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Organizational issues

Structure of the unit

COMP11120 is a 20 credit course unit that is taught over two semesters. You will
receive one mark at the end of the unit, and it is that mark which decides whether
you pass or fail.

You can �nd electronic copies of these notes in Blackboard1, as well as past
exam papers. Lecture podcasts, solutions to exercises and lecture slides (where
they exist) will also be made available there as term progresses. Note that the
electronic version of the notes shows colours, while the printed version is black
and white, and that it has clickable links that allow you to follow references within
the text easily.

When and where

The unit is taught with two lectures and one examples class per week.

Semester 1

Please refer to your personal timetable regarding the time and location of lectures.
For the examples classes you are split into four lab groups. Which group you

are in is determined by the letter part of the name of your tutorial groups. Please
refer to your personal timetable regarding location and timing of your example
classes. In Semester 1, examples classes start in Week 1 and run through to Week 12,
while in Semester 2 they go from Week 2 to Week 11.

Who

This course unit is delivered by a team:

• Andrea Schalk, A.Schalk@manchester.ac.uk (course leader).

• Renate Schmidt, Renate.Schmidt@manchester.ac.uk,

• Clare Dixon, Clare.Dixon@manchester.ac.uk and

Assessment

Overview

The assessment of this course unit2 has the following components:
1This is the University’s E-learning environment.
2Please note that this has changed for academic year 20/21.
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80% Examination. If possible there will be two invigilated exam, one in January
covering material from Semester 1 and one in May/June covering material
from Semester 2. Otherwise there will be one invigilated exam in May/June
covering the whole year.

20% Coursework. This consists of 1% each for solutions you submit each week for
the exercises on the weekly exercise sheet.

Note that if you have to resit the unit because your original mark is not high
enough to allow you to progress then this reassessment is based on one paper
covering all the material.

Examinations

There usually are written examinations after both, Semester 1 and Semester 2. Note
that this course unit has been substantially revised in recent years and reached its
current format in 2015/16. As a consequence exam papers before that year do not
accurately re�ect the kind of paper you will sit. The exams are based mostly on
questions which are similar to the core questions from the examples classes, with
a few marks (at most 20%) available for questions beyond that.

There are three questions in each paper, one each for the major topics covered
in that semester. This means that in Semester 1 there will be one question each on

• statements and proofs,

• logic and

• probability,

while in Semester 2 there will be one question each on

• recursion and induction,

• relations and

• linear algebra.

Either exam may contain some material from other chapters in the notes that have
been covered to date. Note in particular that notions that were taught in Semester 1
may appear in the paper for Semester 2 (so a question on relations could involve,
say, complex numbers). The assessed exercises, in particular the core ones, are
good examples of the kind of thing you may be asked to do in an exam.

Mid-term test

In the past there has been an invigilated mid-term test in early November. This
will not take place this year.

Exercise sheets

For each examples classes you are told to prepare a number of exercises (typically
�ve exercises per week, see the sheets at the end of the notes). In some cases you
have a choice regarding which part of an exercise you want to solve. This is to
ensure that students who have seen similar material before still have something
interesting to do. Whenever there is a choice all the parts of an exercise are
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concerned with the same abstract property, so no matter which ones you do you
will familiarize yourself with that property. The exercises typically are about
looking at a particular concept or technique.

There are two kinds of exercises on the sheets:

• Core. These belong to the core of the taught material, and there are typically
three such exercises each week. They are labelled CExercise in the notes.

• Extensional. These questions extend the core material and they are labelled
EExercise in the notes.3

If you are stuck on one exercise for ten minutes without making progress then
move on to the next one—di�erent exercises do not usually depend on each other.
Also note that the di�erent parts to each exercise are not necessarily in rising order
of di�culty, and do not necessarily depend on each other.

The point of the examples classes are

• to give you feedback on whether you have understood the material and
answered the exercises correctly at the right level of detail, and

• to help you with exercises you had di�culties solving, concentrating on the
core exercises.

The feedback as well as the marking is carried out by graduate teaching assist-
ants (GTAs). Please note that we have a limited number of quali�ed GTAs and you
should use your time with them wisely. Make sure you have questions ready to
ask them, or request that they look at a particular (part of an) exercise.If you need
more help or feedback than a GTA can supply in the available time then note that
there are two academic members of sta� in each examples class in Semester 1, and
one in Semester 2, to help with this.

Please note that on this course unit it is not possible to get an extension,
in particular, students registered with DASS cannot have automatic one week
extensions. This is because solutions to the marked exercises are published after
the last examples class in a given week.

You have to submit a pdf with your written solutions on Blackboard by the
given deadline. A GTA will look at it and assign a mark each week, and the
examples class that week is used to give feedback to the group and to go over
aspects of the solution that students struggled with.

The GTA may call on you to explain your solution to the rest of the group, so
please make sure you are prepared to do that. You will be able to share your pdf
with the rest of the group so that you can all look at it together, and your task is
to tell everybody how you came up with your solution. Please note that preparing
for this is part of the deliverable each week and that you may lose mark if you are
unable to do so. For this reason we need you to attend the examples class each
week even if you are happy with your submission.

Your marks will appear in Spot, the department’s system that allows you to get
an overview over your coursework marks. The numbers we use have the following
meaning:

• 0: You have not submitted anything that looks like a credible attempt to
solve the exercises for the week.

3Exercises named as Exercise do not appear on any sheets and are there to give you more material
to practice on.
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• 1: You have tried to solve some exercises, but you either did not do much
work or your solutions were signi�cantly lacking in quality or accuracy.

• 2: Your have tried to solve all the core exercises for the week and your
solutions show that you have understood a good part of the material.

• 3: You have tried to solve all the core exercises; your solutions for the core
exercises are largely solid, but there are some mistakes that go beyond being
minor.

• 4: You tried to solve all of the core exercises and your solutions are correct
with only very minor shortcomings.

• +1: An additional mark is available each week if you have made a substantial
attempt at solving the extensional exercises.

These exercises are assessed work. If you copy somebody else’s work you are
committing a plagiarism o�ence. If you let somebody copy your work you are
also committing plagiarism. This will result in a mark of 0 for the week, and if you
commit repeated or particularly serious o�ences you may have to face Department
or Faculty panels. See below for a detailed description of what you are allowed to
share with other students.

GTAs record the marks each week, and there is a delay until you can view the
mark in SPOT. If you think something has gone wrong with the recording process
please contact the course leader, Andrea Schalk, at

A.Schalk@manchester.ac.uk

as soon as possible.
If there is a good reason that you cannot attend an examples class in a given

week then you must email the unit sta� to let them know.

The discipline of mathematics

Mathematics is a foundational subject for many sciences and engineering discip-
lines, and this holds true for computer science as well.

Please do have a look at the FAQs and the Expectations documents available on
Blackboard.

School versus university level

Note that there are a number of di�erences between what you have been used to
from school to what is expected at university level.

• There are a lot more people in your teaching group—as a consequence you
have less access to those who teach you, and you have to become more
self-reliant (but you can get a lot out of other students on the course if you
go about it in the right way).

• The material is taught at a faster pace. That means that fewer teaching
sessions are devoted to a piece of material, which means that you will
typically see at most one relevant example before being expected to tackle a
problem yourself.
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• The material is more abstract—you are expected to cope with abstract de�n-
itions, whereas at school the emphasis is often on solving problems.

• When solving problems at school there is often a very recognizable pattern
to coping with questions of a particular kind. At university level this pattern,
if it exists, is of a much more general kind.

• Taken together you should not expect to be able to solve the exercises based
on just looking at examples discussed in the lectures or spelled out in the
notes. You are expected to develop your own approaches to solving problems
rather than following ones you have been given.

This course unit

In order to master the subject su�ciently to be able to apply it it is not su�cient
to treat mathematics as a series of recipes for various calculations.

Instead mathematics formally de�nes a number of abstract concepts, and
then derives their properties (and so justi�es calculations of various kinds). As a
discipline mathematics is unique in that its theories may be proved or disproved
conclusively. It is not necessary to acquire data to study whether the predictions
of a theory match observations from experiments—instead one proves statements
based on universally accepted derivation rules.

This course unit provides an introduction to those areas of (abstract) math-
ematics which are of particular importance in computer science. Its aim is to do
so rigorously by introducing various concepts formally, and then to show what
properties these have. For this purpose it is also necessary to talk about the notion
of proof in order to make it clear how valid derivations are formed. Throughout
the notes examples from applications within computer science are given wherever
possible.

This is the only course unit teaching mathematics in the curriculum for com-
puter science students in Manchester. It therefore has to lay the foundations
for everything that is to follow, and in some cases you will not see the material
introduced here until the second, or even the third year.

How to learn the material

Abstract mathematics requires a fairly lengthy learning process. Typically material
has to be studied more than once over a longer period to be fully understood. The
point of weekly assessed exercises is to encourage students to try their best to
understand various abstract concepts and their uses. In the examples classes you
get feedback regarding your understanding, and the revision period should provide
another opportunity to improve your understanding before the exams.

Mathematics isn’t a spectator sport—the only way to learn it is to do it yourself.
Watching others carry out calculations or proofs may be instructive at �rst, but
in the end the only way of properly understanding it is to make your own brain
work through the problems given.

You should think of this kind of learning as happening on a spiral: Every
time you revisit a topic you will �nd yourself having achieved a higher level of
understanding, provided you really try to get your head around it. This kind of
material is not suitable for postponing all the work until revision time. It is also
very di�cult to catch up once you have fallen behind. For this reason doing set
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work every week is rewarded by giving you marks, determining 20% of the mark
for each semester.

Notes. You should think of the lecture notes as providing an account of the
examinable material. The exercises are part of that material—usually not the
speci�cs but the techniques. You are required to read the notes independently. Note
that we expect students to know all the numbered de�nitions where a concept is
de�ned in bold face (some have concepts de�ned in italics), although we don’t ask
many exam questions which are just about the de�nitions. Some of the material
in the notes is there to signpost topics you will not meet until in your second or
third year. To prepare for the exams we expect you to be familiar with the material
around the core exercises; most 20% of the exam mark will rely on material other
than that.

Materials. You will �nd materials on Blackboard to help you understand
what is written in the notes, in the form of short videos that cover various ideas
and show you how to solve examples. There are also quizzes that help you to
check whether you have actively engaged with those ideas. Please note that not
everything that is covered in the notes is covered here—you are expected to began
to learn independently.

Exercises. You will have worked on some of the exercises as part of the assessed
work, the others are available for revision purposes. You will receive solutions to
most4 of the exercises in the course of term. There are also optional exercises which
are not part of the examinable material, and to which no solutions will be handed
out.5 Note that the exercises appear in the text where they are more appropriate.
When working on an exercise for assessed work you will almost certainly have to
(re-)read the material preceding the exercise.

Online sessions. Online sessions with unit sta� give you an opportunity to
ask questions. We may ask you to submit your questions prior to the session to
give us a chance to prepare.

Blackboard Forum. There is a forum on Blackboard that allows you to ask
questions.

Examples classes. The point of the examples classes is to give you feedback
on exercises you have tried yourself, and to help you with concepts or ideas you
are �nding di�cult.

In that way all the contact hours are dedicated to help you learn the material,
but ultimately what you put in yourself will be the biggest decider in what you
get out.

Additional help. If you �nd you are struggling with the material there are a
number of actions you may take. You may want to consult an alternative text in
case the explanations as given in the notes don’t suit your way of understanding.
You should ask lots of questions in the examples class—there will be two people
in each examples classes whose only job is to answer questions. You should also
talk to your friends on the programme, for example the other members of your
tutorial group. It may make sense for some of you to form a study group and to
tackle the material together. The weekly PASS sessions are an excellent way of
getting help from students who are in their second or third year.

4At a minimum this will include solutions to all assessed exercises.
5The optional exercises are intended or students who wish to obtain a more complete under-

standing of various concepts. Some of them are intended to get those interested started on thinking
some way beyond the material presented here.
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Expected e�ort

The Department expects students to work around 40 hours a week (although some
students put in more). This means that for every ten credit course unit you should
expect to work roughly seven hours a week (including contact hours).

In COMP11120 you have two contact hours a week, which means you are
expected to work �ve hours a week working through the material on Blackboard
as well as reading the notes and solving the exercises (in particular the assessed
ones).

Academic malpractice

Academic malpractice is a general term that covers a number of ways in which
students may break regulations by submitting work as their own which in part is
based on unattributed contributions by others.

Note that the rules for collaboration are di�erent for COMP11120 from almost
all other units you may take in the Department of Computer Science. Please do
not apply them to other units.

We are happy for you to

• try to understand the exercises in a group, including working out how to
solve a particular exercise and

• compare your solution to somebody else’s.

You must not

• copy somebody else’s solution (even if you make some changes along the
way) or

• give your solution to somebody (either to copy, or adapt, or to take a picture
of it) or

• ask to look at somebody else’s solution for an exercise which you haven’t
already solved.

If you are working as a group to understand a particular exercise, then each
of you must write down your own version of your solution. If you aim to give a
counterexample to a statement you should �nd di�erent counterexamples based on
the understanding you gained jointly. If you aim to give a proof then each of you
should independently formulate your understanding, and you should not agree
on using speci�c variable names, for example. Students who present identical (or
very similar) answers will be penalized.

If you and another student have solved an exercise independently then we
are happy for you to compare your solutions, and if you think the solutions are
di�erent you should try to work out between you whether they are both correct,
and why. If one of you has an incorrect solution, and the other solution is deemed
correct, then the �rst student may change their solution, but this must not be done
by merely copying the correct version. Instead the student should start from their
incorrect solution and adjust that. Similarly, you must not let another student
copy your solution, even if you feel sorry for them. They will get at least one mark
for their incorrect attempt, and if they’ve understood what was wrong they should
be able to �x their solution for a higher mark.
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Where one student has solved an exercise and another hasn’t it is �ne for the
�rst to explain how to tackle the questions, to give tips for how to �nd the solution,
and to explain the concepts involved. In a situation like this it is not okay to show
your solution to the other student.

Remember also that you have to be able to explain your solution to get the
marks, and that identical write-ups will be treated as copying.

These notes

You will receive a number of handouts over the course of the academic year,
referred to here as ‘these notes’. They are a text book in the making which we
have written because there is currently none that covers the material required for
our programmes at a suitable level of detail. They will cover the following topics:

• complex numbers,

• statements and proofs,

• logic,

• recursion and induction,

• relations,

• linear algebra (vectors and matrices).

These notes have been tailored speci�cally to the curriculum in computer
science here at the University of Manchester. They can be read on a number of
levels, and are meant to accompany you through your time here, allowing you to
go back and reread material as it becomes relevant to your studies in one of the
more advanced course units.

Programming languages. To make connections between the abstract ideas of
mathematics and the more concrete implementations a number of references are
made. These make connections to Python and Java the two main languages you
encounter in the two introductory programming units. While Java is not taught
until Semester 2 there is reference to the language in these notes for Semester 1.

The notes were new for the academic year 2014/15, and have been revised
and expanded every year subsequently. Nonetheless there is doubtlessly room for
improvement. We would like to invite you to email us if you have suggestions, for
example

• if you think you have found a mistake,

• if you think that there is a passage that is misleading,

• issues that require more detailed explanations,

• issues that require more worked examples,

• exercises whose instructions are unclear,

• examples and exercises that we should think about adding,

• online resources you have found useful.
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We will certainly incorporate such suggestions for future years, but if there is
a particularly important issue, or one where we get several requests, we may hand
out supplementary notes as term progresses. We also use interactions with you
in examples classes and lectures to guide us, but we would very much appreciate
receiving emails on this topic.

We would like to thank Graham Gough, Jonas Lorenz, Joe Razavi, Francis
Southern, Yegor Guskov, Francisco Lobo, Sarah Nogueira, Chris Tedd, Luca Min-
ciullo, David Pauksztello, Sami Alabed, Anuj Vaishnav, Ruba Alassaf, Andrew
Webb, Andrei Vintila, Leshna Shamloll, Robertas Maleckas, Gytautas Buivydas,
Oliver Blanthorn, Toby Osborne, Nuno Nobre and Pouya Adrom for helping us
improve these notes. Toby and Pouya also variously helped us improve marking
schemes and the running of examples classes.

Some of the ideas for operations on lists come from notes originally written for
COMP112 by David Lester, and the idea of including recursively de�ned functions
for natural numbers is based on notes by Graham Gough for a previous version
of this course. Some of the examples and exercises used have been inspired by a
variety of sources, but most were speci�cally created for these notes. In particular
some ideas for the probability part of this course where inspired by reading Kees
van Schaik’s notes for a previous version of this unit. Andrea Schalk would also
like to thank Renate Schmidt for very careful proof-reading of her handouts.

Francisco Lobo provided the Latex package that allows me to compile the
document in such a way that solutions to all exercises, and solutions to assessed
exercises, form separate chapters at the end.

Joe Razavi has contributed to teaching on this unit over a number of years and
he has given invaluable feedback and provided ideas.

Additional literature

There is no one book that covers all the material in these notes. They have been
speci�cally written for computer science students going through the curriculum
here in Manchester and they cover some material that is not present in most text
books. Nonetheless it can be bene�cial to look at an alternative presentation of
material, and we suggest some books you may want to try for this purpose. These
are all present in the Department’s (ask at the SSO) as well as the University Library
for you to borrow. There are certainly other books available that cover much of
the material, and you will also �nd the internet a useful resource on speci�c topics.

Here is an account of what is covered in which of the suggested books.

• Basics. If you �nd the material in this chapter di�cult you should use
resources on the web to help you, and maybe also get some of the books
below and read about the relevant part.

