developed Land (PDL)
project, as a basis for testing the applicability of the Tripod
model and languages on a land use change scenario. The
PDL project has been set up by the NLUD partnership to
monitor the supply and re-use of vacant, derelict, or pre-
viously developed sites, that might be available for further
development.

Under the PDL proposals, sites are categorised as be-
longing to one of six possible classes, including land and
buildings which are now vacant, derelict land and buildings,
and land and buildings going through the various stages of
planning permission or construction. A key objective of the
NLUD PDL project is to maintain the life histories of PDL
sites and to support the update and maintenance of site
records as the user records change. Potential changes to
individual land use parcels might record changes to one or
more of the site attributes, for instance an alteration of PLD
classification, or might come from one of seven possible cate-
gories of geometric change, including: creation, destruction,
alteration, reincarnation, fusion, fission and reallocation.

4. THE TRIPOD OBJECT MODEL

The ODMG Object Model provides a set of object and
literal types — including collection types, (e.g., Set, Bag and
List) and atomic types (e.g., long, float and string) —
with which a designer can specify their own object types,
and construct a particular database schema. Each user-
defined type has a structure (a collection of attributes and
binary relationships with other user-defined types) and a
behaviour (a collection of methods whose implementation is
specified using the language binding).

Tripod supports the storage, management and querying of
spatial and aspatial entities that change over time through
the notion of a history. A history models the changes that
an entity, or its attributes, or the relationships that it par-
ticipates in, undergoes as the result of assignments made to
it. In the Tripod object model, a request for a history to
be maintained can be made for any construct to which a
value can be assigned, i.e., a history is a history of changes
in value and it records episodes of change by identifying
these with a timestamp. For example, the 1u_parcel type
shown in Figure 3 declares historical attributes (owner and
land_type), a spatio-historical attribute (gext), and two his-
torical relationships (has_tpfea and in_admin). In addition,
the lu_parcel type is itself declared to be historical, indi-
cating that the database should maintain a history (called
lifespan) recording when instances of this type are active
or inactive (i.e., logically deleted) in the database. In con-
trast, the admin region class is not declared as historical,
and therefore its instances will not have their lifespan main-
tained.

The remainder of this section provides an overview of the
Tripod object model [7] by presenting its constructs as in-
stances of abstract data types (ADTs), and commences by
overviewing the structure of Tripod spatial values, showing
how these provide a foundation for Tripod timestamps.

class admin_region
(extent admin_regions key name)
{ attribute string name;
attribute Instant founded;
historical(timeIntervals, MONTH)
attribute regions gext;
historical(timeIntervals, MONTH)
relationship set<lu_parcel>
has_parcel inverse lu_parcel::in_admin; };

class council extends admin_region
(extent councils) { ... I};

class county extends admin_region
(extent counties) { ... I};

historical(timeIntervals,MONTH) class lu_parcel
(extent lu_parcels key site_reference)
{ attribute string site_reference;
historical(timelIntervals, YEAR)
attribute list<string> owner;
historical(timeIntervals, MONTH)
attribute string land_type;
historical(timeIntervals, MONTH)
attribute regions gext;
historical(timeIntervals, MONTH)
relationship set<topo_feature>
has_tpfea inverse topo_feature::lup;
historical(timeIntervals, MONTH)
relationship admin_region
in_admin inverse admin_region::has_parcel; };

historical(timeIntervals,MONTH) class topo_feature
(extent topo_features key toid)
{ attribute string toid;
historical(timeIntervals,MONTH)
attribute string feature_type;
historical(timeIntervals,YEAR)
attribute regions gext;
historical(timeIntervals,MONTH)
relationship lu_parcel lup
inverse lu_parcel::has_tpfea; };

Figure 3: Land Use Schema Definition

4.1 Spatial Literals

Tripod’s spatial data types (SDTs) are based on the ROSE
(RObust Spatial Extensions) approach described in [11]. Un-
derlying the ROSE approach is the notion of a realm. A
realm is essentially a finite set of points and non-intersecting
line segments defined over a discrete grid that forms the
ROSE algebra’s underlying geometric domain. ROSE spa-
tial values are represented in terms of points and line seg-
ments in a realm. A realm guarantees that all spatial oper-
ations over realm values are error bound and only take, and
return, intersection-free spatial values.

