Computer Conservation Society

Aims and objectives

The Computer Conservation Society (CCS) is a co-operative venture
between the British Computer Society, the Science Museum of London
and the Museum of Science and Industry in Manchester.

The CCS was constituted in September 1989 as a Specialist Group
of the British Computer Society (BCS). It is thus covered by the Royal
Charter and charitable status of the BCS.

The aims of the CCS are to

© Promote the conservation of historic computers and to identify
existing computers which may need to be archived in the future

¢ Develop awareness of the importance of historic computers

¢ Encourage research on historic computers and their impact on
society

Membership is open to anyone interested in computer conservation and
the history of computing.

The CCS is funded and supported by voluntary subscriptions from
members, a grant from the BCS, fees from corporate membership, do-
nations, and by the free use of Science Museum facilities. Some charges
may be made for publications and attendance at seminars and conferences.

There are a number of active Working Parties on specific computer
restorations and early computer technologies and software. Younger peo-
ple are especially encouraged to take part in order to achieve skills transfer.

Resurrection

The Bulletin of the Computer Conservation Society

ISSN 0958 - 7403

Number 26
Autumn 2001

Contents

News Round-Up

Assertions: A Personal Perspective
Tony Hoare

Keeping Old Warhorses in Action
Stuart Fyfe

Punched Cards Are Not Dead Yet
Hamash Carmaichael

CCS Web site information

Zuse 73 replica is operational
Martin Campbell-Kelly

In Memoriam ICL
Hamish Carmichael

CCS Collection Policy
Society Activity
Letters to the Editor

Forthcoming Events

13

21
22

23

24
25
26
29
31

News Round-Up

A life size bronze statue of Alan Turing was unveiled in Manchester’s
Sackville Park on 23 June. The monument, designed by Glyn Hughes,
depicts Turing sitting on a bench holding an apple.

- 101010101 -

The Treasurer reported at the AGM in May that the Society’s finances
had improved significantly over the year. This was thanks mainly to do-
nations of over £3500 from members. Thank you all for your support.

- 101010101 -

Our archivist, Harold Gearing, has announced his decision to relinquish
this responsibility on grounds of age, handing his functions over to the
Secretary over a period of time. The AGM passed with acclamation a
vote of thanks to Harold for his long and valuable service to the Society.

- 101010101 -

The origins of software were the subject of a Society seminar at the Sci-
ence Museum in June, under the title Program Verification and Semantics:
the Farly Work. Among the illustrious speakers at this event was Sir Tony
Hoare, and an edited version of his presentation appears on pages 4-12 of
this issue. Other speakers included Professors Peter Landin and Robin
Milner, while Professors Jonathan Bowen and Cliff Jones co-chaired the
meeting. A full report will appear in the next issue: readers can go now
to <vmoc.museophile.sbu.ac.uk/pvs01/> for further details.

- 101010101 -

There was a conference to celebrate the 50th anniversary of the first
business application of a computer at London’s Guildhall in early Novem-
ber. Sponsors included the BBC World Service, BT Ignite, the Corpora-
tion of London, ICL, KPMG, the NCC and Yahoo.

2 Resurrection Autumn 2001

The Society’s Pegasus now sits in its own purpose-built section of the
Science Museum, which was formally opened in May in the presence of
many contemporary computer specialists, some of whom worked with Pe-
gasus computers during their active life. They included John Crawley, for-
merly of the National Research Development Corporation (NRDC) which
played a major role in instigating the Pegasus project; George Felton, a
former Ferranti engineer who wrote many programs for Pegasus; and other
former Ferranti executives including Sir John Fairclough, who went on to
achieve renown as a Government scientific adviser.

- 101010101 -

The Charles Babbage Institute is launching an electronic journal under
the title Iterations: An Interdisciplinary Journal of Software History. Ed-
itor Philip Farna tells us that Iterations “provides an outlet for scholarly
articles on software history, a forum for first hand accounts of significant
events and developments on software, reviews, and feedback from readers”.
For more information see <www.cbi.umn.edu/iterations/faq>.

- 101010101 -

The Association for a Conservatory of Information Technology
(Aconit), the Association for History of Telecommunications and Infor-
mation Technology (AHTTI) and the Committee for the History of Arme-
ments [sic] (Charme) are jointly organising an international conference on
the History of Computing and Networks for autumn 2002, in collabora-
tion with the Institute of Applied Mathematics in Grenoble (Imag). More
details can be found at <www.aconit.org/colloq2002>.

- 101010101 -

Max Burnet, Secretary of the Australian Computer Museum Society,
reports that there are two Ferranti Sirius computers still surviving Down
Under — a remarkable survival rate as only three were ever shipped there.

One is at Monash University, the other in the Museum of Victoria, and
both are in excellent condition. Max would be interested in hearing from
anyone who has further information on the Sirius, at <mburnet@bigpond.net.au>.

Resurrection Autumn 2001 3

Assertions: A Personal Perspective
Tony Hoare

The author describes how an early interest in preventing pro-
grams from crashing has led to a lifelong study into methods of
proving the correctness of programs. He tells how this led to an
interest in assertions and their role in program proofs, and how
that in turn pointed towards a methodology for the specification
and design of programs.

An assertion is a Boolean formula written in the text of a program, at a
place where its evaluation will always be true (at least, that is the intention
of the programmer). In the absence of jumps, it specifies the internal
interface between the part of the program that comes before it and the
part that comes after. The interface between a procedure declaration and
its call is defined by assertions known as preconditions and post-conditions.

If the assertions are strong enough, they express everything that the
programmers on either side of the interface need to know about the pro-
gram on the other side, even before the code is written. Indeed, such
strong assertions can serve as the basis of a formal proof of the correctness
of a complete program.

In this article, I will describe how my early experience in industry trig-
gered my interest in assertions and their role in program proofs; and how
my subsequent research at university extended the idea into a methodology
for the specification and design of programs.

Now that I have returned to work in industry, I have had the opportu-
nity to investigate the current role of assertions in industrial program de-
velopment. My personal perspective illustrates the complementary roles of
pure research, aimed at academic ideals of excellence, and the unexpected
ways in which the results of such research contribute to the gradual im-
provement of engineering practice.

Programs Will Crash

My first job was as a programmer for Elliott Brothers of London at Bore-
hamwood. My task was to write library programs in decimal machine
code for the company’s new 803 computer. After a preliminary exercise
which gave my boss confidence in my skill, I was entrusted with the task
of implementing a new sorting method.

4 Resurrection Autumn 2001

I really enjoyed optimizing the inner loops of my program to take ad-
vantage of the most ingenious instructions of the machine code. I also
enjoyed documenting the code according to the standards laid down for
programs to be delivered to customers as part of our library. Even test-
ing the program was fun; tracing the errors was like solving mathematical
puzzles. How wonderful that programmers get paid for that too! Surely
programmers should pay the cost for removal of their own mistakes.

But not such fun was the kind of error that caused my test programs to
run wild, that is, crash; quite often, they even over-wrote the data needed
to diagnose the cause of the error. Was the crash due perhaps to a jump
into the data space, or to an instruction over-written by a number?

The only way to find out was to add extra output instructions to the
program, tracing its behaviour up to the moment of the crash. But the
sheer volume of the output only added to the confusion. Remember, in
those days the lucky programmer was one who had access to the computer
just once a day. Even 40 years later, the problem of crashing programs is
not altogether solved.

Role of Syntax

When I had been in my job for six months, an even more important task
was given me, that of designing a new high level programming language
for the projected new and faster members of the company’s range of com-
puters. By great good fortune, there came into my hands a copy of Peter
Naur’s report on the algorithmic language Algol 60, which had recently
been designed by an international committee of experts. We decided to
implement a subset of that language, which I selected with the goal of
efficient implementation on the Elliott computers. In the end, I thought
of an efficient way of implementing nearly the whole language.