• Complex numbers. This is not covered in most text books aimed at computer
scientists, but you will �nd relevant material in Jordan and Smith. All
the operations described in the notes also appear in the Wikipedia article
on complex numbers at https://en.wikipedia.org/wiki/Complex_
number, and there are a number of webpages available that aim to explain
the general ideas.

• Statements and proofs. The de�nitions and many of their properties are
covered in Epp, some of them also in Truss. All the de�nitions have entries
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on Wikipedia, and in many other online sources. (for example, the notion of
a commutative operation is explained at https://en.wikipedia.org/
wiki/Commutative_property such sources provide an alternative point
of view that you may �nd helpful.

• Logic. We will not be following any particular text books, but Truss and
Epp contain chapters that cover formal logical systems, in particular, the
basics of Boolean semantics and properties of propositional formulas. Again
you can use a search engine to �nd additional material on each topic on the
web.

• Probability. This subject is addressed to some extent in Epp, and also in
Jordan and Smith, but less generally than in these notes.

• Recursion and induction. Recursion and induction are both covered in Epp
as well as in Truss, but not at the same level of generality. There are many
resources available on the web, for example the Wikipedia article on struc-
tural induction here https://en.wikipedia.org/wiki/Structural_
induction.

• Relations. Relations are covered in both, Epp and Truss, and there are many
online resources.

• Linear algebra. Again there is no text book which covers the material
exactly in the way we do. Truss has some material on vectors and matrices,
but it is quite condensed. Additional pointers to literature are given in that
part of the notes.

Writing about mathematics is di�cult, and in particular this holds for giving
rigorous arguments. The following book gives a lot of good advice on that subject:
Kevin Houston, How to Think Like a Mathematician, Cambridge University Press,
2009, ISBN: 052171978X.

Here are some text books on mathematics for computer scientists that you
may want to consult in addition to these notes.
Susanna Epp. Discrete Mathematics with Applications, Brooks/Cole 2011, ISBN:
0495826162.

This book covers much of our material as well as signi�cant parts of COMP11212.
It is available online via the university library.

J.K. Truss. Discrete Mathematics for Computer Scientists, Addison-Wesley, 1999.
ISBN: 0201360616

This book covers roughly the same material as the �rst, but with fewer applic-
ations, and in slightly less detail.

D.W. Jordan and P. Smith. Mathematical Techniques: an Introduction for the
Engineering, Physical, and Mathematical Sciences, Oxford University Press 2008,
ISBN: 9780199282012.

Much of this book is concerned with continuous mathematics, so if you need
a refresher it may well be useful for that purpose beyond what is said above.

D. C. Montgomery and George C. Runger. Applied Statistics and Probability for
Engineers (5th edition), Wiley 2010, ISBN: 978047050578.
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This is a very applied text which may help you with connecting the concepts
taught here with applications.

E. Angel, Interactive ComputerGraphics: a Top-downApproachUsingOpenGL,
Pearson 2008, ISBN: 9780321549433.

This book connects the material on matrices and vectors with the intended
application in computer graphics.

All these books are available in the departmental Library, as well as in the
University Library.
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Chapter 0

Basics

This chapter explains some concepts most of which you should have encountered
before coming to university; but you may not have been given formal descriptions
previously. These notions give us a starting point so that we have examples for the
formal development that follows from Chapter 1 onwards, but note that some of
the concepts and properties that appear in this chapter are put on a formal footing
subsequently.

Whenever you �nd concepts used in the notes that have familiar names you
should check this chapter to ensure that you only use the fact provided here. There
will be no lectures about the material in this chapter, but the examples classes in
Week 1 are there to make sure you understand the ideas and the notation used
here. Note that there is a universally accepted language described here that you
will also encounter in other course units.

Note that we here assume that certain collections of numbers, with various
operations, have already been de�ned. You will see formal de�nitions of most
of these (real numbers being the exception) in Chapter 6 which we will study in
Semester 2. The purpose of assuming they are present at the start is to allow us to
use them as examples.

0.1 Numbers

Naively speaking, numbers are entities we often use when we wish to calculate
something. Mathematically speaking, there is typically rather more going on:
Numbers are sets with operations, and these operations have particular properties.
Many of these properties are named and studied in Chapter 2.

0.1.1 Natural numbers

The natural numbers are often also referred to as counting numbers, and the
collection of all of them is typically written as N. For the time being we assume
that you know what these numbers are; a formal de�nition appears as De�nition 54
in Chapter 6.

Foreshadowing the formal de�nition, we point out that simplest way of form-
ally describing the natural numbers is to say that

• there is a natural number 0 and

• given a natural number 𝑛 there is another natural number 𝑆𝑛, the successor
of 𝑛, more usually written as 𝑛 + 1.
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Every natural number can be generated in this way, although to reach 123456,
for example, one has to apply the successor operation quite a few times! This also
means that given a natural number 𝑛, we know that one of the following is the
case:

• either 𝑛 = 0 or

• there exists a natural number 𝑚 with 𝑛 = 𝑆𝑚 (or, if you prefer, 𝑛 = 𝑚+ 1).

This might seem like a trivial observation, but it is the basis of using the
concept of recursion to de�ne properties or functions for the natural numbers, and
also for being able to prove properties by induction.

This is described in detail in Section 6.4 of these notes. Here we look at the
informal notions you have met at school.

With the natural numbers come some operations we use; their properties are
given below.

• Given natural numbers 𝑚 and 𝑛 we can add1 these to get

𝑛 + 𝑚.

• Given natural numbers 𝑚 and 𝑛 we can multiply2 these to get

𝑚 · 𝑛.

You are allowed to use the following about natural numbers, except in Sec-
tion 6.4 where we prove many of these facts formally.

Fact 1

Given 𝑥, 𝑦, and 𝑧 in N we have3

𝑥 + 𝑦 = 𝑦 + 𝑥 commutativity of +

(𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) associativity of +

𝑥 + 0 = 𝑥 = 0 + 𝑥 0 unit for + .

For the same variables we also have4

𝑥 · 𝑦 = 𝑦 · 𝑥 commutativity of ·
(𝑥 · 𝑦) · 𝑧 = 𝑥 · (𝑦 · 𝑧) associativity of ·

𝑥 · 1 = 𝑥 = 1 · 𝑥 1 unit for · .

For the same variables we also have the property

𝑥 · (𝑦 + 𝑧) = 𝑥 · 𝑦 + 𝑥 · 𝑧 · distributes over + .

For the same variables we also have5

𝑥 + 𝑧 = 𝑦 + 𝑧 implies 𝑥 = 𝑦.

1A formal de�nition of addition appears in Example 6.31.
2A formal de�nition of this operation appears in Example 6.36.
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A mathematician might say that the natural numbers form a commutative
monoid with unit 0 when looking at the addition operation, and a commutative
monoid with unit 1 when looking at multiplication. In Section 2.5 we look formally
at the properties given by these equalities.

There is one additional property we require. The following is used in Euclid’s
algorithm, see Example 6.42, but also to de�ne integer division, see below, which
appears in Chapter 2.

Fact 2
Given 𝑦 in N and 𝑥 in N with 𝑥 ̸= 0 there exist unique numbers 𝑘 and 𝑙 in N
such that

• 0 ≤ 𝑙 < 𝑚 and

• 𝑦 = 𝑘𝑥 + 𝑙.

We use this fact to de�ne a division operation on natural numbers, known as
integer division6. We de�ne7

𝑦 div 𝑥

to be the unique number 𝑘 in N in Fact 2. This is the number of times 𝑥 divides 𝑦
(leaving a remainder). We de�ne the remainder for integer division by setting

𝑦 mod 𝑥

to be the unique 𝑙 from Fact 2. This is the remainder 𝑦 leaves when divided by 𝑥.
See Code Examples 0.1 and 0.2 to see how these operations are implemented in
Python and Java.

Example 0.1. For example, we have that

5 div 2 = 2 and 5 mod 2 = 1

7 div 3 = 2 and 7 mod 3 = 1

9 div 3 = 3 and 9 mod 3 = 0

11 div 4 = 2 and 11 mod 4 = 3.

Example 0.2. We look at two particular cases to see the patterns which develop.

𝑛 0 1 2 3 4 5 6 7 8 9 10 11 12 13
𝑛 mod 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1
𝑛 div 3 0 0 0 1 1 1 2 2 2 3 3 3 4 4

𝑛 0 1 2 3 4 5 6 7 8 9 10 11 12 13
𝑛 mod 7 0 1 2 3 4 5 6 0 1 2 3 4 5 6
𝑛 div 7 0 0 0 0 0 0 0 1 1 1 1 1 1 1

3Formal proofs of these properties appear in Example 6.35 as well as Exercise 159.
4Formal proofs of these as well as the �nal property are given in Exercise 160.
5Note that we cannot subtract within the natural numbers, so this property gives us the strongest

statement we have. Mathematicians would say that addition is right (and also left) cancellable.
6Sometimes also called Euclidean division.
7See the following section to see that this idea can be extended to the integers.
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Example 0.3. Note that it is not necessarily the case that

𝑥 · (𝑦 div 𝑥) = 𝑦,

for example
2 · (3 div 2) = 2 · 1 = 2 ̸= 3.

This is di�erent from the way of dividing numbers you may be used to8 and
that is the reason that this kind of division has a di�erent name, and a di�erent
symbol.

Lemma 0.1
For all natural numbers 𝑥 and 𝑦, where 𝑥 ̸= 0, we have

𝑦 = 𝑥 · (𝑦 div 𝑥) + (𝑦 mod 𝑥).

Exercise 1. Give an argument that Lemma 0.1 is valid using Fact 2.

De�nition 1: divisible

Given natural numbers 𝑥 ̸= 0 and 𝑦, 𝑦 is divisible by 𝑥 or that 𝑥 divides 𝑦 if
and only if there exists a natural number 𝑘 such that

𝑥 · 𝑘 = 𝑦.

Note that 𝑥 divides 𝑦 if and only if it is the case that

𝑦 mod 𝑥 = 0.

De�nition 2: even/odd
An natural number 𝑥 is even if and only if 𝑥 is divisible by 2. Such a number
is odd if and only if it is not divisible by 2.

This means that 𝑥 is even if and only if

𝑥 mod 2 = 0,

and that 𝑥 is odd if and only if

𝑥 mod 2 = 1.

Note in particular that 0 is an even number.
We might also want to think about which equations we can solve in the natural

numbers. Assume that 𝑚 and 𝑛 are elements of N.
For example, we can solve

𝑚 + 𝑥 = 𝑛,

8See for example the discussion in the Section 0.1.3 on rational numbers below.
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within N, provided that9 𝑚 is less than or equal to 𝑛, which we write as 𝑚 ≤ 𝑛.
We can also solve

𝑚𝑥 = 𝑛,

within N provided that 𝑛 mod 𝑚 = 0. Because of the side conditions required we
see that a lot of equations we can write down using the available operations do
not have a solution.

We can use the natural numbers to count something, for example the number
of instructions in a computer program, or the number of times a program will carry
out the body of a loop. This is important to do when we are trying to estimate
how long it may take a program to run on a large-size problem.

There are a lot of natural numbers, namely in�nitely many. But by mathem-
atical standards the natural numbers are the smallest in�nite set, and there are
substantially larger ones. Sets of this size are set to be countably in�nite. This is
formally de�ned in Section 5.2.

Computer languages do typically not implement the natural numbers—instead,
a programming language will have support for all natural numbers up to a par-
ticular maximum. Nothing truly in�nite can be implemented in any real-world
computer (but there are theoretical computation devices which have in�nite stor-
age). Quite often programming languages have a built-in type for integers instead
of natural numbers, as is the case with Python and Java.

0.1.2 Integers

A simple way of explaining the integers is that one wants to expand the natural
numbers in order to make it possible for every number to have an inverse with
respect to addition, that is, for every number 𝑥 there is a number 𝑦, usually written
as −𝑥, with the property that

𝑥 + 𝑦 = 0 = 𝑦 + 𝑥.

De�ning the integers formally in a way that supports the above idea is quite
tricky. Such a description is given in Chapter 7, see De�nition 62. It’s fairly easy
to describe the elements of this set, called10 Z, once one has the natural numbers,
since one can11 say

Z = N ∪ {−𝑥 | 𝑥 in N, 𝑥 ̸= 0},

but this does not tell us anything about how to calculate with these numbers. So
this does not, mathematically speaking, de�ne the integers with all the operations
we customarily use for them.

The absolute, |𝑥|, of an integer 𝑥 is de�ned to be12

• 𝑥 if 𝑥 is greater than or equal to 0 and

• −𝑥 if 𝑥 is less than 0.
9The solution to such an equation would have to satisfy 𝑥 = 𝑛 − 𝑚 and this is not always

de�ned.
10The notation Z for the set of integers is very common within mathematics, the letter coming

from the German word ‘Zahlen’, or numbers. You may know this set under a di�erent name, but
that should not worry you.

11The following expression uses symbols explained in detail in Section 0.2.
12See Example 0.32 for a de�nition of this as a function, although that de�nition is for real

numbers.
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We (very rarely) use Z+ to refer to those integers13 which are greater than or
equal to 0.

Fact 3

The equalities from Fact 1 also hold14 if the variables are elements of Z. We
have an additional property, namely,

for every 𝑥 in Z there exists a unique 𝑦 in Z with 𝑥 + 𝑦 = 0 = 𝑦 + 𝑥.

We say that this number 𝑦 is the additive inverse for 𝑥 with respect to addi-
tion. The number −𝑥 is de�ned to be the additive inverse of 𝑥.

A mathematician would say that Z forms a commutative ring with multiplicative
unit 1.

Many people use subtraction as an operation. However, it is much preferable
to think of this not as an operation, but as

𝑦 − 𝑥

being a shortcut for adding the additive inverse of 𝑥, −𝑥, to 𝑦—in other words,
this is merely a shortcut for

𝑦 + (−𝑥).

Please do not talk about subtraction on this course unit, but about adding additive
inverses. There are many many situations in mathematics where not all inverses
exist,15 and so you should pause to think whether the operation you wish to carry
out is legal.

Fact 2 changes a bit when we use it for integers.

Fact 4
Given 𝑦 in Z and 𝑥 in Z with 𝑥 ̸= 0 there exist unique numbers 𝑘 and 𝑙 in Z
such that

• 0 ≤ 𝑙 < |𝑚| and

• 𝑦 = 𝑘𝑥 + 𝑙.

Hence we may extend the de�nitions of the operations of mod and div, that
come from integer division for natural numbers as de�ned above, to the integers.
In other words, for integers 𝑥 and 𝑦,

• 𝑦 div 𝑥 is the unique 𝑘, and

• 𝑦 mod 𝑥 is the unique 𝑙,

from the above fact.

13This set of numbers is, of course, equivalent to N
14The formal proof that addition satis�es these properties appears in Section 7.3.7 and Exercise 193

provides proof that multiplication satis�es them .
15For example, for the rational, real and complex (see Chapter 1) numbers, the number 0 has

no multiplicative inverse. When you study matrices you will see that very few matrices have
multiplicative inverses.
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Example 0.4. We have that

−5 div 2 = −3 and −5 mod 2 = 1

7 div−3 = −2 and 7 mod −3 = 1

9 div−3 = −3 and 9 mod −3 = 0

−11 div 4 = −3 and −11 mod 4 = 1.

Example 0.5. Once again we look at two particular cases to see the patterns
which develop.

𝑛 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
𝑛 mod 3 1 2 0 1 2 0 1 2 0 1 2 0 1
𝑛 div 3 −2 −2 −1 −1 −1 0 0 0 1 1 1 2 2

𝑛 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
𝑛 mod 7 2 3 4 5 6 0 1 2 3 4 5 6 0
𝑛 div 7 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 1

Lemma 0.2
For all integers 𝑦, and all integers 𝑥 ̸= 0, we have

𝑦 = 𝑥 · (𝑦 div 𝑥) + (𝑦 mod 𝑥).

The notions of evenness and oddness transfer with the same de�nitions as for
natural numbers. Indeed, the de�nitions given below can be applied to natural
numbers viewed as integers, and they will give the same result as the corresponding
de�nition from the previous section.

De�nition 3: divisible

Given integers 𝑥 ̸= 0 and 𝑦 we say that 𝑦 is divisible by 𝑥 or that 𝑥 divides 𝑦
if and only if there exists an integer 𝑘 such that

𝑥 · 𝑘 = 𝑦.

Note that 𝑥 divides 𝑦 if and only if 𝑦 mod 𝑥 = 0.

Exercise 2. Use Fact 4 and the formal de�nition of divisibility and mod to
argue that the previous sentence is correct.

De�nition 4: even/odd

An integer 𝑥 is even if and only if 𝑥 is divisible by 2. Such a number is odd if
and only if it is not divisible by 2.

Exercise 3. Use Fact 4 and the formal de�nition of mod to argue that a natural
number 𝑥 is even if and only if 𝑥 mod 2 = 0, and odd if and only if 𝑥 mod 2 =
1.

How do the even numbers relate to those numbers which are a multiple
of 2? Can you make your answer formal? Do your answers change if 𝑥 is an
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integer?

The fact that every number has an additive inverse means that for 𝑚 and 𝑛 in
Z we can solve all equations of the form

𝑚 + 𝑥 = 𝑛

within Z without reservations. Indeed, every equation in one variable which
involves addition and additive inverses has a unique solution. On the other hand,
equations of the form

𝑚𝑥 = 𝑛

are still not all16 solvable within Z.
If we accept that there are in�nitely many natural numbers then it is clear that

there are also in�nitely many integers. Because the natural numbers are embedded
inside the integers one might assume that there are more of the latter, but actually,
this is not a sensible notion of size for sets. Mathematically speaking, N and Z
have the same size, see Section 5.2 for details of what that statement means.