The ROSE approach defines an algebra over three SDTs,
namely Points, Lines and Regions, and an extensive col-
lection of spatial predicates and operations (including set
operations) over these types [11]. Every spatial value in the
ROSE algebra is set-based, thus facilitating set-at-a-time
processing. Roughly speaking, each element of a Points
value is a pair of coordinates in the underlying geometry,
each element of a Lines value is a set of connected line seg-
ments, and each element in a Regions value is a polygon
containing a (potentially empty) set of holes.

Some examples of spatial objects taken from the NLUD

Figure 4: Example of 1lu_parcel objects in a realm

are shown in Figure 4. The polygonal objects 38, 42, 44
and 45 are Regions values (note that 45 is a set of four
polygons that contain holes), representing land use parcels.
Other objects of interest (marked with an x) are represented
by Points values denoting their centroid.

4.2 Timestamp Literals

Tripod extends the set of ODMG primitive types with two
temporal types, called Instants and TimeIntervals. The
underlying domain of interpretation is a structure that we
refer to as a temporal realm because it is defined to be a one-
dimensional specialization of the two-dimensional (spatial)
realms. In general terms, a temporal realm can be thought
of as a finite set of integers (whereas a spatial realm is a
finite integer grid). Then, an Instants value is a collection
of time-points and a TimeIntervals value is a collection
of pairs of time-points where the first element is the start,
and the second the end, of a contiguous time-interval. A
timestamp is either an Instants value or a TimeIntervals
value. Figure 5 illustrates timestamps in graphical form,
where timestamp A is a TimeIntervals value, and times-
tamps B and C are Instants values. Notice that B hap-
pens to be a singleton.

Figure 5: Example Tripod Timestamps

In the ROSE algebra, there is no predefined notion of one
Points value being spatially ordered with respect to another
Points value; any such notion of ordering must be defined
within application programs that use the algebra. The Tri-
pod temporal algebra, therefore, extends the ROSE algebra
with ordering predicates based on the underlying order of
the temporal realm’s integer domain. These predicates take
into consideration the collection-based nature of the times-
tamp types. Therefore, in addition to what might be consid-
ered the ‘standard’ temporal predicates (e.g., those defined
by Allen’s algebra [1]), our temporal predicates are extended
to take into account quantification over the individual ele-
ments of the timestamp. For example, whether every ele-
ment of a timestamp A must be contained by an element

from timestamp B, or just some. In addition, the tempo-
ral realm utilises a calendar that maps from the underlying
integer domain to one more suited to human cognition.

Although Tripod timestamps can be used by application
designers to complement the related primitive types in the
ODMG standard (e.g., Interval or Time), their main pur-
pose is to allow histories to be constructed and operated
upon, as described below.

4.3 Histories

A history is a quadruple H = (V, 0, v, X), where V denotes
the domain of values whose changes H records, 6 is either
Instants or TimeIntervals, v is the granularity of 6, and
¥ is a set of pairs, called states, of the form (7, o), where 7
is a Tripod timestamp and o is a snapshot. In the rest of
the paper, let T denote the set of all timestamps; V, the set
of all snapshots; S, the set of all states; and H, the set of all
histories.

In a history, a set X of states is constrained to be an in-
jective function from the set T gz of all timestamps occurring
in H to the set Vg of all snapshots occurring in H, i.e., for
any history H, statesy : 7 € Ty — o € Vg. Therefore a
particular timestamp is associated with at most one snap-
shot (i.e., a history does not record different values as valid
at the same time), and a particular snapshot is associated
with at most one timestamp (i.e., if a value is assigned more
than once, in the corresponding history the new occurrence
causes the timestamp of the previous occurrence to adjust
appropriately).

