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Abstract

In this paper, we introduce a 3-D human-body tracker capable of handling
fast and complex motions in real-time. The parameter space, augmented with
first order derivatives, is automatically partitioned into Gaussian clusters each
representing an elementary motion: hypothesis propagation inside each clus-
ter is therefore accurate and efficient. The transitions between clusters use
the predictions of a Variable Length Markov Model which can explain high-
level behaviours over a long history. Using Monte-Carlo methods, evaluation
of model candidates is critical for both speed and robustness. We present a
new evaluation scheme based on volumetric reconstruction and blobs-fitting,
where appearance models and image evidences are represented by Gaussian
mixtures. We demonstrate the application of our tracker to long video se-
quences exhibiting rapid and diverse movements.

1 Introduction
Full human-body tracking has a wide and promising range of applications, from motion
capture in the film industry to Human-Computer Interaction. Tracking people is difficult
because of the high dimensionality of full body kinematics, the fast movements and fre-
quent self-occlusions. Moreover, loose clothing, shadows or camera noise may further
complicate the inference problem.

Tracking is a global optimisation process: because of kinematic constraints, even
relatively independent limbs must compete to fit onto their own detected features (image
evidence). Hierarchical methods [2, 16] fit the torso in a first stage and then optimise each
limb independently. The parameter space is then partitioned, which drastically reduces
the complexity of inference. However, problems occur when the torso cannot accurately
be located on its own, which can be the case in human body tracking because of self-
occlusions, or simply measurement noise.

One approach to tracking as a global optimisation problem is to start from image data,
trying to detect features independently in each frame. The configuration of the model is
then recovered from the “bottom-up” [17], using nonparametric belief propagation tech-
niques. Since the feature detectors will inevitably return many false positives, the con-
figuration of the model is globally optimised by iterating belief propagation in a graph
with strong kinematic and temporal priors [20]. While these techniques are theoretically
appealing, they rely on the detection of specific features, which is not always possible



because of occlusions or loose clothing. Additionally, the computational complexity of
the method is currently too high for real-time applications.

Alternatively, one can use the body configuration in the current frame and a dynamic
model to predict the next configuration candidates (motion prior). These candidates are
then tested against image data to find the most likely configuration. Tracking with particle
filters works along those lines, approximating theposteriordistribution by a set of repre-
sentative elements, and updating these particles with Monte Carlo importance sampling
rule [12]. However, in full body tracking problems, the dimensionality of the parameter
space is far too high to represent accurately the true posterior distribution everywhere. In-
stead, particles tend to concentrate in only a few of the most significant modes, leading to
possible failures when too few particles are propagated to represent a new peak. Anneal-
ing [6] is a coarse to fine approach that can help focus the particles on the global maxima
of the posterior, at the price of multiple iterations per frame. Alternatively, sophisticated
motion prior models have been proposed [19], trying to predict the subject’s dynamics
and propagating particles around the next expected peaks of the posterior.

Prediction is hard because human dynamics are complex and highly non-linear. Mod-
els of linear dynamics such as Kalman filters suffice to predict simple linear motions, but
a better prediction model is required for faster and more complex movements. When the
target motion is relatively short and structured, projecting the parameters onto a lower di-
mensionality manifold [13] encodes implicitly the correlations between parameters, and
makes linear prediction methods efficient again. Such methods have shown to predict
successfully walking cycles using Autoregressive Models [1]. Problems reappear with
long sequences of complex motions, where the parameters are not sufficiently correlated
to give good predictions under projection.

The main performance bottleneck when using Monte-Carlo methods is the evaluation
of the likelihood function. For each particle, it usually involves generating a 3-D appear-
ance model from the particle state, projecting this appearance model onto the available
image planes, and finally comparing it with some extracted image features such as silhou-
ettes or edges. Various simplifications or optimisations [4] have been attempted, but none
of them were able to make full use of image information in real-time.

In this paper, we present novel prediction and evaluation schemes making robust track-
ing of challenging human motions possible in real-time. Prediction is based on behaviour
models, capable of exploiting local dynamics as well as long history, whereas our new
evaluation procedure, based on volumetric reconstruction and blobs-fitting, allows a large
number of model candidates to be tested in a very efficient manner. The tracker is also
able to recover from tracking failures by using the motion prototypes as new starting
points.