Many programming languages support a data type for the integers. However,
only �nitely many of them are represented. In Pythonor Java, for example, integers
are given by the primitive type int, and range in Java they range from −231 to
231 − 1. In Python there is a type long of long integers which are integers of
unlimited size.

Code Example 0.1. In Python there is an implementation of integer division.
However, it does not implement our de�nition when faced with negative
numbers. There are Python commands n // m and n%m with the property that

m x (n//m) + (n%m) = m

However the implementation does not force n%m to be non-negative, and so
if you use the Python commands to play with integer division you will see
results that are misleading as far as the underlying mathematics is concerned.
Also see the following example for Java showing that programmers prefer to
implement something di�erent from the mathematicians’ de�nition.

Code Example 0.2. In Java integer division is also implemented. Here is a
procedure that returns the result of dividing 𝑛 by 𝑚 (as integers).

public static int intdiv (int n, int m)
{

return n/m;
}

Similarly there is an implementation of the remainder of dividing 𝑛 by 𝑚.

public static int intmod (int n, int m)
{

return n % m;
}

16The solution would have to satisfy 𝑥 = 𝑛/𝑚, and this is not de�ned for all 𝑚 and 𝑛.
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Note, however, that this does not return the numbers that appears in our
de�nition: If 𝑛 is negative then n%m is a negative number. The way Java
implements the two operations ensures that they satisfy Lemma 0.2, that is

n = m*(n/m) + n%m.
The result of the Java expression n%m is ‘equivalent modulo 𝑚’ to the

result of 𝑛 mod 𝑚, see Section 7.3.5. This means that for negative 𝑛 you can
get

𝑛 mod 𝑚 by adding 𝑚 to n%m.

In the programming language C the language speci�cation does not state what
the smallest and greatest possible integers are—di�erent compilers have di�erent
implementations here. You have to work out what is safe to use in your system.

0.1.3 Rational numbers

One can view the rational numbers, usually written17 as Q, as the numbers re-
quired if one wants to have a multiplicative inverse for every number other than 0.
But again, giving a formal de�nition of these numbers is not straightforward if
one wants to ensure that all the previous operations are available.

One way of talking about the rational numbers is to introduce the notion of a
fraction, written as

𝑥/𝑦,

where 𝑥 and 𝑦 are integers.
But we cannot de�ne the rational numbers to be the collection of all fractions

since several fractions may describe the same rational number: We expect 2/4 to
describe the same number as 1/2

Formally we have to de�ne a notion of equality (or equivalence) on fractions,
whereby

𝑥/𝑦 = 𝑥′/𝑦′ if and only if 𝑥𝑦′ = 𝑥′𝑦.

There is a formal de�nition of the rational numbers, and their addition and multi-
plication, in Chapter 7, see De�nition 63.

We have quite a bit of structure on Q. All the facts for integers still hold, but
we get a new property.18

Fact 5
The statements from Fact 3 remain true if all variables are taken to be elements
of Q. In addition,

for all 𝑥 in Q with 𝑥 ̸= 0 there exists 𝑦 in Q such that 𝑥 · 𝑦 = 1 = 𝑦 · 𝑥.

We say that 𝑦 is the multiplicative inverse for 𝑥. Every element 𝑥 ̸= 0 has a
multiplicative inverse and the standard notation for this element is 𝑥−1.

A mathematician would say that Q with addition and multiplication is a �eld.

17The name comes from the Italian ‘quoziente’, quotient. We look at why this is in Semester 2,
see Section 7.3.

18Exercises 193 and 194 provide formal proofs of most of these properties.
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In my experience many students do not worry su�ciently
about potentially dividing by 0—Fact 5 makes it clear that only
for numbers unequal to 0 are we allowed to divide. In a recent
exam paper a number of students reasoned that

𝑏 = 𝑏′ and 𝑏𝑎 = 𝑏′𝑎′

imply that 𝑎 = 𝑎′, but in making this claim they neglected the
case where

𝑏 = 𝑏′ = 0,

which makes that conclusion false.

Many people speak of division as an operation on rational (and real) numbers,
but again, this is merely a shortcut: Writing

𝑦/𝑥

is an instruction to multiply 𝑦 with the multiplicative inverse of 𝑥, that is, it is a
shortcut for

𝑦 · 𝑥−1.

The number 0 does not have a multiplicative inverse, and that is why division by 0
is not allowed. In this course unit, please try not refer to division as an operation,
and when you multiply with inverses, always check to ensure these exist.

Exercise 4. What properties would a multiplicative inverse for 0 have to
satisfy? Argue that one such cannot exist.

The notion of the absolute can be extended to cover the rationals, using the
same de�nition.

Given 𝑞 and 𝑞′ in Q we can now solve all equations of the form

𝑞 + 𝑥 = 𝑞′ and 𝑞𝑥 = 𝑞′ (if 𝑞 ̸= 0)

within Q, provided that,19 for the second equation, 𝑞 ̸= 0. And indeed, every
equation with one unknown involving addition, multiplication and inverses for
these operations is solvable provided that it is not equivalent to one of the form
𝑞𝑥 = 𝑞′ where 𝑞 = 0, 𝑞′ ̸= 0.

The rational numbers are su�cient for a number of practical purposes; for
example, to measure the length, area, and volume of something to any given
precision, and also to do calculations with such quantities.

There are in�nitely many rational numbers, but mathematically speaking, Q
has the same size as N. See Section 5.2 for how to compare the size of sets.

Most mainstream programming languages do not have a datatype for the
rationals (or for fractions), but those aimed at algebraic computations (such as
Mathematica and Matlab) do.

19Note how the restrictions we have to make on equations to ensure they are solvable connect
with where the operations involved are de�ned (or not) for the various sets of numbers discussed
here.
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0.1.4 Real numbers

The rational numbers allow us to measure anything up to arbitrary precision, we
may add and subtract them, and there are additive and multiplicative inverses (the
latter with the exception of 0), which allows us to solve many equations. Why do
we need a larger set of numbers?

There are several approaches to this question. Here we give two. If we look at
the rational numbers drawn on a line then there are a lot of gaps.

Mathematically speaking we may de�ne a sequence (of rational numbers), that
is a list of numbers

𝑥𝑛 in Q, one for each 𝑛 ∈ N.

Sometimes a sequence can be said to converge to a number, that is, the sequence
gets arbitrarily close to the given number and never moves away from it.20 If such
a number exists it is called the limit of the sequence. For example, the limit of

1, 1/2, 1/4, 1/8, . . . that is 1/2𝑛 for 𝑛 in N

is 0.
Let us consider the sequence de�ned as follows:

𝑥0 = 1

𝑥𝑛+1 =
𝑥2
𝑛 + 2

2𝑥𝑛

We may calculate the �rst few members of the sequence to get

1, 3/2, 17/12, 577/408, . . .

and, if expressed in decimal notation,

1, 1.5, 1.416, 1.4142568627451, . . .

One may show that
𝑥2𝑛

gets closer and closer to 2, so we may think of the above as approximating a
number 𝑟 with the property that 𝑟2 = 2.

Optional Exercise 1. Show that there is no rational number 𝑥with the property
that 𝑥2 = 2. Hint: Assume that you have 𝑥 = 𝑚/𝑛 for some natural numbers
𝑚 and 𝑛 and derive a contradiction.

Hence there are numbers that are approximated by sequences of rational
numbers which are not themselves rational. Or, if we draw the rational numbers
as a line then it has a lot of gaps.

One can de�ne the notion of a Cauchy sequence. One may think of this as a
sequence that should have a limit (because the sequence contracts to a smaller
and smaller part of the rational numbers), but where there is no suitable rational
number for it to converge to. One can de�ne the real numbers R as being all the
limits for all the Cauchy sequences one can build from the rationals. This gives
a ‘complete’ set of numbers in the sense that every Cauchy sequence built from

20This can be de�ned mathematically but would take up more space than we want to give it here.
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elements of R has a limit in R. We use R+ to refer to those real numbers which
are greater than or equal to 0. The numbers in R which are not in Q are known as
the irrational numbers.

We do not give a formal de�nition of the real numbers in these notes—the above
outline should convince you that this is reasonably complicated to do rigorously.
We may think of the rational numbers as being included in R. The real numbers
again come with the operations of addition and multiplication, and inverses for
these (but 0 still does not have a multiplicative inverse), and we again have the
previous distributivity law for these operations. Just like the rational numbers, the
reals with these operations form a �eld, see Fact 6.

Fact 6
All statements from Fact 5 remain true if the variables are taken to be elements
of R.

A mathematician would say that the real numbers, with addition and multiplication,
also form a �eld.

All the sets of numbers discussed so far are ordered, that is, given two numbers
we may compare them. See Section 7.4.1 on how one generally talks about this
idea. Here we are concerned with giving additional facts you may want to use in
solving exercises.

The de�nition of the absolute again transfers to this larger set of numbers.
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Fact 7

Let 𝑥, 𝑥′, 𝑦 and 𝑦′ be elements of R. Then the following hold:

For all 𝑥, 𝑥′ in R we have 𝑥 ≤ 𝑥′ or 𝑥′ ≤ 𝑥.

If 𝑥 ≤ 𝑥′ and 𝑦 ≤ 𝑦′ then 𝑥 + 𝑦 ≤ 𝑥′ + 𝑦′.

If 𝑥 ≤ 𝑥′ and 𝑦 ≥ 0 then 𝑥 · 𝑦 ≤ 𝑥′ · 𝑦.
If 𝑥 ≤ 𝑥′ and 𝑦 ≤ 0 then 𝑥 · 𝑦 ≥ 𝑥′ · 𝑦.

If 𝑥 ≤ 𝑦 then −𝑥 ≥ −𝑦.

If 𝑥 ≤ 𝑦 then 𝑥−1 ≥ 𝑦−1

If 𝑥 ≥ 1, 𝑦, 𝑦′ ≥ 0 and 𝑦 ≤ 𝑦′ then 𝑥𝑦 ≤ 𝑥𝑦
′
.

If 𝑥 > 1, 𝑦, 𝑦′ ≥ 1 and 𝑦 ≤ 𝑦′ then log𝑥 𝑦 ≤ log𝑥 𝑦
′.

An alternative approach to introducing numbers beyond the rationals is as
follows. Within the rational numbers we are able to solve all ‘sensible’ equations
in one variable involving addition, multiplication and their inverses with rational
numbers. We may even add multiples of that variable with each other.21 But we
may not multiply the unknown with itself: Equations of the form

𝑥𝑥 = 𝑞 or 𝑥2 = 𝑞

are not all solvable with Q. By moving from Q to R we add a lot of solutions to
such equations to our set of numbers. For example, all equations of the form

𝑥𝑛 = 𝑟

are solvable for 𝑛 in N and 𝑟 in R with 𝑟 ≥ 0. Indeed, we may replace 𝑛 in N by 𝑞
in Q and we still have solutions.22

The situation becomes quite complicated. First of all we de�ne a new symbol:
We write

𝑛∑︁
𝑖=0

𝑎𝑖𝑥
𝑖 = 𝑎𝑛𝑥

𝑛 + 𝑎𝑛−1𝑥
𝑛−1 + · · · + 𝑎1𝑥 + 𝑎0

for a sum of a �nite number of elements.23

Given a polynomial equation, that is one of the form
𝑛∑︁

𝑖=0

𝑎𝑖𝑥
𝑖 = 𝑎𝑛𝑥

𝑛 + 𝑎𝑛−1𝑥
𝑛−1 + · · · + 𝑎1𝑥 + 𝑎0 = 0

where 𝑎𝑖 in Q for 0 ≤ 𝑖 ≤ 𝑛, there may be up to 𝑛 di�erent solutions, or there
may be none at all. Those real numbers that are solutions to such polynomial
equations are known as algebraic numbers. Examples are

√
2, 5

√
17 and 3

√︀
3/2.

But not all elements of R can be written as solutions to such equations. Those
that can not are the transcendental numbers; famous examples are 𝑒 and 𝜋, and less
well-known ones 𝑒𝜋 and 2

√
2. We can therefore not24 use the idea that R arises

from Q by adding solutions to equations over Q to formally de�ne R.
21These equations are called linear.
22And we may even replace 𝑞 in 𝑄 by 𝑟′ in R and use the idea of the continuity of a function to

de�ne the operation of forming 𝑥 to the power of 𝑟′, and we can still �nd solutions.
23This idea is formally introduced on page 6.45 in Chapter 6 but we use the

∑︁
symbol in Chapter 4

as well.
24There is a way of algebraically de�ning the real numbers, but that requires a lot of mathematical

theory to be set up that is fairly advanced.
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Real numbers are often referred to using decimal expansions. Such an expansion
is given by an integer together with a sequence of digits (one digit for each natural
number). For the integer 0 for example one gets numbers typically written

0.𝑑1𝑑2𝑑3 . . . ,

where for 𝑖 in N we know that 𝑑𝑖 in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. It is common not
to write trailing 0s (that is 0s where there is no di�erent digit occurring to the
right), so we write 3.14 instead of 3.140 = 3.14000000 . . .. Note, however, that
a number may have more than one decimal expansion, and 0.9 = 0.9999999 . . .
refers to the same number as 1.0000000 . . . = 1.0 = 1.

Exercise 5. If we change base from 10 we can still express numbers using pre-
and post-decimal digits. This question asks you to think a little bit about this.

(a) Translate the number 1.1 in base 2 to base 10.

(b) Translate the number 1.75 in base 10 to base 2.

(c) Give an alternative representation for the number 1.0 in base 2.

We don’t really need real numbers in the ‘real world’, but a lot of what we
might want to describe becomes a lot smoother if we are allowed to use them (the
trajectory of a ball is much easier thought of as a line than a sequence of points
with rational coordinates), and they allow us to be precise when referring to the
circumference of a circle, for example.

The set R is in�nite in size—but mathematically speaking, it is strictly larger
than Q. It is uncountably in�nite. See Section 5.2 for more details.

No real-world computer can implement all the real numbers. This is no sur-
prise given that there are in�nitely many of them. But more importantly every
implementation of (some of) the real numbers will only allow limited precision.25

Programming languages typically have some kind of �oating point number type
to approximate real (and so also) rational numbers, such as float in Python or
Java. It’s not unusual for there to be a more precise type, such as double in Java.
Note that operations on such numbers typically incur rounding errors (for these
operations to be precise it would be necessary to change the range of numbers
which are representable by adding more digits—for example, .5/2.0 = .25, and we
need to go from 1 digit after the decimal point to 2). In Java there is also bignum
which allows for arbitrary precision (since the maximal allowable length of the
number can be extended), provided the number has a �nite decimal expansion,
but these come at a price in memory and time performance (and a program that
keeps adding digits will eventually run out of memory). Floating point numbers
are given by a signi�cand and an exponent (because this increases the range of
numbers that can be represented), where for a given base, the number described is

signi�cand × baseexponent.

0.1.5 Numbers

We typically think of the sets of numbers introduced here as being subsets of each
other, with

N ⊆ Z ⊆ Q ⊆ R.
25There are some languages where it is possible to carry out calculations to a pre-de�ned precision,

but these are not main stream, and signi�cant overhead is required to make this work properly.
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Mathematically speaking, this is not strictly correct, but instead we have a function
that embeds the integers, say, in the rationals, in such a way that carrying out
operations from the integers also works if we think of the numbers as rationals.
See Section 7.3.7 for a formal de�nition of the integers and the rational numbers.

Sometimes in these notes we do not want to specify which set of numbers we
mean, and then we assume there is a set

𝑁 with N ⊆ 𝑁 ⊆ R

with an addition and a multiplication operation satisfying Fact 1.
Note that we can use the equalities given in the various Facts about sets of

numbers to show general properties without knowing which set of numbers we
are referring to.

Example 0.6. In this example we show that it is possible to establish facts
about numbers just from the general properties given in the various Facts
above.

Let 𝑁 be a set of numbers from Z, Q or R. Then by one of Facts 3, 5 or 6
we have for all 𝑥, 𝑦 and 𝑧 in 𝑁 the distributivity law

𝑥(𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧.

Further by the same fact we know that there exists a number 0 in 𝑁 with the
property that for all 𝑥 in 𝑁 we have

0 + 𝑥 = 𝑥 = 𝑥 + 0,

and for all 𝑦 in 𝑁 we have an additive inverse for 𝑦, 𝑧 in 𝑁 with

𝑦 + 𝑧 = 0 = 𝑧 + 𝑦,

and the associativity law. Together these tell us that for all 𝑥 in 𝑁 we have

𝑥 · 0 = 𝑥 · (0 + 0) 0 unit for +

= 𝑥 · 0 + 𝑥 · 0 distr law,

and if we set 𝑦 to be the additive inverse of 𝑥 · 0 we may conclude from the
previous equality, by adding 𝑦 on both sides, that

0 = 0 · 𝑥 + 𝑦 𝑦 add inverse for 0 · 𝑥
= (0 · 𝑥 + 0 · 𝑥) + 𝑦 prev equality
= 0 · 𝑥 + (0 · 𝑥 + 𝑦) associativity law
= 0 · 𝑥 + 0 𝑦 add inverse for 0 · 𝑥
= 0 · 𝑥 0 unit for + .

Of course you have known for a very long time that for all those sets of
numbers, multiplying 0 with any other number gives 0 once again. But have
you ever wondered whether there is a good mathematical reason for that fact?
The answer is that addition and multiplication have general properties that
force this equality upon us.x
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More powerfully, if we have any set with operations we may call + and ·
which satisfy the given equalities we can show that multiplying any element
with the unit for addition has to again be the unit for addition. We look at the
general properties of operations in Section 2.5.