The remainder of this section provides an overview of the
operations available to operate on histories construed as in-
stances of an ADT, which leads to their behaviour being
categorised into constructor, query, merge and update op-
erations. These operations require precise definition so that
the semantics of operations and structures in the higher level
layers of the Tripod OM can be appropriately specified. For
example, the language bindings utilise operations to create
and manipulate historical data, and the query language and
its associated calculus utilise operations that filter and tra-
verse histories to retrieve appropriate results. For reasons
of space, the semantics of these operations are provided by
exemplars; fuller details are available elsewhere [7].

Representative retrieval operations on histories are shown
in Figure 6. Note that the first expression in Figure 6 is
in fact a template for a set of signatures parameterised on
any element of the set of predicates on timestamps. For
example, given that before is a member of that set, letting
w = before in the template yields the following signature
ContainsTimestamp_before : HHX T — boolean. Other such
parameterised templates include FilterByTimestamp w.

ContainsTimestamp w: H xT — boolean
FilterBySnapshot : HxV — H

Figure 6: Example Retrieval Operations

For example, if the state set of two histories represent-
ing the history of change to instances H; and H» of the
lu_parcel type’s gext attribute (both with V' = Regions,
0 = TimeIntervals and identical) are ;1 = {([1 — 6], T1),
{[9—11],r2)} and X» = {{[6 —10], rs), {[13—20], r1)} (where
Ty, r, and rs are Regions values) then
ContainsTimestamp before(H:,[9 — 10]) = true and
ContainsTimestamp_after(H>, [21 — 22]) = false.

Representative update operations on histories are shown
in Figure 7.

U: HxH — H
DeleteTimestamp: HxT — H
InsertState: HxS — H

Figure 7: Example Update Operations

The union of two histories (obtained through the U op-
erator) is equivalent to taking the union of their state sets
but choosing the state in the second argument whenever
there is a state in the first argument with the same times-
tamp but different snapshot. This is to satisfy the con-
straint that a history does not record different values as
valid at the same time. For example, using infix nota-
tion, if the state sets of two histories H; and H, are as
exemplified above, then the state set of H = H; U Hs is
¥ = {{[1—5,13 —20], 1), {[6 — 10], r3), ({10 — 11],r2)}. The
definitions of M and \\, for intersecting and subtracting his-
tories, are analogous.

DeleteTimestamp takes a history H = (V,6,v,%) and
a timestamp 7 of type 6 and yields a new history H' =
{V,0,7,%') in which all states in ¥ whose timestamp 7' is
such that common points(7,7’) is true, have been recom-
puted so that 7 does not occur in ¥’'. For example, if 7 =
[3—4] and ¥ = {{[1—6],ra)}, then &' = {{[1—3,4—6],14)}.

InsertState takes a history H = (V,0,v,%) and a state
{7, 0"}, where 7’ is of type § and ¢’ € V, and yields a new
history H' = (V,6,v,%'). If ¢’ is equal to some o occurring
in X then the timestamp 7 associated with it is recomputed
into a timestamp 74 that includes 7/, and &' = T\ {(r,0)}U
{{r+,0)}. If, on the other hand, ¢’ does not occur in X,
then ¥ is recomputed into a state set X4 that is everywhere
equal to X except that every state in ¥ whose timestamp has
common points with 7' has been recomputed so as to make
that no longer the case in ¥4, and ¥’ = B4 U{(r’,0’}}. For
example, if (7', 0’) = ([5—8],r1) and T = {({[1—6], r2)}}, then
Y= {<[1 - 5]: r2)a ([5 - 8]: I‘1)} and if (le OJ) = ([5 - 8]1 r4)
and ¥ = {{[1 — 6], ra)}, then &' = {{[1 — 8], Ta)}.

