
Computer Conservation Society

Aims and objectives

The Computer Conservation Society (CCS) is a co-operative venture
between the British Computer Society, the Science Museum of London
and the Museum of Science and Industry in Manchester.

The CCS was constituted in September 1989 as a Specialist Group
of the British Computer Society (BCS). It is thus covered by the Royal
Charter and charitable status of the BCS.

The aims of the CCS are to

� Promote the conservation of historic computers and to identify
existing computers which may need to be archived in the future

� Develop awareness of the importance of historic computers

� Encourage research on historic computers and their impact on
society

Membership is open to anyone interested in computer conservation and
the history of computing.

The CCS is funded and supported by a grant from the BCS, fees from
corporate membership, donations, and by the free use of Science Museum
facilities. Membership is free but some charges may be made for publica-
tions and attendance at seminars and conferences.

There are a number of active Working Parties on specific computer
restorations and early computer technologies and software. Younger peo-
ple are especially encouraged to take part in order to achieve skills transfer.



Resurrection
The Bulletin of the Computer Conservation Society

ISSN 0958 - 7403

Number 23

New Year 2000

Contents

Editorial
Nicholas Enticknap 2

News Round-Up 3

The BTM Calculators
Lorin Knight 5

IBM 360 Architecture and Microprogramming
Ivor Jones 14

IBM 360 input and output
Michael Flinders 23

Letters to the Editor 29

Computing anniversaries in 2000 31

Society Activity 32

Forthcoming Events 35

FTP, Web and E-mail Addresses 36



Editorial

Nicholas Enticknap

For virtually everyone with an interest in computer conservation, the main
talking point this autumn has been the continuing doubts over the future
of Bletchley Park. I had hoped to be able to include positive news about
the situation in this issue, but as we went to press no agreement had been
reached on either the future of the Park or the Society’s plans for museum
activities. Regrettably I have to report that the wrangling publicised in
the national press is still continuing.

We all must hope that the new millennium brings a speedy outbreak
of common sense in all relevant quarters, and that the Bletchley Park
site which played such a vital role in the development of the electronic
computer is allowed finally to become a permanent showcase for its historic
1940s technology.

There is better news from the Science Museum, where plans to display
the Society’s Pegasus are now well advanced. It is probable that before
our next issue visitors to the Museum will be able to experience the very
different world of computing nearly half a century ago at first hand.

The IBM System/360 range, launched 45 years ago last April and still
going strong in System 390 guise today, is the subject of two of our fea-
tures in this issue. Ivor Jones, who still works for the company, describes
how the range introduced the concept of a computer architecture and how
that architecture evolved. He also highlights the important role of micro-
programming in achieving the compatibility that was the novel feature of
the range.

Mike Flinders, who also worked at Hursley where the 360/40 was de-
signed, discusses the input/output arrangements, in particular the devel-
opment of the selector and multiplexer channels which became such a
distinctive feature of IBM mainframes.

Our other article takes us a step backwards in time to the early fifties
when British Tabulating Machine Co (BTM) was just beginning to recog-
nise the potential of electronics. Lorin Knight’s article describes the devel-
opment of the Calculator range which preceded the early BTM computers
described by Dickie Bird in issue 22.

2 Resurrection New Year 2000



News Round-Up

Congratulations to Society Chairman Brian Oakley, who was made a BCS
Honorary Fellow in October. The citation acknowledged his work as Di-
rector of the Alvey Programme and his support for progress in quantum
computing as well as his role as CCS chairman.

- 101010101 -

An archive of computer documents has been published on the Web, as
part of a project organised by the Science Museum in conjunction with
the Museum of Science & Industry in Manchester. It is the product of
extensive work by the Society’s Archivist, Harold Gearing.

The Web site, at <www.sciencemuseum.org/ncclp/ncclp.html>, pro-
vides information about the computing collections in both museums. It
will be developed to include collections from other museums, including
Birmingham and the National Museum of Scotland, and will also include
links to other useful sites, including the Archive for the History of Com-
puting at Manchester.

- 101010101 -

Simon Lavington reports that he has received 71 replies so far to his
appeal for personal reminiscences of involvement with pre-1970 UK com-
puters. The CCS Preservation Priorities Working Party is grateful to those
respondents, who should all have received an acknowledgment from Simon.
The CCS is still keen to hear from anyone else who has recollections of the
design, production or use of UK-designed computers that ran before the
arrival of IBM’s System 370 (see pages 30-32 of issue 22 for a complete list
of such machines). The appeal appeared in Computer Weekly, Computer
Bulletin and IEE News as well as in our last issue.

- 101010101 -

Resurrection New Year 2000 3



The Society’s North West Group has an urgent requirement for space for
members to store equipment and spares and to do some restoration work.
If any member knows of any available workshop space in the Manchester
area, would they please contact the Group’s Secretary, Ben Gunn, on
01663 764997. The Group is looking for a room about 24 feet square, with
power and light, in a secure building.

- 101010101 -

CAFS aficionados may like to know that a reunion is being planned for
the middle of 2000. Anyone who would like to be kept informed should let
Hamish Carmichael know by phoning 020 8337 3176.

- 101010101 -

Society member Alan Bosworth spends some of his spare time con-
verting files on obsolete disc media to new formats. He estimates he can
cope with an astonishing 600 formats on both single and double density
floppies. Members who need help in rescuing old material can contact
Alan at Arosfa, Watts Green, Chearsley, Aylesbury, Bucks HP18 0DD, or
telephone him on 01844 208380.

- 101010101 -

Readers who have general queries to put to the Society should address
them to the Secretary at the address given on the inside back cover.

Members who move house should notify Hamish Carmichael of their
new address to ensure that they continue to receive copies of Resurrection.
This is because the CCS membership is different from the BCS list.

4 Resurrection New Year 2000



The BTM Calculators

Lorin Knight

I joined BTM in April 1950, six months before the company terminated
its tie-up with IBM. At that time I think Doc Keen was still called the
Head of Research but, as Dickie Bird has already related1, Doc would have
nothing to do with electronics which he regarded as incapable of providing
adequate reliability.

Consequently Cyril Holland-Martin, the Technical Director, who fore-
saw electronics having some impact on the punched-card world, had set
up a small electronics laboratory reporting directly to himself, to launch
the company into the electronic era. It was this happy group, consisting
of Billy Woods-Hill, Bill Davis, Alec Trussell and Martin Circuit, that I
joined. Martin and I were both new boys to the team, Martin having
joined shortly before me.

The initial assignment for the group was to produce an electronic black
box which could be coupled to a 100 card per minute punch and perform
calculations of the type (AxB)±C, taking its input from, and punching
the answer back into, the same card. And it was to be capable of handling
numbers in decimal or £sd notation.

The available 501 electromagnetic multiplier took so long to perform a
multiplication that it reduced the card speed to a pitiful 10 per minute.
Whether or not one thought there was any future for electronic computers
it was clear that for a multiplier to work at an acceptable speed it would
have to use electronic technology. IBM had launched its 603 Electronic
Multiplier in 1946 and already replaced it with the much more powerful
604 Electronic Calculator. Both of these were available to BTM but the
company took no interest in them because they could not handle £sd.

The Bug-eyed Monster

At the time I arrived the electronics group had produced a rack containing
several hundred radio valves called the BEM. This was an acronym for
British Electronic Multiplier but it was sometimes irreverently translated
as Bug-Eyed Monster.

Not long after I arrived the BEM was fully working and doing all
its arithmetic correctly. Although composed of nominally identical flip-

1In his article “BTM’s First Steps Into Computing” in Resurrection issue 22.

Resurrection New Year 2000 5



flop circuits and nominally identical gate circuits, the multiplier had been
coaxed into a working condition by selecting a “better” valve for a few odd
positions and changing a resistor value in the odd location which didn’t
seem to like the standard value.

When the working multiplier was demonstrated to Holland-Martin he
made a simple perceptive reply. “Now,” he said, “remove all the valves
and plug them back into different positions”. This was done and the BEM
was never persuaded to work correctly again!