0.2 Sets

Sets are very important in mathematics—indeed, modern mathematics is built
entirely around the notion of sets.

A set is a collection of items. Collections are required in order to

• make it clear what one is talking about (ruling some things in and others
out);

• precisely de�ne various collections of numbers—and in general, much of
algebra is concerned with structures given by

– an underlying set (for examples see Section 0.1 for various sets of
numbers which, however, aren’t formally de�ned here),

– operations on the set (such as addition and multiplication, for various
collections of numbers) and

– the properties of these operations (see for example Facts 1, 3, 5 and 6).26

• de�ne functions (see following section)—instructions for turning entities of
one kind into entities of another.

Sets have members and indeed a set is given by describing all the members it
contains. We write

𝑠 ∈ 𝑆

if 𝑠 is an member of the set 𝑆, for example

𝜋 ∈ R or 𝑎𝑎 ∈ {𝑎, 𝑎𝑎, 𝑎𝑎𝑎}.

Members are often also referred to as elements. There is a set that contains no
elements at all, the empty set, ∅.

0.2.1 Sets

Deciding which collections of entities may be considered sets is not as easy as
it might sound. Originally mathematicians thought that there would not be any
problems in allowing any collection to be considered a set, but very early into the
20th century Bertrand Russell described the paradox named after him:

If we are allowed to form the set of all sets which do not contain themselves
as members then we have a contradiction.27 Theories that contain contradictions
are called inconsistent, and they are not very useful since (at least according to
classical logic) every statement may be deduced in an inconsistent theory. But if
every statement is valid then the theory is of no use.

This caused something of a crisis, and prompted the creation of set theory as
a �eld within mathematics. Set theory is concerned with the question of how sets

26These properties are studied in more detail in Section 2.5.
27Ask yourself whether the given ‘set’ contains itself.
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may be built in a way that does not lead to contradictions. Mathematicians need
to build fairly complicated sets, and making sure that all their constructions are
allowed in the underlying set theory is not easy. The sets we require on this course
unit are nothing like as complicated and so we do not have to worry about proper
set theory here (and you should not refer to what is described in this section as
‘set theory’).

0.2.2 Operations on sets

The most fundamental operations on sets we may use is to compare28 them.

De�nition 5: subset

A set 𝑆 is a subset of the set 𝑇 , written

𝑆 ⊆ 𝑇,

if and only if every member of 𝑆 is also an member of 𝑇 .

In this situation we have

𝑠 ∈ 𝑆 implies 𝑠 ∈ 𝑇,

or
for all 𝑠 ∈ 𝑆 𝑠 ∈ 𝑇.

Note that the usage of key phrases such as ‘implies’, ‘there exists’, ‘for all’ is
described in detail in Chapter 2.2.1.

If 𝑆 ⊆ 𝑇 and 𝑇 ⊆ 𝑆 then 𝑆 = 𝑇 because they contain precisely the same
members.

We often de�ne subsets of sets we already know by identifying some particular
property. The notation used for this is

{𝑠 ∈ 𝑆 | 𝑠 has property 𝑃}.

This notation is explained in more detail in Section 0.2.3.

De�nition 6: proper subset

We say that a set 𝑆 is a proper subset of the set 𝑇 if and only if

• 𝑆 is a subset of 𝑇 , that is 𝑆 ⊆ 𝑇 and

• there exists a member 𝑡 ∈ 𝑇 with 𝑡 /∈ 𝑆,

Sometimes the notations

𝑆 ⊂ 𝑇 or 𝑆 ( 𝑇

are used in this situation.
When we have sets we may build new sets by putting their combined members

into one set, or by considering only those members contained in both sets. Because
constructing new sets is non-trivial and may lead to problems it is usually better
�rst to �nd an ‘ambient’ set that contains both the given sets.

Given a set 𝑋 , for 𝑆 and 𝑇 subsets of 𝑋 , we de�ne
28A more general notion of comparisons between sets is studied in Section 5.2.
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• their union, 𝑆 ∪ 𝑇 , to be

{𝑥 ∈ 𝑋 | 𝑥 ∈ 𝑆 or 𝑥 ∈ 𝑇},

which means that

𝑥 ∈ 𝑆 ∪ 𝑇 if and only if 𝑥 ∈ 𝑆 or 𝑥 ∈ 𝑇 ;

• their intersection, 𝑆 ∩ 𝑇 , to be

{𝑥 ∈ 𝑋 | 𝑥 ∈ 𝑆 and 𝑥 ∈ 𝑇},

which means that

𝑥 ∈ 𝑆 ∩ 𝑇 if and only if 𝑥 ∈ 𝑆 and 𝑥 ∈ 𝑇.

Note that we may now de�ne the union or intersection of �nitely many subsets
of 𝑋 by applying the operation to two sets at a time, that is, for example,

𝑆1 ∪ 𝑆2 ∪ 𝑆3 ∪ · · · ∪ 𝑆𝑛 = (· · · ((𝑆1 ∪ 𝑆2) ∪ 𝑆3) ∪ · · · ∪ 𝑆𝑛).

Again we have used · · · here, and to be more precise we should adopt the
mathematical notation

𝑛⋃︁
𝑖=1

𝑆𝑖

instead, which spells out that we are forming the union of all the sets from 𝑆1

to 𝑆𝑛.
But in fact, given an arbitrary collection of subsets of 𝑋 we may de�ne their

union and their intersection to obtain another subset of 𝑋 . Let 𝑆𝑖 be a subset of
𝑋 for each 𝑖 ∈ 𝐼 , where 𝐼 is an arbitrary set. Then⋃︁

𝑖∈𝐼
𝑆𝑖 = {𝑥 ∈ 𝑋 | there is 𝑖 ∈ 𝐼 with 𝑥 ∈ 𝑆𝑖}

and ⋂︁
𝑖∈𝐼

𝑆𝑖 = {𝑥 ∈ 𝑋 | for all 𝑖 ∈ 𝐼 we have 𝑥 ∈ 𝑆𝑖}.

It is sometimes useful to draw such constructions in the form of a Venn dia-
gram.

This is a picture of a generic set. The union of two generic sets, 𝑆 and 𝑇 , can
then be drawn as follows.

𝑆 𝑇
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But this is a bit imprecise if we do not draw the boundaries of the sets, so it
is more common to draw the boundaries of all the sets involved. We assume we
have a set 𝑆, here shown in red,29

𝑇𝑆

and a set 𝑇 , here shown in blue

𝑆 𝑇

for which we form the union 𝑆 ∪ 𝑇 (here in purple).

𝑆 𝑇 𝑆 ∪ 𝑇

The picture for the intersection, again drawn in purple.

𝑆 𝑇 𝑆 ∩ 𝑇

Sometimes we care about the fact that two sets do not overlap.

De�nition 7: disjoint

We say that two sets 𝑆 and 𝑇 are disjoint if and only if it is the case that

𝑆 ∩ 𝑇 = ∅.

There is one further important operation on sets.

De�nition 8: complement relative to

Let 𝑆 be a subset of a set 𝑋 . The complement of 𝑆 relative to 𝑋 , 𝑋 ∖ 𝑆, is
given by

{𝑥 ∈ 𝑋 | 𝑥 /∈ 𝑆}.

Some people write 𝑋 − 𝑆 for this set, and some people write 𝑆′ or 𝑆. The
latter two require that it is clearly understood which ambient set (here 𝑋) is meant.
It has the advantage that some properties can be formulated very concisely in that
notation. We do not use the primed version for complement in these notes—instead,
we use it to give us variable names (so 𝑆, 𝑆′ and 𝑆′′ might be names for di�erent
sets).

29You will see the colours only in the electronic but not in the printed version.
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Some of you have been taught that it is safe to write 𝑆 for the
complement of a set 𝑆 because we somehow know in which
set we are taking the complement. Always make it clear where
you are taking your complements.

If we want to draw the complement then we have to draw the ambient set 𝑋 .
(We didn’t have to do this for the examples so far.30) We do this by drawing a
square, with 𝑆 living inside the square.

𝑆 𝑋 ∖ 𝑆

These are all the operations required to build new sets from given ones. It is
now possible, for example, to de�ne the set di�erence, 𝑆 ∖ 𝑇 , of all members of 𝑆
that do not belong to 𝑇 ,

𝑆 ∖ 𝑇 = {𝑠 ∈ 𝑆 | 𝑠 /∈ 𝑇}
= 𝑆 ∩ (𝑋 ∖ 𝑇 ),

drawn in purple below.

𝑆 𝑇𝑆 ∖ 𝑇

Example 0.7. We can use these operations to give names relative to 𝑆 and 𝑇 to
all the regions in the following picture. This means we know how to determine
the elements of all these regions, provided we know when an element is in 𝑆,
and when it is in 𝑇 .

𝑆 𝑇

𝑋 ∖ (𝑆 ∪ 𝑇 )

𝑆 ∩ 𝑇

𝑆 ∖ 𝑇
𝑇 ∖ 𝑆

30We could have drawn a box around the diagrams given above, but this doesn’t really add
anything.
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If we have more than two sets to start with then there are many more sets one
could describe, but we now have to tools to do so for all of them.

𝑆 𝑇

𝑈

Exercise 6. Identify all regions in the above picture and give their description
based on operations applied to 𝑆, 𝑇 , and 𝑈 .

Proofs involving sets are often quite simple. We give an example below.

Proposition 0.3

Let 𝑆, 𝑇 and 𝑈 be subsets of a set 𝑋 . Then31

𝑆 ∩ (𝑇 ∪ 𝑈) = (𝑆 ∩ 𝑇 ) ∪ (𝑆 ∩ 𝑈).

Proof. To show that two sets are equal we have to establish that all the elements
of the �rst set occur in the second, and vice versa. Sometimes it is easier to
give this as two separate proofs, and sometimes it can be done all in one go.

𝑆 ∩ (𝑇 ∪ 𝑈)

= {𝑥 ∈ 𝑋 | 𝑥 ∈ 𝑆 and 𝑥 ∈ 𝑇 ∪ 𝑈} def ∩
= {𝑥 ∈ 𝑋 | 𝑥 ∈ 𝑆 and (𝑥 ∈ 𝑇 or 𝑥 ∈ 𝑈)} def ∪
= {𝑥 ∈ 𝑋 | (𝑥 ∈ 𝑆 and 𝑥 ∈ 𝑇 ) or (𝑥 ∈ 𝑆 and 𝑥 ∈ 𝑈)} see below
= {𝑥 ∈ 𝑋 | 𝑥 ∈ 𝑆 ∩ 𝑇 or 𝑥 ∈ 𝑆 ∩ 𝑈} def ∩
= (𝑆 ∩ 𝑇 ) ∪ (𝑆 ∩ 𝑈) def ∪ .

The key step in the proof is the statement that, for 𝑥 ∈ 𝑋 , we have

𝑥 ∈ 𝑆 and (𝑥 ∈ 𝑇 or 𝑥 ∈ 𝑈)

if and only if

𝑥 ∈ 𝑆 and 𝑥 ∈ 𝑇 or 𝑥 ∈ 𝑆 and 𝑥 ∈ 𝑈.

We can make a case distinction: If

𝑥 ∈ 𝑆 and 𝑥 ∈ 𝑇 or 𝑥 ∈ 𝑈

then at least one of
𝑥 ∈ 𝑆 and 𝑥 ∈ 𝑇

31This is known as a distributivity law, compare the last statement of Fact 1.
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and
𝑥 ∈ 𝑆 and 𝑥 ∈ 𝑈

must hold, which justi�es our original argument. E�ectively we are applying
here rules of logic which are explained in more detail in Chapter 3.

Alternatively we can show that the two sets are included in each other.
We �rst show that 𝑆 ∩ (𝑇 ∪ 𝑈) is a subset of (𝑆 ∩ 𝑇 ) ∪ (𝑆 ∩ 𝑈).

𝑥 ∈ 𝑆 ∩ (𝑇 ∪ 𝑈)

implies 𝑥 ∈ 𝑆 and 𝑥 ∈ 𝑇 ∪ 𝑈 def ∩
implies 𝑥 ∈ 𝑆 and (𝑥 ∈ 𝑇 or 𝑥 ∈ 𝑈) def ∪
implies 𝑥 ∈ 𝑆 and one of (𝑥 ∈ 𝑇 or 𝑥 ∈ 𝑈)

implies (𝑥 ∈ 𝑆 and 𝑥 ∈ 𝑇 ) or (𝑥 ∈ 𝑆 and 𝑥 ∈ 𝑈) see above
implies 𝑥 ∈ 𝑆 ∩ 𝑇 or 𝑥 ∈ 𝑆 ∩ 𝑈 def ∩
implies 𝑥 ∈ (𝑆 ∩ 𝑇 ) ∪ (𝑆 ∩ 𝑈) def ∪ .

Next we show that (𝑆 ∩ 𝑇 ) ∪ (𝑆 ∩ 𝑈) is a subset of 𝑆 ∩ (𝑇 ∪ 𝑈).

𝑥 ∈ (𝑆 ∩ 𝑇 ) ∪ (𝑆 ∩ 𝑈)

implies 𝑥 ∈ 𝑆 ∩ 𝑇 or 𝑥 ∈ 𝑆 ∩ 𝑈 def ∪
implies (𝑥 ∈ 𝑆 and 𝑥 ∈ 𝑇 ) or (𝑥 ∈ 𝑆 and 𝑥 ∈ 𝑈) def ∩
implies in either case we have 𝑥 ∈ 𝑆, and we must also have

at least one of 𝑥 ∈ 𝑇 or 𝑥 ∈ 𝑈

implies 𝑥 ∈ 𝑆 and 𝑥 ∈ 𝑇 ∪ 𝑈 def ∪
implies 𝑥 ∈ 𝑆 ∩ (𝑇 ∪ 𝑈) def ∩ .

EExercise 7. Assume that 𝑆 and 𝑇 are subsets of a set 𝑋 .

(a) Show that the complement relative to 𝑋 of the union of 𝑆 and 𝑇 is the
intersection of the complements (relative to 𝑋) of 𝑆 and 𝑇 . Hint: Turn the
sentence into an equality of sets. Look at the proof of Proposition 0.3 for an
example how to prove that two sets are equal.

(b) Show that the union of two sets may be written using only the complement
and the intersection operations. Hint: Use your equality from the previous part.

(c) Give an argument that we may describe precisely the same sets using (∪,
∩ and ∖) as using (∩ and ∖).

A useful operation assigns to a �nite set the number of elements in that set,
which is written as3233

𝑆 |𝑆|.

For all sets of numbers we have useful operation that allows us to extract the
smallest/largest number from a set, provided it exists, which is always the case if
the set is �nite.

32Some texts may use #𝑆 instead.
33If you are not familiar this notation to describe a function come back to this once you have read

Section 0.3.
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Given a set 𝑆 of numbers we write

min𝑆

for the smallest number in 𝑆 if it exists, and

max𝑆

for the largest number in 𝑆 if it exists.

Example 0.8. We have that

min{1, 2, 3, 𝜋} = 1

and
max{1, 2, 3, 𝜋} = 𝜋,

and
min[0, 1] = 0,

while
max[0, 1] = 1.

Note, however, that

min(0, 1) and minR

are not de�ned, and that the same is true for

max(0, 1) and maxR.

0.2.3 Describing sets

Describing sets precisely is harder than it may sound. If a set has �nitely many
elements then, in principle, we could list them all. But if there are a lot of them this
is rather tedious and time-consuming. People often resort to using . . . to indicate
that there are members that are not explicitly named, and they hope that it is clear
from the context what those members are. Take for example

{0, 1, 2, . . . , 100, 000}.

But whenever this notation is used there is room for confusion. It is much
better to give a more precise description such as

{𝑛 ∈ N | 𝑛 ≤ 100, 000}.

The idea behind this kind of description is that one describes the set in question
as a subset of a known set (here N), consisting of all those members satisfying a
particular property (here being less than or equal to 100, 000). In logic such a
property is known as a predicate. It is almost inevitably the case that any set we
might want to describe is a subset of a set already known, so this technique works
remarkably often.

In general the format is to have a known set 𝑆 and to de�ne

{𝑠 ∈ 𝑆 | 𝑠 has property 𝑃}.
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Example 0.9. Let’s assume we want to describe the set of even natural numbers.
We could write

{0, 2, 4, 6, . . .},

but this leaves it to the reader to make precise which elements belong to the
set and which ones don’t. This is strongly discouraged. Instead we could write
the preferable

{𝑛 ∈ N | 𝑛 even},

but that assumes that the reader knows how the even property is de�ned. If we
want to leave no room for doubt we could apply the de�nition (see De�nition 4)
and write

{𝑛 ∈ N | 𝑛 mod 2 = 0}.

This makes it precise which members belong to our set—indeed, it gives
us a test that we can apply to some given natural number to see whether it
belongs to our set.

Example 0.10. Because we may form intersections and unions of sets we may
also specify sets consisting of all those elements which have more than one
property. All even numbers up to 100, 000 could be described as an intersection,
namely

{𝑛 ∈ N | 𝑛 mod 2 = 0} ∩ {𝑛 ∈ N | 𝑛 ≤ 100, 000},

but it is more customary instead to combine both properties by using ‘and’,
that is

{𝑛 ∈ N | 𝑛 mod 2 = 0 and 𝑛 ≤ 100, 000}.