5. THE QUERY LANGUAGE

Tripod-OQL employs and extends the facilities of OQL to
retrieve spatial, temporal and historical information. The
states in histories are extracted through iteration in the
OQL from-clause. Constraints in the where-clause can then
be applied to the snapshot value, timestamp or index num-
ber of a state, and the granularity of the timestamp, through
operations that have been defined in the Tripod OM. Finally,
the result is obtained through the projection operation in the
select-clause.

Given the above, Tripod-OQL provides syntactical exten-
sions to OQL to manipulate historical information. In Ta-
ble 1, e is an expression denoting a history, and es is an
expression denoting a state within a history.

The nth-state operation views e as a chronologically or-
dered history when selecting the appropriate state. Simi-
larly e.index(es) returns the index number of es within
the chronologically ordered history e.

Tripod-OQL can express spatial, temporal and historical
queries. Examples are given in Figure 8 using the land use
application.

| Expressions

Explanation

es.value snapshot value of state es
es.validTime | timestamp of state es
es.granularity | granularity of state es
e.Nth(n) nth-state of e

e.index(es) index number of state es in e

Table 1: Accessing histories in Tripod-OQL

(Q1) Which counties were founded before Avon? (Temporal
query)

select countyl.name

from countyl in counties, county2 in counties

where county2.name = ’'Avon’ and
countyl.founded.before(county2.founded)

(Q2) What are the parcels that at some point in time bordered
land parcel 2601¢ (Spatio-Historical query)

select lup2.site_reference
from lupl in lu_parcels, lup2 in lu_parcels,
lupgextl in lupl.gext, lupgext2 in lup2.gext
where lupl.site_reference = 2601’ and
lupgextl.value.border_in_common
(1lupgext2.value) and
lupgextl.validTime.common points
(1lupgext2.validTime) and
lupl ! = 1lup2

Q3) Display the previous version of parcel 2604’s geometry?
Historical version selection)

select gextl.value
from lup in lu parcels,
gextl in lup.gext, gext2 in lup.gext
where lup.site_reference = ‘2604’ and
gext2.validTime.common_points(|now|) and

lup.gext.index(gextl) = lup.gext.index(gext2) — 1

(Q4) What were the neighbouring parcels of parcel 2586
when topological feature 1897 was associated with this par-
cel? (Spatio-Historical join)

select distinct lup2.site_reference
from lupl in lu_parcels, luplgext in lupl.gext,
lup2 in lu_parcels, lup2gext in lup2.gext,
tpfeas in lupl.has_tpfea,
topo_feature in tpfeas.value
where 1lupl ! = lup2 and
lupl.site_reference = ’2586' and
topo_feature.toid = ‘1897’ and
lup2gext.value.border_in_common
(lupigext.value) and
lup2gext.validTime.common points
(tpfeas.validTime)

Figure 8: Spatial, temporal and historical queries

6. THE LANGUAGE BINDINGS

The Tripod language bindings provide developers with a
programming language (C++) interface that allows them
to create, update and delete objects (i.e., an OML). The
language bindings are also used to specify a user-defined
type’s operations. When the state of a database needs to be
queried, developers can either issue declarative OQL queries
or write native language application programs. The lan-
guage bindings extend those of the ODMG standard by map-

ping the Tripod OM types into C++ classes that can persist
in the database. The language bindings provide implemen-
tations of the Tripod spatial, temporal and historical types.
For each type in a Tripod schema, the Tripod ODL pre-
processor generates a corresponding C++ class. For exam-
ple, Figure 9 is the class definition automatically generated
for the 1u_parcel type of Figure 3 (note that all operations
have been omitted). Line 1 illustrates that each persistence
capable class inherits from the built-in d PersistentObject
type. Each historical property in an ODL type is mapped to
a history template type which requires the type of the prop-
erty, its temporal type, and its granularity. For example, the
owner attribute is mapped to a history type (line 7) whose
snapshots are each a list of strings. The has_tpfea relation-
ship on the other hand is mapped to a history type (line 10)
whose snapshots are each a set of topological features.