Birth of the 541

It was time to go back to the drawing board. This time much more at-
tention was paid to ensuring that the basic circuit elements could tolerate
the variations in valve characteristics which would be encountered as well
as the variations in loading they would receive. More attention was also
paid to making the multiplier more suitable for manufacture in modest
quantities.

The circuits of what was to become the 541 Electronic Multiplier were
built onto plug-in chassis which held 12 octal-based valves, care being
taken to limit the number of different chassis types so far as was practica-
ble. ECC33 double triodes were used for the flip-flops and 6F32 pentodes
were used for the gates.

The 6F32 was unusual in that its anode current could be cut off by
quite a small negative potential on grid-3 or grid-1 and seemed the obvious
choice for the gates. It was not manufactured in any large quantities and,
because of this, might not have turned out to be very reliable — but we
were lucky!

There were three registers, each capable of holding a 10-digit number in
either decimal or £sd notation. The binary code for each digit was held on
four flip-flops and automatically switched as necessary to be in scale-of-10,
scale-of-12 (for pence) or scale-of-2 (for multiples of 10/-). The 10 digits
were handled serially with their binary constituents handled in parallel.

The clock frequency was 12kHz which we thought to be near the limit
for achieving reliable operation with all the stray wiring capacitances we
had. We never dreamed that by the end of the century digital circuits
working with clock frequencies as high as 120MHz would be considered
slow. Much of the logic design was based on ideas of Billy Woods-Hill
which had been incorporated in the BEM — in particular the arithmetic
unit and the “halving and doubling” system of multiplication, which he

6 Resurrection New Year 2000



claimed had been used by the ancient Egyptians.

The example below shows how this method was used to multiply 17 by
11.

Register A Register B Register C
Multiplier Multiplicand Product

11 17 17
5 34 34
2 68
1 136 136
0 272

187 Product

It will be seen that the multiplier is progressively halved (fractions
being ignored) and the multiplicand is progressively doubled. Each time
the multiplier is odd a copy of the multiplicand is added into the product
register. Eventually the multiplier reaches 0 (taken as an even number)
and no more transfers to the product register are required.

It is, of course, binary multiplication, disguised by retaining the num-
bers in decimal notation, and requires little of the arithmetic unit other
than the ability to add, halve and double. The method was equally ap-
plicable to sterling calculations, where the multiplicand and product would
be in £sd notation.

There was, however, one little problem with this method of multipli-
cation. It required the multiplier to be a whole number. If it contained
decimal places it had first to be multiplied by 10n, a suitable power of 10
to make it an integer, and the multiplicand divided by 10n to compensate.
With scale-of-10 numbers this was simple because multiplication and di-
vision by 10 were achieved just by moving the decimal point, but if the
multiplicand was in £sd notation it was not quite so simple. A special
divide-by-10 facility for £sd quantities had to be added and this would be
used n times to obtain division by 10n.

By means of a plugboard, a limited sequence of additions, subtractions
and multiplications could be programmed. Steps in the program could be
made conditional on certain parameters, such as whether a given number
was positive or negative or whether a certain designation had been punched
into the card. A separate plugboard would be set up and plugged in for
each job the Multiplier was required to do.

Resurrection New Year 2000 7



The front of the 541 had a display of around 300 miniature neon lamps
which showed the state of every flip-flop and gave a pictorial representation
of the contents of the registers and the arithmetic unit, plus the state of all
the control lines. Coupled with the facility for replacing the electronically
generated clock pulses with single, manually generated pulses, these lamps
provided a powerful faultfinding tool.

Not long after I joined, Bill Davis left the multiplier group to work on
the “Plastab” (a mysterious materials-handling project which never got
off the ground) and Dick Cox joined us. We were a motley crew, coming
from quite different backgrounds and providing complementary expertise.

Our lab was tucked away behind the Field Engineering headquarters on
the north side of Icknield Way in Letchworth, away from Doc Keen and
his boys on the opposite side. We had no telephone. Anyone wishing to
contact us had to ring an office in Field Engineering. The girl there then
jiggled a piece of string which went through a hole in the wall to our lab
and rattled some pieces of scrap aluminium to summon one of us to the
phone. Our location, indeed our existence, seemed to be unknown to most
of BTM and for over a year we were able to get quietly on designing our
multiplier.

Towards the end of 1951 we had a prototype working successfully —
and there was then a rush to get it into production as soon as possible.
Drawings covering most of the mechanical construction had already been
produced for the building of the prototype but no drawings existed for the
physical construction of the units which sat in the base of the multiplier
and produced the 21

2 kW or so of stabilised AC and DC used to power the
800 or so valves.

We had built these power supplies in the lab, improvising metal frames
from assorted steel rods and brackets salvaged from the Field Engineering
scrap heap just outside our lab. There was no time to tidy up the physical
design; the draughtsmen came in and faithfully documented our rather
unusual construction method.

The prototype 541 Electronic Multiplier was displayed at the Business
Efficiency Exhibition at Birmingham in the spring of 1952, and several
production models were installed in customers’ offices later that year.

I remember demonstrating the 541 at the BEE to an elderly gentleman
who turned out to be one of the top brass from Powers Samas. For most
of his working life, it transpired, he had been involved in the development
of punched card machines and punched card accountancy techniques and

8 Resurrection New Year 2000



he was obviously rather proud of the knowledge and expertise he had
accumulated. “But”, he said, “this is only the starting point for young
fellows like you with new ideas and new technologies who are jumping
straight in where we left off — and leaving me and my generation way
behind”. I felt a tinge of sympathy for him — even though he came from
the enemy!

In the three years that I had now been with BTM it had become obvious
to the top management that electronics was going to have a much greater
influence on punched card accountancy than they had originally thought
and several significant moves had been taken.

Dickie Bird had been given the job of running a second electronics lab,
charged with producing a small computer suitable for use with punched
card accountancy machines. John Womersley had been brought in from
the National Physical Laboratory to be head of computer research and
Doc Keen had been promoted sideways to consulting engineer. Somewhere
around this time the calculator lab moved into new premises in Stevenage,
where we had a workshop, an office — and a telephone.

On to the 542

With the 541 in production we immediately set about the design of its
successor, the 542, which was to give an improved performance and to
be the first of a family of more powerful electronic machines. The basic
logical design was similar to the 541 but various improvements gave it an
enhanced versatility. For example, some buffer input stores were provided
so that the calculation was not restricted to whatever could be read into
the registers. These stores consisted of banks of 0.1µF capacitors which
were charged or discharged by relays on the punch and could be repeatedly
interrogated during the calculating period.

The card punch provided with these machines had two reading stations,
one ahead of the punching station and one after it. Provided that there was
sufficient calculating time available, this meant that a very useful check
could be made by repeating the sequence of calculations (preferably using
a different method) and comparing the second result with that punched
in the card.

The basic building bricks were two-valve plug-in units (about 4x3x2
inches) which we called turrets. These were plugged into metal gates
on the main frame, each gate holding around 100 turrets and an electric
blower which forced cooling air up through them. Peter Briggs, of the

Resurrection New Year 2000 9



Works Division, was responsible for the physical design of the turret —
this illustrates the close liaison which by now existed between us and the
people who were going to be responsible for manufacturing the electronic
machines.

Apart from a few miniature thyratrons used in connection with read
out to the punch, the only valve type used was the ubiquitous 12AU7
(ECC82) double triode. There were two kinds of gate circuit. The “pulse
gate” emitted an output pulse in response to an input pulse provided that
the applied control voltage was at its “high” level. This used one triode,
the input pulse sitting on top of the control voltage and both needing to
be present for an output pulse to occur.

The other type of gate performed logical operations on control lines and
would use two or more triodes. Flip-flops required just two triodes. Such
germanium and silicon diodes as were available were not suitable for use
with the high voltages encountered in valve circuitry but selenium diodes
were used in some applications where their high forward resistance and
high self-capacitance could be accommodated.

