Exercise 12 (a): 3-player dice game.

Each Player has two choices which we give as 1 (bet one) and 2 (bet two). Hence the space of strategies is the same as in Example 2.5.

Exercise 12 (a): 3-player dice game.

The following table gives the pay-off function for the three players, P1, P2 and P3.

|           | P1 | P2 | P3 |
|-----------|----|----|----|
| (1, 1, 1) |    |    |    |
| (1, 1, 2) |    |    |    |
| (1, 2, 1) |    |    |    |
| (1,2,2)   |    |    |    |
| (2, 1, 1) |    |    |    |
| (2, 1, 2) |    |    |    |
| (2, 2, 1) |    |    |    |
| (2, 2, 2) |    |    |    |

There are two possible outcomes to the throw of the dice, 1 and 2. Each of these occurs with probability 1/2. Hence the expected pay-off for **Player 1** when the chosen strategy is (1,1,1) is

$$\frac{1}{2}$$
 2 +  $\frac{1}{2}$  0 = 1.  
prob. pay-off prob. pay-off

In this manner we can calculate the various expected pay-offs.

Exercise 12 (a): 3-player dice game.

|           | P1 | P2 | P3 |
|-----------|----|----|----|
| (1, 1, 1) | 1  | 1  | 1  |
| (1, 1, 2) |    |    |    |
| (1, 2, 1) |    |    |    |
| (1, 2, 2) |    |    |    |
| (2, 1, 1) |    |    |    |
| (2, 1, 2) |    |    |    |
| (2, 2, 1) |    |    |    |
| (2, 2, 2) |    |    |    |

Exercise 12 (a): 3-player dice game.

|           | P1 | P2 | P3 |
|-----------|----|----|----|
| (1, 1, 1) | 1  | 1  | 1  |
| (1, 1, 2) | 2  | 2  | 5  |
| (1, 2, 1) |    |    |    |
| (1, 2, 2) |    |    |    |
| (2, 1, 1) |    |    |    |
| (2, 1, 2) |    |    |    |
| (2, 2, 1) |    |    |    |
| (2,2,2)   |    |    |    |

Exercise 12 (a): 3-player dice game.

|           | P1 | P2 | P3 |
|-----------|----|----|----|
| (1, 1, 1) | 1  | 1  | 1  |
| (1, 1, 2) | 2  | 2  | 5  |
| (1, 2, 1) | 2  | 5  | 2  |
| (1,2,2)   | 5  | 2  | 2  |
| (2, 1, 1) | 5  | 2  | 2  |
| (2, 1, 2) | 2  | 5  | 2  |
| (2, 2, 1) | 2  | 2  | 5  |
| (2, 2, 2) | 1  | 1  | 1  |

Exercise 12 (a): 3-player dice game.

The following table gives the pay-off function for the three players, P1, P2 and P3.

|           | P1 | P2 | P3 |
|-----------|----|----|----|
| (1, 1, 1) | 1  | 1  | 1  |
| (1, 1, 2) | 2  | 2  | 5  |
| (1, 2, 1) | 2  | 5  | 2  |
| (1, 2, 2) | 5  | 2  | 2  |
| (2, 1, 1) | 5  | 2  | 2  |
| (2, 1, 2) | 2  | 5  | 2  |
| (2, 2, 1) | 2  | 2  | 5  |
| (2, 2, 2) | 1  | 1  | 1  |

(1,1,1) is **not** an equilibrium point since Player 3 can improve her pay-off by switching strategies.

Exercise 12 (a): 3-player dice game.

The following table gives the pay-off function for the three players, P1, P2 and P3.

|           | P1 | P2 | P3 |
|-----------|----|----|----|
| (1, 1, 1) | 1  | 1  | 1  |
| (1, 1, 2) | 2  | 2  | 5  |
| (1, 2, 1) | 2  | 5  | 2  |
| (1, 2, 2) | 5  | 2  | 2  |
| (2, 1, 1) | 5  | 2  | 2  |
| (2, 1, 2) | 2  | 5  | 2  |
| (2, 2, 1) | 2  | 2  | 5  |
| (2, 2, 2) | 1  | 1  | 1  |

(1, 1, 2) is an equilibrium point.

