
Fine-Grained Forgetting for the Description Logic ALC

Mostafa Sakr , Renate A. Schmidt
University of Manchester

{Mostafa.Sakr, Renate.Schmidt}@manchester.ac.uk

Abstract
Forgetting is an important ontology extraction technique.
Two variants of forgetting that have been studied in litera-
ture are semantic and deductive forgetting. While deductive
forgetting is attractive since it generates the forgetting view
in a language with the same complexity as the original ontol-
ogy, semantic forgetting preserves more information and has
higher precision. In this paper, our aim is to find a compro-
mise between both types of forgetting. We present a system
that computes a semantic forgetting view in a novel form, and
then reduces it to a deductive forgetting view. The system
also produces a set ∆ of axioms representing the informa-
tion difference between both views. This enables a new fine-
grained ontology extraction process that gives the user the
option to enhance the informativeness of the deductive view
by appending to it axioms from ∆ as desired. The evaluation
results show that despite the two stage process, the method is
competitive with a state-of-the-art forgetting method, show-
ing a mean performance gain of 50%, 36%, and 55% in dif-
ferent settings.

1 Introduction
Forgetting is the task by which one can eliminate from a
given ontology a set of irrelevant vocabulary, and produce
a simpler ontology that preserves the semantic content rel-
ative to the remaining vocabulary, see e.g. (Eiter and Kern-
Isberner 2019). It offers solutions for a wide range of ap-
plications such as: ontology reuse (Wang et al. 2010), com-
puting logical difference (Ludwig and Konev 2014), infor-
mation hiding (Cuenca Grau 2010; Grau and Motik 2010)
abduction (Del-Pinto and Schmidt 2019), resolving con-
flicts (Lang and Marquis 2010), relevance (Subramanian and
Genesereth 1987; Lakemeyer 1997; Lang, Liberatore, and
Marquis 2003), and forgetting actions in planning (Erdem
and Ferraris 2007).

Two variants of forgetting have been studied in the lit-
erature, namely semantic and deductive forgetting. Both
variants can be characterized model theoretically as follows:
In semantic forgetting, the models of the original ontology
and the models of the new ontology agree on all interpre-
tations except, possibly, the interpretations of the forgot-
ten symbols (Lin and Reiter 1994a). Whereas, in deduc-
tive forgetting, the models of the original ontology and the
models of the new ontology are bisimilar (Stirling 1998;
French 2006; Divroodi and Nguyen 2015) except over the

forgotten symbols (Zhang and Zhou 2009; Lutz and Wolter
2011). It is not hard to see from this characterization that
semantic forgetting is stronger than deductive forgetting in
terms of the preserved information. In fact, semantic for-
getting amounts to an agreement between both ontologies
on all consequences, over the remaining vocabulary, that
are expressible in any language up to a second order lan-
guage (Botoeva et al. 2017). In contrast, deductive forget-
ting amounts to an agreement on only the consequences
over the remaining vocabulary that are expressible in the
language of the original ontology (Lutz and Wolter 2011;
Delgrande 2014).

In practice the following questions arise concerning de-
ductive forgetting: Will the new ontology capture all model
information over the remaining vocabulary? What is the un-
preserved information in the new ontology? Can some of
this lost information be retrieved in the new ontology? The
aim of this paper is to consider these questions, gain a better
understanding of the information difference between seman-
tic and deductive forgetting, and provide a practical tool to
compute this information difference.

One might try to address the above questions by com-
puting both variants of forgetting and then compute the
logical difference between the results. This approach is
however not viable because: (1) There is no complete se-
mantic forgetting method for the description logic ALC,
which is the underlying logic considered in this paper.
(2) The suggested flow is unpractical since the complexities
of forgetting and computing logical difference are, respec-
tively, 3EXPTIME, and 2EXPTIME (Lutz and Wolter 2011;
Konev, Walther, and Wolter 2008).

The contribution of this paper is an optimized solution
which integrates semantic and deductive forgetting in one
system. The system (1) performs semantic forgetting on
a given ontology and forgetting signature, and (2) extracts
from the result two sets of axioms. The first is a set Ored

equivalent to the result of deductive forgetting. The second
is a set ∆ that represents the information difference between
the results of the semantic and the deductive forgetting. We
use a second order language to represent the result of the
semantic forgetting, the set ∆, and Ored. The language
introduces fresh, implicitly existentially quantified concept
symbols, and uses only ALC constructs. Our method is de-
signed to minimise the number of these symbols in the se-

mantic view, and eliminate them fromOred, thereby obtain-
ing the final deductive forgetting result. As the result of se-
mantic forgetting of a first order theory is not in general rep-
resentable in first order logic, but is always representable in
second order logic (Ackermann 1935; Lin and Reiter 1994b;
Lin and Reiter 1994a; Zhang and Zhou 2010), using some
form of second order language is inevitable.

The benefits of this forgetting system are numerous:
(1) By computing ∆, we get a novel way of understand-
ing the difference between semantic and deductive forget-
ting based on the modelled information. (2) Since the se-
mantic forgetting result is represented usingALC constructs
only, and since the newly added symbols are implicitly exis-
tentially quantified, this result can be used directly in ALC
applications. (3) The system allows for a fine-grained on-
tology extraction framework where applications start from
Ored and append to it axioms from ∆ as needed. (4) In this
forgetting framework, the complexity of the final ontology
is proportionate to the information modelled in it. This is
because the second order symbols are brought into the final
ontology on a by-need basis as we append axioms from ∆.
(5) It turns out that in the chosen second order language, the
set ∆ is a syntactically characterized subset of the semantic
forgetting result, and the remaining axioms constitute Ored,
which simplifies the overall system and improves processing
performance.

We complement our method with a novel evaluation for
which we build our own test ontologies which allows us to
customize the hardness of the forgetting problem. We mea-
sure the hardness of the forgetting problem by the proba-
bility of two or more forgetting symbols appearing together
in the same axiom. Accordingly, we evaluate our forgetting
method in three different hardness settings, Low, Moderate,
and High. Our evaluation is performed against the state-
of-the-art deductive forgetting method of (Koopmann and
Schmidt 2013b). Despite the two stage process, the evalua-
tion shows a significant performance gain of 50%, 36%, and
55% in the Low, Moderate, and High settings respectively
when using our method.

2 History and Related Work
Forgetting can be traced back to (Boole 1854) who referred
to it as elimination of the middle terms. In the context of
the propositional logic, it was later studied in relation to
relevance, independence, variable elimination (Lakemeyer
1997; Lang, Liberatore, and Marquis 2003).

In the context of first order logic, (Lin and Reiter 1994a)
viewed (semantic) forgetting as a second order quantifier
elimination problem (SOQE) (Gabbay and Ohlbach 1992;
Gabbay, Schmidt, and Szałas 2008) concluding that the for-
getting result of a first order theory is not in general ex-
pressible in first order logic, but is always expressible in
second order logic (Ackermann 1935). Later, (Zhang and
Zhou 2010) proposed, as an alternative to semantic forget-
ting, the variant of weak forgetting which matches our def-
inition of deductive forgetting. The proposal builds on pre-
vious work in modal logics which views forgetting as a
dual of uniform interpolation (Ghilardi 1995; Visser 1996;

Herzig and Mengin 2008). In particular, the relation be-
tween the original ontology and the new ontology is de-
fined as bisimulation equivalence on all symbols except the
forgotten symbol (Zhang and Zhou 2009; Ditmarsch et al.
2008).