Efforts to improve the tolerance of the circuits to valve deterioration
went a little further than with the 541. The target, occasionally not quite
met, was that every circuit, in its machine environment, should work cor-
rectly with a “standard dud valve”. Such a valve could be synthesised
from a typical new one by adding 10kΩ in series with the anode and 1.5kΩ
in series with the cathode.

The theory was that valves deteriorating toward the “standard dud
valve” level would be all be discovered by marginal testing and replaced
during scheduled maintenance. Thus it would only be a heater failure that
was likely to cause a machine failure.

In an attempt to reduce the frequency of heater failures, the stabilised
6.3v supply which powered them was arranged to bring the voltage up
gradually in order to eliminate any significant switch-on shock which might
lead to eventual heater fatigue.

These measures certainly seem to have done some good. From memory I
believe the proportion of valves causing machine failures was only around
0.25% per 1000 hours. Failures due to contact problems on the turrets
and plugboards were more numerous, and often more difficult to find, but
experience gained regarding the precise nature of the connector problems
and ways of controlling them enabled some significant improvements to be
made as time went by.

10 Resurrection New Year 2000



I think the first delivery of a 542 to a customer was in 1954. During
1955, deliveries rose to around two a week.

Big Brother

The range was quickly augmented by the 542’s big brother, the 550 Elec-
tronic Calculator. It contained nearly 600 turrets of some 40 different
types and dissipated approximately 3kW of heat. The most significant
additional features were a fourth register and the ability to perform the
following types of division:

1. A÷B = C

2. £A.Bs .Cd .÷ D = £E .Fs .Gd .

3. £A.Bs .Cd .÷£D .Es .Fd . = G

A basic scale-of-10 division such as example 1. was done in the same
way as we would have done it manually at school. For a division such as
2. the dividend, £A.Bs.Cd, was first converted to a scale-of-ten number
by dividing it by a suitable power of 10 to bring it down to just pence and
decimals of a penny. The resultant quotient then had to be multiplied by
the same power of 10 to obtain the required £sd answer.

For a division such as 3. the dividend and the divisor were both divided
first of all by the same power of 10 to convert them to pence. The resultant
numbers gave the same quotient as would have been given by the original
dividend and divisor.

We never dreamed that anyone would want to divide zero by zero —
but of course there was someone who did! Cadbury’s had a stock control
program which regularly reviewed the average value of each item number
in stock by dividing the total value by the quantity. It wasn’t long before
it found a quantity of zero with a total value of zero. This caused the
550 to freeze up and refuse to do anything more. A hastily introduced
modification provided an intercept for 0 ÷ 0 which cancelled the normal
division routine and set the quotient to 0.

Although they only had a clock frequency of 14kHz, within the field
for which they were designed the 550 and the 542 were surprisingly fast
compared with the general purpose computers of the period. Some samples
of the 550’s calculating times are given below.

Resurrection New Year 2000 11



Total available time 170ms
Addition or Subtraction 850µs
£999.19s.11d. x 999.9 to nearest penny 15ms
98876543÷ 9999 to one decimal place 49ms
£99999 .19s .11d .÷ 9876 to nearest penny 55ms
PAYE calculation of employee’s tax payable 50ms

Top of the Range

The 555 Electronic Calculator was at the top of the range and the first
delivery to a customer was in 1957. It had the luxury of drum which could
hold the equivalent of 105 registers. It had a massive double plugboard
which accommodated up to 150 program steps (compared to the 36 pro-
gram steps available on the 550). Extra calculating time, if required, was
automatically provided by some electromechanical wizardry which put a
suitably small delay on the arrival of the following card. This meant that
somewhat fewer than 100 cards per minute could be processed with a
complex sequence of programs.

The outside of the drum was wound with steel wire which gave a robust
surface and a high electrical output. The inspiration for this came from
experiments with an audio wire recorder which Billy Woods-Hill just hap-
pened to have in the lab. A rather nice little circuit arrangement allowed
writing onto the drum, or reading off it, one digit at a time. This extended
the step-by-step fault-finding facility to the drum.

Martin Circuit and I left the Calculator Lab in 1955 to work on a
project in the USA. Deliveries of the 550 had begun by then and a good
start had been made on the design of the 555. By now there were quite
a few others who had worked in the Lab or who were still working there.
Names which come to mind are Steve Hare, Stan Massam, John Boorman,
Julian Tempel and Bert Heath.

Quite a large number of BTM machines were installed in India and my
last days with the Lab were spent designing variants of the 542 and 550
which would handle rupees, annas and pies. I had barely finished this
task when the Indian Government announced its intention to change to
decimal currency!

In conclusion I would like to thank Martin Circuit and John Boorman,
who have both provided some useful input to this account of those early
days before an electronic calculator was a solar-powered device which could

12 Resurrection New Year 2000



be held in the palm of the hand.

Donations

We are most grateful to all those members who responded so gener-
ously to our appeal for donations in Resurrection issue 22. But the
purse strings are still tight, so we repeat our appeal for the benefit
of those members who did not see issue 22.
At the Society’s Annual General Meeting in May 1999, it was agreed
that the Society should try for another year to subsist without impos-
ing personal subscriptions, although further efforts would be made to
attract additional corporate subscriptions. Since the Society’s run-
ning costs are partly covered by a grant from the British Computer
Society, it can be argued that those CCS members who are also mem-
bers of the BCS are in effect already paying for a share of the work of
the Computer Conservation Society through their annual subscrip-
tions to the parent organisation.
Those who are not members of the BCS are therefore invited to
consider making voluntary donations to help cover the costs. (These
consist chiefly of the costs of publication and postage.) Cheques
should be made payable to The Computer Conservation Society, and
should be sent to:

The Treasurer
The Computer Conservation Society
31 The High Street
Farnborough Village
Orpington
Kent BR6 7BQ.

Resurrection New Year 2000 13



IBM 360 Architecture and Microprogramming

Ivor Jones

Architecture was a word that came into computers with System/360. The
concept of the specification of a machine which was independent of tech-
nology, of whether it was made of transistors or valves or had magnetic
core store or semiconductor memory, was introduced into computer science
by Fred Brooks.

Computers before System/360

Examination of the attributes of the machines that existed before the IBM
System/360 shows that they were a really diverse collection. “Commer-
cial” machines were typically cost-oriented. The IBM 1401 was a very
good example of this type of machine. It drove the printer well and it
drove the card reader well, but it wasn’t very fast. These commercial
machines could handle character data, and featured variable length fields
with many different schemes for specifying the field length. They also
used decimal memory addressing and some had really terrible extension
schemes when they ran out of memory addresses, using the zone bits in
the address characters.

“Scientific” machines’ main selling point was speed. Most were binary,
and many had floating point hardware. However, commercial and scien-
tific machines were beginning to acquire some of the same characteristics,
especially in programming support. IBM offered ComTran (a commercial
translator) on the 7090 (a scientific machine), and I think there was a 1401
Fortran.

There was experience of building a bigger machine compatible with an
existing system, but it was always difficult to make improvements. There
was never enough scope to add memory, and there were inconsistencies.
For example, some customers experimented with unassigned instruction
codes, and discovered some very interesting effects. They might be upset
if the successor machine did not work in exactly the same way.

The large machines mostly used magnetic tape input and output, and
used smaller machines to handle punched cards. In Hursley at one point
we had a 7090 with two or three 1401s handling the card-to-tape and
tape-to-printer processing. The processors in most scientific machines had
one or two accumulators which were used for both fixed point and floating

14 Resurrection New Year 2000



point operations. They had other registers — index registers — but they
were separate from the accumulators and were much shorter.

Finally, dealing with binary data meant dealing with octal — base eight.
The 7090 had a set of piano keys right across the console, with keys in
groups of three coloured alternately in two shades of grey.

That was the background when the System 360 design process started.