class lu_parcel:public d_PersistentObject

{

private:
history<d_TimeIntervals,Status,MONTH> lifespan;

public:
d_String site_reference;
history<d_TimeIntervals,d_List<d_String>,YEAR> owner;
history<d_TimeIntervals,d_String,MONTH> land_type;
history<d_TimelIntervals,d_Regions,MONTH> gext;

10 history<d_TimeIntervals,

11 d_Rel_Set<topo_feature,lup>,MONTH> has_tpfea;

12 };

©OoO~NOU D WN-

Figure 9: lu_parcel class definition

1 d_TimeIntervals t1("[1/1990 - until_changed]");

2 d_TimelIntervals t2("[1/1990 - 4/1995]");

3 d_TimelIntervals t3("[4/1995 - 5/1999]1");

4 d_State<d_Regions,d_TimelIntervals> sl(regionsi,tl);
5 d_State<d_Regions,d_TimelIntervals> s2(regions2,t3);
6

7 d_Ref<lu_parcel> 1lup8601 =

8 new(ludb,"lu_parcel", t1) lu_parcel;

9

10 1up8601->gext.InsertState(sl);
11 1lup8601->gext.InsertState(s2);
12 1up8601->gext.DeleteTimestamp(t2);

14 d_BiDirectionallterator iter =

15 1lup8601->gext.createStateIlterator();
16 d_TimeInstants now("|now|");

17 d_State<d_Regions,d_TimeIntervals> tmp;
18 while(!iter.at_end()) {

19 tmp = (d_State)iter.getElement();

20 if(tmp.getValidTime().before(now)

21 cout << '"value" << tmp.getSnapshot() << endl;
22 iter.nextPosition();
23 }

Figure 10: Language binding example

Figure 10 shows how instances of user-defined types are
created using an extended version of the C++ new opera-
tor. Lines 7 and 8 create a new lu_parcel object that is
stored in the 1ludb database, with an appropriate lifespan.
Lines 10 and 11 populate this object’s gext spatio-historical
attribute with two states whose snapshots are previously
created regions values (not shown). Line 12 deletes a por-
tion of this history. Lines 14 to 23 illustrate how a history

can be iterated over using one of the iterators provided for
this purpose. The d BiDirectionalIterator allows chrono-
logical as well as reverse-chronological of a history. Lines 14
to 23 are equivalent to the query: “What is the boundary
history of parcel 8601 prior to today?”.

7. RELATED WORK

Despite progress in certain aspects of spatio-temporal mod-
elling and implementation (e.g., indexing, join algorithms,
etc.), there are few examples of spatio-temporal database
systems, and most lack support for changes to aspatial data.
Langran [8] developed a spatial vector model in which line
segments are used as primitives to produce polygons. Each
of these polygons is then timestamped with its own attribute
history using discrete semantics. The TRIAD model [10]
takes a different approach by using events as the basic no-
tion in their raster-based model. More recently, the MADS
model [9] reflects many of the concerns addressed in the
Tripod object model, including the orthogonal treatment of
spatial and aspatial data. However, MADS does not address
manipulation and querying issues.

Recently, much work on spatio-temporal databases has
centered on objects whose properties (spatial and aspatial)
are continuously changing (the so-called moving-object mod-
els). Such models (e.g., [12]) allow the state of each spatial
and aspatial property to be expressed as a continuous func-
tion of time. Queries about the position of spatial data
can then be inferred by the interpolation of spatial values
between known bounds. However, such models do not pro-
vide comprehensive support for temporally changing aspa-
tial data and object model constructs such as relationships,
which are supported in a uniform way in Tripod. In con-
trast, the Tripod data model and calculus do not model
continuous change, as we explicitly target the large body
of applications in which objects change in discrete steps, as
exemplified by the NLUD case study.