In the context of description logics, deductive and se-
mantic forgetting were defined in terms of inseparabil-
ity (Konev, Walther, and Wolter 2009; Konev et al. 2013;
Botoeva et al. 2017; Lutz and Wolter 2010). Theoretical
complexity results for deductive forgetting are given in (Lutz
and Wolter 2011). There, it was shown that deciding the ex-
istence of the deductive forgetting result is 2EXPTIME, and
its size is, at most, triple exponential in the size of the orig-
inal ontology. Complexity results for semantic forgetting
depend on the language used to represent the result of the
forgetting. In our chosen second order language, we show
that the size of the result of semantic forgetting is at most
single exponential in the size of the input ontology and is
double exponential in the number of forgetting symbols.

For general ALC ontologies, the deductive forgetting
result can be captured, possibly infinitely, in ALC. A
finite representation is obtainable using fixpoint opera-
tors (D’Agostino and Hollenberg 1996; Nonnengart and
Szalas 1998; Koopmann and Schmidt 2013b). Recall that
complexity of reasoning with respect to general ALC and
ALCµ ontologies is EXPTIME (Calvanese, De Giacomo,
and Lenzerini 1999). Several deductive forgetting meth-
ods were proposed (Ludwig and Konev 2013; Koopmann
and Schmidt 2013b; Koopmann and Schmidt 2014; Koop-
mann and Schmidt 2015). Early work in (Zhao and Schmidt
2015) attempted to capture the the result of semantic for-
getting of ALC ontologies in the more expressive ALCOI
logic. There is however no guarantee that a solution is found
where one exists.

In the first stage of our forgetting method, our approach
for computing the semantic forgetting is similar to (Gab-
bay and Ohlbach 1992), and to the deductive forgetting
approaches in (Koopmann and Schmidt 2013b; Delgrande
2017). In particular, we iteratively resolve on the for-
getting symbols where the original ontology is in clausal
form (Nonnengart and Weidenbach 2001). Differences ap-
pear at this stage to compute the semantic forgetting and cap-
ture the result in the special second order language described
earlier.

3 Basic Definitions and Ideas
Let Nc, Nr be two disjoint sets of concept symbols and role
symbols. Concepts in ALC are of the following forms:

⊥ | A | ¬C | C uD | ∃r.C

where A ∈ Nc, r ∈ Nr and C and D are general concept
expressions. We also allow the following abbreviations:

> ≡ ¬⊥, ∀r.C ≡ ¬∃r.¬C, C tD ≡ ¬(¬C u ¬D).

An interpretation in ALC is a model I = 〈∆I , .I〉 where
the domain ∆I is a nonempty set and .I is an interpretation
function that assigns each concept symbol A ∈ Nc to a sub-
set of ∆I and each r ∈ Nr to a subset of ∆I × ∆I . The

constructs above are interpreted as follows:

⊥I := ∅, >I := ∆I , (¬C)I := ∆I\CI

(C uD)I := CI ∩DI , (C tD)I := CI ∪DI

(∃r.C)I := {x ∈ ∆I |∃y : (x, y) ∈ rI ∧ y ∈ CI}
(∀r.C)I := {x ∈ ∆I |∀y : (x, y) ∈ rI → y ∈ CI}

A TBox, or an ontology, is a set of axioms of the forms
C v D and C ≡ D, where C and D are concepts. The
equivalence C ≡ D is a short hand for C v D and D v C.
Without loss of generality we assume only ontologies con-
sisting of subsumption axioms. I is model of an ontology
O if all axioms in O are true in I, in symbols I |= C v D.
And, I |= C v D if and only if CI ⊆ DI . We say
that C v D is satisfiable with respect to O if and only if
I |= C v D for some model I of O. We also say that
C v D is a consequence of O, in symbols O |= C v D, if
and only if I |= C v D for every model I of O.

Let α be an ALC concept, we denote by sig(α) the set of
concept and role names appearing in α. For an ontology O,
sig(O) is the set of concept and role names appearing in its
axioms. That is, sig(O) =

⋃
CvD∈O sig(C) ∪ sig(D).

Definition 1. Two models I andJ Σ-coincide iff ∆I = ∆J

and pI = pJ for every concept name or role name p ∈ Σ.

Definition 2. Let O1 and O2 be two ontologies and Σ a set
of symbols where Σ ⊆ Nc ∪ Nr. We define O1 ≡MΣ O2 iff
for every model I1 ofO1 there is a model I2 ofO2, and vice
versa, such that I1 and I2 Σ-coincide.

Definition 3. LetO be anALC ontology andF ⊆ sig(O)∩
Nc be the forgetting signature. The ontology V is a semantic
forgetting view of O w.r.t. F iff the following hold,

1. sig(V) ⊆ sig(O)\F;
2. O ≡Msig(O)\F V .

Definition 4. Let O1 and O2 be two ontologies and Σ a set
of symbols where Σ ⊆ Nc ∪ Nr. We define O1 ≡C

Σ O2 iff
for every ALC concept inclusion α, where sig(α) ⊆ Σ, we
have O1 |= α iff O2 |= α.

Definition 5. LetO be anALC ontology andF ⊆ sig(O)∩
Nc be the forgetting signature. The ontology V is a deduc-
tive forgetting view of O w.r.t. F iff the following hold,

1. sig(V) ⊆ sig(O)\F;
2. O ≡C

sig(O)\F V .

The semantic view, as defined in Definition 3, is not in
general representable inALC. Otherwise, the semantic view
itself must be a consequence of the deductive view, then
semantic and deductive forgetting would always coincide,
which is not the case, e.g. (Koopmann and Schmidt 2014).
To represent the semantic view using ALC language con-
structs, we relax the first condition in Definition 3 and extend
the vocabulary of the semantic view with fresh concept sym-
bols, hereafter called definer symbols or definers for short.
We denote the set of introduced definers by Nd where Nd is
disjoint with Nc and Nr. The following example shows the
use of definers to represent the semantic view.

Example 1. Let O = {> v ∃r.B u ∃r.¬B u ∃s.¬B}, and
F = {B}. The deductive view of O with respect to F is
Vded = {> v ∃r.> u ∃s.>}. However, Vded does not pre-
serve all information of r and s that is modelled in O. For
instance, the information that every domain element has two
different r-successors, and that every domain element must
have different r and s successors is not captured. With de-
finer symbols, we can represent the semantic view as the on-
tology Vsem = {> v ∃r.D1,> v ∃r.D2,> v ∃s.D3,> v
¬D1 t ¬D2,> v ¬D1 t ¬D3}, where D1, D2, D3 ∈ Nd.
Example 2. Let S be the subset of Vsem from Exam-
ple 1 consisting only of the axioms {> v ∃r.D1,> v
∃r.D2,> v ∃s.D3}. Comparing S with Vded, it can
be shown that S ≡M{r,s} Vded. The remaining axioms
∆ = {> v ¬D1 t ¬D2,> v ¬D1 t ¬D3} represent
the information lost in Vded.