System/360 goals

I don’t think I ever saw the Spread Committee charts that laid down
the guidelines for the design. We knew that we had to make a wide
range of compatible implementations, and that we had to be smarter with
input/output — from both engineering and programming points of view,
input/output should look the same irrespective of the size of machine.
We had to do something about the end user’s view of the machine by
improving job turnaround time. I cannot recall any specific architecture
features for this, but turnaround times did improve because big machines
became capable of running both the printers and card readers if necessary.

We had to consider the operating system. There was intended to be a
place in the plan for multiple processor machines, although few of those
were made. We wanted more powerful floating point capability. Fred
Brooks stressed repeatedly that as the hardware became more reliable,
people started believing in the machine, and stopped duplicating runs.
They trusted the machine and therefore if it did make a mistake they were
going to be much more upset. We should build in checking to make sure
that everything was correct at every point.

The System/360 architecture was developed in Poughkeepsie, 80 miles
north of New York. Contributions came from people all over IBM, in-
cluding our Hursley development group. I went to the US in 1961 for a
trip that was scheduled for two weeks but actually lasted six. I also spent
another two or three weeks there later, but for much of the time, commu-
nication between Hursley and Poughkeepsie was via telex. There was an
architectural review meeting every week. All proposals were sent to us by
telex, and we would have a meeting in Hursley to decide our position, and
telex back our input to the review meeting. A report was then produced
on what had been decided. On many issues there were phone calls, but
telex was the way we worked most of the time.

Making an instruction set, or making an architecture, involves many
interrelated decisions. When you pick an optimum word length for fixed

Resurrection New Year 2000 15



point, you have to use that same word size to store instructions, and so
on. They all interact.

We set out with a relatively small number of people and worked for
about six months. I wrote a chapter of a specification describing a ma-
chine with a push-down stack. More and more people were recruited to
implement the design; after about six months we tore up that design and
started again. After another two or three months, including what was
called a design competition, the architecture began to settle down.

Data format decisions

There was a considerable debate whether the basic unit of data should be
six or eight bits. The designers of the fastest machine wanted a 48-bit
word, with 6-bit characters; they were aiming to get their costs down and
their performance up. They had performance goals, and it takes longer
to perform a 64-bit multiply than a 48-bit multiply. Their registers were
built of transistors, which were expensive.

The designers of the smallest machine, on the other hand, wanted an
8-bit character; they thought that for most purposes 16-bit addressing
would be sufficient and two characters gave them that. We in Hursley,
designing the next larger machine, were in favour of the 6-bit character, as
we thought a 24-bit memory would have given very efficient instructions.
Both machines put registers in core storage, where length was less critical.

The two main arguments that took us to 8-bit characters were the
larger character set (it was felt that the 6-bit character would restrict
text handling), and the fact that two decimal digits per character allowed
numbers to be stored in commercial files more efficiently.

Larger character set was a sound point, but commercial file efficiency
seems a highly dubious argument. One may question whether two decimal
digits per character was such a good idea. It led to the machine having
instructions handling both packed (two decimal digits per character) and
unpacked (character) data. Almost the only advantage was that decimal
arithmetic with the length of a number specified using just four bits allowed
up to 31 digits. I suspect that arithmetic on unpacked decimal data would
have needed more than four bits and would have caused other problems.

Thus, character sets, floating point register cost, and instruction effi-
ciency were all weighed. The key architects were Gene Amdahl and Gerrit
Blaauw. On this issue Gene was in favour of 6-bit while Gerrit was in
favour of 8-bit characters. The issue was resolved by Fred Brooks and Bob

16 Resurrection New Year 2000



Evans, who decided in favour of 8-bit. I think they were right, because of
the larger character set possible and the binary arithmetic advantage.

Other decisions included whether to use hex or binary for floating point.
Hexadecimal floating point was much easier for the smaller machines to
implement, and I think that was the right decision.

The next argument was over two’s complement binary arithmetic. Most
of IBM’s binary machines had used sign and magnitude for binary data,
though they used essentially two’s complement in indexing and other op-
erations. We had to do some education to convince some of the Americans
that two’s complement was a complete and consistent form of arithmetic.

Among earlier IBM machines, some had long parallel decimal registers;
their engineers thought that decimal arithmetic should be done on fixed
length operands. The small machines held out for variable length decimal
arithmetic and I am sure that was right.

Previous machines used many ways to delimit variable length data.
Word marks — an extra bit on every character — were very successful in
the 1401, but we found that they did not lead to a clean instruction set
with binary data. Instructions were shorter as delimiters were in the data,
but separate instructions were needed to insert the word marks and move
them. We chose to specify the length of data in the instruction — eight
bits for character data, and four bits for decimal data.

We established terminology for binary data: bytes, half-words (16-bit
quantities), words (32-bits) and double-words. It was decided these fixed
length entities should be aligned: addresses for half-words, words and
double-words had to be a multiple of two, four or eight; this was checked
by everyone, but machines with wider memories benefited.

Addressing

There was little argument about binary addressing. We decided to address
bytes, or characters. It was clear that we needed a smaller unit than a
word. The IBM Stretch machine, a supercomputer of its day, actually
had bit addressing, but that was rather expensive and we decided that we
could not do that.

One ground rule we arrived at was that we would use the same address
for an operand whether it was being used in an operation which processed
left to right, or right to left, for example for decimal arithmetic. Some
earlier machines used different addresses. Thus was big-endian addressing

Resurrection New Year 2000 17



adopted. I don’t remember very much debate on that.

We needed an addressing mechanism which combined efficient instruc-
tions with the ability to generate long addresses which were obviously
needed for large memory. Twenty-four bits allowed up to 16 megabytes,
which was more memory than anybody dreamt of in those days.

Actual memories were much smaller. Our 360/40 machine was specified
originally to attach up to 128 kilobytes, but we built it in such a way that
it was easy to expand. We were pleased we had done this because before
announcement the requirement went up to 256Kb. The 360/30 machine
below us got faster and faster and seemed to be coming very close to us.
However, the designers built the machine tightly around 16-bit addresses;
it was very difficult to attach more than 64Kb memory to it later. That
left quite a large slice of the market for our machine.

Balancing the size of the address versus the space within the instruc-
tions we came to a scheme called ‘base addressing’. A 12-bit offset would
cover most data structures, but on the other hand, there was a base reg-
ister from which that offset was measured. Base registers were full length
and could be manipulated with all the fixed point arithmetic and logic
instructions.

Arithmetic and logical operations

Code for single accumulator machines showed a lot of operands were
refetched, so multiple registers were much more efficient. Having set out
originally with a push-down stack, we changed to explicitly addressed reg-
isters which were much more flexible. To really optimise the code for
repeated operands or common sub-expressions, a stack needed a way of
addressing entries in the stack. The big machines needed transistor reg-
isters. Architecturally one would like to have a fairly unlimited stack,
but moving data from core memory to transistor registers was not very
easy. Explicitly addressed registers were simpler. We chose four double
word floating point registers. We came up with the usual sort of register-
to-store, register-to-register instructions. These were mostly two address
instructions, which are best for this type of working.

Word-length registers were to be used for addresses, fixed point operands,
logic operations and so on, and we chose to have 16 of them. On the other
hand, decimal data was not processed much, and there was very little ben-
efit from registers and therefore we arranged for decimal arithmetic to be
storage-to-storage, with operands up to 16 bytes, 31 digits plus sign. We

18 Resurrection New Year 2000



also added storage-to-storage operations on character strings of up to 256
bytes.

We made instruction formats that were based on a two-byte unit — a
half word. The instruction set contained one, two and three half-word
instructions.

Sequencing

Most older machines had instructions such as Branch-on-Accumulator-
Plus, but with 16 fixed point registers and four floating point registers, not
to mention decimal results in memory, specifying the test and the branch
in the same instruction became rather difficult. We adopted the idea of a
Condition Register, set by most arithmetic and logic instructions according
to their result. The definition of each instruction specified exactly what
would happen. A comprehensive set of branches tested the value in the
Condition Register. There were also some more specialised instructions
for closing loops, such as count and branch.