When looking at the real numbers there is a standard way of de�ning subsets
which give a contiguous part of the real line:

[𝑥, 𝑦] = {𝑟 ∈ R | 𝑥 ≤ 𝑟 ≤ 𝑦}

and
(𝑥, 𝑦) = {𝑟 ∈ R | 𝑥 < 𝑟 < 𝑦},

or
[𝑥, 𝑦) = {𝑟 ∈ R | 𝑥 ≤ 𝑟 < 𝑦},

but also
(−∞, 𝑦] = {𝑟 ∈ R | 𝑟 ≤ 𝑦}.

Sets of this form are known as ‘real intervals’. Note that we use the notation

R+ = [0,∞),

for non-negative real numbers.
We may also use the idea of de�ning sets using properties to describe all those

elements of a given set which satisfy at least one of several properties.

Example 0.11. An example of this idea is given by

{𝑛 ∈ N | 𝑛 mod 2 = 0 or 𝑛 mod 2 = 1},
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which is the union of two sets, namely

{𝑛 ∈ N | 𝑛 mod 2 = 0} ∪ {𝑛 ∈ N | 𝑛 mod 2 = 1},

and this set is equal to N.

Example 0.12. It is also possible to use this idea to specify the elements that
do not have a particular property. The odd natural numbers are those that are
not even.

{𝑛 ∈ N | 𝑛 mod 2 ̸= 0} = N ∖ {𝑛 ∈ N | 𝑛 mod 2 = 0}
= {𝑛 ∈ N | 𝑛 mod 2 = 1}.

Example 0.13. If we want to describe the rational numbers as a subset of R
we may use

{𝑟 ∈ R | there exists 𝑚 and 𝑛 in Z such that 𝑟 = 𝑚/𝑛},

Example 0.14. Nothing stops us from specifying

{𝑛 ∈ N | 𝑛 mod 2 = 0 and 𝑛 mod 2 = 1},

which is a rather complicated description of the empty set.

It is possible to use in�nitely many restricting properties.

Example 0.15. Given a natural number 𝑘, the multiples of 𝑘 can be written as

{𝑛 ∈ N | 𝑛 mod 𝑘 = 0.}.

So the set of natural numbers which are not multiples of 𝑘 is

{𝑛 ∈ N | 𝑛 mod 𝑘 ̸= 0}.

Example 0.16. A more complicated question is how to describe the set of all
prime numbers.

For that it helps to consider the set of elements which are not a multiple
of any number other than one and themselves, which is equivalent to saying
that they are not a multiple of any number with a factor of at least 2.

The set of all multiples of 𝑘 in N, with a factor of two or greater, is given
by

{𝑛 ∈ N | 𝑛 mod 𝑘 = 0, 𝑛 div 𝑘 ≥ 2.},

and the set of all numbers which are not such a multiple is

N ∖ {𝑛 ∈ N | 𝑛 mod 𝑘 = 0, 𝑛 div 𝑘 ≥ 2, }.

which is the same as

{𝑛 ∈ N | 𝑛 mod 𝑘 ̸= 0 or (𝑛 mod 𝑘 = 0 and 𝑛 div 𝑘 = 1.},
27



which is the same as

{𝑛 ∈ N | 𝑛 mod 𝑘 ̸= 0 or 𝑛 = 𝑘}.

Note that all these sets contain the number 1, which we would like to exclude
from the set of prime numbers.

This suggests that we can use the intersection of all these sets of non-
multiples of 𝑘, where 𝑘 ∈ N ∖ {0, 1}, to express the prime numbers. This set
is given by ⋂︁

𝑘∈N∖{0,1}

{𝑛 ∈ N ∖ {1} | 𝑛 mod 𝑘 ̸= 0 or 𝑛 = 𝑘}

Instead of restricting the elements of a known set to describe a new set it is
sometimes possible instead to provide instructions for constructing the elements of
the new set. This is the second important technique for describing sets.

Example 0.17. An alternative way of describing the even numbers is to recog-
nize that they are exactly the multiples of 2, and to write

{2𝑛 | 𝑛 ∈ N}.

The odd numbers may then be described as

{2𝑛 + 1 | 𝑛 ∈ N}.

But for a better answer, we should add something here. Read on to �nd out
what.

We can think of this as constructing a new set, but usually this only makes
sense when describing a subset of a previously known set. Certainly the notation
assumes that we know what we mean by 2𝑛, or 2𝑛 + 1—this implies we know
where the addition and multiplication operations that appear in these expressions
are to be carried out. In this examples it is in N, so it would be better to write

{2𝑛 + 1 ∈ N | 𝑛 ∈ N}.

This may seem obvious, since N is explicitly named as the set 𝑛 belongs to,
but assume that in order to describe the rational numbers we wrote

{𝑚/𝑛 | (𝑚,𝑛) ∈ Z× (Z ∖ {0})}.

But what does this mean? Where do we take 𝑚/𝑛? This is not de�ned in the
collection Z of numbers where 𝑚 and 𝑛 live, and so it is not clear what we mean
here. Maybe this is a set of formal fractions? We could clarify this by writing

{𝑚/𝑛 ∈ R | (𝑚,𝑛) ∈ Z× (Z ∖ {0})},

from which it is clear that we mean to collect all the results of calculating 𝑚 · 𝑛−1

within the real numbers.

Example 0.18. To describe the integer multiples of 𝜋 (for example if we want
to have all the points on the real line for which sin takes the value 0) we might
write,

{𝑛𝜋 | 𝑛 ∈ Z}.
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Again we have to deduce from the context where 𝑛𝜋 is meant to be carried
out. If we write

{𝑛𝜋 ∈ R | 𝑛 ∈ Z},

then everything is made explicit.

In general what we have done here is to assume that we have two known sets,
say 𝑆 and 𝑇 , and a way of producing elements from the second set from the �rst,
using a function

𝑓 : 𝑆 𝑇 .

We then write
{𝑓𝑠 ∈ 𝑇 | 𝑠 ∈ 𝑆}

for the set of all elements of 𝑇 which are ‘generated’ by elements of 𝑆 using the
function 𝑓 .

We are using the notation {. . . | . . .} in two ways that look
di�erent, but we can think of the statement 𝑠 ∈ 𝑆 as a property
so this notation is not inconsistent. One could even combine
the two ideas.

You should think of the vertical line as saying ‘such that’, so

{𝑛 ∈ Z | 𝑛 is even}

can be pronounced as

the set of all 𝑛 in Z such that 𝑛 is even

and
{2𝑛 ∈ Z | 𝑛 ∈ Z}

can be pronounced as

the set of all those 2𝑛 in Z for which 𝑛 is in N.

Note that these two sets are not equal!

CExercise 8. For the sets given below, give a description using a predicate (as
in Example 0.9), and also give a description where you generate the set (as in
Example 0.17).

(a) Describe the set of all integers that are divisible by 3.

(b) Describe the set of all integers that are divisible by both, 2 and 3.

(c) Describe the set of all integers that are divisible by 2 or by 3. To generate
this set you need to use the union operation.

(d) Describe the set of all integers that are divisible by 2 or by 3 but not by 6.
To generate this set you need to use the union, and the relative complement,
operations.

(e) Describe the set of all real numbers 𝑟 for which cos 𝑟 = 0.

0.2.4 Constructions for sets

There is one other fairly common construction for sets.
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De�nition 9: product of two sets

Given sets 𝑋 and 𝑌 their34 product,

𝑋 × 𝑌,

is the set
{(𝑥, 𝑦) | 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 }.

This means that the elements of the product are pairs whose �rst component
is an element of 𝑋 and whose second component is an element of 𝑌 . Products of
sets appear in many places, and the examples we give below barely scratch the
surface.

Example 0.19. The product of the set {0, 1} with itself is the set with the
elements

(0, 0), (0, 1), (1, 0), (1, 1),

so
{0, 1} × {0, 1} = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Example 0.20. A more familiar example is a deck of cards: You have four suits,
clubs ♣, spades ♠, hearts ♡ and diamonds ♢, and you have standard playing
cards, say 7, 8, 9, 10, 𝐽 , 𝑄, 𝐾 , 𝐴 in a 32-card deck. Each of those cards appears
in each of the suits, so you have four Queens, one each for clubs, spaces, hearts
and diamonds. In other words, your 32 card deck can be thought of as the
product

{♣,♠,♡,♢} × {7, 8, 9, 10, 𝐽,𝑄,𝐾,𝐴}.

We can picture the result as all combinations of elements from the �rst set
with elements from the second set. The accepted standard for describing cards
is to �rst give the value and then the suit, so in the table below

9♢

is the notation used for the element

(♢, 9)

of our product set.

7 8 9 10 𝐽 𝑄 𝐾 𝐴

♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣ A♣
♠ 7♠ 8♠ 9♠ 10♠ J♠ Q♠ K♠ A♠
♡ 7♡ 8♡ 9♡ 10♡ 𝐽♡ 𝑄♡ 𝐾♡ 𝐴♡
♢ 7♢ 8♢ 9♢ 10♢ 𝐽♢ 𝑄♢ 𝐾♢ 𝐴♢

Whenever you draw the graph of a function from R to R you do so in the
product of the set R with itself: You use the 𝑥-axis to give the source of the function,
and the 𝑦-axis for the target, and you then plot points with coordinates (𝑥, 𝑓𝑥),
where 𝑥 varies through the source set.

34This is also known as their Cartesian product.
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Example 0.21. A very important set that is a product is the real plane

R× R = R2 = {(𝑟, 𝑟′) | 𝑟, 𝑟′ ∈ R}.

This is the set we use when we draw the graph of a function from real numbers
to real numbers (see Section 0.3.4), where we use the �rst coordinate to give
the argument, and the second argument to give the corresponding value.

Example 0.22. Similarly, the 𝑛-dimensional vector space based on R has as
its underlying set the 𝑛-fold product of R with itself,

R× R× · · · × R⏟  ⏞  
𝑛 times

= R𝑛 = {(𝑟1, 𝑟2, . . . , 𝑟𝑛) | 𝑟1, 𝑟2, . . . 𝑟𝑛 ∈ R}.

Note that it is possible to recover the components of an element of a product:
We have two functions,35

𝜋1 : 𝑋 × 𝑌 𝑋

and
𝜋2 : 𝑋 × 𝑌 𝑌 ,

known as the projection functions with the behaviour that, for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌
we have

𝜋1(𝑥, 𝑦) = 𝑥 and 𝜋2(𝑥, 𝑦) = 𝑦.

In general, if 𝑆 is a set, people often write

𝑆2

for
𝑆 × 𝑆

and more generally,
𝑆𝑛

for the 𝑛-fold product of 𝑆 with itself. The elements of this set can be described as
𝑛-tuples of elements of 𝑆, that is

𝑆𝑛 = {(𝑠1, 𝑠2, . . . 𝑠𝑛) | 𝑠𝑖 ∈ 𝑆 for 1 ≤ 𝑖 ≤ 𝑛}.

Note that here we construct a new set, and we de�ne what the elements of the
set are (namely pairs of elements of the given sets) and we do not have to identify
an ambient set.

In Section 2.5 we describe operations on sets as functions (see Sections 0.3)
and for that we require the product construction. A binary operation36 is one that
takes two elements from a set, and returns one element of the same set.

Example 0.23. Addition for the natural numbers N is a binary operation on
the set N. As a function (see Section 0.3) it takes two elements, say 𝑥 and 𝑦, of
N, that is

an element (𝑥, 𝑦) of N× N,

35You may want to come back to this after reading Section 0.3.
36That is for example an operation which takes two numbers and returns a number.
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and returns
an element 𝑥 + 𝑦 of N.

The type of this operation is

N× N N.

But, of course, we may also consider addition for di�erent sets of numbers,
giving operations, for example

Z× Z Z Q×Q Q R× R R.

Another general operation sometimes applied to sets is the disjoint union but
we do not describe this here.

De�nition 10: powerset
Given a set 𝑋 , its powerset 𝒫𝑋 , is given by the set of all subsets of 𝑋 ,.

𝒫𝑋 = {𝑆 | 𝑆 ⊆ 𝑋}.

All our operations on sets were de�ned for elements of such a powerset. For
example, given an element 𝑆 of 𝒫𝑋 , which is nothing but a subset of 𝑋 , we have
𝑋 ∖ 𝑆, the complement of 𝑆 with respect to 𝑋 , which is another element of 𝒫𝑋 .

Example 0.24. We may think of the union operation as taking two elements
of 𝒫𝑋 , and returning37 an element of 𝒫𝑋 , so we would write that as

∪ : 𝒫𝑋 × 𝒫𝑋 𝒫𝑋,

with the assignment given by

(𝑆, 𝑇 ) 𝑆 ∪ 𝑇 ,

that is, given the arguments 𝑆 and 𝑇 in 𝒫𝑋 the function returns their union,
𝑆 ∪ 𝑇 .

Because there are so many operations on the powerset it turns out to be a
useful model for various situations. In the material on logic we see how to use it
as a model for a formal system in logic.

Sometimes we care only about the �nite subsets of a set, that is

{𝑆 ⊆ 𝑋 | 𝑆 is �nite}.

People sometimes call this ‘the �nite powerset’, but that is a bit problematic since
this often isn’t itself a �nite set.

0.3 Functions

One could argue that sets are merely there to allow us to talk about functions, and
while this is exaggerated sets wouldn’t be much use without the ability to move
between them.

37You may want to come back to this example after reading Section 0.3.
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0.3.1 Function, source, target, range

A function is a way of turning entities of one kind into those of another. Formally
a function

𝑓 : 𝑆 𝑇

is given by

• a source set 𝑆

• a target set 𝑇 and

• an instruction that turns every element 𝑠 of 𝑆 into an element 𝑓𝑠 of 𝑇 ,
often38 written as

𝑠 𝑓𝑠.

Many people allow giving functions without specifying the source and target sets
but this is sloppy. Every function has a type, and for our example 𝑓 here the type
is 𝑆 → 𝑇 .

Some instructions can be used with multiple source and target sets. For example

𝑥 2𝑥

may be used to de�ne a function

• N → N,

• Z → Z,

• Q → Q,

• R → R.

and
𝑥 𝑥2

could have the types (among others)

• N → N,

• Q → Q or Q → Q+,

• R → R or R → R+.

0.3.2 Composition and identity functions

Which functions we can de�ne from one set to another depends on the structure
of the sets, and on any known operations on the sets. Only one (somewhat boring)
function is guaranteed to exist for every set 𝑆.

38It is quite often standard to write 𝑓(𝑠) but as long as the argument is not a complicated expression
this is unnecessary.
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De�nition 11: identity function

The identity function id𝑆 on a set 𝑆 given by the assignment

id𝑆 : 𝑆 𝑆

𝑠 𝑠.

An important operation on functions is given by carrying out one function
after another.

De�nition 12: composite of two functions
Given two functions

𝑓 : 𝑆 𝑇 and 𝑔 : 𝑇 𝑈

where the target of 𝑓 is the source of 𝑔, the composite of 𝑓 and 𝑔

𝑔 ∘ 𝑓 : 𝑆 𝑈

𝑎 𝑔(𝑓𝑎),

is de�ned by �rst applying 𝑓 to 𝑠 and then 𝑔 to the result, that is

𝑠 𝑓𝑠 𝑔𝑓𝑠

𝑆 𝑇 𝑈,

and so overall we map 𝑠 ∈ 𝑆 to 𝑔𝑓𝑠 ∈ 𝑈 .

Composition allows us to build more complicated functions from simple
ones.

Example 0.25. One may think of a linear function on R, of the form

𝑥 𝑚𝑥 + 𝑏

to be the result of composing the following two functions R R:

𝑓 : 𝑥 𝑚𝑥 and 𝑔 : 𝑥 𝑥 + 𝑏 ,

since this amounts to calculating

𝑥 𝑚𝑥 𝑚𝑥 + 𝑏

R R R.

𝑓 𝑔

In other words, if we apply the function 𝑓 to 𝑥, and the function 𝑔 to the
result, we �nd that overall 𝑥 is mapped to 𝑚𝑥 + 𝑏.

Example 0.26. You probably have used the notion of a composite already. You
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may �nd it easier to realize this by looking at the assignment

𝑥
√︀
| sin𝑥|

from R to R. This tells you to �rst apply the sine function to 𝑥, and to apply
the square root function to the absolute of the result. The idea of composing
functions just makes this explicit, and it also forces you to ensure that the
output of the �rst function is always a valid input to the second function.

Hence we may express the given function as the composite of the following
functions:

𝑓 : R R
𝑥 sin𝑥

𝑔 : R R+

𝑥 |𝑥|
ℎ : R+ R

𝑥
√
𝑥

in the sense that the given function is

ℎ ∘ 𝑔 ∘ 𝑓

which means that the assignment given is the same as

𝑥 ℎ(𝑔(𝑓𝑥)).

Note that we could have speci�ed a di�erent target for the sine function, such
as the real interval [−1, 1], and made that the source of the following function.

In order to de�ne a function you have to specify its source and
target. Don’t forget to do this.

CExercise 9. De�ne three functions such that their composite is a function
R R which maps an input to the logarithm (for base 2) of the result of
adding 2 to the negative of the square of the sine of the input. Hint: To de�ne a
function you need to give its source and target. You need to make sure that your
functions can be composed.

0.3.3 Basic notions for functions

It can sometimes be useful to determine which part of the target set is reached by
a function.