In Section 2, we show how complex movements are decomposed into clusters of ele-
mentary motions, and how high-order behaviour is learnt over these clusters. The actual
tracking is performed by a Sample Importance Resampling (SIR) particle filter [12], with
a propagation of the particles following the dynamic model described in Section 4. A
method for fast evaluation of the particles is then introduced 5. Section 6 and 7 respec-
tively present some results and discussion.

2 Human body representation
In this section we describe the parametrisation we use for the human body as well as the
features we use to learn the human behaviour model that will constrain the search within



Figure 1: Overview of the system.

our proposed Bayesian tracking framework.

2.1 Kinematic Tree and Constraints

The model of the human body is based on a kinematic tree consisting of 14 segments, as
seen in Figure 1. Each pose is represented by a 25-dimensional vectorCt which consists
of the joint angles, and the position and orientation of the root of the kinematic tree.

Constraints are placed on joint rotations (expressed as Euler angles) in the form of
bounding values. Redundant configurations and singularities are eliminated by limiting
each joint to two degrees of freedom. The constraints restrict the number of impossible
poses, but are insufficient to capture the complexity of human morphological constraints.
More advanced constraints schemes have been proposed [15], but in our case, a high level
behaviour model learnt from training sets of 3D human motions (e.g., joint angles over
time) will implicitly play the same role.

2.2 Feature space representation

In order to learn a concise probabilistic model of 3D human motion, we need to choose an
appropriate feature space. For each body pose, we define a corresponding feature vector
Xt = (xt , ẋt) consisting of the joint angles vectorxt and its first derivativeẋt . Global
position and orientation are omitted from the chosen feature representation as we do not
wish the learnt behaviour model to be sensitive to them. The inclusion of derivatives helps
resolve ambiguities in configuration space. Moreover, it facilitates the use of models in
performing generative tasks using local dynamics (see Section 4.2).

Human body behaviour may be viewed as a smooth trajectory within the feature space
that is sampled at frame rate, generating a sequence of feature vectorsXt . Each sequence
describes the temporal evolution of human body poses (augmented by the first derivatives
of the joint angles):{X1, X2, . . . , Xm}.

3 Learning Dynamics
3.1 Clustering the Feature Space

Due to the complexity of human dynamics, we break down complex behaviours into el-
ementary movements for which local dynamic models are easier to infer. The problem



Figure 2: Model configurations sampled from various Gaussian clusters. Note that the
derivatives are not shown, and the training data for head movements were not available.

is then to automatically find, isolate and model these elementary movements from the
training data. We achieve this by clustering the feature space into Gaussian clusters us-
ing a variant of the EM algorithm proposed by Figueiredo and Jain [7]. Their proposed
method automatically addresses the main pitfalls of traditional EM, that is, the delicate
initialisation, the arbitrary choice of the number of components, and the possibility of
singularities. Body configurations sampled from a few clusters on ballet-dancing data are
shown in Figure 2.

3.2 Learning High-Level Behaviour with VLMMs

Complex human activities such as dancing (or even simpler ones such as walking), can be
viewed as a sequence of primitive movements with a high level structure controlling the
temporal ordering.

By incorporating probabilistic knowledge of the underlying behavioural structure in
the way we sample our particles (in a Bayesian tracking framework using Monte Carlo
simulation), we can propagate particles only in plausible directions, and also provide
automatic transitions between the different model configurations. A suitable way to obtain
such knowledge is variable-length Markov models (VLMMs) [18].

Variable length Markov models deal with a class of random processes in which the
memory length varies, in contrast to an n-th order Markov models. They have been previ-
ously used in the data compression [5] and language modelling domains [18, 14]. More
recently, they have been successfully introduced in the computer vision domain for learn-
ing stochastic models of human activities with applications to behaviour recognition and
behaviour synthesis [9, 10, 8]. Their advantage over a fixed memory Markov model is
their ability to locally optimise the length of memory required for prediction. This results
in a more flexible and efficient representation which is particularly attractive in cases
where we need to capture higher-order temporal dependencies in some parts of the be-
haviour and lower-order dependencies elsewhere. A detailed description on building and
training variable-length Markov models is given by Ronet al. [18].