Exercise 12 (a): 3-player dice game.

The following table gives the pay-off function for the three players, P1, P2 and P3.

|           | P1 | P2 | P3 |
|-----------|----|----|----|
| (1, 1, 1) | 1  | 1  | 1  |
| (1, 1, 2) | 2  | 2  | 5  |
| (1, 2, 1) | 2  | 5  | 2  |
| (1, 2, 2) | 5  | 2  | 2  |
| (2, 1, 1) | 5  | 2  | 2  |
| (2, 1, 2) | 2  | 5  | 2  |
| (2, 2, 1) | 2  | 2  | 5  |
| (2, 2, 2) | 1  | 1  | 1  |

(1, 1, 2) is an equilibrium point. (1, 2, 1) is an equilibrium point.

Exercise 12 (a): 3-player dice game.

The following table gives the pay-off function for the three players, P1, P2 and P3.

|           | P1 | P2 | P3 |
|-----------|----|----|----|
| (1, 1, 1) | 1  | 1  | 1  |
| (1, 1, 2) | 2  | 2  | 5  |
| (1, 2, 1) | 2  | 5  | 2  |
| (1, 2, 2) | 5  | 2  | 2  |
| (2, 1, 1) | 5  | 2  | 2  |
| (2, 1, 2) | 2  | 5  | 2  |
| (2, 2, 1) | 2  | 2  | 5  |
| (2, 2, 2) | 1  | 1  | 1  |

(1,1,2) is an equilibrium point. (1,2,1) is an equilibrium point. (1,2,2) is an equilibrium point.

Exercise 12 (a): 3-player dice game.

|           | P1 | P2 | P3 |
|-----------|----|----|----|
| (1, 1, 1) | 1  | 1  | 1  |
| (1, 1, 2) | 2  | 2  | 5  |
| (1, 2, 1) | 2  | 5  | 2  |
| (1, 2, 2) | 5  | 2  | 2  |
| (2, 1, 1) | 5  | 2  | 2  |
| (2, 1, 2) | 2  | 5  | 2  |
| (2, 2, 1) | 2  | 2  | 5  |
| (2, 2, 2) | 1  | 1  | 1  |

| (1, 1, 2) | is | an | equilibrium | point. |
|-----------|----|----|-------------|--------|
| (1, 2, 1) | is | an | equilibrium | point. |
| (1, 2, 2) | is | an | equilibrium | point. |
| (2, 1, 1) | is | an | equilibrium | point. |

Exercise 12 (a): 3-player dice game.

The following table gives the pay-off function for the three players, P1, P2 and P3.

|           | P1 | P2 | P3 |
|-----------|----|----|----|
| (1, 1, 1) | 1  | 1  | 1  |
| (1, 1, 2) | 2  | 2  | 5  |
| (1, 2, 1) | 2  | 5  | 2  |
| (1, 2, 2) | 5  | 2  | 2  |
| (2, 1, 1) | 5  | 2  | 2  |
| (2, 1, 2) | 2  | 5  | 2  |
| (2, 2, 1) | 2  | 2  | 5  |
| (2, 2, 2) | 1  | 1  | 1  |

(1,1,2) is an equilibrium point. (1,2,1) is an equilibrium point. (1,2,2) is an equilibrium point. (2,1,1) is an equilibrium point. (2,1,2) is an equilibrium point.

Exercise 12 (a): 3-player dice game.

The following table gives the pay-off function for the three players, P1, P2 and P3.

|           | P1 | P2 | P3 |
|-----------|----|----|----|
| (1, 1, 1) | 1  | 1  | 1  |
| (1, 1, 2) | 2  | 2  | 5  |
| (1, 2, 1) | 2  | 5  | 2  |
| (1, 2, 2) | 5  | 2  | 2  |
| (2, 1, 1) | 5  | 2  | 2  |
| (2, 1, 2) | 2  | 5  | 2  |
| (2, 2, 1) | 2  | 2  | 5  |
| (2, 2, 2) | 1  | 1  | 1  |

(1,1,2) is an equilibrium point. (1,2,1) is an equilibrium point. (1,2,2) is an equilibrium point. (2,1,1) is an equilibrium point. (2,1,2) is an equilibrium point. (2,2,1) is an equilibrium point.