De�nition 13: image, range of a function

Given a function 𝑓 : 𝑆 𝑇 , for 𝑠 ∈ 𝑆 we say that 𝑓𝑠 is the image of 𝑠
under 𝑓 , and the set

{𝑓𝑠 ∈ 𝑇 | 𝑠 ∈ 𝑆}

is the range of f. It is also known as the image of the set 𝑆, and written 𝑓 [𝑆].
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Note that we may also write the range of 𝑓 , which can also be thought of as
image of the set 𝑆 under the function 𝑓 , by using a property of elements of 𝑇 as

{𝑡 ∈ 𝑇 | there exists 𝑠 ∈ 𝑆 with 𝑓𝑠 = 𝑡}.

Example 0.27. For the sine function

sin : R R,

the image of 0 under sin is 0 = sin 0, and the range of sin is the set

[−1, 1].

Example 0.28. If we formally want to de�ne the notion of a sequence of, say,
real numbers, then we should do so as a function 𝑎 from N to R. The 𝑛th
member of the sequence is given by 𝑎𝑛. In such cases 𝑎𝑛 is often written 𝑎𝑛.
For example, the sequence given on page 13 would have the �rst few values

argument 0 1 2 3 4
value 1 1/2 1/4 1/8 1/16,

and the formal de�nition of this function is

N R

𝑛
1

2𝑛.

We may also think of a function as translating from one setting to another.
In Java casting allows us to take an integer, int and cast it as a �oating point
number, float. This is e�ectively a function which takes an int (which amounts
to a number of bits) and translates it into what we think of as the same number,
but now expressed in a di�erent format. Similarly in Python it is possible to
‘convert’ numbers of one type into another, for example float(x) takes a number
in a di�erent format, for example an integer, and converts it into a �oating point
number.

For a mathematical example, we note that we have functions connecting all
our sets of numbers since

N is embedded in Z which is embedded in Q which is embedded in R.

All these embeddings are functions, but they are so boring that we don’t usually
bother to even name them. For a slightly more interesting example take the set of all
fractions. From there we have a function that maps a fraction to the corresponding
rational number (and so 1/2 and 2/4 are mapped to the same number), allowing
us to translate from the presentation as fraction to the numbers we are really
interested in.

If you have a customer database you could print a list of all of your customers.
You have e�ectively constructed a function that takes an entry in your database
and maps it to the name �eld. Note that if you have two customers called John
Smith then that name will be printed twice, so thinking of a ‘set of names’ is not
entirely appropriate here.
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If we have small �nite sets then one can de�ne a function in a graphical way,
by showing which element of the source set is mapped to which element of the
target set. We give an example of this below.

Example 0.29. We draw a function

{𝑎, 𝑏, 𝑐} {1, 2, 3, 4}.

∙𝑎

∙𝑏

∙𝑐

∙ 4

∙ 1
∙ 2
∙ 3

This function maps 𝑎 to 1 and 𝑏 and 𝑐 to 3. Note that in order for such
a diagram to describe a function, every element of the source set must be
mapped to precisely one element of the target set.

0.3.4 The graph of a function

It can be useful to think of a function via its graph.

De�nition 14: graph of a function

The graph of a function is the set of pairs consisting of an element of the
source set with its image under the function,39 that is, given

𝑓 : 𝑆 𝑇

its graph is the set
{(𝑠, 𝑓𝑠) ∈ 𝑆 × 𝑇 | 𝑠 ∈ 𝑆}.

We can see what this de�nition means by assuming we are given a function

𝑓 : 𝑆 𝑇

and noting that this de�nition tells us that is graph is the set

{(𝑠, 𝑓𝑠) ∈ 𝑆 × 𝑇 | 𝑠 ∈ 𝑆}

which is a subset of the product of 𝑆 and 𝑇 .
See Proposition 2.1 for a characterization of those subsets of 𝑆 × 𝑇 which are

the graph of a function from 𝑆 to 𝑇 .
When we have functions between sets of numbers we can draw a picture of

their graph.

Example 0.30. Let’s return to the function from Example 0.28, which is given
by

N R

𝑥
1

2𝑥.

39And indeed, a standard way of de�ning functions in set theory is via their graphs.
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Its graph can be drawn as follows.

𝑥0

1

1 2 3 4

∙
∙ ∙ ∙ ∙

More examples appear in the following section.
For functions between �nite sets drawing the graph in this way is usually not

particularly useful. The graph of the �nite example
above is

{(𝑎, 2), (𝑏, 3), (𝑐, 3)},

and one might draw it as follows:

𝑎 𝑏 𝑐

1

2

3

4

This does not really show anything that is not visible in the previous diagram.

0.3.5 Important functions

When we are interesting in judging how long a computer program will take we
typically count the number of instructions that will have to be carried out. How
many instructions these are will, of course, depend on the program, but also on
the particular input we are interested in. Often the inputs to a program can be
thought of as having a particular size: For example, sorting �ve variable of type
int will be quite di�erent from doing so for one million such variables.

Typically the number of instructions a program has to carry out depends on
the size of the input rather than the actual input, and so we can think of this as
de�ning a function from N to N which takes the size of the input to the number of
instructions that are carried out.

There are a number of functions that typically appear in such considerations.40

In computer science it would be su�cient for these purposes to consider these
functions as going from N to N, but it is often more convenient to draw their
graphs as functions from R+ to R+. In what follows we consider functions that
commonly appear in that setting, and where possible we draw their graph as
functions from R to R.

There are linear functions, which are of the form

R R
𝑥 𝑚𝑥 + 𝑏

and their graphs look like this.
40You will meet them again when you look at this in more detail in COMP11212 and COMP26120.
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𝑥

𝑏

A typical quadratic function is given by

R R
𝑥 𝑎𝑥2 + 𝑏𝑥 + 𝑐

and (for some values of 𝑎, 𝑏 and 𝑐) its graph looks like this:

𝑥

Other polynomial functions, that is functions of the form

𝑛∑︁
𝑖=1

𝑎𝑖𝑥
𝑖

may also feature.
Sometimes we wish to consider functions which involve the argument being

taken to a power other than a natural number, for example

R+ R+

𝑥 𝑥1/2 =
√
𝑥.
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𝑥

Some of these functions are de�ned for non-negative numbers only, so their
source is R+, rather than all of R. Note that for �xed 𝑥 ∈ R+ this function only
gives the positive solution of the equation

𝑦 = 𝑥2.

If you want to refer to both of these41 you have to write ±
√
𝑥.

Apart from these polynomial functions, important examples that come up in
computer science are concerned with logarithmic functions. In computer science
one typically wishes to use logarithms to base 2. They are typically written as

[1,∞) R+

𝑥 log 𝑥

and look like this.

𝑥1

And then there are exponential functions. Because of the speed with which
these grow having a program whose number of instructions is exponential in
the size of the problem is a serious issue since it means that it is not feasible to

41If you have been taught otherwise then this is at odds with notation used at university level
and beyond.
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calculate solutions for larger problem sizes using this program. It is fairly usual to
use 2 as a base once again. The function in question is

R R
𝑥 2𝑥

and its graph is even steeper than that of the quadratic curve above.

𝑥

1

In all these cases typically the shape of the curve is more important than
any parameters involved in de�ning it—so knowing that we have a quadratic
function is very useful, whereas there is little added bene�t in knowing 𝑎, 𝑏 and 𝑐
in 𝑎𝑥2 + 𝑏𝑥 + 𝑐.

If one has a problem size of 1,000,000, for example, then it is important to know
how fast the function grows to see how many instructions will have to be carried
out for that size (and so how long it will take for the program to �nish, or it if is
possible for this program to �nish at all).

If we draw the functions from above in the same grid (note that we have
compressed the 𝑦-axis here) we can compare them.

𝑥
1

1

2𝑥

.5𝑥 + 1

𝑥2

log 𝑥
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The issue of how to compare functions when we are only interested in how they
do for large inputs is discussed in Section 5.1, and this is relevant for calculating
the complexity of a programme or algorithm.

Note that Fact 7 gives us a lot of material when it comes to comparing numbers
that we can use to also compare functions:

Example 0.31. Let us consider the following functions:

𝑓 : [1,∞) R

𝑥 𝑥2

𝑔 : [1,∞) R

𝑥 𝑥3.

We can show that for all 𝑥 ∈ [1,∞) we have that

𝑥2 ≤ 𝑥3,

and so
𝑓𝑥 ≤ 𝑔𝑥 :

Given such an 𝑥 we have that

𝑥2 = 1 · 𝑥2 1 unit for mult
≤ 𝑥 · 𝑥2 1 ≤ 𝑥, Fact 7
= 𝑥3.

When we come to comparing functions in Section 5.1 you will �nd the following
comparison for functions helpful.

Fact 8
We have that for all 𝑛 ∈ N that

2𝑛 ≥ 𝑛 + 1

as well as
𝑛 ≥ log(𝑛 + 1).

This statement is formally shown in Exercise 170.

Two functions which are useful when we need to convert results which are
real or rational into integers.

The �oor function
R Z
𝑥 ⌊𝑥⌋

maps a real number 𝑥 to the greatest integer less than or equal to it. See Ex-
ample 4.70 if you want to �nd out how to draw a graph for a function like this.

The ceiling function
R Z
𝑥 ⌈𝑥⌉

maps a real number 𝑥 to the smallest integer greater than or equal to it.
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0.3.6 Functions with several variables

You may have been taught about functions with several variables as being somehow
more general then functions with one variable. However, this is not really the case.

If we have a function whose source set is a product set, for example

𝑓 : R2 R

then every argument for this function is a pair, because every element of R2 is a
pair. It may be useful to have access to the two components of the argument, and
so it is fairly common to write something like

𝑓(𝑥, 𝑦) = 𝑥 + 𝑦

to describe the behaviour of the function 𝑓 .
If we had insisted of using

𝑧 ∈ R2

to describe the argument of 𝑓 then we would have to write42

𝑓𝑧 = 𝜋1𝑧 + 𝜋2𝑧,

which is much less clear.
So, a function with several arguments is a function whose source set is a

product, and where we have written the argument to have as many components
as the product set has factors. Examples 0.23 and 0.24 talk about functions with
two arguments and you should go back to them and look at them once more now.

0.3.7 Constructions for functions

An important way of constructing new functions from old ones is what is known as
de�nition by cases. What this means is that one pieces together di�erent functions
to give a new one.

Example 0.32. Assume we want to give a proper de�nition of the ‘absolute’
function

|·| : R R+

for real numbers. The value it returns depends on whether the input is negative,
or not. The graph of this function is depicted here.

𝑥

We can write the corresponding assignment as

𝑥

{︃
𝑥 𝑥 ≥ 0

−𝑥 else.

42Recall the projection functions 𝜋1 and 𝜋2 from Section 0.2.4.
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Example 0.33. If you want to give an alternative description of the function

Z Z
𝑥 𝑥 mod 2,

which maps even numbers to 0, and odd numbers to 1, you could instead write

𝑥

{︃
0 𝑥 mod 2 = 0

1 else

or, if you don’t want to put the mod function into the de�nition, you could
write

𝑥

{︃
0 𝑥 even
1 else.

What is important is that

• you give a value for each element of the source and

• you don’t give more than one value for any element of the source.

In other words, on the right you must split your source sit into disjoint parts, and
say what the function does for each of those parts.
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Example 0.34. You might need this when you are trying to describe the be-
haviour of an entity which changes. For example, assume you are given the
following graph:

𝑥

1

1

This function R+ R+ is given by the assignment

𝑥

⎧⎪⎪⎨⎪⎪⎩
𝑥 𝑥 ∈ [0, 1]

1

8
𝑥2 +

7

8
𝑥 ∈ (1, 4]

1

2
𝑥 +

7

8
else.

CExercise 10. Write down formal de�nitions for the following functions.

(a) The function which takes two integers and returns the negative of their
product.

(b) The function from R× R to R which returns its �rst argument.

(c) The function from Z× Z to {0, 1} which is equal to 1 if and only if both
arguments are even.

(d) The function from R to R which behaves like the sine function for negative
arguments, and like the exponential function for base 2 for non-negative
arguments.

(e) Draw a picture of the set

{𝐴𝑏𝑑𝑢𝑙,𝐵𝑒𝑙𝑙𝑎, 𝐶𝑙𝑎𝑟𝑎,𝐷𝑜𝑛𝑔} × {𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒, 𝑔𝑟𝑒𝑒𝑛}.

De�ne a function from that set to {0, 1} which is 1 if and only if its �rst
argument has more letters than its second.

Apart from this, the constructions we have for sets are also meaningful for
functions.

If we have functions 𝑓 : 𝑆 𝑆′ and 𝑔 : 𝑇 𝑇 ′. Then we can de�ne a func-
tion

𝑆 × 𝑇 → 𝑆′ × 𝑇 ′,

which we refer to as
𝑓 × 𝑔
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by setting
(𝑠, 𝑡) (𝑓𝑠, 𝑔𝑡).

Optional Exercise 2. Can you think of something that would allow you to
extend the powerset construction to functions?

The following exercises draws on functions, as well as on the de�nition of the
powerset from the previous section.

EExercise 11. Given a set 𝑋 , de�ne the following functions. Don’t forget to
write down their source and target.

(a) A function 𝑓 from 𝑋 to its powerset with the property that for every
𝑥 ∈ 𝑋 we have 𝑥 ∈ 𝑓𝑥.

(b) A function from the product of the powerset of 𝑋 with itself, to the
powerset of 𝑋 , with the property that a pair of sets is mapped to the set
consisting of all those elements of 𝑋 which is either in the �rst set, or in the
second set, but not in both.

(c) De�ne a function from the product of 𝑋 with its powerset to the set {0, 1}
which returns 1 if and only if the �rst component of the argument is an element
of the second component.

(d) De�ne a function from the set of �nite subsets of N to N which adds up
all the elements in the given set.

0.4 Relations

We study relations in detail in Chapter 7. Prior to that chapter, however, relations
play a (minor) role in Chapter 3 and we give the basic ideas here for that reason.

Sometimes we have connections between two sets 𝑆 and 𝑇 which do not take
the form of a function. We might have some set of pairs of the form (𝑠, 𝑡), where
𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇 . Such a set is known as a binary relation. Note that relations of
other arities exist, but it is customary to drop the ‘binary’ part and just speak of a
relation.

Example 0.35. Consider the set 𝑆 of all the �rst year students in the School of
Computer Science, and the set 𝑈 of all course units on o�er in the university.
We may then de�ne a relation as

{(𝑠, 𝑢) ∈ 𝑆 × 𝑈 | 𝑠 is enrolled on 𝑢}.

This set is encoded in a database somewhere in the student system.

Relations are very �exible when it comes to capturing connections between
various entities. A number of examples are given in Chapter43 7, but here are some
ideas for the kind of thing that one can do:

43Note that this chapter is studied in Semester 2.
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• Sometimes a set of interest may contain a number of elements one wishes
to consider ‘the same’, for example when using fractions to describe the
rational numbers. One may use an equivalence relation (between the set and
itself) to partition the set into equivalence classes and use those instead of
the original elements. An example of this is the relation which connects two
students if and only if they are in the same lab group.

• One may wish to compare the elements of a set with each other, indicating
that one is below another. This is done using a relation between the set and
itself known as a (partial) order. Examples of these are the usual orders on
N, Z, Q and R, but more interesting options exist.

How does one describe a relation? The most common description is that of a
subset of the product as in the example above, similar to the graph of a function.
This is a set, so the usual suggestions for describing sets apply.

Quite often it is possible to describe a relation using a predicate.

Example 0.36. The relation which connects the integers 𝑚 and 𝑛 if 𝑚 divides
𝑛 is

{(𝑚,𝑛) ∈ Z× Z | 𝑛 mod 𝑚 = 0}.

We may apply more complicated conditions to pick out the set of pairs we
want to describe.

Example 0.37. The equality of fractions as rational numbers provides another
example. This relation is de�ned as

{(𝑥/𝑦, 𝑥′/𝑦′) | 𝑥, 𝑥′ ∈ Z, 𝑦, 𝑦′ ∈ Z ∖ {0} and 𝑥𝑦′ = 𝑥′𝑦}.

It is less often the case that one can use the idea of generating the relation as
a set. This typically only works if there is a way of expressing one of the pair in
terms of the other.

Example 0.38. The relation (𝑥, 𝑦) in 𝑅2 with 𝑥2 = 𝑦 can be generated as

{(𝑥, 𝑥2) | 𝑥 ∈ R}.

Note that in this particular case it is also possible to describe the same relation
as the union of two sets, namely as

{(
√
𝑥, 𝑥) ∈ R× R | 𝑥 ∈ R+} ∪ {(−

√
𝑥, 𝑥) ∈ R× R | 𝑥 ∈ R+}.

In a case like this it is easy to show a picture of the set in question.

𝑥
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If the relation is �nite (and small) then it may be possible to list all the elements
it contains. In this case it is also possible to draw a graph to indicate which elements
are related.

Example 0.39. Here is the kind of graph one might draw for a small relation.

∙𝑎

∙𝑏

∙𝑐

∙ 4

∙ 1
∙ 2
∙ 3

This is the relation which relates 𝑎 to 4, 3 and 1, it relates 𝑏 to 3, and it
relates 𝑐 to nothing at all. Its set description is

{(𝑎, 1), (𝑎, 3), (𝑎, 4), (𝑏, 3)}.

Alternatively one could draw those pairs in the product set that belong to
the relation in this way, similar to the graph of a function (see Section 0.3.4):

𝑎 𝑏 𝑐

1

2

3

4

You may think of the grid as giving all the possible combinations when picking
one element from {𝑎, 𝑏, 𝑐} and one from {1, 2, 3, 4}. The dot tells you whether
the corresponding pair belongs to the relation, or not.

Note that every function de�nes a relation between its source and its target via
its graph. These are very special relations, described in more detail in Section 7.1.