A VLMM can be thought of as a probabilistic finite state automaton (PFSA)M =
(Q,Σ,τ,γ,s), whereΣ is a set of tokens that represent the finite alphabet of the VLMM,
andQ is a finite set of model states. Each state corresponds to a string inΣ of length at
mostNM (NM ≥ 0), representing the memory for a conditional transition of the VLMM.
The transition functionτ, the output probability functionγ for a particular state, and the
probability distributions over the start states are defined as:

τ : Q×Σ→Q γ : Q×Σ→ [0,1] s : Q→ [0,1]

The VLMM is a generative probabilistic model: by traversing the model’s automaton



M we can generate sequences of the tokens inΣ. By using the set of Gaussian clusters as
the alphabet, we can capture the temporal ordering and space constraints associated with
the primitive movements. Consequently, traversingM will generate statistically plausible
examples of the behaviour.

4 Predictions using the Dynamic Model
Using Bayes’ rule, the probability of a model configurationxt given a measurementzt is:

P(xt |Zt)︸ ︷︷ ︸
Posterior

= κ .P(zt |xt)︸ ︷︷ ︸
Likelihood

.

∫
P(xt |xt−1)︸ ︷︷ ︸
Motion Prior

.P(xt−1|Zt−1)︸ ︷︷ ︸
Previous posterior

dxt−1 (1)

whereκ is a normalising constant, andZt = {z1,z2, . . . ,zt}. Theposteriordistribution
is approximated by a set of discrete particles, each representing a body configuration.
In this section, we shall describe a behaviour-basedmotion prior using the VLMM for
prediction. A fast way of evaluating thelikelihood using volumetric reconstruction and
blobs fitting will then be presented in Section 5.

4.1 Transitions Between Clusters with the VLMM

The particles are augmented with their current VLMM stateqt , from which the cluster
kt they belong to is easily deduced. Transitions (or jumps) between clusters are condi-
tional on the particle’s feature vectorXt as well as the transition probabilitiesγ in the
VLMM. The probability of transition towards a new Gaussian clusterkt+1 of meanµkt+1

and covarianceΣkt+1 is:

P(kt+1 | Xt ,qt) ∝ P(Xt | kt+1).P(kt+1 | qt)

=
1√

(2π)d
∣∣Σkt+1

∣∣
.e
− 1

2 .(Xt−µkt+1
)T ·Σ−1

kt+1
·(Xt−µkt+1

)
.γ(qt ,kt+1) (2)

At each frame, the state transition is chosen according to the above probabilities for each
neighbouring cluster. In practice, only a few transitions are encoded in the VLMM, mak-
ing the evaluation efficient. If the same cluster is chosen (kt+1=kt ), the particle is propa-
gated using local dynamics, as formulated in the next section. If a new cluster is selected,
the particle’s parameters are re-sampled from the new Gaussian cluster.

4.2 Local Dynamics

Inside each Gaussian cluster, a new model configuration can be stochastically predicted
from the previous feature vectorXt . Since the Gaussian clusters include derivatives, the
prediction effectively behaves like a second-order model. Let us consider a Gaussian

cluster of meanµ =
( µX

µẊ

)
and covariance matrixΣ =

(ΣXX ΣXẊ
ΣT

XẊ
ΣẊẊ

)
. The noise vector is

directly sampled from the cluster’s covariance matrix with an attenuation coefficientλ ,
leading to the formulation:

ẋt = ẋt−1 +λ .dẋt

xt = xt−1 + ẋt +λ .dxt
with

(
dxt

dẋt

)
∼N (0,Σ) (3)

The random noise vector is drawn as(dxt dẋt )T =
√

Σ ·X with X ∼N (0, I). The square-
root of the covariance matrix is computed by performing the eigenvalue decomposition,



Σ = V ·D ·VT , and taking the square root of the eigenvalues on the diagonal ofD, so that√
Σ = V ·√D ·VT .

This predictive model has to be understood in the context of Monte-Carlo sampling,
where noise is introduced to model uncertainty in the prediction: the properties of the
noise vector are therefore almost as important as the dynamics themselves. The covari-
ance matrix of the current cluster provides a good approximation of this uncertainty, and
sampling the noise vector from the cluster itself makes propagation of uncertainty much
closer to the training data than uniform Gaussian noise.

To keep the behaviour model independent of the global position and orientation of
the subject, the six global parameters are not modelled by the Gaussian clusters, and are
therefore propagated with a uniform noise.