One of the requirements was to make a supervisor program that could
not be inadvertently or deliberately sabotaged. We needed to prevent
wild branches into the supervisor. For each type of interrupt, the entry
points were prespecified. Supervisor Call was an instruction to get into the
supervisor. The program could pass an operand but couldn’t specify where
to go; the machine went to a prespecified address. There were External
Interrupts, one use of which was in multiprocessors, to allow the individual
processors to tap each other for various purposes.

Monitor Control

Storage protection was a key requirement for a multiprogramming machine
and we came up with a scheme for that. We had an Interval Timer,
positioned in the memory, and this created one of the external interrupts.

We had a number of Program Exceptions, for example Storage Pro-
tection. We were careful to close off all the unused operation codes. It
seemed that a lot of the microcode was checking things like “Has an odd
address been used for a fixed word operand?”. There were some more use-
ful facilities such as overflow detection. Those were all classed as Program
Exceptions.

The key element in the interrupt system was the Program Status Word
(PSW), a double word unit which contained almost everything there was

Resurrection New Year 2000 19



to know about the program — not only the current instruction address,
but whether the I/O channels were enabled to interrupt it, its storage
protection key, and so on. We provided an instruction length code to
allow counting back to the previous instruction, which is difficult when
instructions are variable in length. PSW swapping became the interrupt
mechanism. The current PSW was stored in one place and a new PSW
was loaded from another. The new PSWs were to be set up by the control
program.

I have mentioned some of the requirements for the supervisor. We had
a supervisor state which was controlled by one of the bits in the PSW.
Certain instructions were privileged. Anything that touched I/O devices,
anything that dealt with program switching, and the actual instruction
to load PSW, were all privileged; for a program whose PSW had the
supervisor state bit off, all those instructions would be invalid. Lastly,
we had a wait state, where the machine was not using memory cycles. It
could sit idly while allowing I/O to carry on, and would crank back into
operation when an interrupt would come along.

Microprogramming

In the Scamp machine, and in an earlier smaller machine in Hursley, we had
used microprogramming starting from the ideas of Professor Wilkes, and
evolved the scheme into the read only store (ROS) approach. There were
five teams of engineers trying to implement the System/360 architecture,
and all but one of the models used microprogramming; it was a key feature
in achieving compatibility. I’ll go further: we would not have achieved
compatibility in the time frame we did without the microcode.

Another benefit from microcode was in servicing the machines. When a
set of compatible machines has implemented an instruction set in different
ways, it is difficult to use that instruction set to locate a specific piece
of hardware that has failed. Customer engineers would much rather be
told to replace a particular card, than have to hunt and diagnose the
fault. Therefore, microcode incorporated tests, which were very rigorous,
and which gave a good basis for diagnosing faults to specific parts of the
machine.

It was also of benefit during development that simulating programs was
a well understood technique. We had used it on Scamp. The most difficult
part of engineering any hardware-controlled machine was always to get the
control system right, and logic simulation was not particularly effective or

20 Resurrection New Year 2000



much practised at that time.

Emulation of older machines was a late thought, but microprogramming
achieved it very well. The emulators consisted of a mixture of microcode
and 360 programming: the I/O was always done by System/360 programs.
Hardware additions were made to some machines but really very little, and
I am not aware of any additions to the model 40 for the 1401 emulator
(apart from increasing the size of the read-only-store).

In Wilkes’ scheme, control signals for a machine cycle were generated by
switching a magnetic core. A wire threaded the cores for all cycles where
a signal was required. That developed into a read only store scheme, with
a word for each cycle. Instead of taking signals directly to control the data
paths, we used decoders for mutually exclusive signals, which was more
efficient.

The output from the ROS went into a microinstruction register. Some
signals were used early in the cycle and some later, and needed extra
registers. Some of the gates related to finding the next address, and the
decision where to go in the read only store could depend on bits in the
data flow.

Model 40 data flow

The model 40 we built was a machine with four registers which were es-
sentially two-byte registers. The main memory cycle was two and a half
microseconds in the end. The cycle time of the machine (and of the read
only store) was 625 nanoseconds. We had a local store as well, to which
we could read or write in one cycle.

There was a one byte adder and a microinstruction used 16 bits to
specify source registers for the two inputs to the adder, what function
the adder should use and how to set the carry, whether to use a four-
bit shift, and the destination register to receive the output. There was
a two-byte data path between the local store and the registers, and we
could take something from one of the registers to an R register and then
direct it somewhere else. Another set of registers addressed the local store.
A microinstruction used five bits to describe the combinations of which
one to use and whether to increment it as we went through. A lot of
the features we developed, for example the independent carry latches,
appeared in very similar form in the other machines which were developed
quite independently.

We used the same data flow for I/O operations. The channels used that

Resurrection New Year 2000 21



data flow for the complicated bits of starting and changing operations, but
they tended to have independent hardware for just transferring data. We
were very conscious of the number of words that we had available in the
read only store, and saving was very important. One had to preserve a
balance between making code as compact as you possibly can and making
it possible to change if there was a mistake. It was ‘all-in’ programming.

Following System/360

In the 20 years following the design of System/360 it was extended in many
ways. Notably in about 1970 IBM introduced dynamic address transla-
tion. The restrictions on aligning fixed and floating point operands on word
boundaries were relaxed. Instructions were added to extend the maximum
character string length beyond 256; ‘compare and swap’ is a more pow-
erful form of semaphore-type operation for synchronising processes when
multiple cpus were present. Later on, around 1980, IBM introduced the
XA architecture with 31-bit addressing and improvements in numbers of
I/O channels and device addressing schemes.

As well as introducing the word ‘architecture’, many of the features
in System/360 became standard concepts: hardware compatibility, micro-
programming, emulation, channels and a standard Input Output Interface,
Program Status Words, Condition Codes, 64-bit words. Practically every
machine is now based around eight bytes and the language of dumps has
progressed from octal to hex.

Editor’s note: this is an edited version of the talk given by the author
to the Society during the IBM 360 seminar at the Science Museum in
November 1995.

22 Resurrection New Year 2000



IBM 360 input and output

Michael Flinders

This article describes the design of the input and output subsys-
tem on the System/360, starting with the principles underlying
the architecture, looking at the system elements and their role
in the transfer of data, and concluding with a discussion of the
practical aspects of designing the I/O channels of the 360/40.

It was in 1962 that I began to get involved with the architects of Sys-
tem/360. I feel very fortunate to have been able to work with such an
outstanding group of people as Fred Brooks, Gene Amdahl and Gerrit
Blaauw.

Our design of the model 40 progressed faster than all the other ma-
chines. When the architects had a problem and wanted to bounce it off
the hardware designers, it was to us in Hursley that they came. So we
tended to have more interaction with the architects than the people de-
signing the other systems. And when those engineers hit a problem they
could be fairly confident that we’d already solved it. So we also had more
interaction with the designers of the other systems, who were based at
Endicott and Poughkeepsie.

A consequence of this was that I worked very closely with the I/O
architect, whose name was Andris Padegs. Andris was a Latvian who had
emigrated to America in his teens: he had a thick Latvian accent and so
was not an easy person to understand. But he had an incredible ability
to write concisely and precisely. I commend to you the 360 Principles of
Operation for the quality of the technical English, in terms of the way it
expresses complex concepts very tightly.

The first principle on which the IBM System/360 I/O architecture was
founded was that the central processing unit and the channels should be
able to operate completely independently, so that I/O operations could be
in progress moving data from devices into memory at the same time as
the cpu was executing its instruction stream. Another principle was that
multiple I/O operations should be able to take place concurrently. The
third requirement was that every I/O device should attach via the same
type of plug and socket and logical connection, which became known as
the standard interface.

The two basic components of the I/O system were the channel — the

Resurrection New Year 2000 23



box of logic which talked to the devices — and the standard interface — the
bunch of wires which connected the I/O devices to the channel. As for the
peripherals themselves, there were two broad classes: those which were
single devices like a printer, where the printer mechanism was driven by
a control unit that talked to the standard interface; and multiple device
I/O subsystems like tape units, where you might have a bank of tape units
all connecting to a single control unit which connected to the interface.
Communications subsystems were another example of a multiple device.