An outstanding merit of Peter Naur’s report was that it was only 21
pages long. Yet it gave enough accurate information for an implementer
to compile the language without any communication with the language
designers. Furthermore, a user could program in the language without
any communication either with the implementers or with the designers.
Even so the program worked on the very first time it was submitted to the
compiler. Apart from a small error in the character codes, this is what
actually happened one day at an exhibition of an Elliott 803 computer in
Eastern Europe. Few languages designed since then have matched such
an achievement.

Resurrection Autumn 2001 5

Part of the credit for this success was the very compact yet precise
notation for defining the grammar or syntax of the language, the class of
texts that are worthy of consideration as meaningful programs. This nota-
tion was due originally to the great linguist, psychologist and philosopher
Noam Chomsky:.

It was first applied to programming languages by John Backus, in a
famous article on the Syntax and the Semantics of the proposed Inter-
national Algorithmic Language of the Zurich ACM-GAMM Conference,
Paris, 1959. After dealing with the syntax, the author looked forward to
writing a continuation article on the semantics. It never appeared: in fact
the article laid down a challenge of finding a precise and elegant formal
definition of the meaning of programs, which inspires good research in
computer science right up to the present day.

The syntactic definition of the language served as a pattern for the
structure of the whole of our Algol compiler, which used a method now
known as recursive descent. As a result, it was logically impossible (al-
most) for any error in the syntax of a submitted program to escape de-
tection by the compiler. If a successfully compiled program went wrong,
the programmer had complete confidence that this was not the result of a
misprint that made the program meaningless.

Chomsky’s syntactic definition method was soon more widely applied
both to earlier and to later programming languages, with results that were
rarely as attractive as for Algol 60. I thought that this failure reflected the
intrinsic irregularity and ugliness of the syntax of these other languages.
One purpose of a good formal definition method is to guide the designer
to improve the quality of the language it is used to define.

In designing the machine code to be output by the Elliott Algol com-
piler, I took it as an over-riding principle that no program compiled from
the high level language could ever run wild. Our customers had to accept
a significant performance penalty, because every subscripted array access
had to be checked at run time against both upper and lower array bounds.
They knew how often such a check fails in a production run, and they told
me later that they did not want even the option to remove the check.

As a result, programs written in Algol would never run wild, and de-
bugging was relatively simple, because the effect of every program could
be inferred from the source text of the program itself, without knowing
anything about the compiler or about the machine on which it was run-
ning. If only we had a formal semantics to complement the formal syntax

6 Resurrection Autumn 2001

of the language, perhaps the compiler would be able to help in detecting
and averting other kinds of programming error as well.

Role of Semantics

Interest in semantics at the time was widespread. In 1964, a conference
took place in Vienna on Formal Language Description Languages for Com-
puter Programming. It was attended by 51 scientists from 12 nations. One
of the papers was entitled The definition of programmaing languages by their
compilers: it was written by Jan Garwick, pioneer of computing science in
Norway.

The title appalled me, because it suggested that the meaning of any
program is determined by selecting a standard implementation of that
language on a particular machine. So if you wanted to know the meaning
of a Fortran program, for example, you would run it on an IBM 709, and
see what happened. Such a proposal seemed to me grossly unfair to all
computer manufacturers other than IBM, at that time the world-dominant
computing company.

It would be impossibly expensive and counter-productive on an Elliott
803, with a word length of 39 bits, to give the same numerical answers
as the IBM machine, which had only 36 bits in a word — we could more
efficiently give greater accuracy and range. Even more unfair was the
consequence that the IBM compiler was by definition correct, but any
other manufacturer would be compelled to reproduce all of its errors (they
would have to be called just anomalies, because errors would be logically
impossible).

Since then, I have always avoided operational approaches to program-
ming language semantics. The principle that ‘a program is what a program
does’ is not a good basis for exploration of the concept of program cor-
rectness.

I did not make a presentation at the Vienna conference, but I did make
one comment: I thought that the most important attribute of a formal
definition of semantics should be to leave certain aspects of the language
carefully undefined. As a result, each implementation would have carefully
circumscribed freedom to make efficient choices in the interests of its users
and in the light of the characteristics of a particular machine architecture.

I was very encouraged that this comment was applauded, and even
Garwick expressed his agreement. In fact, I had misinterpreted his title:
his paper called for an abstract compiler for an abstract machine, rather

Resurrection Autumn 2001 7

than selection of an actual commercial product as standard.

The Axiomatic Approach

The inspiration of my remark in Vienna dates back to 1952, when I went
to Oxford as an undergraduate student. Some of my neighbours in college
were mathematicians, and I joined them in a small unofficial night-time
reading party to study mathematical logic from the text book by Quine.
Later, a course in the philosophy of mathematics pursued more deeply
this interest in axioms and proofs, as an explanation of the unreasonable
degree of certainty which accompanies the contemplation of mathematical
truth.

It was this background that led me to propose the axiomatic method
for defining the semantics of a programming language, while preserving
a carefully controlled vagueness in certain aspects. I drew the analogy
with the foundations of the various branches of mathematics, like projec-
tive geometry or group theory; each branch is in effect defined by the set
of axioms that are used without further justification in all proofs of the
theorems of that branch.

The axioms are written in the common notations of mathematics, but
they also contain a number of undefined terms, like lines and points in
projective geometry, or units and products in group theory; these con-
stitute the conceptual framework of that branch. I was convinced that
an axiomatic presentation of the basic concepts of programming would
be much simpler than any compiler of any language for any computer,
however abstract.

I still believe that axioms provide an excellent interface between the
roles of the pure mathematician and the applied mathematician. The pure
mathematician deliberately gives no explicit meaning to the undefined
terms appearing in the axioms, theorems and proofs. It is the task of the
applied mathematician and the experimental scientist to find in the real
world a possible meaning for the terms, and check by carefully designed
experiment that this meaning satisfies the axioms.

The engineer is even allowed to take the axioms as a specification which
must be met in the design of a product, for example, the compiler for a
programming language. Then all the theorems for that branch of pure
mathematics can be validly applied to the product, or to the relevant real
world domain.

Surprisingly often, the more abstract approach of the pure mathemati-

8 Resurrection Autumn 2001

cian is rewarded by the discovery that there are many different applica-
tions of the same axiom set. By analogy, there could be many different
implementations of the axiom set which defines a standard programming
language. That was exactly the carefully circumscribed freedom that I
wanted for the compiler writer, who has to take normal engineer’s respon-
sibility that the implementation satisfies the axioms, as well as efficiently
running its users’ programs.

My first proposal for such an axiom set took the form of equations,
as encountered in school texts on algebra, but with fragments of program
on the left and right hand sides of the equation instead of numbers and
numeric expressions. The same idea was explored earlier and more thor-
oughly in a doctoral dissertation by Shigeru Igarashi at the University of
Tokyo.

I showed my first pencilled draft of a paper on the axiomatic approach
to Peter Lucas; he was leading a project at the IBM Research Laboratory
in Vienna to give a formal definition to IBM’s new programming language,
known as PL/I. He was attracted by the proposal, but he rapidly aban-
doned the attempt to apply it to PL/I.

The designers of PL/I had a very operational view of what each con-
struct of the language would do, and they had no inclination to support
a level of abstraction necessary for an attractive or helpful axiomatic pre-
sentation of the semantics. I was not disappointed: in the arrogance of
idealism, I was confirmed in my view that a good formal definition method
would be one that clearly reveals the quality of a programming language,
whether bad or good; and the axiomatic method had shown its capability
of at least of revealing badness. Other evidence for the badness of PL/I
was its propensity for crashing programs.

