3-Player dice game

Exercise 12 (a): 3-player dice game.
Each Player has two choices which we give as 1 (bet one) and 2 (bet two). Hence the space of strategies is the same as in Example 2.5.

3-Player dice game

Exercise 12 (a): 3-player dice game.
The following table gives the pay-off function for the three players, $P 1$, $P 2$ and $P 3$.

	$P 1$	$P 2$	$P 3$
$(1,1,1)$			
$(1,1,2)$			
$(1,2,1)$			
$(1,2,2)$			
$(2,1,1)$			
$(2,1,2)$			
$(2,2,1)$			
$(2,2,2)$			

There are two possible outcomes to the throw of the dice, 1 and 2. Each of these occurs with probability $1 / 2$. Hence the expected pay-off for Player 1 when the chosen strategy is $(1,1,1)$ is

$$
\begin{aligned}
& \frac{1}{2} \quad 2+\frac{1}{2} 0 \\
& \text { prob. pay-off prob. pay-off }
\end{aligned}
$$

In this manner we can calculate the various expected pay-offs.

3-Player dice game

Exercise 12 (a): 3-player dice game.
The following table gives the pay-off function for the three players, $P 1$, $P 2$ and P3.

	$P 1$	$P 2$	$P 3$
$(1,1,1)$	1	1	1
$(1,1,2)$			
$(1,2,1)$			
$(1,2,2)$			
$(2,1,1)$			
$(2,1,2)$			
$(2,2,1)$			
$(2,2,2)$			

3-Player dice game

Exercise 12 (a): 3-player dice game.
The following table gives the pay-off function for the three players, $P 1$, $P 2$ and P3.

	$P 1$	$P 2$	$P 3$
$(1,1,1)$	1	1	1
$(1,1,2)$	2	2	5
$(1,2,1)$			
$(1,2,2)$			
$(2,1,1)$			
$(2,1,2)$			
$(2,2,1)$			
$(2,2,2)$			

3-Player dice game

Exercise 12 (a): 3-player dice game.
The following table gives the pay-off function for the three players, $P 1$, $P 2$ and P3.

	$P 1$	$P 2$	$P 3$
$(1,1,1)$	1	1	1
$(1,1,2)$	2	2	5
$(1,2,1)$	2	5	2
$(1,2,2)$	5	2	2
$(2,1,1)$	5	2	2
$(2,1,2)$	2	5	2
$(2,2,1)$	2	2	5
$(2,2,2)$	1	1	1

3-Player dice game

Exercise 12 (a): 3-player dice game.
The following table gives the pay-off function for the three players, $P 1$, $P 2$ and P3.

	$P 1$	$P 2$	$P 3$
$(1,1,1)$	1	1	1
$(1,1,2)$	2	2	5
$(1,2,1)$	2	5	2
$(1,2,2)$	5	2	2
$(2,1,1)$	5	2	2
$(2,1,2)$	2	5	2
$(2,2,1)$	2	2	5
$(2,2,2)$	1	1	1

$(1,1,1)$ is not an equilibrium point since Player 3 can improve her pay-off by switching strategies.

3-Player dice game

Exercise 12 (a): 3-player dice game.
The following table gives the pay-off function for the three players, $P 1$, $P 2$ and P3.

	$P 1$	$P 2$	$P 3$
$(1,1,1)$	1	1	1
$(1,1,2)$	2	2	5
$(1,2,1)$	2	5	2
$(1,2,2)$	5	2	2
$(2,1,1)$	5	2	2
$(2,1,2)$	2	5	2
$(2,2,1)$	2	2	5
$(2,2,2)$	1	1	1

$(1,1,2)$ is an equilibrium point.

3-Player dice game

Exercise 12 (a): 3-player dice game.
The following table gives the pay-off function for the three players, $P 1$, $P 2$ and P3.

	$P 1$	$P 2$	$P 3$
$(1,1,1)$	1	1	1
$(1,1,2)$	2	2	5
$(1,2,1)$	2	5	2
$(1,2,2)$	5	2	2
$(2,1,1)$	5	2	2
$(2,1,2)$	2	5	2
$(2,2,1)$	2	2	5
$(2,2,2)$	1	1	1

$(1,1,2)$ is an equilibrium point.
$(1,2,1)$ is an equilibrium point.

3-Player dice game

Exercise 12 (a): 3-player dice game.
The following table gives the pay-off function for the three players, $P 1$, $P 2$ and P3.