The sequence of an I/O operation was that the central processing unit
would be proceeding through its instruction stream when it came to a
“start I/O” instruction. It would then pass to the channel the number
of the device that it wanted to start up, and the channel would then
go out across the standard interface and issue the relevant command to
that device. The cpu would then be released to continue processing its
instruction stream.

Sometimes the device would be busy, or there might be some condition
which prevented the operation happening, such as a paper jam on a printer
or a broken tape. In that case the channel would tell the cpu that the I/O
couldn’t be started and the cpu would return to its instruction stream.

The standard interface was, I think with hindsight, very conservatively
designed. The channel had a group of control lines which went out to which
all of the devices listened: these line were called Address Out, Command
Out, and Service Out. There was also a data bus which went out from the
channel: one example of the conservatism of the design is that there was
a parity bit carried along with the eight data bits on the bus.

The control lines — address, command and service — stated what type
of data the channel was putting out onto its bus. The control units on
the interface also had lines into the channel — again address, status and
service — as well as a bus into the channel: again the control units qualified
the type of information on the bus by activating the appropriate control
line.

There was one other pair of lines — select out and select in — which
formed the polling mechanism on the bus. Once a selection sequence was
started by the channel putting the address on the bus, every device would
wait for the select out signal. Each one would, when it saw it, check the
address on the bus, and if it didn’t recognise it would pass the select out
signal to the next device. That was how tie breaking was achieved.

The interface was designed to work in two modes. With slow devices

24 Resurrection New Year 2000



it could interleave transfers from different devices, or with high speed
peripherals such as disc and tape the interface could be dedicated to a
single device. The standard interface had 31 coaxial cables, so it was quite
a big physical object.

One of the consequences of having a standard interface was that it
opened the door to other people who wanted to make input/output devices
to attach to IBM systems. Indirectly it gave rise to the plug-compatible
industry.

The interface was a totally asynchronous interface — all transfers in-
volved handshaking. So a device that wanted service would raise “address
in”, and then would wait until it saw “command out” from the channel
before proceeding. When that happened, the device would drop “address
in”, and the channel would then drop “command out”. At this stage there
were only zeros on the bus, which was the sign for the device to proceed.
It would then raise “service in” (saying it was requesting a byte of data),
and the channel would raise “service out” when it had put that byte of
data on the bus. So it was a completely asynchronous interface.

The channels were capable of executing a rudimentary channel program,
consisting of a chain of channel control words (CCWs). To start, an I/O
instruction specified the address of the device that was to be the subject
of the I/O operation. The address of the first channel command word was
placed in location 72 in storage. (This was a fixed assignment in storage,
decided by the architects.) That was the pointer to the channel program,
the string of control words.

When an I/O operation terminated, the status of that I/O operation
was dumped by the channel into location 64 — eight bytes which gave the
address of the last command word that had been executed, any residual
count if all the data hadn’t been transferred in the CCW, and various flags
which defined the status of that operation.

Those two memory locations, 64 and 72, were quite hard worked be-
cause they served for all the channels in the system. I think they subse-
quently turned out to be something of a bottleneck in the architecture.

The fact that there were basically two broad classes of I/O devices —
slow byte-by-byte units and high speed peripherals — really dictated the
development of two types of channel. One was the selector channel which
on the large machines was an independent, stand-alone box: it would talk
to one disc or one tape at a time. The other was the multiplexer channel,
which multiplexed data transfers between many devices.

Resurrection New Year 2000 25



The information that the channel stored about the I/O activity taking
place on its interface was held in what was called the sub-channel infor-
mation, and consisted of: the channel control word address for the control
word currently being executed, or maybe the next one to be executed; the
address in memory where data was being moved to or from; the type of
operation (input or output); and the count of the number of bytes that
had been transferred during that operation. The channel was continually
updating this information during an I/O operation.

The selector channel only needed one sub-channel, because it only ex-
ecuted one I/O operation at a time. On the multiplexer channel, you had
up to 256 operations concurrently. We found that the most economical
way of storing the sub-channel information on the model 40 was in the
“bump-on” memory. The “bump” literally was a bump: it was just some
extra cores threaded on the side of the memory planes with some control
logic to make sure that nobody else but the channel could get to it.

Now for some comments on the design of the channels. On the large
systems they didn’t have the same sort of cost constraints as we had on
the 360/40. The selector channels were stand-alone boxes and were shared
among the large systems: the same channel design was used on all the
machines from the 360/65 through 360/90.

The challenge on the small systems was to make a selector channel
which would run I/O operations up to the full bandwidth of memory
(which was around 400kb, I think, on the model 40) without using an
inordinate amount of hardware. We actually had three goes at this before
we got a satisfactory solution.

The first attempt was to put all hardware registers and hardware control
in the channel. That proved to be just too expensive, so we abandoned
that idea. The second attempt was to use the local store as a buffer and
use microcode for controlling the loading of the buffers and for analysing
the end conditions.

The architecture was very strict about the channel returning exactly
the number of bytes that had been transferred. If it had not, there were
two possibilities: either the device had requested more than the CCW said,
or it hadn’t requested as many. Whichever condition applied, it had to be
detected by the channel, and that became very difficult on a microcode
control channel using buffering in the local store. So we gave up that idea
too.

The third attempt worked very nicely. We kept hardware registers,

26 Resurrection New Year 2000



we kept hardware addressing and we put a five byte shift register on the
interface. The microcode used to load two bytes at a time into that five
byte register while the device was taking bytes out of the end of it. When
the count went to zero we had a flag which travelled down the buffer with
the last byte of data so that we knew whether we had given exactly the
right number of bytes or not. That was very manageable.

With the multiplexer channels, the large systems again used a single
stand-alone hardware box. The model 30, the model 40 and the model 50
all used the cpu data flow as their channel and the multiplexer channel
actually had no data flow at all of its own. We added about 50 logic gates
over and above what was needed for the cpu for the multiplexer channel:
that was just logic to detect the tags on the interface.

The operation of the multiplexer channel on the model 40 was that
when the “address in” line was detected on the interface, that triggered
a branch in the microcode at the end of the current memory cycle. (We
were never allowed to interrupt during a memory cycle, we had to wait
until the end.)

Addressing then forced the branch in the microcode to a routine which
took seven cycles to store in a local store all of the cpu registers. Then there
was about 26 cycles of microcode where we fetched the CCW information
out of the bump for the device that was requesting the service, updated it,
put a byte on the interface and then at the end of that sequence there was
another seven cycles where we restored the data flow back to its previous
state. The cpu instruction that had been interrupted then carried on
working.

So the cpu in the model 40 was continually changing hats. I think we
could have up to 128 sub channels, so you could theoretically have about
128 I/O operations and the cpu instruction stream sharing the same data
flow.

The time on the multiplexer channel was around 4.5 microseconds to
dump the data flow, another 4.5 to restore it and about 16 microseconds
to process a byte.

On the multiplexer channel we tended to think in terms of the interfer-
ence of I/O activities with the cpu operation. If you had 10 kilobytes per
second I/O activity on the multiplexer channel, that equated to about 25%
interference with the cpu, meaning that the cpu was effectively running at
about 75% of its speed.

Editor’s note: This article is based on a talk given by the author to the

Resurrection New Year 2000 27



Society at the IBM seminar held at the Science Museum on 21 November
1995. Michael Flinders joined the IBM development project at Hursley in
1960 and worked there as a logic designer and microprogrammer.

28 Resurrection New Year 2000



Letters to the Editor

Dear Mr Enticknap,

This is a rather long footnote to Raymond ‘Dickie’ Bird’s splendid ar-
ticle in Resurrection issue 22. It is always fascinating to see what life was
like on the other side of the competitive fence.