5 Fast Evaluation of the Likelihood
5.1 Appearance Model

Appearance is modelled by 3-D blobs attached along the bones of the kinematic model.
The shape of a blob is described by a Gaussian distribution of meanµX and covariance
matrixΣX. Since the blobs are generated in the local coordinate system of each body part,
we retain only four free parameters: a single offset value which summarises the meanµX

along the first axis of the bone on which the blob is attached, and the three eigenvalues
which fully describe the covariance matrixΣX. The transformation needed to convert
blobs from local to global coordinates is obtained using forward kinematics.

Blobs also incorporate colour information which, similarly to shape, is represented
by a Gaussian distribution of meanµC and covariance matrixΣC. The full blob param-
eters are learnt automatically during the first seconds of the tracking using Expectation-
Maximisation on the voxel data (see Section 5.3).

Since the colour of each blob is unimodal, clothing with multiple colours must be
handled by a mixture of blobs. Starting with a single blob for each body-part, a “split and
merge” process ensures an optimal description of the data. The criterion used to decide
whether a blob should be split is the colour variance along the main spatial axis of the
blob. This measurement is obtained by projecting the mixed covariance matrix between
spatial and colour informationΣXC (computed from the data with EM) onto the direction
of the current bone in the kinematic model.

5.2 Volumetric Reconstruction

Volumetric reconstruction has the advantage of combining relevant information for track-
ing (shape and colour) into a single coherent structure. Although other features like edges
or texture can provide valuable information, the unavoidable motion blur hinders their
robustness when dealing with fast motions. We argue that shape-from-silhouette algo-
rithms, by exploiting correspondences between camera views, can yield more robustness
and performance than individual image-based feature extraction. A real-time hierarchical
method for voxel-based volumetric reconstruction has been the subject of our previous
work [2]. In this work, using calibrated cameras, the visual-hull algorithm projects 3-D
voxels onto available image planes and keeps those which lie inside all the silhouettes
of the object of interest. Our contribution consists in merging silhouette extraction and
volumetric reconstruction into a hierarchical scheme, which has the double advantage of



robust pixel statistics and improved performance. Colour information is also recovered,
making the reconstructed volume a valuable basis for tracking.

5.3 Data Density as a Mixture of Gaussians

The volumetric reconstruction summarises the data by keeping only relevant information
(shape and colour). Unfortunately, the amount of data is still too large for real-time eval-
uation of candidate configurations, therefore a more compact representation of the data is
needed. In [2] and [3], we also showed how to fit a mixture of Gaussian blobs onto the 3-D
voxels in real-time, using an EM-like procedure. Provided that this blob-fitting procedure
is reliable enough, it constitutes an ideal basis for efficient evaluation of particles.

Just like for every EM-based algorithm, the reliability of blob-fitting strongly depends
on initialisation. The number of blobs and their attributes are known from the appearance
model, but their actual positions depend on the pose of the underlying kinematic model.
Initialising EM from the tracked position in the last frame can prove insufficient for fast
movements. Fortunately, the VLMM can predict the next possible clusters by traversing
the automaton from the last tracked position. EM is then performed from the centres of
these clusters, and the maximum-likelihood result is retained.

This blobs-fitting procedure has the important advantage of detecting tracking fail-
ures: if the best mixture has a low likelihood, the tracker is lost and needs re-initialisation.
Unlike most other trackers, automatic recovery from failures is then possible because the
parameter space is clustered in motion prototypes. Performing EM from all clusters might
provoke a noticeable lag, depending on the total number of prototypes, but is bound to
return a good result. The VLMM state of all particles is then reset, which has the effect of
spreading them across the clusters. To ensure a quick recovery, a bias towards the clusters
that returned the best mixtures is introduced for the first state transition (Section 4.1).