	$P 1$	$P 2$	$P 3$
$(1,1,1)$	1	1	1
$(1,1,2)$	2	2	5
$(1,2,1)$	2	5	2
$(1,2,2)$	5	2	2
$(2,1,1)$	5	2	2
$(2,1,2)$	2	5	2
$(2,2,1)$	2	2	5
$(2,2,2)$	1	1	1

$(1,1,2)$ is an equilibrium point.
$(1,2,1)$ is an equilibrium point.
$(1,2,2)$ is an equilibrium point.

3-Player dice game

Exercise 12 (a): 3-player dice game.
The following table gives the pay-off function for the three players, $P 1$, $P 2$ and P3.

	$P 1$	$P 2$	$P 3$
$(1,1,1)$	1	1	1
$(1,1,2)$	2	2	5
$(1,2,1)$	2	5	2
$(1,2,2)$	5	2	2
$(2,1,1)$	5	2	2
$(2,1,2)$	2	5	2
$(2,2,1)$	2	2	5
$(2,2,2)$	1	1	1

$(1,1,2)$ is an equilibrium point.
$(1,2,1)$ is an equilibrium point.
$(1,2,2)$ is an equilibrium point.
$(2,1,1)$ is an equilibrium point.

3-Player dice game

Exercise 12 (a): 3-player dice game.
The following table gives the pay-off function for the three players, $P 1$, $P 2$ and P3.

	$P 1$	$P 2$	$P 3$
$(1,1,1)$	1	1	1
$(1,1,2)$	2	2	5
$(1,2,1)$	2	5	2
$(1,2,2)$	5	2	2
$(2,1,1)$	5	2	2
$(2,1,2)$	2	5	2
$(2,2,1)$	2	2	5
$(2,2,2)$	1	1	1

$(1,1,2)$ is an equilibrium point.
$(1,2,1)$ is an equilibrium point.
$(1,2,2)$ is an equilibrium point.
$(2,1,1)$ is an equilibrium point.
$(2,1,2)$ is an equilibrium point.

3-Player dice game

Exercise 12 (a): 3-player dice game.
The following table gives the pay-off function for the three players, $P 1$, $P 2$ and P3.

	$P 1$	$P 2$	$P 3$
$(1,1,1)$	1	1	1
$(1,1,2)$	2	2	5
$(1,2,1)$	2	5	2
$(1,2,2)$	5	2	2
$(2,1,1)$	5	2	2
$(2,1,2)$	2	5	2
$(2,2,1)$	2	2	5
$(2,2,2)$	1	1	1

$(1,1,2)$ is an equilibrium point.
$(1,2,1)$ is an equilibrium point.
$(1,2,2)$ is an equilibrium point.
$(2,1,1)$ is an equilibrium point.
$(2,1,2)$ is an equilibrium point.
$(2,2,1)$ is an equilibrium point.

3-Player dice game

Exercise 12 (a): 3-player dice game.
The following table gives the pay-off function for the three players, $P 1$, $P 2$ and $P 3$.

	$P 1$	$P 2$	$P 3$
$(1,1,1)$	1	1	1
$(1,1,2)$	2	2	5
$(1,2,1)$	2	5	2
$(1,2,2)$	5	2	2
$(2,1,1)$	5	2	2
$(2,1,2)$	2	5	2
$(2,2,1)$	2	2	5
$(2,2,2)$	1	1	1

$(1,1,2)$ is an equilibrium point.
$(1,2,1)$ is an equilibrium point.
$(1,2,2)$ is an equilibrium point.
$(2,1,1)$ is an equilibrium point.
$(2,1,2)$ is an equilibrium point.
$(2,2,1)$ is an equilibrium point.
$(2,2,2)$ is not an equilibrium point.

3-Player dice game

Exercise 12 (a): 3-player dice game.
The following table gives the pay-off function for the three players, $P 1$, $P 2$ and $P 3$.

	$P 1$	$P 2$	$P 3$
$(1,1,1)$	1	1	1
$(1,1,2)$	2	2	5
$(1,2,1)$	2	5	2
$(1,2,2)$	5	2	2
$(2,1,1)$	5	2	2
$(2,1,2)$	2	5	2
$(2,2,1)$	2	2	5
$(2,2,2)$	1	1	1

$(1,1,2)$ is an equilibrium point.
$(1,2,1)$ is an equilibrium point.
$(1,2,2)$ is an equilibrium point.
$(2,1,1)$ is an equilibrium point.
$(2,1,2)$ is an equilibrium point.
$(2,2,1)$ is an equilibrium point.
There are plenty of equilibrium points in this game!