Exercise 12 (a): 3-player dice game.

|           | P1 | P2 | P3 |
|-----------|----|----|----|
| (1, 1, 1) | 1  | 1  | 1  |
| (1, 1, 2) | 2  | 2  | 5  |
| (1, 2, 1) | 2  | 5  | 2  |
| (1, 2, 2) | 5  | 2  | 2  |
| (2, 1, 1) | 5  | 2  | 2  |
| (2, 1, 2) | 2  | 5  | 2  |
| (2, 2, 1) | 2  | 2  | 5  |
| (2, 2, 2) | 1  | 1  | 1  |

- (1,1,2) is an equilibrium point.
- (1, 2, 1) is an equilibrium point.
- (1,2,2) is an equilibrium point.
- (2,1,1) is an equilibrium point.
- (2, 1, 2) is an equilibrium point.
- (2,2,1) is an equilibrium point.
- (2,2,2) is **not** an equilibrium point.

Exercise 12 (a): 3-player dice game.

The following table gives the pay-off function for the three players, P1, P2 and P3.

|           | P1 | P2 | P3 |
|-----------|----|----|----|
| (1, 1, 1) | 1  | 1  | 1  |
| (1, 1, 2) | 2  | 2  | 5  |
| (1, 2, 1) | 2  | 5  | 2  |
| (1, 2, 2) | 5  | 2  | 2  |
| (2, 1, 1) | 5  | 2  | 2  |
| (2, 1, 2) | 2  | 5  | 2  |
| (2,2,1)   | 2  | 2  | 5  |
| (2, 2, 2) | 1  | 1  | 1  |

- (1, 1, 2) is an equilibrium point.
- (1, 2, 1) is an equilibrium point.
- (1, 2, 2) is an equilibrium point.
- (2,1,1) is an equilibrium point.
- (2, 1, 2) is an equilibrium point.
- (2,2,1) is an equilibrium point.

There are plenty of equilibrium points in this game!

Exercise 13 (a).

The equilibria are

$$\begin{array}{rrr} (4,-300) & (10,6) \\ (8,8) & (5,4) \end{array}$$

Exercise 13 (a).

The equilibria are (1, 2)

$$\begin{array}{cc} (4,-300) & (10,6) \\ (8,8) & (5,4) \end{array}$$

Exercise 13 (a).

The equilibria are (1, 2) and (2, 1).

$$\begin{array}{cc} (4,-300) & (10,6) \\ (8,8) & (5,4) \end{array}$$

Exercise 13 (a).

The equilibria are (1, 2) and (2, 1).

Player 1 prefers the former (because it gives him the higher pay-off of 10 over 8)

$$(4, -300)$$
 (10, 6)  
(8, 8) (5, 4)

Exercise 13 (a).

The equilibria are (1, 2) and (2, 1).

Player 1 prefers the former (because it gives him the higher pay-off of 10 over 8) while Player 2 prefers the latter (because it gives her the higher pay-off of 8 over 6).

$$\begin{array}{c|c} (4,-300) & (10,6) \\ \hline (8,8) & (5,4) \end{array}$$

Exercise 13 (a).

$$\begin{array}{c|c} (4,-300) & (10,6) \\ (8,8) & (5,4) \end{array}$$

The equilibria are (1, 2) and (2, 1).

Player 1 prefers the former (because it gives him the higher pay-off of 10 over 8) while Player 2 prefers the latter (because it gives her the higher pay-off of 8 over 6).

But if Player 2 chooses her strategy 1 to aim for her preferred equilibrium point then if Player 1 chooses his strategy 1 to achieve his preferred equilibrium point she will get a pay-off of -300.

Exercise 13 (a).

$$\begin{array}{c|c} (4,-300) & (10,6) \\ (8,8) & (5,4) \end{array}$$

The equilibria are (1, 2) and (2, 1).

Player 1 prefers the former (because it gives him the higher pay-off of 10 over 8) while Player 2 prefers the latter (because it gives her the higher pay-off of 8 over 6).