If we have a binary relation from one set to itself then we can picture this by
drawing connections between the elements of the given set. Typically we would
say that we have ‘a (binary) relation on the set 𝑆’ instead of ‘a (binary) relation
from 𝑆 to 𝑆’.

𝑎

𝑏 𝑐

𝑑

𝑒

This is a picture of the following relation on the set {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}:

{(𝑎, 𝑎), (𝑎, 𝑏), (𝑎, 𝑐), (𝑏, 𝑑), (𝑐, 𝑑), (𝑑, 𝑎)}.

Note that relations do not have to be binary, they can have a higher arity. A
ternary relation for sets 𝑆, 𝑇 and 𝑈 , for example, is a subset of 𝑆 × 𝑇 × 𝑈 . This
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kind of relation is di�cult to picture in two dimensions, so typically no pictures
are drawn for these.
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Chapter 1

Complex Numbers

The real numbers allow us to solve many equations, but equations such as

𝑥2 = −1

have no solutions in R.
One way of looking at the complex numbers is that they remedy this problem.

But assuming this is all they do would sell them far short. We here give a short
introduction to the set of complex numbers, addition and multiplication operations
for them, and their basic properties.

Note that in order to solve exercises in this chapter you should only use
properties given by Facts 1 to 7 in Chapter 0.

1.1 Basic de�nitions

We begin by giving some basic de�nitions.

De�nition 15: complex numbers

The set of complex numbers C consists of numbers of the form

𝑎 + 𝑏𝑖,

where 𝑎, 𝑏 in R. Here 𝑎 is known as the real part and 𝑏 as the imaginary part
of the number.

At �rst sight it is not entirely clear what exactly we have just de�ned. One
may view 𝑎 + 𝑏𝑖 as an expression in a new language.

If one of 𝑎 or 𝑏 is 0 it is customary not to write it, so the complex number 𝑎 is
equal to 𝑎 + 0𝑖 and the complex number 𝑏𝑖 is equal to 0 + 𝑏𝑖. Similarly, if 𝑏 = 1
then it is customary to write 𝑎 + 𝑖 instead of 𝑎 + 1𝑖.

We may think1 of a real number 𝑟 as being a complex number whose imaginary
part is 0, so it has the form 𝑟+0𝑖. In that way the complex numbers can be thought
to include the real numbers (just as we like to think of the real numbers as including
the rational numbers).

This gives a function from R to C de�ned by

𝑟 𝑟 + 0𝑖.

1Compare this with casting a value of one datatype to another in Java.
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Complex numbers are usually drawn as
points within the plane, using the hori-
zontal axis for the real and the vertical
axis for the imaginary part.

im pt

real pt𝑎

𝑏 𝑎 + 𝑏𝑖

Above we have added labels for orientation, but usually this is done a bit
di�erently.

Instead of marking the real and the ima-
ginary part on the axes it is more com-
mon to mark the ‘imaginary axis’ with 𝑖,
giving a picture in the complex plane.

𝑖

𝑎

𝑏 𝑎 + 𝑏𝑖

Example 1.1. We show how to draw the numbers 2 + 3𝑖, −3 and −𝑖 in the
complex plane.

𝑖

2 + 3𝑖

−𝑖

−3

The complex plane is naturally divided into four quadrants.

𝑖
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1.2 Operations

There are quite a few operations one de�nes for complex numbers.

1.2.1 The absolute

The2 absolute |𝑎 + 𝑏𝑖| of a complex number 𝑎 + 𝑏𝑖 is given by√︀
𝑎2 + 𝑏2.

We may think of this as the length of the line that connects the point 0 with
the point 𝑎 + 𝑏𝑖:

𝑖

𝑎

𝑏 𝑎 + 𝑏𝑖

√ 𝑎
2 +

𝑏2

Example 1.2. The absolute of the complex number 1 + 2𝑖 is calculated as
follows.

|1 + 2𝑖| =
√︀

12 + 22 =
√

5.

Note that this extends the notion of absolute for real numbers in the sense that

|𝑎 + 0| =
√︀
𝑎2 + 0 =

√
𝑎2 = |𝑎|

where we use the absolute function for real numbers on the right.3
One can calculate with the complex numbers based on the following operations.

1.2.2 Addition

Addition of two complex numbers is de�ned as follows.

We set

(𝑎 + 𝑏𝑖) + (𝑎′ + 𝑏′𝑖)

= (𝑎 + 𝑎′) + (𝑏 + 𝑏′)𝑖.

𝑖

𝑏

𝑏′

𝑏 + 𝑏′

𝑎 𝑎′ 𝑎 + 𝑎′

𝑎 + 𝑏𝑖

𝑎′ + 𝑏′𝑖

(𝑎 + 𝑏𝑖) + (𝑎′ + 𝑏′𝑖)

To understand addition it is useful to think of the numbers in the complex
plane as4 vectors, then addition is just the same as the addition of vectors:

2This is also known as the modulus of a complex number.
3And indeed note that we could use

√
𝑟2 as a de�nition of the absolute for a real number 𝑟.

4Vectors will be taught in detail in the second half of Semester 2.
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𝑖

𝑏

𝑏′

𝑏 + 𝑏′

𝑎 𝑎′ 𝑎 + 𝑎′

𝑎 + 𝑏𝑖

𝑎′ + 𝑏′𝑖

(𝑎 + 𝑏𝑖) + (𝑎′ + 𝑏′𝑖)

If you prefer, you may think of this as taking the vector for 𝑎′ + 𝑏′𝑖 and shifting
it so that its origin coincides with the end point of the vector for 𝑎 + 𝑏𝑖.5

Example 1.3. We calculate the sum of 1 + 2𝑖 and −1 + 𝑖 as follows.

(1 + 2𝑖) + (−1 + 𝑖) = (1 − 1) + (2 + 1)𝑖 = 3𝑖.

We note that if we have two complex numbers whose imaginary part is 0, say
𝑎 and 𝑎′, then their sum as complex numbers is 𝑎 + 𝑎′, that is their sum as real
numbers.

Important properties of this operation are established in Exercise 27 and 28,
which establish two equalities from Fact 6 for the complex numbers.

Note that 0 is the unit for addition6, that is adding 0 to a complex number (on
either side) has no e�ect.7 In other words we have

0 + (𝑎 + 𝑏𝑖) = (0 + 𝑎) + (0 + 𝑏)𝑖 def addition
= 𝑎 + 𝑏𝑖 Fact 6
= (𝑎 + 0) + (𝑏 + 0)𝑖 Fact 6
= (𝑎 + 𝑏𝑖) + 0. def addition

For the real numbers every element 𝑟 has an inverse for addition in the form
of −𝑟: This is the unique number8 which,9 if added to 𝑟 on either side, gives the
unit for addition 0.

For addition of complex numbers we can �nd an inverse by making use of the
inverse for addition for the reals. The following lemma explains how to calculate
the additive inverse, and it also establishes that such an inverse exists for all
complex numbers.

Lemma 1.1
The additive inverse of the complex number 𝑎 + 𝑏𝑖 is

−𝑎− 𝑏𝑖,

5Note that you may just as well think of shifting the vector for 𝑎+𝑏𝑖 such that its origin coincides
with the end point of the vector for 𝑎′ + 𝑏′𝑖.

6Look at the unit for addition given by Facts 1, 3, 5 and 6.
7For a formal de�nition of the unit of an operation see 20.
8Again, compare Facts 3. 5 and 6 from the previous chapter.
9For a formal de�nition of the inverse for a given element with respect to a given operation

see 21 in the following chapter.
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which we often write as
−(𝑎 + 𝑏𝑖).

This establishes that every element of C has an additive inverse and that means
we may de�ne subtraction for complex numbers by setting

(𝑎 + 𝑏𝑖) − (𝑎′ + 𝑏′𝑖) = (𝑎 + 𝑏𝑖) + −(𝑎′ + 𝑏′𝑖),

so as usual this is a shortcut to deducting the additive inverse of the second
argument from the �rst argument.

Exercise 12. Prove Lemma 1.1. Hint: The paragraph above this exercise tells you
what you need to check, or look ahead to De�nition 21.

Note that there is no easy connection between the absolute and addition; the
best we may establish for complex numbers 𝑧 and 𝑧′ is that

|𝑧 + 𝑧′| ≤ |𝑧| + |𝑧′|.

Note that (𝑎 + 𝑏𝑖) + (𝑎 + 𝑏𝑖) = 2𝑎 + 2𝑏𝑖, and that we may think of this as
stretching 𝑎 + 𝑏𝑖 to twice its original length, and write it as 2(𝑎 + 𝑏𝑖):

𝑖

𝑏

2𝑏

𝑎 2𝑎

2(𝑎 + 𝑏𝑖)

𝑎 + 𝑏𝑖

In general, given a real number 𝑟 and a complex number 𝑎+ 𝑏𝑖 we may de�ne

𝑟(𝑎 + 𝑏𝑖) = 𝑟𝑎 + 𝑟𝑏𝑖.

Note that this means that our de�nition of the negative of a complex number
works in the expected way in that

−(𝑎 + 𝑏𝑖) = (−1)(𝑎 + 𝑏𝑖) = (−1)𝑎 + (−1)𝑏𝑖 = −𝑎− 𝑏𝑖.

Example 1.4. We see that 3(5 + 𝑖) = 15 + 3𝑖, and we further calculate
−
√

2(
√

2 −
√

2𝑖) = −2 + 2𝑖.

CExercise 13. Draw the following numbers in the complex plane: 2, −2, 2𝑖,
−2𝑖, 3 + 𝑖, −(3 +4𝑖), (−1 + 2𝑖) +(3 + 𝑖), (1 +2𝑖) + (3− 𝑖), (1 + 2𝑖)− (3 + 𝑖).
For each quadrant of the complex plane pick one of these numbers (you may
pick at most two numbers lying on an axis, and the axes have to be on di�erent
ones), and calculate its absolute.

Assume your friend has drawn a complex number 𝑧 on a sheet that you
cannot see. Instruct them how to draw the following.

(a) −𝑧,

(b) 2𝑧,
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(c) 3𝑧,

(d) 𝑟𝑧, where 𝑟 is an arbitrary real number.

Exercise 14. Consider the function 𝑓 from R2 to C which is de�ned as follows:

(𝑎, 𝑏) 𝑎 + 𝑏𝑖.

Show that 𝑓(𝑎, 𝑏) + 𝑓(𝑎′, 𝑏′) = 𝑓((𝑎, 𝑏) + (𝑎′, 𝑏′)) for all (𝑎, 𝑏), (𝑎′, 𝑏′) ∈ R2.
Here we use the componentwise addition for elements of R2, that is

(𝑎, 𝑏) + (𝑎′, 𝑏′) = (𝑎 + 𝑎′, 𝑏 + 𝑏′)

for all 𝑎, 𝑎′, 𝑏 and 𝑏′ in R.

1.2.3 Multiplication

We de�ne the multiplication operation on complex numbers by setting

(𝑎 + 𝑏𝑖)(𝑎′ + 𝑏′𝑖) = 𝑎𝑎′ − 𝑏𝑏′ + (𝑎𝑏′ + 𝑏𝑎′)𝑖.

Example 1.5. We calculate

(1 + 2𝑖)(2 − 3𝑖) = (2 + 6) + (4 − 3)𝑖 = 8 + 𝑖.

Exercise 15. Show that 1 is the unit for multiplication. Hint: Check the calcu-
lation carried out above which shows that 0 is the unit for addition. Also look
at Fact 1 which tells you what it means for 1 to be the unit for multiplication of
natural numbers.

Note that if one of the numbers has imaginary part 0 then we retain the
multiplication with a real number de�ned above, that is

𝑎(𝑎′ + 𝑏′𝑖) = 𝑎𝑎′ + 𝑎𝑏′𝑖.

There is a geometric interpretation of multiplication, but it is a bit more
complicated than that for addition. We here only give a sketch of this.

Instead of giving the coordinates 𝑎 and 𝑏 to describe a point in the complex
plane one also could give an angle and a length.

De�nition 16: polar coordinates

The description in polar coordinates of a complex number or its polar form
consists of a non-negative real number, known as the absolute and an angle
in [0, 360) (or in [0, 2𝜋)) known as the argument.
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𝑖

𝑎

𝑏 𝑎 + 𝑏𝑖

𝑟 𝜙

Note that the absolute of a complex number in this sense is nothing but the
absolute |𝑎 + 𝑏𝑖| from above.

Example 1.6. The complex number 1+𝑖 has the absolute
√

2 and the argument
45∘ or, if you prefer, 𝜋/4. One might use a notation such as (

√
2, 45∘) (or

(
√

2, 𝜋/4)) for complex numbers given in this way.

This means there are two ways of describing a complex number:

via

• the real part 𝑎 and

• the imaginary part 𝑏

or

via

• the absolute 𝑟 and

• the argument 𝜙.

To move from polar coordinates to the standard form there is a simple formula:
The complex number given by 𝑟 and 𝜙 is

𝑟(cos𝜙 + (sin𝜙)𝑖).

In the other direction one can use the arctangent function arctan, the partial
inverse of the tangent function, to calculate 𝜙 given 𝑎 and 𝑏, but a few case
distinctions are required.

Optional Exercise 3. Write out the de�nition of the function that gives the
argument, for a complex number 𝑎+ 𝑏𝑖. Then prove that, starting from a com-
plex number, calculating the argument and the absolute, and then calculating
the real and imaginary part from the result, gives back the number one started
with. Use these calculations to show that the argument of 𝑧𝑧′ is the argument
of 𝑧 plus the argument of 𝑧′.

Describing multiplication is much easier when we do it with respect to these
polar coordinates:

Fact 9

Assume that (𝑟, 𝜙) and (𝑟′, 𝜙′) are two complex numbers whose �rst compon-
ent de�nes the absolute, and whose second component gives the argument.
Their product (in the same format) is given by the number

(𝑟𝑟′, 𝜙 + 𝜙′).
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𝑖

𝜙

𝜙′

𝜙 + 𝜙′

𝑟

𝑟
′

𝑟𝑟
′

𝑧

𝑧′

𝑧𝑧′

Note that there is a nice connection between the absolute and multiplication.

Lemma 1.2

For complex number 𝑧 and 𝑧′ we have

|𝑧𝑧′| = |𝑧||𝑧′|.

Exercise 16. Prove Lemma 1.2.

We note that according to the de�nition of multiplication we have

𝑖𝑖 = (0 + 1𝑖)(0 + 1𝑖) = 0 − 1 · 1 + (0 · 1 + 1 · 0)𝑖 = −1,

so in the complex numbers we may solve the equation

𝑥2 = −1

which has no solution in R.

CExercise 17. Pick four numbers in at least three di�erent quadrants of the
complex plane. Calculate, and then draw, their product with the number 𝑖.

Your friend has drawn the number 𝑧 on the complex plane, but you can’t
see what they are doing. Instruct them how to draw 𝑖𝑧 without referring to
any coordinates.

Optional Exercise 4. What happens if we keep multiplying 𝑖 with itself?
What does that tell you about solutions to the equation 𝑥4 = 1? What about
solutions for 𝑥𝑛 = 1 more generally?
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Exercise 18. Consider the function 𝑓 from R2 to C which is de�ned as follows:

(𝑎, 𝑏) 𝑎 + 𝑏𝑖.

De�ne addition and multiplication onR2 based on these operations for complex
numbers. Hint: You may want to consult Exercise 14.

We have seen that with regards to addition, every complex number 𝑧 has an
inverse in the form of −𝑧. What about inverses for multiplication?

Lemma 1.3

For every complex number 𝑎 + 𝑏𝑖 ̸= 0 the multiplicative inverse is given by10

𝑎

𝑎2 + 𝑏2
− 𝑏

𝑎2 + 𝑏2
𝑖.

Sometimes the notation
(𝑎 + 𝑏𝑖)−1

is used for this number. More generally, if we have a complex number 𝑧 then it’s
inverse, if it exists, is written as 𝑧−1. Just as for real numbers the expression

𝑧/𝑧′

is a shortcut for
𝑧(𝑧′)−1.

Do not divide by complex numbers in your work. The correct
operation is to multiply with the multiplicative inverse, and
for full marks you have to include an argument that this exists
in the case you are concerned with. In particular if you would
like to multiply with the multiplicative inverse of a variable
you have to explicitly consider the case where that variable
happens to be equal to 0.

Whenever you use the number 𝑧−1 you have to include an argument that this
exists, that is, that 𝑧 ̸= 0 (and indeed you should do this whenever you use 𝑟−1

for real or rational numbers).
Recall that we avoid talking about division as an operation on this unit, so if

you want to remove a factor from an equation please try to talk about multiplying
with the multiplicative inverse, and think about whether this exists!

EExercise 19. Prove Lemma 1.3 Hint: Check Fact 5 from the previous chapter to
see what you have to prove, or look ahead to De�nition 21. Note: We have not
de�ned 1/𝑧 for a complex number 𝑧 and you should not use this expression.

Calculate the inverse of the complex number 𝑧 = 𝑎 + 0𝑖 = 𝑎. How does
that compare with the multiplicative inverse for 𝑎 when viewed as an element
of R?

10Note that our condition means that 𝑎2 + 𝑏2 ̸= 0 and therefore we may form the fractions given
here.
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EExercise 20. Assume you have a complex number in polar form (𝑟, 𝜙). What
is the polar form of its multiplicative inverse? Hint: What does multiplication
with the inverse have to give? Look at the picture on page 57 which explains
multiplication in terms of absolute and argument to �nd a number that satis�es
the requirement for an arbitrary absolute 𝑟 and argument 𝜙.