Discussion of equilibria

Exercise 13 (a).
The equilibria are

$$
\begin{array}{cc}
(4,-300) & (10,6) \\
(8,8) & (5,4)
\end{array}
$$

Discussion of equilibria

Exercise 13 (a).
The equilibria are $(1,2)$

$$
\begin{array}{cc}
(4,-300) & (10,6) \\
(8,8) & (5,4)
\end{array}
$$

Discussion of equilibria

Exercise 13 (a).
The equilibria are $(1,2)$ and $(2,1)$.

$$
\begin{array}{cc}
(4,-300) & (10,6) \\
(8,8) & (5,4)
\end{array}
$$

Discussion of equilibria

Exercise 13 (a).
The equilibria are $(1,2)$ and $(2,1)$.
Player 1 prefers the former (because it gives him the higher pay-off of 10 over 8)

$$
\begin{array}{cc}
(4,-300) & (10,6) \\
(8,8) & (5,4)
\end{array}
$$

Discussion of equilibria

Exercise 13 (a).
The equilibria are $(1,2)$ and $(2,1)$.
Player 1 prefers the former (because it gives him the higher pay-off of 10 over 8) while Player 2 prefers the latter (because it gives her the higher pay-off of 8 over 6).

$$
\begin{array}{cc}
(4,-300) & (10,6) \\
(8,8) & (5,4)
\end{array}
$$

Discussion of equilibria

Exercise 13 (a).

The equilibria are $(1,2)$ and $(2,1)$.
Player 1 prefers the former (because it gives him the higher pay-off of 10 over 8) while Player 2 prefers the latter (because it gives her the higher pay-off of 8 over 6).

But if Player 2 chooses her strategy 1 to aim for her preferred equilibrium point then if Player 1 chooses his strategy 1 to achieve his preferred equilibrium point she will get a pay-off of -300 .

Discussion of equilibria

Exercise 13 (a).

The equilibria are $(1,2)$ and $(2,1)$.
Player 1 prefers the former (because it gives him the higher pay-off of 10 over 8) while Player 2 prefers the latter (because it gives her the higher pay-off of 8 over 6).
But if Player 2 chooses her strategy 1 to aim for her preferred equilibrium point then if Player 1 chooses his strategy 1 to achieve his preferred equilibrium point she will get a pay-off of -300 .

It seems therefore much more prudent for her to 'play it safe' by choosing her strategy 2 and settle on $(1,2)$.

Checking equilibria

Exercise 14 (a): Checking equilibria.
Show that the game with the pay-off matrix given below has the mixed strategy equilibrium $((1 / 2,0,0,1 / 2),(1 / 4,1 / 4,1 / 2))$.

Checking equilibria

Exercise 14 (a): Checking equilibria.
We calculate the pay-off of playing these two strategies against each other. It is

$$
\left|\begin{array}{rlr}
& \frac{1}{2}\left(\frac{1}{4}(-3)+\frac{1}{4}(-3)+\frac{1}{2} 2\right) \\
-3 & -3 & 2 \\
-1 & 3 & -2 \\
3 & -1 & -2 \\
2 & 2 & -3
\end{array}\right| \quad \begin{aligned}
& +\frac{1}{2}\left(\frac{1}{4} 2+\frac{1}{4} 2+\frac{1}{2}(-3)\right) \\
& =-\frac{1}{2}
\end{aligned}
$$

Checking equilibria

Exercise 14 (a): Checking equilibria.
We calculate the pay-off of playing these two strategies against each other. It is $-1 / 2$.

If Player 1 chooses his mixed strategy (1/2, 0, $0,1 / 2$) his pay-offs against Player 2's pure strategies are as follows.

	1	2	3
$(1 / 2,0,0,1 / 2)$	$-1 / 2$	$-1 / 2$	$-1 / 2$

Since no number appearing in this table is smaller than $-1 / 2$, changing from the equilibrium point to a pure strategy won't leave Player 2 better off. So this part checks out.

Checking equilibria

Exercise 14 (a): Checking equilibria.
We calculate the pay-off of playing these two strategies against each other. It is $-1 / 2$.