In the autumn of 1958 I spent six weeks at the Indian Statistical In-
stitute preparing a quotation for a Pegasus 2 system to do the Institute’s
work. This was at the request of the Commonwealth Relations Office, who
were fed up with the dominance of the Russians in Calcutta at that time.
The Sputnik was up and Russian prestige was very high. Central planning
of economies was all the rage and the MacDonalds Hotel in Calcutta was
said to be full of Russians.

The Institute’s main task was to assemble economic statistics from a
network of sample villages all over India, thus avoiding the massive paper-
work involved in an exhaustive census. There were about 400 graduates
at the Institute.

The Institute was founded by PC Mahalanobis FRS, the great Indian
statistician and adviser to Nehru’s government on economic planning. He
had married a daughter of the poet Sir Rabindranath Tagore, and based
the Institute in Tagore’s palatial house near Dum Dum (Calcutta Airport).
The house was at one end, there was a lake in the middle and a new block
with air conditioning at the other end. This used water from the lake for
cooling.

Also there was a Russian Ural computer, which was definitely not work-
ing. It had laid for a long time in zinc-lined cases in Calcutta Docks. Even-
tually they got it working. However, disaster struck during the monsoon
when the inlet pipe from the lake to the air conditioning got blocked with
weeds and the computer was soaked in fog. The engineers were there for
months replacing all the germanium diodes.

The Ural was a very strange machine. Words were stored in quarter
words at 90◦ intervals, so there was no way you could read a word in less
than three quarters of a revolution. It had perforated cinematograph film
for input and output. The order code was available and I succeeded in
teaching it to a visiting statistician.

The team of about a dozen Russian engineers — one with his wife and
family — were resident in the building. We all messed together in the

Resurrection New Year 2000 29



same dining room with the Russians on two sides and the rest of us on the
remaining side. Furthest from us was the interpreter, generally thought
of as a KGB man. The Russians were charming and very English in
temperament. At half time the interpreter was changed from an English
speaker to one speaking Hindi.

In the background to all this was a sturdy HEC 2M which really did
very well. I got to the point of running some simple code on it. It was
certainly the only working computer at the Institute for a long time. I
have a silver salver on our hall table given to me when I left the Institute
after six weeks. It is dated 15 November 1958, and I am sure the machine
was working then. I do not know the HEC 2M’s ultimnate fate.

Yours sincerely,

Conway Berners-Lee
London SW14
28 August 1999

Dear Nicholas,

The article “BTM’s First Steps Into Computing” mentioned briefly the
HEC 4 (1201) specifically designed for commercial work. One of the first
of these was delivered to the Ministry of Supply at Chessington, Surrey,
for payroll work on 29 August 1957. (To the best of my recollection the
very first deliveries were to Morgan Crucible Co earlier that year and to
the Ministry of Agriculture, Food and Fisheries at Guildford, Surrey, just
before our own, for agriculture subsidy payouts and payroll).

The first live Ministry of Supply payroll was produced in June 1958,
and Chessington has been turning them out continuously ever since — but
not on 1201s!

Yours sincerely,

Cecil Marks
Banstead, Surrey
15 September 1999

Editorial contact details

Readers wishing to contact the Editor may do so by fax to 020 8715
0484 or by e-mail to NEnticknap@compuserve.com.

30 Resurrection New Year 2000



Computing anniversaries in 2000

Once the millennium hangovers have cleared, it will be time to start plan-
ning the rest of the year’s festivities. Here are some of the landmark events
in computer history that people may be celebrating during the course of
2000.

70th anniversary The beginnings of the computer age could be
vaguely discerned when Vannevar Bush built the first differential analyser
in 1930.

50th IBM had seen the light by 1950 when it announced its first
computer, the Defense Calculator (later renamed the 701).

45th BTM became the first of the British office automation companies
to enter the computer age with the delivery of its first computer, the HEC
2M, in 1955.

40th Business computing moved into the mainstream as Cobol first
came into use in 1960.

35th The computer industry moved a step forward as IBM and ICL
both delivered the first models in their first computer ranges, the 360 and
1900 respectively, in 1965.

30th Two of the most important computer launches in history came
from Digital Equipment with the PDP-11 and IBM with the System 370
in 1970.

30th IBM became the first company to use modern solid-state tech-
nology for main memory with the 370/145 later in 1970.

25th The first step towards the modern computer age was taken with
the formation of Microsoft in 1975.

15th The growing importance of standards and open interfaces was
symbolised by the formation of the X/Open Group in 1985.

10th EMC launched Symmetrix, the first Raid disc subsystem, in 1990.

5th Hitachi announced Skyline, the last mainframe range to feature
traditional ECL technology.

Resurrection New Year 2000 31



Society Activity

Bombe Rebuild Project
John Harper

The major addition to the rebuild since my last report has been the gate,
or Jack Frame as BTM called it. This is a large square item over 4 feet
square which is mounted on hinges and can be swung open 90◦ for servicing
purposes. The inside carries 104 sense relays, 40 control relays and various
rectifiers, resistors and capacitors. On the outside or rear of the machine
are to be mounted the 228 Jacks into which the WRNS would have plugged
up the Menu.

Various other fittings have been made and attached to the gate, the
most noticeable being the six sense relay shelves. As before, everything
was assembled in AutoCad “on paper” before metal was cut. Minor queries
arose and were rectified during this process. As a result, the gate fitted
perfectly first time. As a spin off from this exercise there is now a full size
drawing of the Jack Area on display at Bletchley Park in the Bombe Hut.

All of our iron castings are now cast and the first, the large main gearbox
housing, has gone for machining to the Society of Model and Experimental
Engineers in South London. We are very grateful for this help.

We have made a start on metal sheet construction, making such items
as fixed Oil Trays, the End Cover and the Switch Panel. The last two
items have been test fitted, and have now gone to be painted in crackle
black. The whole exterior of the machine will be painted likewise, so we
will soon have an idea of the overall finish of the Bombe.

Perhaps a little prematurely, we have started to produce cableforms.
As we have 12 miles of wire to convert into cables this will be a long and
labour intensive activity. Our first cable has taught us a lot about lacing
and routing. We have also learnt that it is wise to use a length of rope to
thread through the machine and check lengths and bends before making
the actual cableform. In this instance CAD cannot help us as much as it
has in other areas because curved cables are not easily described in the
three axes. Nortel Harlow has kindly found a basement area in which their
volunteers can lay out cables on pin boards.

I am very grateful to Chris Burton for arranging a visit to a Manchester
telephone exchange and for helping me to strip out the equipment we
needed. We now have enough Jack and Plug contacts to complete the

32 Resurrection New Year 2000



Bombe.

Our appeal for help with turning in Resurrection 22 produced a very
good response, and the number of people helping us is now approaching
the number we can most efficiently use. We now have four volunteers
making turned parts, and progress is very satisfying.

I do however have a new area to tackle which I do not have the skills
to approach myself. This is hardening and grinding. A high proportion
of the turned parts require such treatment. If anyone can provide expert
advice, or knows where we can have hardening and grinding carried out,
preferably at below commercial rates, we would be very pleased to hear
from them.

We now need to produce a fairly large number of square section spacers.
The operation involved is to cut steel bars to length and then drill and
tap threads as appropriate. There is little need for specialist tools but
accuracy is important and in some cases a drilling jig would be well worth
making beforehand. Volunteer effort would be most welcome.

Readers who can help in any way can contact me by phone or mail (see
inside back cover) or by email at <bombe@jharper.demon.co.uk>.

Software Preservation
David Holdsworth

So far we only have material for the preservation of George 3. There are
offers of other material on 7-track magnetic tape, but we have not yet
identified a means of reading this medium.

The state of the George 3 project is described on our Web site in some
detail: see <www.personal.leeds.ac.uk/∼ecldh/ccs/preserve.html>. The
important point is that enough of the system works to give us a clear
proof of concept.

The filestore we use was created by deleting all the company specific
material from a live store that was being shut down by CAP Gemini. This
filestore still contains several compilers, certainly Fortran, Algol 60 and
Cobol, but not the seminal Algol 68R.