Role of Assertions

By 1968, it was evident that research into programming language seman-
tics was going to take a long time before it found application in industry,
and in those days it was accepted that long-term research should take place
in universities. I therefore welcomed the opportunity to take up a post as
Professor of Computer Science at the Queen’s University in Belfast.

By a happy coincidence, as I was moving house, I came across a preprint
of Robert Floyd’s paper Assigning Meanings to Programs. Floyd adopted
the same philosophy as I had, that the meaning of a programming language
is defined by the rules that can be used for reasoning about programs in

Resurrection Autumn 2001 9

the language. These could include not only equations, but also rules of
inference. By this means, he presented an effective method of proving the
total correctness of programs, not just their equality to other programs.

I saw this as the achievement of the ultimate goal of a good formal
semantics for a good programming language, namely, the complete avoid-
ance of programming error. Furthermore, the quality of the language was
now the subject of objective scientific assessment, based on the simplic-
ity of the axioms and the guidance they give for program construction.
The axiomatic method is a way to avoid the dogmatism and controversy
that so often accompanies programming language design, particularly by
comimittees.

For a general purpose programming language, correctness can be de-
fined only relative to the intention of a particular program. In many cases,
the intention can be expressed as a post-condition of the program, that
is an assertion about the values of the variables of the program that is
intended to be true when the program terminates.

The proof of this fact usually depends on annotating the program with
additional assertions in the middle of the program text; these are expected
to be true whenever execution of the program reaches the point where the
assertion is written. At least one assertion, called an invariant, is needed
in each loop: it is intended to be true before and after every execution of
the body of the loop. Often, the correct working of a program depends
on the assumption of some precondition, which must be true before the
program starts.

Floyd gave the proof rules whose application could guarantee the valid-
ity of all the assertions except the precondition, which had to be assumed.
He even looked forward to the day when a verifying compiler could actually
check the validity of all the assertions automatically before allowing the
program to be run. This would be the ultimate solution to the problem of
programming error, making it logically impossible in a running program.
I correctly predicted this achievement would be some time after I had
retired from academic life, which would be in 30 years time.

So I started my life-long project by first extending the set of axioms
and rules to cover all the familiar constructions of a conventional high-
level programming language. These included iterations, procedures and
parameters, recursion, functions, and even jumps. Eventually, there were
enough proof rules to cover almost all of a reasonable programming lan-
guage, like Pascal, for which I developed a proof calculus in collaboration

10 Resurrection Autumn 2001

with Niklaus Wirth.

Since then, the axiomatic method has been explicitly used to guide the
design of languages like Euclid and Eiffel. These languages were prepared
to accept the restrictions on the generality of expression that are neces-
sary to make the axioms consistent with efficient program execution. For
example, the body of an iteration (for statement) should not assign a new
value to the controlled variable; the parameters of a procedure should all
be distinct from each other (no aliases); and all jumps should be forward
rather than backward.

I recommended that these restrictions should be incorporated in the
design of any future programming language; they were all of a kind that
could be enforced by a compiler, so as to avert the risk of programming
error. Restrictions that contribute to provability, I claimed, are what make
a programming language good.

I was even worried that my axiomatic method was too powerful, because
it could deal with jumps, which Dijkstra had pointed out to be a bad
feature of the conventional programming of the day. My consolation was
that the proof rule for jumps relies on a subsidiary hypothesis, and is
inherently more complicated than the rules for structured programming
constructs.

Subsequent wide adoption of structured programming confirmed my
view that simplicity of the relevant proof rule is an objective measure of
quality in a programming language feature. Further confirmation is now
provided by program analysis tools like Lint and PREfix, applied to less
disciplined languages such as C. They identify just those constructions
that would invalidate the simple and obvious proof methods, and warn
against their use.

A common objection to Floyd’s method of program proving was the
need to supply additional assertions at intermediate points in the program.
It is very difficult to look at an existing program and guess what these
assertions should be. I thought this was an entirely mistaken objection.

It was not sensible to try to prove the correctness of existing programs,
partly because they were mostly going to be incorrect anyway. I followed
Dijkstra’s constructive approach to the task of programming: the obli-
gation of ultimate correctness should be the driving force in designing
programs that were going to be correct by construction.

In this top-down approach, the starting point for a software project
should always be the specification, and the proof of the program should

Resurrection Autumn 2001 11

be developed along with the program itself. Thus the most effective proofs
are those constructed before the program is written. This philosophy
has been beautifully illustrated in Dijkstra’s own book A Discipline of
Programming, and in many subsequent textbooks on formal approaches to
software engineering.

Assertions in Use

Assertions are widely used in the software industry today, primarily to
detect, diagnose and classify programming errors during test. They are
sometimes kept in product code to forestall the danger of crashes, and to
analyse them when they occur. They are beginning to be used by compilers
as hints to improve optimisation. They are also beginning to be recognised
by program analysis tools, to inhibit false complaints of potential error.

The one purpose for which they are hardly ever used is for proof of pro-
grams. Nevertheless, assertions provide the fundamental tool for scientific
investigation of professional disciplines of programming; and they show
the direction for future advance in the development both of programming
tools and of programming languages.

There are still many issues that remain as a challenge for future re-
search. And there are encouraging signs that the research is beginning to
spread a beneficial influence on practices, tools and languages coming into
use; and that this will lead to significant improvements in the quality of
software products, for the benefit of their rapidly increasing numbers of
users.

Editor’s note: This is an edited version of a talk given by the author
to the Society at the London Science Museum on & June 2001. Sir Tony
Hoare is Senior Researcher with Microsoft Research Ltd at Cambridge.

12 Resurrection Autumn 2001

Keeping Old Warhorses in Action
Stuart Fyfe

The Computer Conservation Society was not the first body to
rescue and restore computers that were no longer wanted. A
group of students in Kingston, Surrey had the same idea a decade
or so earlier. They acquired, dismantled, reassembled and recom-
missioned an ICT 1301, and went on to build a successful bureau
business around this spare time activity. One of them tells here
the story of Galdor Computing.

In the early seventies, the “Amateur Computer Club” was among the
few national groups pursuing what then seemed a very strange hobby. It
published a design for a hardwired 4-bit thing called the weeny-bitter. I
had already had a go at an 8-bit design published in Wireless World, and
had made an adding machine using old Strowger telephone parts, but I
wanted something better —something with enough power to be actually
used for something.

The chance came while I was an engineering student at what is now
Kingston University (at the time it was called Kingston College of Technol-
ogy, until the Minister of Education, one Margaret Thatcher, designated
it Kingston Polytechnic in a grand ceremony).

I was one of three or four students who shared a flat over a shop in
nearby Surbiton. We thought it would be fun to buy a scrap computer
to play with, and let schools, researchers and ordinary people come and
use it for their own projects. We wanted to link it by telephone to an
amateur astronomical observatory with a big telescope near Croydon. We
did a load of weird stuff —like the electric toilet flush that signalled to
the world when it was used, and could be operated remotely for giving
surprises; and the Meccano rover that ran up and down the pavement of
the main road. Later, there was the model railway that ran all round the
flat.

We looked at an Elliott 802 with mercury delay line storage, and a
PDP whatsit, and got to know the surplus electronics trade and the world
of 5-track paper tape, but nothing was quite right — we could not find a
proper machine. It was a surprise when I got a phone call and a visit from
an ICL engineer, Rodney Brown, who said that London University would
be scrapping an ICT 1300 to replace it with an ICL 1904A. It was in their

Resurrection Autumn 2001 13

administration building, Senate House. Rodney said it was a bit big, but
has everything necessary, and there was scope for adding attachments of
our own. Just the job!