When Player 2 matches her mixed strategy (1/4, 1/4, 1/2) against Player 1's pure strategies the pay-offs are as follows.
$\left|\begin{array}{rrr}-3 & -3 & 2 \\ -1 & 3 & -2 \\ 3 & -1 & -2 \\ 2 & 2 & -3\end{array}\right|$

	1	2	3	4
$(1 / 4,1 / 4,1 / 2)$	$-1 / 2$	$-1 / 2$	$-1 / 2$	$-1 / 2$

Since no number appearing in this table is larger than $-1 / 2$, changing from the equilibrium point to a pure strategy won't leave Player 1 better off. So this part checks out too.

Checking equilibria

Exercise 14 (a): Checking equilibria.
We calculate the pay-off of playing these two
$\left|\begin{array}{rrr}-3 & -3 & 2 \\ -1 & 3 & -2 \\ 3 & -1 & -2 \\ 2 & 2 & -3\end{array}\right|$ strategies against each other. It is $-1 / 2$.

By Proposition 3.9 this is indeed an equilibrium point. Note that in the long run that means that Player 1 will lose $1 / 2$ unit per game!

Dominance

Exercise 15 (a): Dominance.
$\left|\begin{array}{rrrr}2 & 4 & 0 & -2 \\ 4 & 8 & 2 & 6 \\ -2 & 0 & 4 & 2 \\ -4 & -2 & -2 & 0\end{array}\right|$

Dominance

Exercise 15 (a): Dominance.

2	4	0	-2		
4	8	2	6		
-2	0	4	2		
-4	-2	-2	0	\quad	Strategy 1 for Player 2 dominates her
:---					
strategy 2					

Dominance

Exercise 15 (a): Dominance.
\(\left|\begin{array}{rrrr}2 \& 4 \& 0 \& -2

4 \& 8 \& 2 \& 6

-2 \& 0 \& 4 \& 2

-4 \& -2 \& -2 \& 0\end{array}\right| \quad\)| Strategy 1 for Player 2 dominates her |
| :--- |
| strategy 2 and strategy 2 for Player 1 |
| dominates his strategies 1 and 4. |

Dominance

Exercise 15 (a): Dominance.
Strategy 1 for Player 2 dominates her strategy 2 and strategy 2 for Player 1

```
|rrr}
``` dominates his strategies 1 and 4.

\section*{Dominance}

Exercise 15 (a): Dominance.
The first strategy for Player 2 dominates the third one.

\section*{Dominance}

Exercise 15 (a): Dominance.
The first strategy for Player 2 dominates the third one.

\section*{Dominance}

Exercise 15 (a): Dominance.
\begin{tabular}{rr}
4 & 2 \\
-2 & 4
\end{tabular}\(|\)

This matrix can be solved with the methods for \((2 \times 2)\)-matrices lecture notes.

\section*{Dominance}

Exercise 15 (a): Dominance.
\(\left|\begin{array}{rr}4 & 2 \\ -2 & 4\end{array}\right|\)

To find Player 1's equilibrium point strategy we have to find the intersection of the two lines given by

\section*{Dominance}

Exercise 15 (a): Dominance.
\[
\left|\begin{array}{rr}
4 & 2 \\
-2 & 4
\end{array}\right|
\]

To find Player 1's equilibrium point strategy we have to find the intersection of the two lines given by
\[
y=-6 x+4 \quad \text { and } \quad y=2 x+2 .
\]

\section*{Dominance}

Exercise 15 (a): Dominance.
\[
\left|\begin{array}{rr}
4 & 2 \\
-2 & 4
\end{array}\right|
\]

To find Player 1's equilibrium point strategy we have to find the intersection of the two lines given by
\[
y=-6 x+4 \quad \text { and } \quad y=2 x+2
\]

We set
\[
-6 x+4=2 x+2
\]
which is equivalent to
\[
8 x=2 \quad \text { or } \quad x=\frac{1}{4} .
\]

\section*{Dominance}

Exercise 15 (a): Dominance.
\[
\left|\begin{array}{rr}
4 & 2 \\
-2 & 4
\end{array}\right|
\]

To find Player 1's equilibrium point strategy we have to find the intersection of the two lines given by
\[
y=-6 x+4 \quad \text { and } \quad y=2 x+2
\]

We get \(x=1 / 4\). The value of the game is the corresponding \(y\)-value,
\[
-6 \times \frac{1}{4}+4=5 / 2 .
\]

\section*{Dominance}

Exercise 15 (a): Dominance.
\[
\left|\begin{array}{rr}
4 & 2 \\
-2 & 4
\end{array}\right|
\]