A major advantage of the proposed method is that it in-
troduces a fine grained forgetting framework where the user
can append some of the lost information in ∆ to Vded as de-
sired. In doing this, we envisage that ∆ will be converted to
useful warnings about information not captured in Vded.
Example 3. Continuing with Example 2, the set ∆ can be
converted to the two warnings: W1 = {> v ∃r.D1,> v
∃r.D2,> v ¬D1 t ¬D2} and W2 = {> v ∃r.D1,> v
∃s.D3,> v ¬D1 t ¬D3}. Recall the set S = {> v
∃r.D1,> v ∃r.D2,> v ∃s.D3}. Suppose that the user
is interested in the information related to r but not s, so she
accepts W1 and discards W2. Accordingly the system ap-
pends S with W1, and after eliminating D3 from S ∪ W1

the final forgetting view would be V = {> v ∃r.D1,> v
∃r.D2,> v ¬D1 t¬D2,> v ∃s.>}, which captures more
information than the deductive view Vded but less informa-
tion than the semantic view Vsem.

Observe that V in the above example (1) captures more in-
formation related to r than Vded; and (2) uses fewer definer
symbols than Vsem. In this sense, the proposed forgetting
model compromises between the simplicity of deductive for-
getting and the expressivity of semantic forgetting.

4 Semantic Forgetting
The first stage of the method is to approximate the semantic
forgetting view of the input ontology O w.r.t. some forget-
ting signature F .

The method applies resolution to the input ontology in
clausal form. We use the following steps to transform O
into clausal form, Clausal(O): (1) convert O to the nega-
tion normal form (NNF) such that negation is applied only
to concept names, (2) apply structural transformation to ex-
tract formulas under role restriction that contain the forget-
ting symbols, and (3) convert the result to conjunctive nor-
mal form.
Example 4. Consider the axiom S = A v ∃r.(B u C)
where B is a forgetting symbol. S is first converted to NNF
by eliminating the connective v, so S1 = ¬A t ∃r.(B u
C). Then, structural transformation is applied to extract
B u C which gives, S2 = {¬A t ∃r.D1,¬D1 t (B u C)}
whereD1 ∈ Nd is a definer symbol. Finally, S2 is converted

Resolution (Res)

C1 tA C2 t ¬A
C1 t C2

Where A is a forgetting symbol and C1, C2 are gen-
eral concept expressions.

Figure 1: Binary resolution rule

to conjunctive normal form giving S3 = (¬A t ∃r.D1) u
(¬D1 tB) u (¬D1 t C).

In Example 4, D1 can be seen as existentially quantified
concept symbol. Clausal({S}) can be viewed as the sec-
ond order formula ∃D1(S3). Observe, however, that S3 is
maintained in ALC syntax. Intuitively, D1 represents the
elements of B u C that are reachable by r from A, that is,
{y ∈ BI ∩ CI |(x, y) ∈ rI ∧ x ∈ AI} for any model I
of S. In the rest of the paper, we will not differentiate be-
tween Clausal(O) being a single CNF formula of the form
C1 u · · · u Cn, being a set of clauses {C1, . . . , Cn} where
each clause is a disjunction of literals, or being an ontology
{> v C1,> v C2, . . . }.
Theorem 1. For any ontology O, we have
O ≡Msig(O) Clausal(O).

Forgetting is performed by resolving on the symbols in
F iteratively using the resolution rule in Figure 1. When
all possible resolution inferences have been performed on
a concept symbol, clauses that contain this concept are re-
moved in a purity deletion step. During the forgetting pro-
cess the following operations are applied eagerly: (1) Tau-
tology deletion: Clauses on the formAt¬AtC are deleted,
where A and C are ALC concepts. (2) Subsumption dele-
tion: Clauses on the formCtD are deleted if another clause
C is present in O, where C,D are general concepts. (3) Pu-
rification: If a forgetting symbol A occurs only positively or
only negatively in O, then A is replaced everywhere by >
and ⊥ respectively.
Example 5. Let O = {A v ∀r.B u ∀s.¬B,G v ∃r.(¬B t
C)}, and F = {B}. The method starts by generating
Oclausal = {¬At∀r.D1,¬At∀s.D2,¬Gt∃r.D3,¬D1t
B,¬D2 t ¬B,¬D3 t ¬B t C}, where D1, D2, and D3

are fresh definer symbols. Then, it proceeds by resolving
on the concept symbol B. This generates, additionally, the
clauses {¬D1t¬D2,¬D1t¬D3tC}. Finally, the clauses
{¬D1tB,¬D2t¬B,¬D3t¬BtC} are removed by pu-
rity deletion. So the semantic forgetting view of O w.r.t. the
forgetting signature {B} is Osem = {¬A t ∀r.D1,¬A t
∀s.D2,¬G t ∃r.D3,¬D1 t ¬D2,¬D1 t ¬D3 t C}.
Theorem 2. Let O be an ontology, and let F be a forget-
ting signature. Let Osem be the semantic view obtained by
executing the described method. Then, O ≡Msig(O)\F O

sem.

Theorem 3. The size of Osem is in the worst case exponen-
tial in the size of the given ontology O and double exponen-
tial in the number of forgetting symbols.

Proof. Suppose |F| = k, and |Clausal(O)| = m where
the size of Clausal(O) is taken to be the number of its
clauses. Consider a single iteration of resolution, and let
A ∈ F be the forgetting symbol. Since we use binary res-
olution, we get |Forget(Clausal(O), A)| = O(m2). Re-
peating for k symbols we get |Forget(Clausal(O),F)| =

O(m2k

). We now calculate m. Suppose |O| = n where the
size of O is taken to be the number of axioms in O. Ob-
serve that the size of Clausal(O) is dominated by conver-
sion to CNF since the structural transformation is bounded
by the number of role restrictions and NNF conversion does
not add new axioms. It is known that the size of a CNF
formula is, in the worst case, exponential in the size of orig-
inal formula(Nonnengart and Weidenbach 2001). Therefore
m = O(2n). Altogether we get that |Forget(O,F)| =

O(2n.2
k

).

5 Reduction to Deductive Forgetting
The second stage of the method is to reduce the semantic
view to a subset that is equivalent to the deductive view. The
Red rule in Figure 2 removes from Osem the clauses that
contain two or more negative definers. As we will show,
these removed clauses represent the information difference
between the semantic and the deductive view.

The RP rule in Figure 2 preserves the ALC consequences
that are otherwise lost by applying the Red rule. Therefore,
we require it to be applied exhaustively before the Red rule.
The premises of the RP rule start with the clause P0 t C0,
where P0 takes the form¬D0t¬D1t· · ·t¬Dn. The second
premise is a set of clauses Pj tCj . Here, Pj takes the same
form of P0, i.e., a disjunction of negative definers, but also
Definers(Pj) ⊆ Definers(P0) where Definers(P) means the
set of definer symbols that are in sig(P). The intuition here
is that Pj v P0. Therefore, every domain element that is
not in the interpretation of P0, consequently Pj , must be in
the interpretation of C0 and Cj . The clauses in the third and
the fourth premises take the same form, except that existen-
tial role restriction is only allowed in the third premise. By
the third and fourth premises, every domain element must
be in the interpretation of

⊔n
0 Ei or Qr.(

dn
i=0Di). But

the later can be rewritten as Qr.¬P0, which is subsumed
by Qr.(

dm
j=0 Cj) as concluded by the rule.

The following example shows the application of the RP
rule.

Example 6. Continuing with Example 5, the RP rule applies
with the following premises:

1. P0 t C0 = ¬D1 t ¬D3 t C

2.
m⋃
j=1

{Pj t Cj} = ∅

3. E0 tQr.D = ¬G t ∃r.D3

4.
n⋃

i=1

{Ei t ∀r.Di} = {¬A t ∀r.D1}

The generated conclusion is ¬A t ¬G t ∃r.C.