We visited Senate House and saw “Flossie” in action. It was serial
number 6, the first one out of the factory in 1962, and it boasted the
first proper commercial printer. I think my GCE pass-slips were printed
by it, as perhaps were some of yours. It was, in fact, the programmable
tabulator that Babbage had wanted to build.

In 1970 we had nowhere to put such a thing, and had to find a temporary
store while we looked for permanent premises. Apparently we were only
competing with scrap dealers for the price of the metal, and the Operations
Manager, Mr Hutt, was pleased to see it going for educational use at a
price of £200.

We spent a few days camping on his basement computer room floor
while we dismantled it. Engineering students seem to enjoy this sort of
thing; very odd. We’d studied the manuals and knew more or less what
we were doing by then, with help from friendly ICL engineers. The units
came apart very easily, after cutting the wire wraps between the bays and
unbolting the frames. And it was all on wheels, which was a very civilised
arrangement. There was a lot of ironmongery for the kickplates and covers,
so we took a few photographs to help the process of re-assembly. We didn’t
know how long it might be before it could be turned on again: in the event
it was a couple of years.

There were a dozen friends and students helping. We hired an articu-
lated lorry, and after a delay while the driver got a new battery for the
tail-lift, we trundled the frames along what seemed like miles of corridors
in the basement of Senate House, and strapped the units into the lorry.

We unloaded into a double garage in Sutton, where my colleague Trevor
Jarrett was living (the last I heard of him, he was selling computers for
ICL in Australia). It was a tight squeeze in the garage, but it all went in,
and there was a small heater to discourage condensation. That house and
garage have been demolished now —they were just across the road from
where Harry Secombe lived.

I won’t describe the tortuous search for permanent premises, but we
had noticed that estates of wartime prefab houses were being dismantled.
You could get one of these for £200, delivered in sections, from advertisers
in Exchange and Mart. 1t suddenly dawned on us that there was room for
one of these prefabs in the back garden of our student flat if we bought

14 Resurrection Autumn 2001

the lease; pulled down the workshop of a semi-retired old-fashioned tailor;
pulled down another workshop occupied by a printer; got planning consent
for light industrial use; and barrowed a couple of lorry loads of concrete
down the narrow passage that was the street access.

It was a good day when the building arrived and we tried to work out
how to reassemble it. It was a better day when we held a party for all
our helpers and friends in the new, empty room. The council had made
us add an internal brick wall for sound-proofing, and there was a lot of
fuss about whether there really was three-phase mains power in the street
outside or not.

By now we had formed the Galdor Electronics Company Limited, trad-
ing as Galdor Computing. I and my colleagues Derek Odell and Andrew
Keene were still studying electrical and electronic engineering, which in-
cluded light current and heavy current studies, which was appropriate.
Others came to our flat or lived nearby, notably Dirk Koopman, Don
Hedges, Chris Hewitt, Adrian Barnes, and later Peter Singleton and John
Skeene.

The name Galdor is a character in a book that I was reading— “The
Lord of the Rings” by JRR Tolkien, which was required reading for stu-
dents. A funny thing: we asked for a telephone line, and without prompt-
ing the number that we were given was 399 1300. I took this as a sign
that we doing something right.

Moving the machine to Surbiton in another tail-lift lorry was easy
enough, except for one unit that was too wide for the passageway. So
we got out a hacksaw and attacked some runner extensions. These run-
ners have to be temporarily attached to the main console, to stop it falling
over on its face. This was all done outside, on the pavement, in the main
shopping street, at midnight.

The most time-consuming part of re-installation was, of course, re-
connecting thousands of wrapped wire links between the bays. We made a
jig, and manufactured pre-formed links in three sizes with insulated wire.
Instead of wrapping the joints we soldered them. They were colour-coded.
We discovered that some corners were best connected by a left-handed
person, and others by right-handed persons. Soldering made subsequent
moving and reassembly easier for the next owner. There was no risk of
making a wrong connection, they were all one to one links; the design was
ideal. It was a lovely machine to work on.

Instead of the standard in-line arrangement of printer and console, we

Resurrection Autumn 2001 15

angled the printer back about 45 degrees to make it fit in the building.
The triangle that this opened up allowed a convenient extension of the
console work surface.

The first power-on was not a success: no smoke, but the clock wave-
form was all over the place. This derived (more or less) from simply
amplifying a drum track. We wanted to load some test programs, using
an engineer’s trick whereby the card punch can be used as a card reader
since it incorporates a check-reading station that’s normally used to verify
the correct punching of holes. The card punch made a horrid noise and
jammed, because the motor was revolving in the wrong direction.

All the motors were revolving in the wrong direction, including the
drum. The three-phase mains was wrongly connected somewhere, al-
though the colour sequence was right. The fault was probably out in
the street, but easily fixed by swapping a couple of phases over. That was
better: a decent phase-locked clock signal. Now we had to find where the
faulty circuit boards might be, and anything else that wasn’t working.

Fault finding was pretty easy, because there were test points every-
where; in fact, it was all test points. The diagrams were faultless and
identified every pin and wire. And the test programs were pretty good
at identifying the problem area. A measure of ingenuity and imagination
was needed to translate the initial symptoms into an identification of the
faulty gate or board and, for me, that satisfying process of deduction was
what made the project so worthwhile —along with the things we used it
for.

With multiple faults masking each other, it did take some months to
commission the machine. I remember the mechanical timing adjustments
on the printer were particularly tedious. But once it had settled down, a
fresh fault occurred only about once a month.

The blue sections on the control panels contained engineer’s controls.
On the main console, the engineer’s section monitored the internal state
of sub-systems like the DTU and all the power supplies. From there, the
power voltages could be varied, up or down, in an attempt to provoke
faulty behaviour before it became a problem in normal use.

Some sections were quite a puzzle, because they didn’t go wrong often
enough to let us become fully familiar with the circuitry. It could take a
day to pin down a subtle fault in the DTU or tape systems, but we would
learn a lot by the end of it.

Our test tools were an oscilloscope and a voltmeter. DC and 1MHz

16 Resurrection Autumn 2001

were easy to measure. An operator sitting at the console could send spe-
cific signals, data values or operations to most parts of the machine, and
the effects could be monitored on the gates by a colleague wheeling this
enormous oscilloscope from one bay to another. Sitting with the diagrams
open at the console, he would call out things like “See if 8G27-5 goes high
when I clear CR2”. And then power off, and whip out the faulty card.

Having wire wraps everywhere certainly slowed things down, and it
was worth making some additional tests to confirm where the fault was
before getting out the special tools. There were rubber strips with a row
of holes called “quick wraps” that would hold a card temporarily in place
for testing.

This was an ideal engineer-friendly scale of machine. We replaced in-
dividual faulty transistors when there were no spare circuit boards of the
right type. You couldn’t do that with an integrated circuit or even TTL
logic. The mechanical parts were nice to work on too, being well made
with heavy castings and oil-filled gearboxes. Lovely stuff.

Having unbuffered peripherals was annoying, but did keep the price
down. The main program had to loop and wait for the print barrel to
rotate to the next letter that you wanted to print. This could be concealed
in modular routines but was hardly efficient.

It was quite a marvel that it worked at all, as evidenced by the mea-
sures taken to achieve the clock rate of IMHz. The many capacitors and
coils that populated the circuit cards were there to help these specks of
germanium switch at these speeds, and do so reliably when attached to
perhaps 20 feet of wiring.