To find Player 1's equilibrium point strategy we have to find the intersection of the two lines given by
\[
y=-6 x+4 \quad \text { and } \quad y=2 x+2
\]

We get \(x=1 / 4\). The value of the game is the corresponding \(y\)-value, \(5 / 2\). For Player 2 we have to intersect the two lines given by
\[
y=-2 x+4 \quad \text { and } \quad y=6 x-2
\]

\section*{Dominance}

Exercise 15 (a): Dominance.
\[
\left|\begin{array}{rr}
4 & 2 \\
-2 & 4
\end{array}\right|
\]

To find Player 1's equilibrium point strategy we have to find the intersection of the two lines given by
\[
y=-6 x+4 \quad \text { and } \quad y=2 x+2
\]

We get \(x=1 / 4\). The value of the game is the corresponding \(y\)-value, \(5 / 2\). For Player 2 the intersection is at \(x=3 / 4\).

\section*{Dominance}

Exercise 15 (a): Dominance.
\[
\left|\begin{array}{rr}
4 & 2 \\
-2 & 4
\end{array}\right|
\]

To find Player 1's equilibrium point strategy we have to find the intersection of the two lines given by
\[
y=-6 x+4 \quad \text { and } \quad y=2 x+2
\]

We get \(x=1 / 4\). The value of the game is the corresponding \(y\)-value, \(5 / 2\). For Player 2 the intersection is at \(x=3 / 4\).
Hence the unique equilibrium point of the original game is \(((0,3 / 4,1 / 4,0),(1 / 4,0,3 / 4,0))\).

\section*{Solving matrix games}

\section*{Exercise 16 (a): Solving matrix games.}
\begin{tabular}{rrrr}
16 & 14 & 6 & 11 \\
-14 & 4 & -10 & -8 \\
0 & -2 & 12 & -6 \\
22 & -12 & 6 & 10
\end{tabular}

\section*{Solving matrix games}

\section*{Exercise 16 (a): Solving matrix games.}

\section*{Solving matrix games}

\section*{Exercise 16 (a): Solving matrix games.}
\(\left|\begin{array}{rrrr}16 & 14 & 6 & 11 \\ 0 & -2 & 12 & -6 \\ 22 & -12 & 6 & 10\end{array}\right|\)

\section*{Solving matrix games}

\section*{Exercise 16 (a): Solving matrix games.}
\[
\left|\begin{array}{rrrr}
16 & 14 & 6 & 11 \\
0 & -2 & 12 & -6 \\
22 & -12 & 6 & 10
\end{array}\right| \quad \begin{aligned}
& \text { Player 2's strategy } 4 \text { dominates her strat- } \\
& \text { egy 1. }
\end{aligned}
\]

\section*{Solving matrix games}

\section*{Exercise 16 (a): Solving matrix games.}
\(\left|\begin{array}{rrr}14 & 6 & 11 \\ -2 & 12 & -6 \\ -12 & 6 & 10\end{array}\right|\)

\section*{Solving matrix games}

\section*{Exercise 16 (a): Solving matrix games.}
\(\left|\begin{array}{rrr}14 & 6 & 11 \\ -2 & 12 & -6 \\ -12 & 6 & 10\end{array}\right|\)

Player 1's first strategy dominates his third one.

\section*{Solving matrix games}

\section*{Exercise 16 (a): Solving matrix games.}
```

14 6 11
-2

```

\section*{Solving matrix games}

Exercise 16 (a): Solving matrix games.
\[
\left|\begin{array}{rrr}
14 & 6 & 11 \\
-2 & 12 & -6
\end{array}\right|
\]

Now Player 2's strategy 3 dominates her strategy 1.

\section*{Solving matrix games}

\section*{Exercise 16 (a): Solving matrix games.}
\(\left|\begin{array}{rr}6 & 11 \\ 12 & -6\end{array}\right|\)

\section*{Solving matrix games}

Exercise 16 (a): Solving matrix games.
To find Player 1's equilibrium point strat-
\begin{tabular}{rr}
6 & 11 \\
12 & -6
\end{tabular}\(|\) egy we have to find the intersection of the two lines given by

\section*{Solving matrix games}

Exercise 16 (a): Solving matrix games.
To find Player 1's equilibrium point strategy we have to find the intersection of the two lines given by
\[
y=6 x+6 \quad \text { and } \quad y=-17 x+11
\]