Theorem 4. The conclusion of the RP rule in Figure 2, is a
direct consequence of the premises.

Role Propagation (RP)

P0 t C0,
m⋃
j=1

{Pj t Cj},E0 tQr.D0,
n⋃

i=1

{Ei t ∀r.Di}

(
n⊔
0
Ei) tQr.(

md

j=0

Cj)

where P0 =
n⊔

i=0

¬Di. Pj is any sub-concept of P0.

Q ∈ {∃,∀}, and C0, and Cj do not contain a definer
symbol.
Reduction (Red)

O ∪ {¬D1 t ... t ¬Dn t C}
O

Where C is a general concept expressions that does
not contain a negative definer. D1, ..., Dn are de-
finer symbols. The RP rule applies before this rule
if ¬D1 t ... t ¬Dn takes the form of P0 in the RP
rule.

Figure 2: ALC reduction rules.

Proof. Let Isem be a model of Osem and d be a domain el-
ement in ∆I

sem

. If d 6∈ (E0 t ...tEn)I
sem

, then it must be
the case that d ∈ (Qr.D0u∀r.D1u...u∀r.Dn)I

sem

. This is
equivalent to saying d ∈ (Qr.D0u∀r.(D1u ...uDn))I

sem

.
Let Q = ∃, then there is e ∈ DI

sem

0 such that (d, e) ∈
rI

sem

. It must also be that e ∈ (D0 u ... u Dn)I
sem

. Ob-
serve that P0 ≡ ¬(D0 u ... u Dn), so e 6∈ P I

sem

0 . But
since Isem |= P0 t C0 we get that e ∈ CI

sem

0 . Sim-
ilarly, since Pj v P0, we have e ∈ CI

sem

j . Altogether,
d ∈ (E0t ...tEnt∃r.(C0u ...uCm))I

sem

for any domain
element d. If Q = ∀, then d ∈ ∀r.(D0 u ... u Dn))I

sem

which is equivalent to saying that d ∈ (∀r.¬P0)I
sem

. It fol-
lows that d ∈ (∀r.C0)I

sem

. Additionally, it must be the case
that d ∈ (∀r.¬Pj)

Isem because ∀r.¬Pj subsumes ∀r.¬P0.
So d ∈ (∀r.Cj)

Isem Altogether, d ∈ (E0t...tEnt∀r.(C0u
... u Cm))I

sem

for any domain element d.

Following the application of the RP rule, the Red rule is
applied. The clauses removed by the Red rule constitute the
set ∆. The remaining clauses represent a subset equivalent
to the deductive view. In the following, we mean by Osem

the semantic view obtained by forgettingF fromO and then
applying the RP rule exhaustively. By Ored we mean the
result of applying the Red rule on Osem. This implies that
Ored ⊆ Osem.

Example 7. Continuing with Example 6. Recall that
Osem = {¬A t ∀r.D1,¬A t ∀s.D2,¬G t ∃r.D3,¬D1 t
¬D2,¬D1 t¬D3 tC,¬At¬Gt ∃r.C}. By applying the
Red rule we get ∆ = {¬D1 t ¬D2,¬D1 t ¬D3 t C}, and
Ored = {¬At∀r.D1,¬At∀s.D2,¬Gt∃r.D3,¬At¬Gt
∃r.C}.

The following theorem says that Ored and Osem (conse-
quently by Theorem 2, also O) have the same ALC conse-
quences.
Theorem 5. Osem ≡C

sig(O)\F O
red.

The remainder of this section is dedicated to proving The-
orem 5. The proof is presented in two steps. First, a neces-
sary and sufficient condition for Theorem 5 is established
in Theorem 7 below. The main benefit of this condition
is the transformation of the entailment problem of Theo-
rem 5 into a satisfiability problem. With this transforma-
tion, it is sufficient to show that any ALC concept inclu-
sion α that is satisfiable with respect to Ored is also satis-
fiable with respect to Osem. Thus, we only need to con-
struct an interpretation of Osem that satisfies α. This in-
terpretation is constructed in the second step of the proof.
In this construction, we first analyse in Theorem 9 the
models of Ored that satisfy α, then we construct using
the notion of bisimulation (Kurtonina and de Rijke 1997;
Stirling 1998) an interpretation of Osem that satisfies α.
Definition 6. Let O1 and O2 be any two ontologies. By
mDiff(O1,O2) we mean the set of models ofO1 that are not
models of O2.
Theorem 6. mDiff(Osem, Ored) = ∅, but in general
mDiff(Ored, Osem) 6= ∅.

Proof. (1) mDiff(Osem, Ored) = ∅: Let I be any model of
Osem. Since Ored ⊆ Osem, it must be that I |= Ored.

(2) mDiff(Ored, Osem) 6= ∅: We prove this by giving
an example. Let Osem = {∃r.D1,∃r.D2,¬D1 t ¬D2}
where D1 and D2 are definer symbols. Then, Ored =
{∃r.D1,∃r.D2}. Let ∆ = {a, b}, and I be the interpre-
tation over ∆ such that DI1 = DI2 = {b}, rI = {(a, b)}.
Clearly I is a model ofOred but is not a model ofOsem.

Theorem 7. Let I be a model in mDiff(Ored, Osem). That
is, I |= Ored but I 6|= Osem. A necessary and sufficient
condition for Theorem 5 is that, for any ALC concept in-
clusion α over sig(O)\F we have that I |= α implies that
there is a model J of Osem such that J |= α.

Proof. (1) Necessary: Assume that there is no such model
J of Osem such that J |= α. Therefore, Osem |= ¬α.
Since Osem ≡C

sig(O)\F O
red, it follows that Ored |= ¬α.

This contradicts the assumption that I |= Ored and I |= α.
(2) Sufficient: Assume Osem 6≡C

sig(O)\F O
red. Therefore,

there must be an ALC concept inclusion α over sig(O)\F
such that:

1. Osem |= α and Ored 6|= α, or
2. Osem 6|= α and Ored |= α.

Consider the first case. There must be a model I ∈
mDiff(Ored,Osem) such that I |= ¬α. But then by hy-
pothesis there is a model J of Osem such that J |= ¬α,
which contradicts the assumption that Osem |= α. Now
consider the second case. Since Osem 6|= α, there must be
a model J of Osem such that J 6|= α. By Theorem 6, J is
also a model of Ored which contradicts the assumption that
Ored |= α.

We now move to the second step of proving Theorem 5.
Let I be any model in mDiff(Ored,Osem) and assume there
is an ALC concept inclusion α over sig(O)\F , such that
I |= α and α is not satisfiable with respect to Osem. Recall
that our aim is to contradict this assumption by constructing
a model J of Osem such that J |= α.
Definition 7. A pointed interpretation (I, d) is an interpre-
tation I generated by d ∈ ∆I . (I, d) is a directed graph
with the root d. There is a transition, or an edge, from d to e
iff (d, e) ∈ rI where r ∈ Nr.
Definition 8. Let (I, d1) and (J , d2) be two pointed in-
terpretations, and Σ be some signature. (I, d1), (J , d2)
are Σ-bisimilar, (I, d1) ∼Σ (J , d2), iff there is a relation
R ⊆ ∆I×∆J where (d1, d2) ∈ R and for every (d, d′) ∈ R
the following hold:

1. d ∈ AI iff d′ ∈ AJ for all concept names A ∈ Σ.
2. if (d, e) ∈ rI then there is e′ ∈ ∆J such that (d′, e′) ∈
rJ for every role name r ∈ Σ and (e, e′) ∈ R.