Apart from what came with the machine, spare parts came from dis-
mantling other 1300s wherever we could find them, with our troop of
friends and a big lorry. As machines approached the end of life, mainte-
nance must have suffered, for we saw a lot of quick-wraps in place perma-
nently. There was one machine in Bridgewater; a multi-tasking 1302 near
Hastings with one inch tapes; another at the office of the Official Receiver
on, I think, Millbank, where we were told a bomb on the window ledge did
nothing more than dent a panel, and where security insisted on watching
while the drum was dismantled and the magnetic oxide washed off, in case
it contained sensitive information.

Resurrection Autumn 2001 17

In this way we were able to add a couple of extra drum stores, and
bring it up to six half-inch magnetic tape drives, and the full complement
of 2000 words of 48-bit magnetic core store. A full set of spares was put by,
and we actually swapped the card reader when we were unable to keep the
original one running. We added an 8-track paper tape reader and punch,
and picked up a variety of punch card preparation machines and verifiers,
with real keyboards instead of a finger dance.

Parts had got all over the place. The BBC props department used to
have a console, which turned up in Doctor Who occasionally.

Modifications were easy to make on the 1301. There were gaps in the
instruction codes that could be used. You just had to add some gates
to decode the instructions and do something interesting. An approved
modification called the “black box” involved installing several racks of
boards and let the 1301 drive a 1900 series tape deck, and this was used
to help installations that were converting their data. One of these was in
Glasgow and had quarter-inch tape which involved a two-stage transfer.

The famous sterling arithmetic instructions were achieved by messing
about with the carrying of overflows from one digit to the next, as indeed
were the decimal instructions. Since the national currency had been ‘dec-
imated’ by the time we got the machine, the sterling instructions were
redundant, and we made some alterations to the mill to treat the com-
mands as plain binary, which was more useful to us. All changes were
documented, and we could revert to sterling by operating a switch in one
of the bays.

One practical change was to add some buttons on the console to clear
an entire register at one go, without having to dial up a lot of zeroes first.
This involved attaching a lot of diodes to the back of the dials to form
simple pull-up gates.

We added an instruction to index or modify stored instructions. It
added the bottom six digits of the IAS location to CR2 before executing
the modified instruction.

Some changes were made to the original fixed program Initial Orders.
This let the operator set some manual indicators to do things like unload
all the tapes, and a very big help was the invention of the G card for
unattended continuous running. When a program was being loaded from
punched cards, normally the last card read was an E or entry card, where-
upon the processor stopped and displayed all the ones in CR1 waiting for
the operator to set the program running. If you overpunched the card’s E

18 Resurrection Autumn 2001

with a G, it was read as a G, and the modified Initial Orders didn’t stop
but ran the program at once.

This could save a lot of time. It worked because G has a numeric of
7 which masked the 5 of the E in binary. My colleague Andrew Keene
can take the credit for most of this trickery. He also taught Initial Orders
to sumcheck program images in IAS/drum memory, and reload it from a
library tape only when necessary.

We added an electric typewriter and a keyboard of sorts. This was
used, with Initial Orders, to do simple things like type the label details
of a magnetic tape. The interface used TTL logic which has a positive
ground, so it had to be built “upside down” and floating to attach it to the
1301.

The processor stopped whenever it needed to tell you something, and
we weren’t going to stand over it all the time. So we ran a line up to the
house, isolated with a relay, to flash lights when it was lonely and in need
of attention.

I wanted to get it to control the model train that ran around our flat.
It got quite hot sometimes, and I quite wanted to add an instruction that
could be triggered by temperature to release the door panels and flap them
about a bit. As it was, we fitted a chimney or two in the central units and
a big extractor fan in the roof space of the pre-fab building that kept it
under control.

The commercial three-phase electricity tariff gave us cheap power overnight.
A nocturnal lifestyle suited us students, but confused our clients. We had
occasional visits from the Amateur Computer Club and a few schools, but
most activity was with customers who appreciated our low overheads.

We wrote a program to look after club and society membership lists.
It was called Clubsoc, and was used by some 35 organisations eventually.
Nowadays they’d do it all themselves with PCs, but in the mid seventies
a cheap bureau service was ideal.

It started with London Village, and went on to include the UK adminis-
tration sections of Amnesty International and of Friends of the Earth; the
Town and Country Planning Association; the National Council for Civil
Liberties; the Legalise Cannabis Campaign; and Vole Magazine, to name
just a few. The data was punched onto cards by a separate bureau, and
we would produce lists and mail-out labels.

We also produced printed biorhythm charts for a client, and later
on processed the complex administration for the Southern Counties Cat

Resurrection Autumn 2001 19

Fanciers shows.

An attempt was made to generate school timetables by machine, but
the complexities of split sites and individual pupils’ requirements meant
that this project was not a real success.

The programs were written in machine code and assembler. The rela-
tivised loader is an excellent way to combine separate modules, and it was
good training in how language compilers ultimately work. The assembler
was extended by us to allow symbolic names and comments.

We did a six month period of continuous contract operating in two
12-hour shifts with the 1301 machines at the Liverpool Victoria Friendly
Society. Their machines were Samantha and Arthur and survived a Y2K-
type crisis when interest rates went over 10 per cent and needed two digits.
We used the G card, and told them that Initial Orders had always had
this capability.

We did enough like this to keep the business running, and kept on buy-
ing scrap machines, progressing through the 1900 series, which contained
useful amounts of reclaimable gold. We moved on to Cobol and George 3
and to bigger premises.

The 1301 was of a size where it felt just possible that one person could
get to know everything about it, hardware and software, if they had to.
Somehow that’s important. It feels uncomfortable using modern PCs and
stuff, where one only has the roughest idea of what it’s up to. It doesn’t
matter; it just feels uncomfortable. Working around Flossie was one of the
most satisfying things I've done, and much credit goes to the designers.

Editor’s note: this article is based on a talk by Stuart Fyfe to the Com-
puter Conservation Society on Thursday 20th April 2000.

20 Resurrection Autumn 2001

Punched Cards Are Not Dead Yet

Hamish Carmichael

It was an odd enquiry, but intriguing: did the Computer Conservation
Society know of any place where punched cards could be reproduced?
There were only two possible answers. The first, truthful but boring,
was “No”. The other was a rapid fire of return questions: Who wants
to know? How many cards? 80-column or 40-column? How urgent? A
one-off requirement or a regular job? Is there any money in it? Readers
can easily invent lots of others.

The “who?” was easy—he was an academic in Edinburgh. Which
made one other answer equally obvious— No, he didn’t have any money.
Why was he asking? This is where it gets interesting.

Twenty years ago a chap called Rex Sawyer wrote a book called “Pollen
Identification for Bee Keepers”, which was edited and published by a Dr
RS Pickard of University College, Cardiff. It was based on the argument
that you can identify grains of pollen, and hence deduce what the bees
have been feeding on, if you observe such characteristics of a pollen grain
as Size, Shape, Colour, Aperture numbers, Aperture types, Surface, Exine
(whatever that is), and Other features. The book was very well illustrated,
with photos and tables, and told you how to judge actual pollen examples
against the tables. Each identified pollen was given a unique number.

Then, to make the process almost infallible, the book was accompanied
by a pack of 50 punched cards. Each card was printed with 20 columns of
numbers, from 1 to 200, allowing the recording of the details of up to 200
types of pollen (only 150 are needed to identify all the pollens found in
British honey). Each card represented one value of one of the identifying
characteristics.

For example, there was one card for “Size— Very Small”, which was
punched with holes alongside all the numbers of the pollens which share
that characteristic. Thus if you want to identify a pollen which is Very
Small, Yellow, and Triangular, you pick up the relevant Size, Colour and
Shape cards, hold them up to the light, and you can see that it’s either
pollen number 73 or pollen number 94. Usually three cards are sufficient.
Occasionally, as in this example, a fourth characteristic is used to find a
unique identification.