\section*{Solving matrix games}

Exercise 16 (a): Solving matrix games.
To find Player 1's equilibrium point strategy we have to find the intersection of the two lines given by
\[
y=6 x+6 \quad \text { and } \quad y=-17 x+11
\]

We set
\[
6 x+6=-17 x+11,
\]
which is equivalent to
\[
23 x=5 \quad \text { or } \quad x=\frac{5}{23} \text {. }
\]

\section*{Solving matrix games}

Exercise 16 (a): Solving matrix games.
To find Player 1's equilibrium point strategy we have to find the intersection of the two lines given by
\[
y=6 x+6 \quad \text { and } \quad y=-17 x+11
\]

We get \(x=5 / 23\). The value of the game is the corresponding \(y\)-value,
\[
6 \times \frac{5}{23}+6=168 / 23
\]

\section*{Solving matrix games}

Exercise 16 (a): Solving matrix games.
To find Player 1's equilibrium point strategy we have to find the intersection of the two lines given by
\[
y=6 x+6 \quad \text { and } \quad y=-17 x+11
\]

We get \(x=5 / 23\). The value of the game is the corresponding \(y\)-value, 168/23. For Player 2 we have to intersect the two lines given by
\[
y=5 x+6 \quad \text { and } \quad y=-18 x+12
\]

\section*{Solving matrix games}

Exercise 16 (a): Solving matrix games.
To find Player 1's equilibrium point strategy we have to find the intersection of the two lines given by
\[
y=6 x+6 \quad \text { and } \quad y=-17 x+11
\]

We get \(x=5 / 23\). The value of the game is the corresponding \(y\)-value, \(168 / 23\). which happens at \(x=6 / 23\).

\section*{Solving matrix games}

Exercise 16 (a): Solving matrix games.

Dominance of mixed strategies

Exercise 17 (a): Dominance of mixed strategies.
\(\left|\begin{array}{rrr}2 & 1 & 0 \\ 2 & 0 & 3 \\ -1 & 3 & -3\end{array}\right|\)

Dominance of mixed strategies

Exercise 17 (a): Dominance of mixed strategies.
\(\left|\begin{array}{rrr}2 & 1 & 0 \\ 2 & 0 & 3 \\ -1 & 3 & -3\end{array}\right|\)

Checking for candidates for elimination we settle on strategy 1 for Player 2.

\section*{Dominance of mixed strategies}

Exercise 17 (a): Dominance of mixed strategies.
Checking for candidates for elimination we settle on strategy 1 for Player 2. We need \(0 \leq \lambda \leq 1\) such that
\[
\left|\begin{array}{rrr}
2 & 1 & 0 \\
2 & 0 & 3 \\
-1 & 3 & -3
\end{array}\right|
\]
\[
\begin{array}{rlr}
2 & \geq \\
2 & \geq \quad 3(1-\lambda)=3-3 \lambda \\
-1 & \geq 3 \lambda-3(1-\lambda)=6 \lambda-3
\end{array}
\]

\section*{Dominance of mixed strategies}

Exercise 17 (a): Dominance of mixed strategies.
Checking for candidates for elimination we settle on strategy 1 for Player 2. We need \(0 \leq \lambda \leq 1\) such that
\[
\left\lvert\, \begin{array}{rrr}
2 & 1 & 0 \\
2 & 0 & 3 \\
-1 & 3 & -3
\end{array}\right.
\]
\[
\begin{array}{rlr}
2 & \geq & \lambda \quad \text { always } \\
2 & \geq \quad 3(1-\lambda)=3-3 \lambda \\
-1 & \geq 3 \lambda-3(1-\lambda)=6 \lambda-3
\end{array}
\]

\section*{Dominance of mixed strategies}

Exercise 17 (a): Dominance of mixed strategies.
Checking for candidates for elimination we settle on strategy 1 for Player 2. We need \(0 \leq \lambda \leq 1\) such that
\[
\left|\begin{array}{rrr}
2 & 1 & 0 \\
2 & 0 & 3 \\
-1 & 3 & -3
\end{array}\right|
\]
\[
\begin{aligned}
2 & \geq & \lambda & \\
2 & \geq & 3(1-\lambda)=3-3 \lambda & \\
-1 & \geq 3 \lambda-3(1-\lambda)=6 \lambda-3 & &
\end{aligned}
\]