3. if (d′, e′) ∈ rJ then there is e ∈ ∆I such that (d, e) ∈ rI
for every role name r ∈ Σ and (e, e′) ∈ R.

Theorem 8. (Lutz and Wolter 2011) Let (I, d1), (J , d2) be
two pointed interpretations, and let Σ be some signature. If
(I, d1), (J , d2) are Σ-bisimilar then for everyALC concept
C where sig(C) ⊆ Σ we have that d1 ∈ CI iff d2 ∈ CJ , in
symbols (I, d1) ≡Σ (J , d2).

Let α be of the form C v E where C and E are arbi-
trary. Without loss of generality, assume that I is a pointed
interpretation generated by an arbitrary d ∈ CI .
Theorem 9. SupposeOsem = Ored∪{¬D1t...t¬DntF}
where n > 1. Let (I, d) be as above. Then, I ∈
mDiff(Ored,Osem) iff there is e ∈ ∆I that is reachable
from d where e ∈ DI1 ∩ ... ∩DIn and e 6∈ F I .

Proof. Right to left is obvious. Left to right: Suppose there
is no such e, then I |= ¬D1 t ... t ¬Dn t F . But also
I |= Ored, so we get that I |= Osem which contradicts that
I ∈ mDiff(Ored,Osem).

Theorem 9 sets our aim to construct a pointed interpreta-
tion (J , d) in which no such e exists. As said earlier, our tar-
get is to construct (J , d) such that (I, d) ∼sig(O\F (J , d).
Observe that the theorem assumes that the difference be-
tween Osem and Ored is the single clause ¬D1 t ... t
¬Dn t F . If both ontologies differ on several clauses
¬Di

1 t ... t ¬Di
n t F i where 1 ≤ i ≤ n, we construct a

series of ontologies Oi where Ored = O0, Osem = On,
and Oi = Oi−1 ∪ {¬Di

1 t ... t ¬Di
n t F i}. Then we con-

struct a series of models J i ofOi where J n = J and have:

(I, d) ∼Σ (J 1, d) ∼Σ · · · ∼Σ (J n, d) (1)
It follows, by the transitivity of ∼Σ, that (I, d) ∼Σ (J , d)
and J |= Osem.
Definition 9. Let I be a model and e be a domain element in
∆I . Recall that Nd is the set of definer symbols, and define
CI(e) to be the closure under single negation of the concept
names and definer symbols inNc∪Nd that contain e in their
interpretation.

Figure 3: Construction of J from I. Each node contains a do-
main element. An edge between elements a and b means that
r(a, b) ∈ rI . A list of concept names whose interpretation in-
cludes the element appears at the top right of the element. For
readability, negated concept names are omitted from this list. For
instance, in the graph of J , the element e1 is understood as being
a member in the interpretation of D1, C,¬A,¬E,¬D2

Theorem 10. Let Osem, Ored, and I be defined as in The-
orem 9. There is a model J generated by d such that:

1. (I, d) ∼sig(O)\F (J , d), and

2. There is no e ∈ ∆J such that e ∈ DJ1 ∩ ...∩DJn ∩¬FJ .

Proof. We start with an example to give the intuition of
the construction method of J . Suppose Osem = {¬A t
∃r.D1,¬At∃r.D2,¬D1tC,¬D2tC,¬D1t¬D2,¬C t
∃r.E}, and Ored = Osem\{¬D1 t ¬D2}. Let Σ =
{A,C,E, r}. Ored tells that every domain element in A
is related via r to elements of C, and every element in C is
related via r to an element of E. An example of a model I
of Ored is shown in Figure 3(a). Clearly I 6|= Osem since
Osem requires that every domain element of A is related
via r to two disjoint subsets of C. A way to transform I
into a model J , such that the conditions of the theorem are
satisfied, is to replace e with two fresh domain elements e1

and e2. The key requirements are that both e1 and e2 are
elements of C, and neither of them is an element of D1

and D2 at the same time. The model J is shown in Fig-
ure 3(b). It is straight forward to see that (I, d) ∼Σ (J , d),
and J |= ¬D1 t ¬D2.

We now give a formal proof as follows: By Theorem 9,
there is e ∈ ∆I that is reachable from d where e ∈ DI1 ∩
... ∩ DIn and e 6∈ F I . Transform I into J by replacing e
with fresh domain elements ei where 1 ≤ i ≤ n, such that
ei 6∈ Di, ei ∈ DJj where 1 ≤ j ≤ n and j 6= i, and:

1. ei ∈ AJ iff A ∈ CI(e)\{Di} for every A ∈ Nc ∪Nd;
2. (e′, ei) ∈ rJ iff (e′, e) ∈ rI ;
3. (ei, e

′′) ∈ rJ iff (e, e′′) ∈ rI .

where r ∈ Nr, and {e′, e′′} ⊂ ∆J . Assume that e, and ei,
are reachable from d in k transitions. We prove the theorem
by induction from bottom to top. By construction, for any

node u ∈ (I, d) or (J , d) such that u is reachable from d in
at least k + 1 transitions we have (I, u) ∼Σ (J , u). That
is, nothing below e and ei changed. Second, for every u ∈
(I, d) at depth k we have: (1) If u = e, then CI(u)\{Di} =
CJ (ei). Also, since the third condition of the transformation
guarantees that every thing below u and ei is the same, it
follows that (I, u) ∼Σ (J , ei). (2) If u 6= e, then u is
also a node in (J , d) and (I, u) ∼Σ (J , u). Finally, for
every u ∈ (I, d) such that u is reachable in at most k − 1
transitions from d we have that u ∈ (J , d), and we have the
following cases: (1) e 6∈ (I, u). Then, as before (I, u) ∼Σ

(J , u). (2) e ∈ (I, u). Condition 1 in the transformation
guarantees that CI(u) = CJ (u) on all C ∈ (Nc ∪ Nd).
Suppose that u ∈ (∃~r.C)I where ∃~r = ∃r1.∃.r2....∃.rm,
ri ∈ Nr, andC is anyALC concept over Σ. Then there must
be a path ur1u1r2u2r3...rmum in (I, d) such that um ∈ CI .
If ui 6= e for every i ∈ [1..m] then by construction this path
also exists in (J , d) and thus u ∈ (∃~r.C)J . If ui = e for
any i ∈ [1..m], then again by construction there is a path
ur1u1r2...rivri+1...rmum and we have the choice to set v
to any of {e1, ..., en}. In particular, we have um ∈ CJ .
Thus, u ∈ (∃~r.C)J . We get that (I, u) ∼Σ (J , u) for every
u reachable in at most k − 1 transitions from d. The same
argument can be used to show that every node in (J , d) has
a bisimilar node in (I, d). Altogether, we get that (I, d) ∼Σ

(J , d), and J 6|= D1 uD2 u ... uDn u ¬F .

We conclude this section with a discussion of the Red
rule. The clauses excluded by the Red rule represent the
information difference between Osem and Ored. As illus-
trated by Example 3, we envisage that these axioms are pre-
sented to the user as warnings of information loss. However,
to be meaningful, context axioms must also be included. For
instance, in Example 3, the axioms extracted by the Red rule
are {> v ¬D1 t ¬D2,> v ¬D1 t ¬D3}. When pre-
sented as warnings W1 and W2, they are accompanied with
{> v ∃r.D1,> v ∃r.D2} and {> v ∃r.D1,> v ∃r.D3}
respectively. This can be realized easily by collecting from
the semantic view the clauses that contain the definer sym-
bols positively. For instance, to present > v ¬D1 t ¬D2

as a warning, we collect from the semantic view the clauses
that contain D1 and D2 and present them as additional ax-
ioms in the warning.