The Moir Library in Edinburgh is believed to have the most compre-
hensive collection of books about bee-keeping anywhere in the world. It

Resurrection Autumn 2001 21

therefore had four copies of the Sawyer/Pickard book, but all the accompa-
nying punched card packs had gone missing. The enquirer had one master
pack, which he was not prepared to entrust to the post, but he did send
me xerox copies of each card against a black background.

He wanted four replacement packs, plus two spares. At 50 cards per
pack, that meant 300 cards in total. It was not worth refurbishing a
reproducer for that lot, even if one could be found. So out with the old
hand punch, and grudgingly extract some of the blank cards from one’s
lifetime supply of bookmarks, lecture notes, and shopping lists.

The enquirer thought he would be able to get the pollen numbers
printed onto the cards by some friend in Edinburgh, so the punching was
done onto ‘blank’ cards with the printed side down.

Just to make it more fun, the punching only occurred in every third
column, starting at column 9 and continuing to column 48. And what we
know as positions 0 to 9 were printed 1 to 10 on the master cards. And
there could be multiple punches—up to 10, in fact —in the same column,
so hold one key down until you’ve punched the next, which was not what
we were taught in UAKP training in 1958.

Verifying was easy: lay the newly punched card on top of the xerox
master. If all the holes filled with black, all was well, because clearly the
new holes all corresponded to holes in the master card. Any discrepancy —
ditch the card and punch another.

I won’t tell you how many days it took, or how many cards were mis-
punched in the process. But I do hope he doesn’t extend the system to
the pollens found in foreign honeys.

CCS Web site information

The Society has its own World Wide Web (WWW) site: it is located
at http://www.cs.man.ac.uk/CCS/. This is in addition to the FTP
site at ftp.cs.man.ac.uk/pub/CCS-Archive (please note that these
URLs are case-sensitive). Our Web site includes information about the
SSEM project as well as selected papers from Resurrection. Readers can
download files, including issues of Resurrection and simulators for historic
machines.

22 Resurrection Autumn 2001

Zuse 7.3 replica is operational
Martin Campbell-Kelly

The project to rebuild Konrad Zuse’s Z3 relay computer is now complete,
and the machine was formally inaugurated at a symposium entitled Sizty
Years of Computation: Konrad Zuse’s Computing Machine Z3: 1941 -
2001 held at the Konrad-Zuse-Zentrum fiir Informationstechnik, Berlin on
11 May 2001.

The Z3 rebuild team was led by Raul Rojas of Technischen Universitat
Berlin. Unlike most reconstruction projects the new Z3 uses modern relay
technology instead of authentic components. As a result the machine is
faster, smaller, and more reliable than the original, while still capturing
something of the authentic feel of a relay machine.

The symposium itself was opened with a welcome address from Peter
Deuflhard, Director of the Konrad-Zuse-Zentrum. The first paper was read
by K Vollmar (Universitét-Karlsruh), who recounted the history of Konrad
Zuse’s commercial ventures and companies. The next speaker, Horst Zuse
(TU Berlin), son of the late Konrad Zuse, gave a detailed history of Zuse’s
machines from the pre-war Z1 up to the commercially manufactured Z11
of 1955. His presentation was complemented by some charming history
and photographs of the Zuse family.

Raul Rojas then gave an architectural overview of Zuse’s computers
from the Z1 to the Z4. His presentation included a demonstration of the
reconstructed Z3 in which LEDs, fired by relay operations, enabled the
movement of data and the contents of the storage unit to be visualized.

The symposium concluded with an international perspective from two
English-speaking computer historians. Michael Williams (University of
Calgary) described the evolution of calculating instruments, providing a
context for German developments, while Martin Campbell-Kelly (Univer-
sity of Warwick) spoke on Charles Babbage’s Analytical Engine. The
symposium was followed by an alfresco lunchtime aperitif in perfect spring
weather. During the afternoon CCS Vice-Chairman Tony Sale gave a well
attended talk on the reconstruction of the Colossus.

Editorial contact details

Readers wishing to contact the Editor may do so by fax to 020 8715
0484 or by e-mail to <NEnticknap@compuserve.com>.

Resurrection Autumn 2001 23

In Memoriam ICL

Hamish Carmichael

When ICL was formed in 1968, one of the earliest interpretations offered
for the new acronym was ‘It Can’t Last’. (Stand up the boy who said that
that originated in IBM!) Now, 33 years later, the name is indeed coming
to an end. But that in itself is no great pity. Many of us who served in ICL
in its heyday have felt that the spirit of the company itself has been dying
over the past few years, and that the organisation which once represented
the sum total of the native British computer industry has been allowed to
dwindle into a pathetic shell.

I find a common feeling among many former colleagues who have retired
or been redunded or have just got fed up and left of their own accord.
Better to be away from it, with our proud memories intact, than to stay
propping up its remains.

What a heritage it was— Hollerith, Powers, Ferranti, Elliott, Leo, En-
glish Electric, EMI and all the others. We all brought into ICL our own
pride and our own loyalties, yet these melded into a common pride that
was greater than them all, and we all became glad to be known as ICL
people. Nevertheless after years of joint service you could still often tell
from which tradition someone derived. The last embers of the rivalry be-
tween Hollerith and Powers may now at last have cooled, but it was only
a little earlier this year, after a committee meeting (nothing at all to do
with ICL) that a friend and I agreed “that was rather an English Electric
occasion”, and both knew at once what we meant.

Think of the techniques we pioneered — multiprogramming, store pro-
tection, paging and virtual storage to name but a few —typically years
ahead of the Americans. And technical innovation was an abiding
strength: think of DAP, the first practical parallel processor, and Cafs,
for so long my speciality (and hobby horse).

It’s still probably too soon to write the story of the 2900 and its succes-
sors, and VME, the operating system that started off pretty disastrously
but grew into the best the world has seen. Nowadays, when ‘operating
system’ seems to mean a pile of incompetent junk scrambled together by
nincompoops, an inviting playground for the world’s hackers, with ‘secu-
rity’ about as resilient as cold rice pudding, we know, indeed we know,
that we knew better. And behind the world’s curtains VME still does a
fair share of the world’s work.

24 Resurrection Autumn 2001

Having fought shy of management responsibility all my life, I'm not
the one to judge or criticise the managers who have presided over the
company’s decline, but there’s one general point I do feel qualified to
make. The company’s strong periods have been when among those at
the helm there has been a strong understanding of the industry, and an
engineer’s awareness of the challenges and opportunities. You can’t run
a computer company with a combination of marketeers and planners and
accountants.

So farewell ICL. It Couldn’t Last —but it was good while it lasted.

CCS Collection Policy

The Committee of the Society has formulated a policy statement concern-
ing procedures for dealing with computers of historical interest that come
to the Society’s attention. This is published in full below.

1. The Society has no Collection of its own, and no premises in which
to house one. There is no intention to change this.

2. When the Society hears of historic equipment which is becoming avail-
able for conservation, it will attempt to find a suitable home for it in
one of the following major collections:

e The Bletchley Park Museum Trust
e The Science Museum, South Kensington

e The Museum of Science and Industry, Manchester

3. The Society will also alert other collections to the availability of sur-
plus equipment, where the major collections are unable to offer to
house it, if it fits the appropriate area of interest. Members who
know of such collections are asked to ensure that the Secretary is
aware of their location and subject matter.