One of the aims of the Tripod design has been to provide
effective support for spatial (but not historical) and histori-
cal (but not spatial) applications, as well as those that must
manage spatio-historical data. Asa “pure” spatial database,
Tripod provides spatial types as primitive types in the ob-
ject model, and thus the extension to the ODMG model in
Tripod can be seen as analogous to the extension of object-
relational products with spatial Data Blades or Cartridges.
As a “pure” temporal database, Tripod provides a concise
collection of valid-time modelling facilities. Probably the
most closely related work is that described in [2], which also
presents an extension to the ODMG model. The principal
contributions of Tripod relative to [2] have been to address
programming and querying of the temporal ODMG exten-
sion. Another closely related proposal is that of TOQL [4].
Tripod has taken a similar approach to TOQL in the ad-
dition of histories into the ODMG object model, although
the Tripod temporal types are richer than those in TOQL,
and a wider range of query and manipulation operations are
supported for histories.

8. CONCLUSIONS

This paper has provided an overview of the Tripod project,
which is developing a spatio-temporal object database sys-
tem. Key features of Tripod are: (i) Modeling, querying
and programming facilities are extensions of those provided

by the ODMG standard. The extensions to the standard
in Tripod are orthogonal, in that the spatial and historical
facilities can be used together or separately. (ii) The spatial
and temporal types have shared origins, and both provide
comprehensive, consistent, collection-based structures and
operations to higher levels in the architecture. (iii) The
historical modeling facilities can be applied consistently to
spatial and to aspatial aspects of an application; in most ap-
plications in which historical spatial data is important, his-
torical aspatial data is important as well. (iv) The proposal
is targeted at discrete changes to spatial and aspatial data,;
although there has been considerable attention directed in
recent years at moving object databases, we note that few
prototypes have been developed that support histories of
spatial and aspatial data. The paper has been illustrated
using a dataset that is characterised by such data.

The implementation of the Tripod system is underway; it
is hoped that all the functionality described in this paper
will be implemented by the Spring of 2002, and that the
system will be made publically available during 2002.

Acknowledgments. This research is funded by the UK
Engineering and Physical Sciences Research Council (EP-
SRC), whose support is gratefully acknowledged.

9. REFERENCES

[1] J. Allen. Maintaining knowledge about temporal
intervals. CACM, 26(11):832-843, 1983.

[2] E. Bertino, E. Ferrari, G. Guerrini, and I. Merlo.
Extending the ODMG Object Model with Time. In
Proceedings ECOOP’98, pages 41-66, 1998.

[3] R. G. G. Cattell, editor. The Object Database
Standard: ODMG 3.0. Morgan Kaufmann, 2000.

[4] L. Fegaras and R. Elmasri. A Temporal Object Query
Language. In Proc. TIME, pages 51-59. IEEE Press,
1998.

[5] L. Fegaras and D. Maier. Optimizing Object Queries
Using an Effective Calculus. ACM TODS, 25(4), 2000.

[6] T. Griffiths, A.A.A. Fernandes, N. Djafri, and N.-W.
Paton. A Query Calculus for Spatio-Temporal Object
Databases. In Proc. TIME, pages 101-110. IEEE
Press, 2001.

[7] T. Griffiths, A. Fernandes, N. Paton, K. Mason,

B. Huang, and M. Worboys. Tripod: A Comprehensive
Model for Spatial and Aspatial Historical Objects. In
Proc. ER. Springer-Verlag, 2001.

[8] G. Langran. Time in Geographical Information
Systems. Taylor and Francis, 1992.

[9] C. Parent, S. Spaccapietra, and E. Zimanyi.
Spatio-Temporal Conceptual Models: Data Structures
+ Space + Time. In Proc. ACM GIS, pages 26-33,
1999.

[10] D. Peuquet and L. Qian. An Integrated Database
Design for Temporal GIS. In Proc. 7th SDH, pages
21- 31. Taylor and Francis, 1997.

[11] R. H. Giiting and Markus Schneider. Realm-Based
Spatial Data Types: The ROSE Algebra. VLDB
Journal, 4(2):243-286, 1995.

[12] R.H. Giiting et al. A Foundation for Representing and
Querying Moving Objects. ACM Transactions on
Database Systems, 25(1):1-42, 1000.