6 Eliminating the Definer Symbols
We identified ∆ as the axioms that contain two or more
negative definers. The semantic and the deductive views
may contain other definer symbols that appear negatively in
clauses, possibly together with positive definers, where no
other negative definer is present. These definers can be elim-
inated safely while preserving the interpretations of the keep
signature. For this, we use the DE rule in Figure 4. The side
conditions of the DE rule also restrict eliminating definers
that may appear both positively and negatively in a clause.
This case signifies cycles in the original ontology that can
only be expressed using fixpoint operators (Nonnengart and
Szalas 1998). As an alternative, (Koopmann and Schmidt
2013b) proposed leaving the definer symbols in the deduc-
tive view as witnesses of these cycle. We find this the best

Non-cyclic Definer Elimination (DE)

O ∪ {¬D t C1, ...¬D t Cn}
O[D/C]

where C = uni=1Ci and D /∈ sig(C), C does not
contain a negative definer, and O does not contain
D negatively.

Figure 4: Definer elimination rule

option because it defers the decision of the correct repre-
sentation to a later stage. For clauses that contain only one
negative definer symbol, possibly with other positive defin-
ers, the DE rule in Figure 4 is applied exhaustively. The
rule replaces the definer symbol D with its super-concept
C1 u ... u Cn. Note that, in the DE rule, C may be the ⊥
concept.

Theorem 11. Let O be an ontology, F a forgetting signa-
ture. Also let Ored be generated as described before, and V
be generated from Ored by applying the DE rule from Fig-
ure 4 exhaustively. Then:

1. Ored ≡Msig(O)\F V;

2. V is a deductive forgetting view of O w.r.t. F .

Proof. First we prove (1). The DE rule in Figure 4 can be
seen as a two steps operation. The first replaces all clauses
of the form ¬D t Ci with a single clause ¬D t C where
C = uCi. This step is clearly equivalence preserving. The
second replaces every D in O with the concept C. This step
is the inverse of the structural transformation. Therefore, by
Theorem 1 we get that Ored ≡Msig(V) V .

Second we prove (2). By Theorem 2, we get that O and
Osem coincide on all interpretations of the sig(O)\F . It
follows that both O and Osem agree on all ALC concept
inclusions over sig(O)\F . By Theorem 5, both Ored and
Osem, consequently also O, agree on all ALC concept in-
clusions over sig(O)\F . Finally, since Ored ≡Msig(O)\F V ,
we get that O ≡C

sig(O)\F V . Since V is generated by elim-
inating the definer symbols in Ored. It follows that V con-
tains only the definer symbols that are witnesses to cycles
in O. Altogether we get that V is a deductive view of O
w.r.t. F .

7 Evaluation
We implemented a prototype of our method based on Java
12 and OWL 5.1.11, and evaluated it against Lethe (ver-
sion 2.11-0.026)1 (Koopmann and Schmidt 2013a). Lethe
is a Scala based implementation of the deductive forgetting
method in (Koopmann and Schmidt 2013b). Similar to our
method, Lethe performs forgetting on a transformation of
the ontology in a second order language. However, it uses a
direct resolution calculus to compute the deductive view.

1http://www.cs.man.ac.uk/ koopmanp/lethe/index.html

It is traditional to benchmark different forgetting meth-
ods by assigning to them one or more forgetting tasks on
a popular ontology, and compare their performance in each
task. However, this does not guarantee challenging forget-
ting problems. Forgetting is more complex if forgetting
symbols appear together frequently in the ontology’s ax-
ioms. This criterion is not satisfied in most key ontologies.
For instance, the most frequently occurring concept symbol
in the axioms of the National Cancer Institute Thesaurus
(NCIT) ontology (Fragoso et al. 2004), occurs in just 1.5%
of the axioms. So, the probability of two or more forgetting
symbols appearing in the same axiom is low.

Instead, we built our own ontologies. The idea is simple,
different biomedical ontologies model different information
related to a given biomedical term. However, these subsets
of information are likely formalized using the same biomed-
ical terms. For instance, if two ontologies use the medical
term spinal-cord in their axioms, they are also likely to use
the term spine in some of these axioms. So if we group in
a new ontology, the axioms of each ontology that contain
the term spinal-cord, then we can use the forgetting signa-
ture {spinal-cord, spine} and be more confident that both
will appear together in many axioms. To implement the de-
scribed idea, we construct each ontology in our dataset in
the following way:

1. Collect a set of random concept names Σ from the Inter-
linking Ontology for Biological Concepts (IOBC) ontol-
ogy (Kushida et al. 2019).

2. Retrieve from the NCBO Bioportal the related ontologies
where the symbols in Σ appear more frequently.

3. From the retrieved ontologies, extract and combine into a
single ontology, the subsets of the axioms where the sym-
bols in Σ appear.
In total, 22 ontologies were downloaded from the Biopor-

tal, and then used as described above to construct 90 ontolo-
gies. In each construction, at least 25% of the input ontolo-
gies were expressed in a more complex logic than ALC.

The constructed ontologies were divided into three
groups: Low, Moderate, and High, with 30 ontologies in
each group. Each group was used in a different experimen-
tal setting. In the Low setting, the forgetting symbols appear
in at least half of the axioms, and the probability of two for-
getting symbols appearing in the same axiom is low. In the
Moderate setting, the forgetting symbols appear in all of the
axioms, and at least one axiom contains two forgetting sym-
bols. In the High setting, the forgetting symbols appear in
all of the axioms, and at least half of the axioms contain two
forgetting symbols.

The experiments were performed on a x64-based proces-
sor Intel(R) Core(TM) i5-8350U CPU @ 1.70GH, running
a 64-bit operating system (Windows 10). Each experiment
was allocated 128MB of memory to run. The experiment
computes two versions of the deductive forgetting view, one
by our prototype and one by Lethe. We verified the cor-
rectness of our method by comparing both versions using a
reasoner. Manual inspection was also required when the rea-
soner detected differences due to definer symbols present as
witnesses to cycles but named differently in each view.

Group Prototype T.O. Lethe T.O. Outliers

Low 0 0 0
Moderate 0 1 3
High 3 0 3

Table 1: Timeouts and outliers

Measure Low Moderate High

Mean 0.50 0.36 0.55
Std. Dev. 0.32 0.70 0.40

Table 2: Mean and Standard Deviation of time gain over Lethe.

The timeout for each experiment was thirty minutes. Ta-
ble 1 shows the number of timeout runs and outlier experi-
ments. The latter are experiments where the difference be-
tween the time consumed by Lethe and by our prototype was
very high. We calculated the outliers based on the 90th per-
centile after excluding the timeouts. That is, we discarded
as outliers the highest 10% according to the calculated time
difference between our prototype and Lethe. Table 1 shows
an uptrend in the discarded experiments, due to timeout and
outliers, as the forgetting problems gets harder. To under-
stand the reason behind the uptrend, we investigated the time
ratio between the computation of the semantic view, and the
reduction to the deductive view. Figure 6(a) shows a sig-
nificant increase in this ratio as we move towards the High
setting. Therefore, the uptrend of the timeouts and outliers
is mainly due to the time consumed by the semantic forget-
ting stage. This is noticeable with our prototype and not
Lethe because unlike Lethe, optimization techniques, such
as subsumption deletion, are not implemented in our pro-
totype. These optimization techniques eagerly reduce the
size of the semantic view and consequently the number of
required resolutions. The effect of their absence becomes
more apparent as the size of the input ontology and the hard-
ness of the problem increase. We observed that the sizes of
the ontologies in the discarded experiments, were 303 ax-
ioms in the Moderate setting and 330 axioms in the High
setting. Whereas the average sizes of all ontologies partici-
pating in the experiments of both settings were 160 and 75
respectively.