Resurrection Autumn 2001 25

Society Activity

Small-Scale Experimental Machine Project
Chris Burton

The machine continues to be shown off on Tuesdays by a loyal band of
demonstrators. It continues to be fairly reliable, though now, three years
after installation, it could do with a maintenance blitz. Work is proceeding
on design and build of a Cathode Ray Tube test rig to sort out which CRT's
are likely to be most reliable as storage tubes. We now have about 50 CRT's
in our spares holding. The bulk of the spares were purchased by courtesy
of ICL.

Bombe Rebuild Project
John Harper

At last, we have visible progress. Towards the end of May 2001, we were
able to fit a DC motor, clutch and gearbox into the bottom of the frame at
Bletchley Park. Using our DC power supply we were able drive the gearbox
and activate and deactivate the clutch. The new gears ran very smoothly
and soon bedded in. To the casual observer this milestone may not seem
very inspiring. However, when one realises that with the exception of ball
bearing races everything was made from raw material, one will have a
better understanding of the effort involved. For example, castings started
as billets of cast iron, gears and clutch items were cut from basic material
and coils were wound from scratch. Twenty members of our Rebuild team
were involved one way or another in achieving this milestone.

Our immediate objective is to have all mechanical parts turning under
DC power in the near future. As I write at the end of October 2001, 99%
of all the mechanical parts required are manufactured and delivered. The
remainder is all in hand and is expected to be with us within the next few
weeks.

Mechanical assembly is well under way but before we start mounting too
many parts on the full frame, we are assembling a smaller test rig consisting
of four Letchworth Enigmas in a single bank. The purpose of this is to
carry out assembly and fitting exercises at locations more convenient than
Bletchley Park. As I write, this rig is about 75% assembled. Valuable
lessons are being learnt about the order of assembly. These are expected

26 Resurrection Autumn 2001

to save a great deal of time when we assemble 36 Letchworth Enigmas on
the full frame. Current estimates are that the test rig will be completed
before the end of this calendar year, and the full set assembled at Bletchley
Park early in 2002.

Looking forward to the ‘electrical’ phase, long lead items such as the
cableforms are making good progress. It is estimated that the last one
will be laid up and laced early in 2002. No terminations have been fitted
yet. This we expect to take place during and before the end of 2002. New
coil winding is progressing slowly but surely, as are many other electrically
related items.

Our general plan now is to demonstrate in the new year, to all those
who are interested, the mechanical parts more or less complete. This we
feel is the appropriate time to carry out a major fund raising activity. We
do not have sufficient funds to complete the Rebuild using full commercial
manufacturing facilities. The home workshop facilities that we have used
so far are not appropriate for much of what still has to be done on the
electrical side. We either need to find companies who will make large
numbers of parts on their CNC or automatic machinery or alternatively
raise sufficient funds to have these operations carried out at full commercial
rates.

However, we do not have to wait until we have demonstrated the me-
chanical parts working before we start fund raising or the application of
CNC machinery. If anybody can help now we have the drawings and
automation files ready to send to those who might be prepared to assist.

As before, any readers who feel they would like to help or find out more
about our Project can find our details inside the back cover, or via our
Web site at: <www.jharper.demon.co.uk/bombel.htm>.

Elliott 401 Working Party
Chris Burton

No significant work has ben done recently due to the pressure of other
activities on members of the Working Party. We have room for two or three
more engineers who might like to work on this historic valve computer.
Requirements are: availability to work on an occasional week day; ability
to get to Blythe House in West Kensington; a confident understanding
of electronics and computer logic (familiarity with valve electronics would
be a bonus); keen sensitivity to the need for curatorial care of the object;

Resurrection Autumn 2001 27

an email address. If this sounds like you, introduce yourself to me at
<cpb@envex.demon.co.uk>.

Mil-DAP Working Party
Brian Russell

We have finished the ‘dirty work’ of physically cleaning up the machine.
After one small hiccup, all the equipment has now passed the tests for
electrical safety.

With the help of the readers of Resurrection, we have now tracked down
three K110 Array Boards. All have been used for display purposes and are
therefore likely to be non-functional, but may be repairable or usable with
restrictions. One of the boards is now in our possession. After cleaning
and fitting with an airseal and metalwork, it will be plugged in.

I would like to thank all who responded to our request for 8-inch floppy
discs. The discs are not as rare as we at first thought. We now have over
a hundred! This should be sufficient for all our needs; and we know whom
to contact if we do need any more. It is most gratifying to get support
from so many CCS members.

The machine is still at West Gorton. It has been moved out of the
‘dirty” workshop into the laboratory. This would not have been possible
only 12 months ago, as the laboratory was then very much in use. With
the company shifting its emphasis away from hardware, the lab is often
now to be found totally deserted. We have cleared a bench for ourselves
and set up the Mil-DAP and our two Pergs ready to begin the software
resurrection stage.

We got ourselves a copy of POS (the Perq operating system), but have
since discovered that what we need is ‘PNX for Perq-2’ (the Perq version
of Unix, for Type 2 workstations). We are still missing the HCU-CP, the
MCU-CP and the DAP Device Driver.

There are still only two of us working on Mil-DAP, Bob Whittaker and
myself. Over the winter months, we hope to make a start on running some
of the Perq software. Any thought of trying to communicate with the DAP
itself is still some time off.

28 Resurrection Autumn 2001

Letters to the Editor

Dear Editor,

I wonder if any Resurrection readers were at the historic occasion when
the Prudential officially commissioned its first computer, an IBM machine,
in I think late 1961. I call it historic because of the Chairman’s remark
that he could not possibly see any future for such equipment. When the
cost of installing a false floor and air conditioning in the huge High Hol-
born building was taken into account, the economics were then, perhaps,
dubious. I would be interested if anyone could tell me the number of the
IBM machine. Previously, I had been on the IBM team maintaining the
punches and verifiers used to convert the hand written information onto
cards.

Best regards,

Eric Russell
by email
14 May 2001

Dear Editor,

[write in reply to Michael Bramsom’s query about a 10x10 simultaneous
equation solver in the last issue of Resurrection.

One possibility is that the machine described was the Mallock Ma-
chine, although it would have been very dated by the late 1940s. The
Mallock Machine was designed by RRM Mallock, a demonstrator in the
Cambridge University Engineering Department. It was actually built by
the Cambridge Scientific Instrument Company in 1933. After the war it
was housed in the Cambridge Mathematical Laboratory until computer
developments made it obsolete.

The machine used a series of interconnected transformers to represent
the unknowns in a system of linear simultaneous equations. Coils on the
transformers represented the coefficients in the equations: the number
of turns on the coils representing specific coefficients. Coils on separate
transformers but relating to the same equations were interconnected to
form a closed circuit. If the problem had six unknowns then there were
six closed circuits. Alternating current was applied to the transformers
and when the voltage levels reached an equilibrium the solutions to the
equations were read from the machine.

Resurrection Autumn 2001 29

As far as I know the machine was not very successful —although it
was mentioned in several contemporary articles. The machine could not
adequately deal with ill conditioned equations, letting out a very sharp
whistle when equilibrium could not be reached.

Mallock’s original article describing the machine is given in Proceedings
of the Royal Society A, Vol 140, 1933, pp457-483.

If it were not this machine it could have been a Network Analyser of
the kind used by electricity companies to simulate power networks, which
could also be used to solve simultaneous equations.

If you find out that it was another machine I would be very interested
to hear about it.

Yours sincerely,

Mary Croarken

Sackler Fellow

Centre for Maritime Research
National Maritime Museum
Greenwich, London

by email

16 May 2001

Dear Editor,

Hugh McGregor Ross’s article on the Ferranti London Computer Centre
contains some errors of fact relating to AV Roe, the aircraft company. This
company was founded by Alliot Verdon Roe (not Arthur Vernon Roe) and
his brother Humphrey Verdon Roe, and was registered in 1910. Alliot
Verdon Roe sold his interest in the company in 1928, and went on to
found Saunders Roe in the Isle of Wight.