But if Player 2 chooses her strategy 1 to aim for her preferred equilibrium point then if Player 1 chooses his strategy 1 to achieve his preferred equilibrium point she will get a pay-off of -300.

It seems therefore much more prudent for her to 'play it safe' by choosing her strategy 2 and settle on (1, 2).

Exercise 14 (a): Checking equilibria.

| -3 | -3 | 2  |
|----|----|----|
| -1 | 3  | -2 |
| 3  | -1 | -2 |
| 2  | 2  | -3 |

Show that the game with the pay-off matrix given below has the mixed strategy equilibrium ((1/2, 0, 0, 1/2), (1/4, 1/4, 1/2)).

Exercise 14 (a): Checking equilibria.

We calculate the pay-off of playing these two strategies against each other. It is

$$\begin{vmatrix} \frac{1}{2} \left( \frac{1}{4} (-3) + \frac{1}{4} (-3) + \frac{1}{2} 2 \right) \\ + \frac{1}{2} \left( \frac{1}{4} 2 + \frac{1}{4} 2 + \frac{1}{2} (-3) \right) \\ + \frac{1}{2} \left( \frac{1}{4} 2 + \frac{1}{4} 2 + \frac{1}{2} (-3) \right) \\ = -\frac{1}{2}.$$

$$\begin{array}{cccccc} -3 & -3 & 2 \\ -1 & 3 & -2 \\ 3 & -1 & -2 \\ 2 & 2 & -3 \end{array}$$

Exercise 14 (a): Checking equilibria.

We calculate the pay-off of playing these two strategies against each other. It is -1/2.

If Player 1 chooses his mixed strategy (1/2, 0, 0, 1/2) his pay-offs against Player 2's pure strategies are as follows.

$$\begin{array}{ccccc} -3 & -3 & 2 \\ -1 & 3 & -2 \\ 3 & -1 & -2 \\ 2 & 2 & -3 \end{array}$$

Since no number appearing in this table is smaller than -1/2, changing from the equilibrium point to a pure strategy won't leave Player 2 better off. So this part checks out.

Exercise 14 (a): Checking equilibria.

We calculate the pay-off of playing these two strategies against each other. It is -1/2.

When Player 2 matches her mixed strategy (1/4, 1/4, 1/2) against Player 1's pure strategies the pay-offs are as follows.

$$\begin{array}{ccccc} -3 & -3 & 2 \\ -1 & 3 & -2 \\ 3 & -1 & -2 \\ 2 & 2 & -3 \end{array}$$

Since no number appearing in this table is larger than -1/2, changing from the equilibrium point to a pure strategy won't leave Player 1 better off. So this part checks out too.

Exercise 14 (a): Checking equilibria.

| -3 | -3 | 2  |
|----|----|----|
| -1 | 3  | -2 |
| 3  | -1 | -2 |
| 2  | 2  | -3 |

We calculate the pay-off of playing these two strategies against each other. It is -1/2.

By Proposition 3.9 this is indeed an equilibrium point. Note that in the long run that means that Player 1 will lose 1/2 unit per game!

#### Exercise 15 (a): Dominance.

$$\begin{vmatrix} 2 & 4 & 0 & -2 \\ 4 & 8 & 2 & 6 \\ -2 & 0 & 4 & 2 \\ -4 & -2 & -2 & 0 \end{vmatrix}$$

#### Exercise 15 (a): Dominance.

| 2  | 4  | 0  | -2 |
|----|----|----|----|
| 4  | 8  | 2  | 6  |
| -2 | 0  | 4  | 2  |
| -4 | -2 | -2 | 0  |

Strategy 1 for Player 2 dominates her strategy 2

#### Exercise 15 (a): Dominance.

| 2  | 4  | 0  | -2 |
|----|----|----|----|
| 4  | 8  | 2  | 6  |
| -2 | 0  | 4  | 2  |
| -4 | -2 | -2 | 0  |

Strategy 1 for Player 2 dominates her strategy 2 and strategy 2 for Player 1 dominates his strategies 1 and 4.

Exercise 15 (a): Dominance.



Strategy 1 for Player 2 dominates her strategy 2 and strategy 2 for Player 1 dominates his strategies 1 and 4.