Figure 5 shows the normal distribution of the time perfor-
mance gain over Lethe, which is calculated using:

Time gain = (Lethe− Proposed method)/Lethe. (2)

The graphs in Figure 5 are based on the mean and stan-
dard deviation values in Table 2. The mean values show
50%, 36%, and 55% improvements in processing times
compared to Lethe. However, the standard deviation of the
Moderate setting is relatively high. This means a high vari-
ance in the time gain across the experiments in the Moderate
setting compared to the other settings. The reasons of this
observation are: (1) The average size of the ontologies in
the Moderate setting is 160 compared to 116 and 75 in the
Low and High settings. Thus, the time gain in the Moderate
setting is more variable because of the lack in optimization

Figure 5: Normal distribution of time gain in the Low, Moderate, and High settings. The horizontal axis represents the time performance gain
calculated as in (2). The vertical axis represents normal distribution values according to data in Table 2.

Figure 6: Diagram (a) on the left shows the ratio between semantic
forgetting and reduction time. Diagram (b) on the right shows the
average size of ∆ across the three settings.

Average Median 75 Percentile

Definers 16 0.0 9.3

Table 3: Average, median, and 75 Percentile values of the number
of non-cyclic definers in the semantic forgetting view.

techniques. (2) As Figure 6(b) shows, the average size of ∆
is 185 axioms in the Moderate setting, compared to 70 and
69 in the Low and High settings. So more resolution steps
are performed in the Moderate setting to compute this ∆. To
determine the relative weight of both reasons, we inspected
the experiments that contributed most to the standard devi-
ation. The standard deviation was distorted mainly due to
a single experiment. The size of the ontology in these ex-
periment is 526 which is very high compared to the average
size in the Moderate setting. Also, the size of ∆ in this ex-
periment is 2132 axioms, which is very high. By excluding
this experiment, the mean and the standard deviation were
adjusted to 0.48 and 0.43, which is inline with the measure-
ments in other settings.

Table 3 shows statistical values of the number of the non-
cyclic definer symbols in the semantic view. That is, the
definers that are not present to witness cycles as explained
in Section 6. The values are computed over all experiments
because the number of non-cyclic definers is controlled by
the semantics and the modelling of the input ontology rather
than the number of forgetting symbols appearing in the same
axioms. Thus, the Low, Moderate, and High settings, which

are designed mainly for performance testing, are not rele-
vant to the analysis of these definers. To understand these
values, we compare them to the average size of 16.6 of the
forgetting symbols over all experiments. While this number
is very close to the average number of introduced definers
in Table 3; the median value of 0.0 implies that in at least
half of the experiments the semantic view did not have non-
cyclic definers in its vocabulary. Similarly, the 75 Percentile
value of 9.3 implies that in 75% of the experiments, ap-
proximately 9 non-cyclic definer symbols were introduced
in the semantic view compared to approximately 17 forgot-
ten symbols.

8 Conclusions and Future Work
We presented a new forgetting method that performs seman-
tic and deductive forgetting in one system. The method also
extracts a set ∆ of information differences between both
views. While the deductive view can be represented inALC,
the semantic view and the set ∆ are represented using addi-
tional existentially quantified concept symbols. Appending
the deductive view with information from ∆ is a compro-
mise between the simplicity of the deductive view and the
expressivity of the semantic view since the final view con-
tains only the second order symbols required to represent the
incremented information. This offers a more fine-grained
forgetting method that gives more control over the informa-
tion modelled in the forgetting view, and reveals, in terms
of the modelled information, the differences between both
views. The evaluation showed improvement in processing
time over the current state-of-the-art despite the two stage
process.

One novelty of our forgetting method is the new represen-
tation language of the semantic view. Although the aim is to
minimize the number of definers, in general, definers can-
not be avoided in the semantic view. Further minimization
is expected after integrating optimization techniques such as
subsumption deletion with our method. It is interesting that
our fine-grained forgetting method shows the existence of
a spectrum of forgetting variants inbetween the deductive
and the semantic forgetting variants. More understanding of
this spectrum is important. We intend to address both these
points in future work.

References
Ackermann, W. 1935. Untersuchungen über das Elimina-
tionsproblem der mathematischen logik. Mathematische An-
nalen 110:390–413.
Boole, G. 1854. An Investigation of the Laws of Thought:
On Which Are Founded the Mathematical Theories of Logic
and Probabilities. Cambridge University Press.
Botoeva, E.; Konev, B.; Lutz, C.; Ryzhikov, V.; Wolter,
F.; and Zakharyaschev, M. 2017. Inseparability and con-
servative extensions of description logic ontologies: A sur-
vey. In Reasoning Web: Logical Foundation of Knowledge
Graph Construction and Query Answering: 12th Interna-
tional Summer School 2016. Springer. 27–89.
Calvanese, D.; De Giacomo, G.; and Lenzerini, M. 1999.
Reasoning in Expressive Description Logics with Fixpoints
Based on Automata on Infinite Trees. In Proceedings of
the 16th International Joint Conference on Artifical Intel-
ligence, IJCAI 1999, 84–89. Morgan Kaufmann.
Cuenca Grau, B. 2010. Privacy in ontology-based informa-
tion systems: A pending matter. Semantic Web 1(1, 2):137–
141.
D’Agostino, G., and Hollenberg, M. 1996. Uniform inter-
polation, automata and the modal µ-calculus. Logic Group
Preprint Series 165.
Del-Pinto, W., and Schmidt, R. A. 2019. ABox abduction
via forgetting in ALC. In Proceedings of the 33rd AAAI Con-
ference on Artificial Intelligence, AAAI 2019, 2768–2775.
AAAI Press.
Delgrande, J. P. 2014. Towards a Knowledge Level Anal-
ysis of Forgetting. In Proceedings of the 14th International
Conference on Principles of Knowledge Representation and
Reasoning, KR 2014, 606–609. AAAI Press.
Delgrande, J. 2017. A Knowledge Level Account of Forget-
ting. Journal of Artificial Intelligence Research 60:1165–
1213.
Ditmarsch, H.; Herzig, A.; Lang, J.; and Marquis, P. 2008.
Introspective forgetting. In Proceedings of the 21st Aus-
tralasian Joint Conference on Artificial Intelligence, AI
2008, 18–29. Springer.
Divroodi, A. R., and Nguyen, L. A. 2015. On bisimulations
for description logics. Information Sciences 295:465–493.
Eiter, T., and Kern-Isberner, G. 2019. A Brief Survey on
Forgetting from a Knowledge Representation and Reasoning
Perspective. KI - Künstliche Intelligenz 33(1):9–33.
Erdem, E., and Ferraris, P. 2007. Forgetting Actions in
Domain Descriptions. In Proceedings of the 22nd National
Conference on Artificial Intelligence, AAAI 2007, 409–414.
AAAI Press.
Fragoso, G.; Coronado, S.; Haber, M.; Hartel, F.; and
Wright, L. 2004. Overview and utilization of the nci the-
saurus. Comparative and functional genomics 5:648–54.
French, T. 2006. Bisimulation quantifiers for modal logics.
Ph.D. Dissertation, The University of Western Australia.
Gabbay, D. M., and Ohlbach, H. J. 1992. Quantifier elimi-
nation in second-order predicate logic. In Proceedings of the