5.4 Particle Evaluation

A model configuration (particle) is evaluated by first generating an appearance model
from the particle state, and then comparing the produced blobs with those obtained from
the image evidence. Let us noteF = ∑i αi fi the mixture generated from the model and
G = ∑i βigi the one corresponding to image evidences. The Kullback-Leibler (KL) diver-
gence can be used to measure the cross-entropy between the two mixtures:

DKL(F‖G) =
∫

F ln
F
G

= ∑
i

αi

∫
fi lnF−∑

i
αi

∫
fi lnG (4)

Using the approximation proposed by [11] for non-overlapping clusters:

DKL(F‖G)'∑
i

αi

∫
fi lnαi fi −∑

i
αi max

j

∫
fi lnβ jg j

= ∑
i

αi min
j

(DKL( fi‖g j)+ ln
αi

β j
)

(5)

Correspondence between blobs is maintained under the formfi ↔ gπ(i), so that the com-
plexity of the run-time evaluation function is linear with respect to the number of blobs:

DKL(F‖G)'
n

∑
i=1

αi

(
DKL( fi‖gπ(i))+ ln

αi

βπ(i)

)
(6)
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Figure 3: Maximum distance between the tracked joint locations and the ground-truth
data on a ballet dancing test sequence (not included in the training data). The average
error over the sequence is36mm for CONDENSATION,16mm for the Annealed particle
filter, and13mm for our method.

This last formulation can be efficiently computed using the closed form solution of the
KL divergence between two Gaussian blobsf ∼N (µ f ,Σ f ) andg∼N (µg,Σg):

DKL( f‖g) =
1
2

(
ln
|Σ f |
|Σg| −d+ tr(Σ−1

f Σg)+(µg−µ f )TΣ−1
f (µg−µ f )

)
(7)

where d is the dimensionality of the Gaussian blobsf andg.

6 Results
Our novel prediction and evaluation methods were tested on long video sequences ex-
hibiting fast and diverse movements. Ballet dancing is an interesting application because
movements are so fast that, at normal framerate, tracking without an adequate dynamic
model is very challenging. The volumetric reconstruction is based on4 cameras, captur-
ing images at30fps in a resolution of320×240.

Our training data consisted of8 sequences of ballet-dancing motion capture, approx-
imately 2000frames each. When partitioning the parameter-space, the optimal number
of clusters was automatically found to be256, which can seem quite high but actually
reflects the underlying complexity of the motions. As a comparison, the same clustering
on a simpler “arms pointing” sequence returned only5 clusters. We then learnt a VLMM
over the Gaussian clusters using various memory lengths. Note that a memory length of1
makes the VLMM behave like a first order Markov model. Using a memory length of5,
the VLMM learnt734distinct states. This number of states rose to1722with a memory
length of10. To avoid overfitting which leads to poor performance when encountering
unseen events, a maximum memory length of5 was chosen.

A comparison of accuracy between our algorithm and other standard particle filter
methods can be found in Figure 3. The CONDENSATION algorithm propagates parti-
cles with a Gaussian noise, while Annealing [6] iterates a propagation-evaluation loop
over multiple layers, in a “coarse to fine” manner. Even using5000 particles, CON-
DENSATION was unable to explore the parameter-space in all appropriate directions,
resulting in a rapid failure of tracking. The Annealed particle filter uses only1000parti-
cles, but because of the5 layers of annealing, the computational cost remains equivalent
to CONDENSATION. Annealing produces accurate results in most of the test sequence,
although some tracking failures still occur because of the relatively low number of par-
ticles. Despite having5 times less particle-evaluations than the two other methods, our



Figure 4: Tracking ballet dancing movements (two camera views shown).

propagation scheme maintains accuracy and robustness. Occasional tracking failures, due
to movements unseen in the training set, are detected and quickly recovered from.

Visual tracking results are presented in Figure 4. Motion blur and the cluttered back-
ground make the reconstruction challenging, but the motion model copes with incomplete
data. The full system, which comprises image acquisition, volumetric reconstruction and
the Bayesian tracking framework runs at10fps with a pool of1000particles on a single
2GHz computer.

7 Discussion
The main challenge in human-body tracking is the high dimensionality of the parame-
ter space, making the search for the correct pose a hard problem. Using Monte-Carlo
methods, the number of required particles tends to become very large, and even if meth-
ods such as Annealing improve convergence, the computational cost remains too high for
real-time applications.

In this paper, we have demonstrated an algorithm using high-level behaviours to track
challenging movements in real-time. Novel contributions reside in the prediction scheme
which uses VLMMs and in a fast evaluation method based on volumetric reconstruction
and blobs fitting. By focusing the propagation of particles towards predicted directions,
the number of particles required for robust tracking is kept low, and in conjunction with a
fast evaluation scheme, real-time performance is then achieved on commodity hardware.