#### Exercise 15 (a): Dominance.



The first strategy for Player 2 dominates the third one.



Exercise 15 (a): Dominance.

$$\begin{array}{c|c} 4 & 2 \\ -2 & 4 \end{array}$$

The first strategy for Player 2 dominates the third one.

#### Exercise 15 (a): Dominance.



This matrix can be solved with the methods for  $(2 \times 2)$ -matrices lecture notes.

Exercise 15 (a): Dominance.



To find **Player 1**'s equilibrium point strategy we have to find the intersection of the two lines given by

Exercise 15 (a): Dominance.



To find Player 1's equilibrium point strategy we have to find the intersection of the two lines given by

$$y = -6x + 4$$
 and  $y = 2x + 2$ .

Exercise 15 (a): Dominance.

 $\begin{array}{c|c} 4 & 2 \\ -2 & 4 \end{array}$ 

To find **Player 1**'s equilibrium point strategy we have to find the intersection of the two lines given by

$$y = -6x + 4$$
 and  $y = 2x + 2$ .

We set

-6x + 4 = 2x + 2,

which is equivalent to

$$8x = 2$$
 or  $x = \frac{1}{4}$ .

Exercise 15 (a): Dominance.

 $\begin{array}{c|cc}
4 & 2 \\
-2 & 4
\end{array}$ 

To find Player 1's equilibrium point strategy we have to find the intersection of the two lines given by

$$y = -6x + 4$$
 and  $y = 2x + 2$ .

We get x = 1/4. The value of the game is the corresponding *y*-value,

$$-6 \times \frac{1}{4} + 4 = 5/2.$$

Exercise 15 (a): Dominance.

 $\begin{array}{c|c} 4 & 2 \\ -2 & 4 \end{array}$ 

To find Player 1's equilibrium point strategy we have to find the intersection of the two lines given by

$$y = -6x + 4$$
 and  $y = 2x + 2$ .

We get x = 1/4. The value of the game is the corresponding *y*-value, 5/2. For Player 2 we have to intersect the two lines given by

$$y = -2x + 4$$
 and  $y = 6x - 2$ .

Exercise 15 (a): Dominance.

 $\begin{vmatrix} 4 & 2 \\ -2 & 4 \end{vmatrix}$ 

To find Player 1's equilibrium point strategy we have to find the intersection of the two lines given by

$$y = -6x + 4$$
 and  $y = 2x + 2$ .

We get x = 1/4. The value of the game is the corresponding *y*-value, 5/2. For Player 2 the intersection is at x = 3/4.

Exercise 15 (a): Dominance.

 $\begin{array}{c|c} 4 & 2 \\ -2 & 4 \end{array}$ 

To find Player 1's equilibrium point strategy we have to find the intersection of the two lines given by

$$y = -6x + 4$$
 and  $y = 2x + 2$ .

| 2  | 4  | 0  | -2 |
|----|----|----|----|
| 4  | 8  | 2  | 6  |
| -2 | 0  | 4  | 2  |
| -4 | -2 | -2 | 0  |

We get x = 1/4. The value of the game is the corresponding *y*-value, 5/2. For Player 2 the intersection is at x = 3/4.

Hence the unique equilibrium point of the original game is ((0, 3/4, 1/4, 0), (1/4, 0, 3/4, 0)).

Exercise 16 (a): Solving matrix games.

Exercise 16 (a): Solving matrix games.

| 16  | 14  | 6   | 11 |
|-----|-----|-----|----|
| -14 | 4   | -10 | -8 |
| 0   | -2  | 12  | -6 |
| 22  | -12 | 6   | 10 |

Player 1's strategy 1 dominates his strategy 2.

Exercise 16 (a): Solving matrix games.

Exercise 16 (a): Solving matrix games.

Player 2's strategy 4 dominates her strategy 1.

Exercise 16 (a): Solving matrix games.

$$\begin{array}{cccccccc} 14 & 6 & 11 \\ -2 & 12 & -6 \\ -12 & 6 & 10 \end{array}$$

Exercise 16 (a): Solving matrix games.

$$\begin{array}{cccc} 14 & 6 & 11 \\ -2 & 12 & -6 \\ -12 & 6 & 10 \end{array}$$

Player 1's first strategy dominates his third one.