AV Roe & Co later became part of the Hawker Siddeley Group. If BV
Bowden did speak to anyone at Avro about the advantages of installing
a computer, it was most likely Sir Roy Dobson, who was head of Avro at
that time.

David S Wilde

by email

18 May 2001

30 Resurrection Autumn 2001

Forthcoming Events

Every Tuesday at 1200 and 1400 Demonstrations of the replica Small-
Scale Experimental Machine at Manchester Museum of Science and Indus-
try

Every weekend Guided tours and exhibition at Bletchley Park, price
£3.00, or £2.00 for concessions

Exhibition of wartime code- breaking equipment and procedures, in-
cluding the replica Colossus, plus 90 minute tours of the wartime buildings

5-6 November 2001 Leo 50th Anniversary Conference

to be held in the Guildhall, City of London, price £75.00: see News
Round-Up

27 November 2001 NWG meeting titled “Ferranti Orion 1: An Intro-
ductory Overview”

Speaker Chris Burton

22 January 2002 NWG meeting titled “Altair and After: The Original
Personal Computer Revolution”

Speaker Robin Shirley

12 February 2002 NWG meeting titled “The RM machine”
Speaker John Leighfield

19 March 2002 NWG meeting titled “The Turing Bombe Rebuild Project”
Speaker John Harper

North West Group meetings take place in the Conference room at the
Manchester Museum of Science and Industry, Liverpool Road, Manchester,
starting at 1730; tea is served from 1700.

Queries about London meetings should be addressed to George Davis
on 020 8681 7784, and about Manchester meetings to William Gunn on
01663 764997 or at <bengunn@compuserve.com>.

Resurrection Autumn 2001 31

Committee of the Society (members)

Dr Martin Campbell-Kelly, Department of Computer Science, University of War-
wick, Coventry CV4 TAL. Tel: 01203 523196. Email: mck@dcs.warwick.ac.uk
Professor Sandy Douglas CBE FBCS, 7 Barrs Wood Road, Road, New Milton,
Hampshire BH25 5BS.

Dr Dave Holdsworth CEng Hon FBCS, University Computing Service, University
of Leeds, Leeds LS2 9JT. Tel: 0113 233 5402. Email: D.Holdsworth@leeds.ac.uk

Dr Roger Johnson FBCS, 9 Stanhope Way, Riverhead, Sevenoaks, Kent TN13 2DZ.
Tel: 020 7631 6709. Email: r.johnson@bcs.org.uk

Eric Jukes, 153 Kenilworth Crescent, Enfield, Middlesex EN1 3RG. Tel: 020 8366 6162.
Graham Morris FBCS, 43 Pewley Hill, Guildford GU1 3SW. Tel: 01483 566933.
Professor Simon Lavington FBCS FIEE CEng, Department of Computer Science,
University of Essex, Colchester CO4 35Q. Tel: 01206 872677. Email: lavisQessex.ac.uk
Brian Oakley CBE FBCS, 120 Reigate Road, Ewell, Epsom, Surrey KT17 3BX. Tel:
020 8393 4096. Email: brian.oakley@ukonline.co.uk

John Southall FBCS, 8 Nursery Gardens, Purley-on-Thames, Reading RG8 8AS. Tel:
0118 984 2259. Email: jsouthall@bcs.org.uk

Point of Contact

Readers who have general queries to put to the Society should address them to the
Secretary: contact details are given on the page opposite.

Members who move house should notify Hamish Carmichael of their new address to
ensure that they continue to receive copies of Resurrection. Those who are also members
of the BCS should note that the CCS membership is different from the BCS list and so
needs to be maintained separately.

Resurrection is the bulletin of the Computer Conservation Society. Copies of the
current issue are available from the Secretary for £5.00 each.

Editor — Nicholas Enticknap Typesetting — Nicholas Enticknap
Typesetting design — Adrian Johnstone Cover design — Tony Sale
Printed by the British Computer Society

(©Computer Conservation Society

32 Resurrection Autumn 2001

Committee of the Society (Officers)

Chairman Ernest Morris FBCS, 16 Copperkins Lane, Amersham, Bucks HP6 5QF.
Tel: 01494 727600. Email: Ernest.Morris@btinternet.com

Vice-Chairman Tony Sale Hon FBCS, 15 Northampton Road, Bromham, Beds MK43
8QB. Tel: 01234 822788. Email: tsaleQqufaro.demon.co.uk

Secretary Hamish Carmichael FBCS, 63 Collingwood Avenue, Tolworth, Surbiton,
Surrey KT5 9PU. Tel: 020 8337 3176. Email: hamishc@globalnet.co.uk

Treasurer Dan Hayton, 31 The High Street, Farnborough Village, Orpington, Kent
BR6 7TBQ. Tel: 01689 852186. Email: Daniel@newcomen.demon.co.uk

Science Museum representative Doron Swade CEng FBCS, Assistant Director, The
Science Museum, Exhibition Road, London SW7 2DD. Tel: 020 7942 4100. Email:
d.swade@nmesi.ac.uk

Museum of Science € Industry in Manchester representative Jenny Wetton, Museum
of Science & Industry, Liverpool Road, Castlefield, Manchester M3 4JP. Tel: 0161 832
2244. Email: curatorial@msim.org.uk

Chairman, Elliott 803 Working Party John Sinclair, 9 Plummers Lane, Haynes, Bed-
ford MK45 3PL. Tel: 01234 381 403.

Email: john.eurocom@dial.pipex.com

Chairman, Elliott 401 Working Party Chris Burton CEng FIEE FBCS, Wern Ddu
Fach, Llansilin, Oswestry, Shropshire SY10 9BN. Tel: 01691 791274.

Email: chris@envex.demon.co.uk

Chairman, Pegasus Working Party Len Hewitt MBCS, 5 Birch Grove, Kingswood,
Surrey KT20 6QU. Tel: 01737 832355. Email: leonard.hewitt@virgin.net.

Chairman, DEC Working Party Dr Adrian Johnstone CEng MIEE MBCS, Royal
Holloway and Bedford New College, Egham, Surrey TW20 O0EX. Tel: 01784 443425.
Email: adrian@dcs.rhbnc.ac.uk

Chairman, S100 bus Working Party Robin Shirley, 41 Guildford Park Avenue, Guild-
ford, Surrey GU2 5NL. Tel: 01483 565220. Email: r.shirley@surrey.ac.uk

Chairman, Turing Bombe Project John Harper CEng MIEE MBCS, 7 Cedar Av-
enue, Ickleford, Hitchin, Herts SG5 3XU. Tel: 01462 451970.

Email: bombe@jharper.demon.co.uk

Chairman, Mil-DAP Working Party Brian M Russell CEng MIEE, 5 Briarmere
Walk, Chadderton, Oldham OL9 6SH. Tel: 0161 652 6475. Email: bmrussellQiee.org
Chairman, North West Group Tom Hinchliffe, 44 Park Road, Disley, Cheshire SK12
2LX. Tel: 01663 765040. Email: tom.h@dial.pipex.com.

Meetings Secretary George Davis CEng Hon FBCS, 4 Digby Place, Croydon CRO
5QR. Tel: 020 8681 7784. Email: georgedavis@bcs.org.uk

Editor, Resurrection Nicholas Enticknap, 4 Thornton Court, Grand Drive, Raynes
Park SW20 9HJ. Tel: 020 8540 5952. Fax: 020 8715 0484.

Email: NEnticknap@compuserve.com

Archivist Harold Gearing FBCS, 14 Craft Way, Steeple Morden, Royston, Herts SG8
OPF. Tel: 01763 852567.

