
(2, 2)-Nim

Exercise 6 (a): (2, 2)-Nim as a matrix game

To fit all this onto the slide, we give Player 2 as the row player, and
Player 1 as the column player, the entry gives the winner. In other
words, we would usually give the transpose of the following matrix.

Player 1 loses
Player 2

Player 1

Player 2

Player 1 losesPlayer 1 loses

Player 2 loses Player 2 loses

Player 2 loses

Player 1

Player 1
2 (1, 1) (1, 2)

P
layer

2

(1|1(1)) 2 1 2

(1|1(2)) 2 1 1

(1|2(2)) 2 2 2

(2|1(1)) 1 1 2

(2|1(2)) 1 1 1

(2|2(2)) 1 2 2

Note that (1|2(2)) is a winning
strategy for Player 2: if she
plays according to it, she will al-
ways win.

– p. 1/6



(2, 2)-Nim

Exercise 6 (a): (2, 2)-Nim as a matrix game

To fit all this onto the slide, we give Player 2 as the row player, and
Player 1 as the column player, the entry gives the winner.

Player 1 loses
Player 2

Player 1

Player 2

Player 1 losesPlayer 1 loses

Player 2 loses Player 2 loses

Player 2 loses

Player 1

Player 1
2 (1, 1) (1, 2)

P
layer

2

(1|1(1)) 2 1 2

(1|1(2)) 2 1 1

(1|2(2)) 2 2 2

(2|1(1)) 1 1 2

(2|1(2)) 1 1 1

(2|2(2)) 1 2 2

Note that (1|2(2)) is a winning
strategy for Player 2: if she
plays according to it, she will al-
ways win.

– p. 1/6



(2, 2)-Nim

Exercise 6 (a): (2, 2)-Nim as a matrix game

To fit all this onto the slide, we give Player 2 as the row player, and
Player 1 as the column player, the entry gives the winner.

Player 1 loses
Player 2

Player 1

Player 2

Player 1 losesPlayer 1 loses

Player 2 loses Player 2 loses

Player 2 loses

Player 1

Player 1
2 (1, 1) (1, 2)

P
layer

2

(1|1(1)) 2 1 2

(1|1(2)) 2 1 1

(1|2(2)) 2 2 2

(2|1(1)) 1 1 2

(2|1(2)) 1 1 1

(2|2(2)) 1 2 2

Note that (1|2(2)) is a winning
strategy for Player 2: if she
plays according to it, she will al-
ways win.

– p. 1/6



Throwing two 3-faced dice

Exercise 7 (a): Throwing two 3-faced dice

1/3
1/3

1/3

1 2

1/3

1 2 3

1 2 3 1 2 3 3

1/3

1/3 1/3 1/3

1/3

1/3
1/3

1/3

3 4 3 4 5 4 5 62

The probabilities for the various
outcomes (the sum of the faces of
the two thrown dice) is given in the
following table.

2 3 4 5 6
1/9 2/9 3/9 2/9 1/9

The expected value is

2/9 + 6/9 + 12/9 + 10/9 + 6/9 = 36/9 = 4.
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Maxmin and minmax

Exercise 8 (a): Maxmin and minmax

4 3 1 1

3 2 2 2

4 4 2 2

3 3 1 2

4 3 1 1 1

3 2 2 2 2

4 4 2 2 2

3 3 1 2 1

4 4 2 2 2\2

So max1≤i≤4 min1≤j≤4 ai,j = 2.

So min1≤j≤4 max1≤i≤4 ai,j = 2.
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Maxmin and minmax don’t agree

Exercise 9 (a) Such a matrix is given in Exercise 8(b), or on page 33 of
the notes.

– p. 4/6



Finding equilibria

Exercise 10 (a): Finding equilibria

4 3 1 1

3 2 2 2

4 4 2 2

3 3 1 2

We are looking for values which are min-
imal in their row and maximal in their col-
umn.

We check that no value in the first row sat-
isfies this criterion. In the second row, we
are finally successful.

We now know that the value of the game
is 2 and it is sufficient to check all the re-
maining entries of that value.

The equilibrium points are: (2, 3), (2, 4),
(3, 3) and (3, 4).
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We are looking for values which are min-
imal in their row and maximal in their col-
umn.

We now know that the value of the game
is 2 and it is sufficient to check all the re-
maining entries of that value.

Since the corresponding 2 is not minimal
in its row, (4, 4) is not an equilibrium point.

The equilibrium points are: (2, 3), (2, 4),
(3, 3) and (3, 4).
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Equilibria in non zero-sum games

Exercise 11 (a): Equilibria in non zero-sum games.

(−10, 5) (2,−2)

(1,−1) (−1, 1)

(−10, 5) (2,−2)

(1,−1) (−1, 1)

If Player 1 changes his mind from strategy 1
to strategy 2 while Player 2 sticks with her
strategy 1 Player 1 will be better off, so (1, 1)
is no equilibrium point.

Hence this game has no equilibrium points.

– p. 6/6
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