Exercise 16 (a): Solving matrix games.

Exercise 16 (a): Solving matrix games.

$$\begin{array}{|ccccccc|}
14 & 6 & 11 \\
-2 & 12 & -6
\end{array}$$

Now Player 2's strategy 3 dominates her strategy 1.

Exercise 16 (a): Solving matrix games.

Exercise 16 (a): Solving matrix games.

| 6  | 11 |
|----|----|
| 12 | -6 |

To find Player 1's equilibrium point strategy we have to find the intersection of the two lines given by

Exercise 16 (a): Solving matrix games.

| 6  | 11 |  |
|----|----|--|
| 12 | -6 |  |

To find Player 1's equilibrium point strategy we have to find the intersection of the two lines given by

$$y = 6x + 6$$
 and  $y = -17x + 11$ .

Exercise 16 (a): Solving matrix games.

To find **Player 1**'s equilibrium point strategy we have to find the intersection of the two lines given by

$$y = 6x + 6$$
 and  $y = -17x + 11$ .

We set

6x + 6 = -17x + 11,

which is equivalent to

$$23x = 5$$
 or  $x = \frac{5}{23}$ .

Exercise 16 (a): Solving matrix games.

To find Player 1's equilibrium point strategy we have to find the intersection of the two lines given by

$$y = 6x + 6$$
 and  $y = -17x + 11$ .

We get x = 5/23. The value of the game is the corresponding *y*-value,

$$6 \times \frac{5}{23} + 6 = 168/23.$$

Exercise 16 (a): Solving matrix games.

To find **Player 1**'s equilibrium point strategy we have to find the intersection of the two lines given by

$$y = 6x + 6$$
 and  $y = -17x + 11$ .

We get x = 5/23. The value of the game is the corresponding *y*-value, 168/23. For Player 2 we have to intersect the two lines given by

$$y = 5x + 6$$
 and  $y = -18x + 12$ ,

$$\begin{array}{c|ccc}
6 & 11 \\
12 & -6 \\
\end{array}$$

Exercise 16 (a): Solving matrix games.

| 6  | 11 |  |
|----|----|--|
| 12 | -6 |  |

To find **Player 1**'s equilibrium point strategy we have to find the intersection of the two lines given by

$$y = 6x + 6$$
 and  $y = -17x + 11$ .

We get x = 5/23. The value of the game is the corresponding *y*-value, 168/23. which happens at x = 6/23.

Exercise 16 (a): Solving matrix games.

To find Player 1's equilibrium point strategy we have to find the intersection of the two lines given by

$$y = 6x + 6$$
 and  $y = -17x + 11$ .

| 16  | 14  | 6   | 11 |
|-----|-----|-----|----|
| -14 | 4   | -10 | -8 |
| 0   | -2  | 12  | -6 |
| 22  | -12 | 6   | 10 |

We get x = 5/23. The value of the game is the corresponding *y*-value, 168/23. which happens at x = 6/23.

Hence the unique equilibrium point of the original game is ((18/23, 0, 5/23, 0), (0, 0, 17/23, 6/23)).

**Exercise 17 (a): Dominance of mixed strategies.** 

**Exercise 17 (a): Dominance of mixed strategies.** 

| 2  | 1 | 0  |
|----|---|----|
| 2  | 0 | 3  |
| -1 | 3 | -3 |

Checking for candidates for elimination we settle on strategy 1 for Player 2.

**Exercise 17 (a): Dominance of mixed strategies.** 

Checking for candidates for elimination we settle on strategy 1 for Player 2. We need  $0 \le \lambda \le 1$  such that

**Exercise 17 (a): Dominance of mixed strategies.** 

Checking for candidates for elimination we settle on strategy 1 for Player 2. We need  $0 \le \lambda \le 1$  such that

 $\begin{array}{ccccccc} 2 & 1 & 0 \\ 2 & 0 & 3 \\ -1 & 3 & -3 \end{array}$ 

$$2 \ge \lambda \quad \text{always}$$
$$2 \ge 3(1-\lambda) = 3 - 3\lambda$$
$$-1 \ge 3\lambda - 3(1-\lambda) = 6\lambda - 3$$