As future research directions, we intend to investigate and evaluate various dimen-
sionality reduction methods, in an effort to make the learning of clusters more efficient.
Online learning, where unseen sequences are incrementally integrated into the behaviour
model, would also represent a worthy contribution.

Acknowledgements
We would like to thank Dr Kia Ng and the Interdisciplinary Centre for Scientific Research
in Music at the University of Leeds for allowing the use of their motion capture facilities.
We would also like to thank Mr Royce Neagle for the choreography and performance
of the training ballet sequences and for his technical help in capturing the motion data.
Finally, we would like to thank Kate Simmons Dance Ltd.



References
[1] A. Agarwal and B. Triggs. Tracking articulated motion using a mixture of autore-

gressive models. InProc. ECCV, volume 3023, pages 54–65, 2004.
[2] F. Caillette and T. Howard. Real-Time Markerless Human Body Tracking with

Multi-View 3-D Voxel Reconstruction. InProc. BMVC. vol. 2, pp. 597–606, 2004.
[3] F. Caillette and T. Howard. Real-Time Markerless Human Body Tracking Using

Colored Voxels and 3-D Blobs. InProc. ISMAR, pages 266–267, Nov. 2004.
[4] J. Carranza, C. Theobalt, M. Magnor, and H. Seidel. Free-viewpoint video of human

actors. InACM Trans. Graph. (Proc. SIGGRAPH), pages 569–577, 2003.
[5] G. Cormack and R. Horspool. Data Compression using Dynamic Markov Mod-

elling. Computer Journal, 30(6):541–550, 1987.
[6] J. Deutscher, A. Blake, and I. D. Reid. Articulated body motion capture by annealed

particle filtering. InProc. CVPR, volume 2, pages 126–133, 2000.
[7] M. A. T. Figueiredo and A. K. Jain. Unsupervised learning of finite mixture models.

IEEE Trans. on PAMI, 24(3):381–396, 2002.
[8] A. Galata, A. G. Cohn, D. Magee, and D. Hogg. Modeling interaction using learnt

qualitative spatio-temporal relations and variable length markov models. InProc.
European Conference on Artificial Intelligence (ECAI’02), pages 741–745, 2002.

[9] A. Galata, N. Johnson, and D. Hogg. Learning Behaviour Models of Human Activ-
ities. InProc. BMVC, pages 12–22, 1999.

[10] A. Galata, N. Johnson, and D. Hogg. Learning Variable Length Markov Models of
Behaviour.Computer Vision and Image Understanding, 81(3):398–413, 2001.

[11] J. Goldberger, S. Gordon, and H. Greenspan. An efficient image similarity measure
based on approximations of KL-divergence between two gaussian mixtures. InProc.
ICCV, pages 487–493, 2003.

[12] N. Gordon, J. Salmond, and A. Smith. Novel approach to non-linear/non-gaussian
bayesian state estimation. InRadar and Signal Processing, pages 107–113, 1994.

[13] K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popovic. Style-based inverse
kinematics.ACM Trans. Graph. (Proc. SIGGRAPH), 23(3):522–531, 2004.

[14] I. Guyon and F. Pereira. Design of a Linguistic Postprocessor using Variable Mem-
ory Length Markov Models. InICDAR, pages 454–457, 1995.

[15] L. Herda, R. Urtasun, and P. Fua. Hierarchical implicit surface joint limits to con-
strain video-based motion capture. InProc. ECCV, volume 2, pages 405–418, 2004.

[16] I. Mikic, M. Trivedi, E. Hunter, and P. Cosman. Human body model acquisition and
tracking using voxel data.IJCV, 53(3):199–223, 2003.

[17] D. Ramanan and D. A. Forsyth. Finding and tracking people from the bottom up. In
Proc. CVPR, volume 2, pages 467–475, 2003.

[18] D. Ron, Y. Singer, and N. Tishby. The power of amnesia: Learning probabilistic
automata with variable memory length.Machine Learning, 25(2–3):117–149, 1996.

[19] H. Sidenbladh, M. J. Black, and L. Sigal. Implicit probabilistic models of human
motion for synthesis and tracking. InECCV, volume 1, pages 784–800, 2002.

[20] L. Sigal, S. Bhatia, S. Roth, M. J. Black, and M. Isard. Tracking loose-limbed
people. InProc. CVPR, volume 1, pages 421–428, 2004.