\section*{Dominance of mixed strategies}

Exercise 17 (a): Dominance of mixed strategies.
Checking for candidates for elimination we settle on strategy 1 for Player 2. We need \(0 \leq \lambda \leq 1\) such that
\[
\left|\begin{array}{rrr}
2 & 1 & 0 \\
2 & 0 & 3 \\
-1 & 3 & -3
\end{array}\right|
\]
\[
\begin{array}{rlrl}
2 & \geq & \lambda & \\
2 & \text { always } \\
-1 & \geq 3 \lambda-3(1-\lambda)=6 \lambda-3 & & \text { iff } \lambda \leq 1 / 3
\end{array}
\]

\section*{Dominance of mixed strategies}

Exercise 17 (a): Dominance of mixed strategies.
Checking for candidates for elimination we settle on strategy 1 for Player 2. We need \(0 \leq \lambda \leq 1\) such that
\[
\left|\begin{array}{rrr}
2 & 1 & 0 \\
2 & 0 & 3 \\
-1 & 3 & -3
\end{array}\right|
\]
\[
\begin{array}{rlrl}
2 & \geq & \lambda & \\
2 & \geq & 3(1-\lambda)=3-3 \lambda & \\
-1 & \text { iff } \lambda \geq 1 / 3 \\
-1 & \geq 3 \lambda-3(1-\lambda)=6 \lambda-3 & & \text { iff } \lambda \leq 1 / 3
\end{array}
\]

Hence \(\lambda=1 / 3\) will do.

Dominance of mixed strategies

Exercise 17 (a): Dominance of mixed strategies.
\(\left|\begin{array}{rr}1 & 0 \\ 0 & 3 \\ 3 & -3\end{array}\right|\)

Dominance of mixed strategies

Exercise 17 (a): Dominance of mixed strategies.
\(\left|\begin{array}{rr}1 & 0 \\ 0 & 3 \\ 3 & -3\end{array}\right|\)

The only candidate for a dominated strategy
is Player 1's strategy 1.

\section*{Dominance of mixed strategies}

Exercise 17 (a): Dominance of mixed strategies.
The only candidate for a dominated strategy is Player 1's strategy 1. We have to find \(0 \leq \lambda \leq 1\) such that
\[
\begin{aligned}
& 1 \leq 3(1-\lambda)=3-3 \lambda \\
& 0 \leq 3 \lambda-3(1-\lambda)=6 \lambda-3
\end{aligned}
\]

\section*{Dominance of mixed strategies}

Exercise 17 (a): Dominance of mixed strategies.
The only candidate for a dominated strategy is Player 1's strategy 1. We have to find \(0 \leq \lambda \leq 1\) such that
\[
\begin{aligned}
& 1 \leq \quad 3(1-\lambda)=3-3 \lambda \quad \text { iff } \lambda \leq 2 / 3 \\
& 0 \leq 3 \lambda-3(1-\lambda)=6 \lambda-3
\end{aligned}
\]

\section*{Dominance of mixed strategies}

Exercise 17 (a): Dominance of mixed strategies.
The only candidate for a dominated strategy is Player 1's strategy 1. We have to find \(0 \leq \lambda \leq 1\) such that
\[
\begin{array}{ll}
1 \leq \quad 3(1-\lambda)=3-3 \lambda & \text { iff } \lambda \leq 2 / 3 \\
0 \leq 3 \lambda-3(1-\lambda)=6 \lambda-3 & \text { iff } \lambda \geq 1 / 2
\end{array}
\]

\section*{Dominance of mixed strategies}

Exercise 17 (a): Dominance of mixed strategies.
The only candidate for a dominated strategy is Player 1's strategy 1. We have to find \(0 \leq \lambda \leq 1\) such that
\[
\begin{aligned}
& 1 \leq 3(1-\lambda)=3-3 \lambda \quad \text { iff } \lambda \leq 2 / 3 \\
& 0 \leq 3 \lambda-3(1-\lambda)=6 \lambda-3 \quad \text { iff } \lambda \geq 1 / 2
\end{aligned}
\]

There are plenty of \(\lambda \mathrm{s}\) (from \(1 / 2\) to \(2 / 3\)) to choose from.

Dominance of mixed strategies

Exercise 17 (a): Dominance of mixed strategies.
\begin{tabular}{rr}
0 & 3 \\
3 & -3
\end{tabular}

We cannot reduce this matrix any further, but we know how to solve \((2 \times 2)\)-matrices.```