**Exercise 17 (a): Dominance of mixed strategies.** 

Checking for candidates for elimination we settle on strategy 1 for Player 2. We need  $0 \le \lambda \le 1$  such that

 $2 \geq \lambda$  always

$$2 \ge 3(1-\lambda) = 3 - 3\lambda \quad \text{iff } \lambda \ge 1/3$$

 $-1 \ge 3\lambda - 3(1 - \lambda) = 6\lambda - 3$ 

**Exercise 17 (a): Dominance of mixed strategies.** 

Checking for candidates for elimination we settle on strategy 1 for Player 2. We need  $0 \le \lambda \le 1$  such that

 $\begin{array}{ccccccc} 2 & 1 & 0 \\ 2 & 0 & 3 \\ -1 & 3 & -3 \end{array}$ 

 $2 \geq \lambda$  always

$$2 \ge 3(1-\lambda) = 3 - 3\lambda \quad \text{iff } \lambda \ge 1/3$$

$$-1 \ge 3\lambda - 3(1 - \lambda) = 6\lambda - 3$$
 iff  $\lambda \le 1/3$ 

**Exercise 17 (a): Dominance of mixed strategies.** 

 $\begin{vmatrix} 2 & 1 & 0 \\ 2 & 0 & 3 \\ -1 & 3 & -3 \end{vmatrix}$ 

Checking for candidates for elimination we settle on strategy 1 for Player 2. We need  $0 \le \lambda \le 1$  such that

$$2 \geq \lambda$$
 always

$$2 \ge 3(1-\lambda) = 3 - 3\lambda \quad \text{iff } \lambda \ge 1/3$$

$$-1 \ge 3\lambda - 3(1-\lambda) = 6\lambda - 3 \qquad \text{ iff } \lambda \le 1/3$$

Hence  $\lambda = 1/3$  will do.

**Exercise 17 (a): Dominance of mixed strategies.** 



**Exercise 17 (a): Dominance of mixed strategies.** 



The only candidate for a dominated strategy is Player 1's strategy 1.

**Exercise 17 (a): Dominance of mixed strategies.** 



The only candidate for a dominated strategy is Player 1's strategy 1. We have to find  $0 \le \lambda \le 1$  such that

$$1 \le \qquad 3(1-\lambda) = 3 - 3\lambda$$

$$0 \le 3\lambda - 3(1 - \lambda) = 6\lambda - 3$$

**Exercise 17 (a): Dominance of mixed strategies.** 



The only candidate for a dominated strategy is Player 1's strategy 1. We have to find  $0 \le \lambda \le 1$  such that

$$1 \leq 3(1-\lambda) = 3 - 3\lambda \quad \text{iff } \lambda \leq 2/3$$
$$0 \leq 3\lambda - 3(1-\lambda) = 6\lambda - 3$$

**Exercise 17 (a): Dominance of mixed strategies.** 



The only candidate for a dominated strategy is Player 1's strategy 1. We have to find  $0 \le \lambda \le 1$  such that

$$1 \leq 3(1-\lambda) = 3 - 3\lambda \quad \text{iff } \lambda \leq 2/3$$

$$0 \leq 3\lambda - 3(1 - \lambda) = 6\lambda - 3$$
 iff  $\lambda \geq 1/2$ 

**Exercise 17 (a): Dominance of mixed strategies.** 

 $\begin{array}{ccc}
1 & 0 \\
0 & 3 \\
3 & -3
\end{array}$ 

The only candidate for a dominated strategy is Player 1's strategy 1. We have to find  $0 \le \lambda \le 1$  such that

$$1 \le 3(1 - \lambda) = 3 - 3\lambda \quad \text{iff } \lambda \le 2/3$$
$$0 \le 3\lambda - 3(1 - \lambda) = 6\lambda - 3 \quad \text{iff } \lambda \ge 1/2$$

There are plenty of  $\lambda$ s (from 1/2 to 2/3) to choose from.

**Exercise 17 (a): Dominance of mixed strategies.** 

03We cannot reduce this matrix any further, but3-3we know how to solve  $(2 \times 2)$ -matrices.