It is a pleasure to record the co-operation of CAP Gemini (especially
Dave Higgins) in the exercise, and also the readiness with which ICL
granted the necessary intellectual property rights.

The hope is that we shall be able to preserve other systems, so that the
historians (or just a curious public) of the future will be able to understand

Resurrection New Year 2000 33



the computer scene of the sixties and seventies, which otherwise is in
danger of being lost for ever.

Pegasus Working Party
Len Hewitt

Over the last few months Pegasus has worked well generally from first
being switched on. Various investigations of some of the added features
on this machine have taken place. The capability of having the first track
of the drum placed into 16 336-bit long lines has been looked at. This
allows the first 16 blocks of the drum to be written and read at delay line
speeds rather than the much slower drum transfer speed. About half of
the long lines are working but we have not attempted to replace the faulty
ones yet. The 6-bit character handling instructions have also been made
to work.

The good news is that Pegasus is to go into the Science Museum com-
puting gallery very soon. The plans are being made now and some time
next year there will be a fully working Pegasus computer on display. I
think this will be the first working 40-year-old computer in any museum.

Simulators

Simulators for a variety of historic computers, including Edsac,
Elliott 903, Pegasus, the Manchester University Small-Scale Exper-
imental Machine and Zebra, can be found at our FTP site. Access
details are on page 36.

34 Resurrection New Year 2000



Forthcoming Events

Every Tuesday at 1200 and 1400 Demonstrations of the replica Small-
Scale Experimental Machine at Manchester Museum of Science and Indus-
try

8-9 January 2000, and fortnightly thereafter Guided tours and ex-
hibition at Bletchley Park, price £3.00, or £2.00 for concessions

Exhibition of wartime code-breaking equipment and procedures,
including the replica Colossus, plus 90 minute tours of the wartime
buildings

25 January 2000 North West Group meeting on “Punched Card Ma-
chines — their history and applications”

Speakers John Bennett and Hamish Carmichael

25 February 2000 North West Group meeting on “Early Line Printers”

Speakers T Wix and WA Gunn

4 April 2000 North West Group meeting on “The Early Days of Medical
Computing”

Speaker Dr B Richards

The North West Group meetings will take place in the Conference room
at the Manchester Museum of Science and Industry, starting at 1730; tea
is served from 1700.

Queries about London meetings should be addressed to George Davis
on 020 8681 7784, and about Manchester meetings to William Gunn on
01663 764997.

Resurrection New Year 2000 35



FTP, Web and E-mail Addresses

The Society has its own World Wide Web (WWW) site: it is located
at http://www.cs.man.ac.uk/CCS/. This is in addition to the FTP
site at ftp.cs.man.ac.uk/pub/CCS-Archive (please note that these
URLs are case-sensitive). Our Web site includes information about the
SSEM project as well as selected papers from Resurrection. Readers can
download files, including the current and all past issues of Resurrection
and simulators for historic machines.

Readers of Resurrection who wish to contact committee members via
electronic mail may do so using the following addresses.

Chris Burton: chris@envex.demon.co.uk
Martin Campbell-Kelly: mck@dcs.warwick.ac.uk
Hamish Carmichael: hamishc@globalnet.co.uk
George Davis: georgedavis@bcs.org.uk
Nicholas Enticknap: NEnticknap@compuserve.com
John Harper: bombe@jharper.demon.co.uk
Dan Hayton: Daniel@newcomen.demon.co.uk
Len Hewitt: leonard.hewitt@virgin.net.
Dave Holdsworth: D.Holdsworth@leeds.ac.uk
Roger Johnson: r.johnson@bcs.org.uk
Adrian Johnstone: adrian@dcs.rhbnc.ac.uk
Simon Lavington: lavis@essex.ac.uk
Brian Oakley: brian.oakley@ukonline.co.uk
Tony Sale: t.sale@qufaro.demon.co.uk
Robin Shirley: r.shirley@surrey.ac.uk
John Sinclair: john.eurocom@dial.pipex.com
John Southall: jsouthall@bcs.org.uk
Doron Swade: d.swade@ic.ac.uk

Resurrection is the bulletin of the Computer Conservation Society and is dis-
tributed free to members. Additional copies are £3.00 each, or £10.00 for a sub-
scription covering four issues.

Editor – Nicholas Enticknap Typesetting – Nicholas Enticknap
Typesetting design – Adrian Johnstone Cover design – Tony Sale
Printed by the British Computer Society

c©Computer Conservation Society

36 Resurrection New Year 2000



Committee of the Society

Chairman Brian Oakley CBE FBCS, 120 Reigate Road, Ewell, Epsom, Surrey KT17
3BX. Tel: 020 8393 4096.
Vice-Chairman Tony Sale FBCS, 15 Northampton Road, Bromham, Beds MK43
8QB. Tel: 01234 822788.
Secretary Hamish Carmichael FBCS, 63 Collingwood Avenue, Tolworth, Surbiton,
Surrey KT5 9PU. Tel: 020 8337 3176.
Treasurer Dan Hayton, 31 The High Street, Farnborough Village, Orpington, Kent
BR6 7BQ. Tel: 01689 852186.
Science Museum representative Doron Swade CEng MBCS, Assistant Director, The
Science Museum, Exhibition Road, London SW7 2DD. Tel: 020 7938 8106.
Chairman, Elliott 803 Working Party John Sinclair, 9 Plummers Lane, Haynes, Bed-
ford MK45 3PL. Tel: 01234 381 403.
Chairman, Elliott 401 Working Party Chris Burton CEng FIEE FBCS, Wern Ddu
Fach, Llansilin, Oswestry, Shropshire SY10 9BN. Tel: 01691 791274.
Chairman, Pegasus Working Party Len Hewitt MBCS, 5 Birch Grove, Kingswood,
Surrey KT20 6QU. Tel: 01737 832355.
Chairman, DEC Working Party Dr Adrian Johnstone CEng MIEE MBCS, Royal
Holloway and Bedford New College, Egham, Surrey TW20 0EX. Tel: 01784 443425.
Chairman, S100 bus Working Party Robin Shirley, 41 Guildford Park Avenue, Guild-
ford, Surrey GU2 5NL. Tel: 01483 565220.
Chairman, Turing Bombe Project John Harper CEng MIEE MBCS, 7 Cedar Av-
enue, Ickleford, Hitchin, Herts SG5 3XU. Tel: 01462 451970.
Chairman, North West Group Professor Frank Sumner FBCS, Department of Com-
puter Science, University of Manchester, M13 9PL. Tel: 0161 275 6196.
Meetings Secretary George Davis CEng FBCS, 4 Digby Place, Croydon CR0 5QR.
Tel: 020 8681 7784.
Editor, Resurrection Nicholas Enticknap, 4 Thornton Court, Grand Drive, Raynes
Park SW20 9HJ. Tel: 020 8540 5952. Fax: 020 8715 0484.
Archivist Harold Gearing FBCS, 14 Craft Way, Steeple Morden, Royston, Herts SG8
0PF. Tel: 01763 852567.

Dr Martin Campbell-Kelly, Department of Computer Science, University of War-
wick, Coventry CV4 7AL. Tel: 01203 523196.
Professor Sandy Douglas CBE FBCS, c/o AMM Douglas, 7 Sevenoaks Drive,
Bournemouth, Dorset BH7 7JH.
Dr Dave Holdsworth MBCS CEng, University Computing Service, University of
Leeds, Leeds LS2 9JT. Tel: 0113 233 5402.
Dr Roger Johnson FBCS, 9 Stanhope Way, Riverhead, Sevenoaks, Kent TN13 2DZ.
Tel: 020 7631 6709.
Professor Simon Lavington FBCS FIEE CEng, Department of Computer Science,
University of Essex, Colchester CO4 3SQ. Tel: 01206 872677.
Graham Morris FBCS, 43 Pewley Hill, Guildford GU1 3SW. Tel: 01483 566933.
John Southall FBCS, 8 Nursery Gardens, Purley-on-Thames, Reading RG8 8AS. Tel:
0118 984 2259.