Third International Conference on Principles of Knowledge
Representation and Reasoning, KR 1992, 425–435. Morgan
Kaufmann.
Gabbay, D. M.; Schmidt, R. A.; and Szałas, A. 2008.
Second-Order Quantifier Elimination: Foundations, Com-
putational Aspects and Applications. College Publications.
Ghilardi, S. 1995. An algebraic theory of normal forms.
Annals of Pure and Applied Logic 71(3):189 – 245.
Grau, B., and Motik, B. 2010. Pushing the limits of rea-
soning over ontologies with hidden content. In Proceedings
of the 12th International Conference on the Principles of
Knowledge Representation and Reasoning, KR 2010, 214–
224. AAAI Press.
Herzig, A., and Mengin, J. 2008. Uniform interpolation by
resolution in modal logic. In Proceedings of the 11th Euro-
pean Conference on Logics in Artificial Intelligence, volume
5293 LNAI, 219–231. Springer.
Konev, B.; Lutz, C.; Walther, D.; and Wolter, F. 2013.
Model-theoretic inseparability and modularity of descrip-
tion logic ontologies. Artificial Intelligence 203:66–103.
Konev, B.; Walther, D.; and Wolter, F. 2008. The Logical
Difference Problem for Description Logic Terminologies. In
Proceedings of the 4th International Joint Conference on
Automated Reasoning, IJCAR 2008, 259–274. Springer.
Konev, B.; Walther, D.; and Wolter, F. 2009. Forgetting
and uniform interpolation in large-scale description logic
terminologies. In Proceedings of the 21st International Jont
Conference on Artifical Intelligence, IJCAI 2009, 830–835.
Morgan Kaufmann.
Koopmann, P., and Schmidt, R. A. 2013a. Implementation
and evaluation of forgetting in ALC-ontologies. In Proceed-
ings of the 7th International Workshop on Modular Ontolo-
gies (WoMo 2013), volume 1081. CEUR-WS.org.
Koopmann, P., and Schmidt, R. A. 2013b. Uniform interpo-
lation ofALC-ontologies using fixpoints. In Proceedings of
the 9th International Symposium on Frontiers of Combining
Systems (FroCoS 2013), volume 8152 of Lecture Notes in
Artificial Intelligence, 87–102. Springer.
Koopmann, P., and Schmidt, R. A. 2014. Count and forget:
Uniform interpolation of SHQ-ontologies. In Automated
Reasoning (IJCAR 2014), volume 8562 of Lecture Notes in
Artificial Intelligence, 434–448. Springer.
Koopmann, P., and Schmidt, R. A. 2015. Saturation-based
forgetting in the description logic SIF . In Proceedings
of the 28th International Workshop on Description Logics
(DL-2015), volume 1350 of CEUR Workshop Proceedings.
CEUR-WS.org.
Kurtonina, N., and de Rijke, M. 1997. Classifying descrip-
tion logics. In Proceedings of the 1997 Description Logic
Workshop, DL 1997, 49–53. Université Paris-Sud.
Kushida, T.; Kozaki, K.; Kawamura, T.; Tateisi, Y.; Ya-
mamoto, Y.; and Takagi, T. 2019. Interconnection of bi-
ological knowledge using NikkajiRDF and interlinking on-
tology for biological concepts. New Generation Computing
37:1–25.

Lakemeyer, G. 1997. Relevance from an Epistemic Perspec-
tive. Journal of Artificial Intelligence 97(1–2):137–167.
Lang, J., and Marquis, P. 2010. Reasoning under inconsis-
tency: A forgetting-based approach. Artificial Intelligence
174(12):799–823.
Lang, J.; Liberatore, P.; and Marquis, P. 2003. Propositional
independence: Formula-variable independence and forget-
ting. Journal of Artificial Intelligence Research 18:391–443.
Lin, F., and Reiter, R. 1994a. Forget it. In Working Notes of
AAAI Fall Symposium on Relevance, 154–159.
Lin, F., and Reiter, R. 1994b. How to progress a database
(and why) i. logical foundations. In Proceedings of the
Fourth International Conference on Principles of Knowl-
edge Representation and Reasoning, KR 1994. Morgan
Kaufmann. 425 – 436.
Ludwig, M., and Konev, B. 2013. Towards practical uni-
form interpolation and forgetting for ALC TBoxes. In Pro-
ceedings of the 26th International Workshop on Description
Logics, DL 2013. AAAI Press.
Ludwig, M., and Konev, B. 2014. Practical uniform interpo-
lation and forgetting for ALC TBoxes with applications to
logical difference. In Proceedings of the 14th International
Conference on Principles of Knowledge Representation and
Reasoning, KR 2014. AAAI Press.
Lutz, C., and Wolter, F. 2010. Deciding inseparability and
conservative extensions in the description logic EL. J. Symb.
Comput. 45:194–228.
Lutz, C., and Wolter, F. 2011. Foundations for uniform
interpolation and forgetting in expressive description logics.
In Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, IJCAI 2011, 989–995.
Nonnengart, A., and Szalas, A. 1998. A fixpoint approach
to second-order quantifier elimination with applications to
correspondence theory. In Logic at Work: Essays Dedicated
to the Memory of Helena Rasiowa (1999). Springer Physica-
Verlag.
Nonnengart, A., and Weidenbach, C. 2001. Computing
small clause normal forms. In Handbook of Automated Rea-
soning. North-Holland. 335 – 367.
Stirling, C. 1998. The joys of bisimulation. In Mathematical
Foundations of Computer Science 1998, 142–151. Springer.
Subramanian, D., and Genesereth, M. R. 1987. The rel-
evance of irrelevance. In Proceedings of the Tenth Inter-
national Joint Conference on Artificial Intelligence, IJCAI
1987, 416–422.
Visser, A. 1996. Uniform interpolation and layered bisimu-
lation, volume 6 of Lecture Notes in Logic. Springer-Verlag.
139–164.
Wang, Z.; Wang, K.; Topor, R.; and Pan, J. Z. 2010. Forget-
ting for knowledge bases in DL-Lite. Annals of Mathematics
and Artificial Intelligence 58(1-2):117–151.
Zhang, Y., and Zhou, Y. 2009. Knowledge forgetting: Prop-
erties and applications. Artificial Intelligence 173:1525–
1537.

Zhang, Y., and Zhou, Y. 2010. Forgetting revisited. In
Proceedings of the Twelfth International Conference on the
Principles of Knowledge Representation and Reasoning, KR
2010. AAAI Press.
Zhao, Y., and Schmidt, R. A. 2015. Concept forgetting
in ALCOI-ontologies using an Ackermann approach. In
Proceedings of the 14th International Semantic Web Con-
ference, ISWC 2015, volume 9366 of Lecture Notes in Com-
puter Science, 587–602. Springer.

	Introduction
	History and Related Work
	Basic Definitions and Ideas
	Semantic Forgetting
	Reduction to Deductive Forgetting
	Eliminating the Definer Symbols
	Evaluation
	Conclusions and Future Work