In summary we have seen that just as for the real numbers, we may de�ne
addition and composition for complex numbers, and in such a way that if we treat
real numbers as particular complex ones, then the operations agree. Indeed, it is
also possible to de�ne exponentiation and logarithms for complex numbers but
this idea leads us too far a�eld.

1.2.4 Conjugation

There is a further operation that you may �nd in texts that deal with complex
numbers, namely conjugation. The conjugate 𝑧 of a complex number 𝑧 = 𝑎 + 𝑏𝑖
is given by 𝑎− 𝑏𝑖.

Example 1.7. We give sample calculations.

−2 + 𝑖 = −2 − 𝑖, 3 = 3, 𝑖 = −𝑖.

Exercise 21. Assume you have a complex number given by its absolute and
argument. What are the absolute and argument of its conjugate? Hint: If you
�nd this di�cult draw a few examples in the complex plane.

CExercise 22. Show that 𝑧𝑧 = |𝑧|2.

1.3 Properties

The complex numbers have various properties which make them a nice collection
of numbers to work with. You are allowed to use the following in subsequent
exercises on complex numbers.11

Fact 10
Addition and multiplication of the complex numbers have all the properties of
the real numbers as given in Fact 6.

Optional Exercise 5. Prove the statements of Fact 10.

Note that when it comes to solving equations, the complex numbers are even
better behaved than the real ones: Every polynomial equation, that is an equation
of the form

𝑛∑︁
𝑖=0

𝑐𝑖𝑥
𝑖 = 𝑐𝑛𝑥

𝑛 + 𝑐𝑛−1𝑥
𝑛−1 + · · · + 𝑐1𝑥 + 𝑐0 = 0,

11You are not allowed to use them in exercises where you are speci�cally asked to prove them!
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where the 𝑐𝑖 are complex numbers has at least one solution12 in C, whereas this
is not true in R even if the 𝑐𝑖 are all elements of R. This means that the complex
numbers are particularly suitable for various constructions that depend on having
solutions to polynomials.

Note that it does not make any sense to use the square root operation for
complex numbers. While for a positive number 𝑟, we use the symbol

√
𝑟

to refer to the positive of the two solutions to the equation

𝑥2 = 𝑟

for a complex number 𝑧 there is no sensible way of of picking out one of the
possible solutions of

𝑥2 = 𝑧.

Example 1.8. Consider the equation

𝑥2 = 𝑖.

We may check that there are two solutions,

1√
2
(1 + 𝑖) and 1√

2
(−1 − 𝑖).

Which of those should be the number we mean by
√
𝑖? You may think there’s

still a sensible choice, namely the one where both, real and imaginary part are
positive.

Now consider the equation

𝑥2 = −𝑖.

It has the solutions
1√
2
(−1 + 𝑖) and 1√

2
(1 − 𝑖),

and picking one over the other does not make sense.

If we go to equations involving powers higher than two then the number of
solutions increases.

Example 1.9. Let us consider the following equation:

𝑥4 = 1.

If 𝑥 is supposed to be a real number then there are two solutions, namely 1
and −1.

If, on the other hand, we are allowed to pick solutions from C we note that
there are at least four:

1, −1, 𝑖, −𝑖.

12In fact, one can show that there are 𝑛 solutions, but this requires counting some solutions more
than once.
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Certainly there is no good way of picking out one of these solutions to determ-
ine which number we might mean by

√
41.

For this reason there are no root operations on the complex numbers.

Do not use square root symbols if you are interested in a solu-
tion of the equation 𝑧2 = 𝑧′, where 𝑧′ is given. This is not a
valid operation for complex numbers.

An important di�erence between the complex numbers and the other sets of
numbers discussed in Chapter 0 is that we are used to thinking of the latter as
being ordered, which means we can compare two elements. There is no way of
turning C into an ordered set so that the statements in Fact 7 are true for that
order.

In analysis, which includes the study of functions, their derivatives and their
integrals, the theory of functions of complex numbers is much smoother than
its counterpart for the reals. In order to calculate various (improper) integrals
for functions of real variables one may apply methods that require functions of
complex variables.

The fact that complex numbers may be thought of as having two parts, and
that we have various operations for these, means they are particularly suited to a
number of application areas where these operations may be interpreted.

1.4 Applications

Complex numbers may appear arti�cial, and having numbers with an ‘imagin-
ary’ part may suggest that these are merely �gments of some mathematicians’
imagination.

It turns out, however, that they are not merely some artefact whose only use it
is to deliver a number which is a square root of −1. Because complex numbers
can e�ectively be thought of as vectors, but vectors which allow multiplication as
well as addition, they are very useful when it comes to talking about quantities
that need a more complex structure to express them than just one number.

In physics and various areas of engineering quantities which may be described
by just one number are known as ‘scalars’. Examples are distance, speed (although
to describe movement one might want to include direction with speed) and energy.
In a direct-current circuit, voltage, resistance and current are treated as scalars
without problem. In alternating current circuits, however, there are notions of
frequency and phase shift which have to be taken into account, and it turns out
that using complex numbers to describe such circuits results in a very useful
depiction. Moreover some calculations become much simpler when one exploits
the possibilities given by modelling the circuit with complex numbers.

Signal analysis is another area where complex numbers are often employed.
Again the issue here are periodically varying quantities. Instead of describing these
using a sine or cosine function of some real variable, employing the extensions of
these functions to the complex numbers makes it possible to describe the amplitude
and phase at the same time.

There you will see for example, that by using complex numbers for a Fourier
transform calculations that look complicated can be carried out via matrix multi-
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plication.13 When you meet this material you should remind yourself of what you
know about complex numbers from these notes.

There are other areas where applications arise, such as �uid dynamics, control
theory and quantum mechanics.

13The latter will be treated towards the end of Semester 2 of this course unit.
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Chapter 2

Statements and Proofs

Mathematics is a discipline that relies on rigorous de�nitions and formal proofs.
As a consequence, in mathematics statements hold, or they do not (but we may not
know which it is).1 This is very di�erent from the situation in the natural sciences,
for example. Here a theory may be falsi�ed by observations that contradict it, but
there is no way of formally verifying it.

How does a system that seeks to provide such certainty work? In principle
the thought is that it is possible to de�ne a theory strictly from �rst principles
(typically starting with a formal theory of sets), with rules for deriving statements
from existing ones. Such a system is very rigid and syntactic2 in nature, much like
a computer language (and indeed there are computer programs that implement at
least aspects of this). Statements that may be formally derived in the system are
known as theorems. In principle it should be possible to �t all of mathematics into
a formal system like this.3

But in practice this is not what mathematicians do. There are two reasons
for this. Starting from �rst principles it takes a very long time to build up the
apparatus required to get to where one may even talk about entities such as the
real numbers with complete rigour. Secondly the resulting statements are very
unwieldy and not human-readable. Hence mathematicians carry out their work
in some kind of meta-language which in principle can be translated into a formal
system. Increasingly there are computer-veri�ed proofs in some formal system in
various areas, in particular in theoretical computer science.

In this and the following chapter of the notes we look at both these ideas—
proofs as they are customarily carried out by mathematicians and a formal system.

2.1 Motivation

You are here to study computer science rather than mathematics, so why should
you worry about proving statements? There are two reasons one might give here.

For one there is the area of theoretical computer science which arguably is also
an area in mathematics. The aim of this part of computer science is to make formal

1There are also issues to do with whether a given formal system allows us to construct a proof
or a counterexample.

2This means concerned with symbols put together according to some rules without any concern
what they might mean.

3But there is a famous result by the logician Kurt Gödel, his Incompleteness Theorem, which tells
us that any system su�ciently powerful for most of mathematics cannot prove its own consistency.
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statements and to prove them. Here are some examples of the kind of statement
that are of concern in this area.

• This abstract computational device has the same computational power as
another.

• This computation is equivalent to another.4

• This abstract computational system behaves in a particular manner over
time.

• This problem cannot be solved by a computer, or, equivalently, there is no
algorithm (or decision procedure) for it (see COMP11212).

• The best possible algorithm for this problem requires a number of steps that
is a quadratic function in the size of the problem (see COMP26120).

• This program will terminate and after it has done so its result will satisfy a
particular condition.

• This circuit implements a particular speci�cation.

You can see that while the �rst few statements sound fairly abstract the latter
two look as if they might be closer to real-world applications.

Secondly, under certain circumstances it is important to make absolute state-
ments about the behaviour of a computational device (a chip or a computer program
for example). Formally proving that programs behave in a particular way is labour-
intensive (and creating a formal model of the real world in which the device lives
is potentially error-prone).

In safety-critical systems, however, the bene�ts are usually thought to outweigh
the cost. For example in an aircraft it is vital that the on-board computer behaves
in a particular way. Emergency course corrections have to be made promptly and
correctly or the result may be fatal for those on board. When NASA sends an
explorer onto Mars, or the Voyager space craft to �y through the solar system (and
to eventually leave it) then it is vital that a number of computer-controlled man-
oeuvres are correctly implemented. Losing such a craft, or rendering it incapable
of sending back the desired data, costs large amounts of money and results in a
major setback.

But even outside such applications computing is full of statements that are at
least in part mathematical. Here are some examples.

• The worst case complexity of this algorithm is 𝑛 log 𝑛 (the kind of statement
that you will see in COMP26120).

• This recursive procedure leads to exponential blow-up.

• A simple classi�cation rule is to choose the class with the highest posterior
probability (in arti�cial intelligence or machine learning).

• Time-domain samples can be converted to frequency domain using Fourier
Transforms, which are a standard way of representing complex signal 𝑔(𝑡)
as a linear sum of basic functions 𝑓𝑔(𝑡)) (from COMP28512).

4What it might mean for two computations to be equivalent is a whole branch of theoretical
computer science.

64



The aim of this course unit is to prepare you for both these: studying areas of
theoretical computer science and making sense of mathematical statements that
appear in other parts of the �eld.

2.2 Precision

Something the language of mathematics gives us is precision. You need to become
familiar with some aspects of this. In particular, there are some key phrases which
sound as if they might be parts of every-day language, which have a precise
meaning in a mathematical context.

2.2.1 Key phrases

Vocabulary that helps us with this are phrases such as

• ‘and’,

• ‘or’,

• ‘implies’ (and the related ‘if and only if’),

• ‘there exists’ and

• ‘for all’.

The aim of this section is to introduce you to what these phrases mean, and
how that is re�ected by by proving statements involving them.

Keyword And

Formally we use this word to connect several statements, or properties, and we
demand that all of them hold.

When you enter several words into the Google search box you ask it to return
pages which contain all the listed words—you are demanding pages that contain
𝑤𝑜𝑟𝑑 1 and 𝑤𝑜𝑟𝑑 2 and . . .

If you are running database queries you are often interested in all entries that
combine several characteristics, for example, you might want all your customers
from a particular country for whom you have an email address so that you can
make a special o�er to them.

These are all informal usages, but they have fundamentally the same meaning
as more mathematical ones.

Example 2.1. A very simple example is the de�nition of the intersection of
two subsets 𝑆 and 𝑇 of a set 𝑋 .

𝑆 ∩ 𝑇 = {𝑥 ∈ 𝑋 | 𝑥 ∈ 𝑆 and 𝑥 ∈ 𝑇}.

In order to prove that an element 𝑥 is in this intersection we have to prove
both, that

𝑥 is in 𝑆 and that 𝑥 is in 𝑇 .

It is a good idea to structure proofs so that it is clear that these steps are carried
out. Here is an example of this idea.
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Example 2.2. To show that 6 is an element of

{𝑛 ∈ N | 𝑛 mod 2 = 0 and 𝑛 mod 3 = 0}
= {𝑛 ∈ N | 𝑛 mod 2 = 0} ∩ {𝑛 ∈ N | 𝑛 mod 3 = 0}

one splits the requirement into the two parts connected by and.

• To show that 6 is in the �rst set we have to show that 6 mod 2 = 0, and
we may conclude this from

6 = 3 · 2 + 0,

Fact 2 and the de�nition of mod.

• To show that 6 is in the second set we have to show 6 mod 3 = 0, and
we may conclude this in the same way from 6 = 2 · 3 + 0.

Overall this means that 6 is in the intersection as required.

This usage of ‘and’ may also be observed in every-day language: If I state ‘it is
cloudy and it is raining’ then I am claiming that both of the following statements
are true:

It is cloudy. It is raining.

Example 2.3. In order to check that a �rst year student in the School satis�es
the degree requirement, and is enrolled on COMP10120 as well as being enrolled
on COMP16321 I have to do both,

• check that the student is enrolled on COMP10120 and

• check that the student is enrolled on COMP16321.

Example 2.4. In order to establish

𝑥 /∈ 𝑆 ∩ 𝑇

it is su�cient to show one of

𝑥 /∈ 𝑆 𝑥 /∈ 𝑇.

In general in order to argue that a statement of the form (Clause 1 and Clause 2)
does not hold it is su�cient to show that one of the two clauses fails to hold.

Example 2.5. In order to argue that it is not the case that

3 is a prime number and 3 is even

it is su�cient to be able to state that since 3 leaves the remainder of 1 when
divided by 2 it is not even by De�nition 4.
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Keyword Or

We connect two statements or properties with ‘or’ if at least one (but possibly both
of them) hold.

To use the Google search box as an example once again, if you type two entries
separated by ‘OR’ it will look for pages which contain one of the two words.

This is also a fairly standard database query: You might be interested in all
the customers for whom you have a landline or a mobile phone number, or all the
ones who have ordered product 𝑋 or product 𝑌 because you have an accessory to
o�er to them.

Example 2.6. Again a simple example is given by sets, namely by the de�nition
of the union of two subsets 𝑆 and 𝑇 of a set 𝑋 , which is given by

{𝑥 ∈ 𝑋 | 𝑥 ∈ 𝑆 or 𝑥 ∈ 𝑇}.

For a concrete version of this see the following example.

Example 2.7. In order to show that 6 is an element of

{𝑛 ∈ N | 𝑛 mod 2 = 0 or 𝑛 mod 3 = 0}

it is su�cient to prove one of the two parts. It is therefore su�cient to state
that

• Since 6 = 3 · 2 + 0 we have that 6 mod 2 = 0 by the de�nition of mod .

It is not necessary to check the other clause.

This suggests a proof strategy: Look at both cases separately, and stop when
one of them has been established.

Again this usage is well established in informal language (although usage tends
to be less strict than with ‘and’). If I say ‘Tomorrow I will go for a walk or a bicycle
ride’ then I expect (at least) one of the following two sentences to be true:

Tomorrow I will go for a walk. Tomorrow I will go for a bicycle ride.

There is no information regarding which one will occur—and indeed I may
�nd the time to do both!

Example 2.8. If the degree rules state that a student on the Computer Science
with Mathematics programme must take one of COMP11212 and COMP13212
and COMP15212 then I can stop checking once I have seen that the student is
enrolled on COMP11212.

Note that in informal language ‘or’ often connects incompatible statements,
which means that at most one of them is true. In mathematics two statements
connected with ‘or’ may be incompatible, but they may well not be, and typically
they aren’t. If we wanted to express the idea of two statements being incompatible
we would have to say ‘Exactly one of Statement 1 and Statement 2 holds’.

In order to show that a statement of the form (Clause 1 or Clause 2) does not
hold we have to show that neither of the clauses holds.
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Example 2.9. In order to show that

𝑥 /∈ 𝑆 ∪ 𝑇

we have to establish both.

𝑥 /∈ 𝑆 and 𝑥 /∈ 𝑇.

Example 2.10. In order to show that 7 is not an element of

{𝑛 ∈ N | 𝑛 mod 2 = 0 or 𝑛 mod 3 = 0}

I have to argue in two parts:

• Since 7 mod 2 = 1 ̸= 0 we see that 7 does not satisfy the �rst condition.

• Since 7 mod 3 = 1 ̸= 0 we see that 7 does not satisfy the second
condition.

Hence 7 is not in the union of the two sets.

Keyword Implies

This is a phrase that tells us that if the �rst statement holds then so does the second
(but if the �rst statement fails to hold we cannot infer anything about the second).

For this notion it is harder to �nd examples outside of mathematics, but you
might want to ensure that in your database, the existence of an address entry for a
customer implies the existence of a post code.

Again a simple formal example can be found by looking at sets.

Example 2.11. If 𝑆 and 𝑇 are subsets of some set 𝑋 then

𝑆 ⊆ 𝑇

means that given 𝑥 ∈ 𝑋 ,

𝑥 ∈ 𝑆 implies 𝑥 ∈ 𝑇.

In order to establish that 𝑆 ⊆ 𝑇 given 𝑥 ∈ 𝑋 one only has to show something
in case that 𝑥 ∈ 𝑆, so usually proofs of that kind are given by assuming that 𝑥 ∈ 𝑆,
and then establishing that 𝑥 ∈ 𝑇 also holds. We look at a concrete version of this.

Example 2.12. To show that

{𝑛 ∈ N | 𝑛 mod 6 = 0} ⊆ {𝑛 ∈ N | 𝑛 mod 3 = 0}

we pick an arbitrary element 𝑛 in the former set. Then 𝑛 mod 6 = 0, and by
the de�nition of mod this means that there is

𝑘 ∈ N with 𝑛 = 𝑘6 + 0.
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But that means that
𝑛 = 𝑘6 = 𝑘(2 · 3) = (𝑘2)3

using Fact 1, and so picking 𝑙 = 2𝑘 we can see that 𝑛 = 3𝑙 + 0, which means
that 𝑛 mod 3 = 0.

Typically we do not use ‘implies’ in informal language, but we have construc-
tions that have a similar meaning. I might state, for example, ‘if it rains I will stay
at home’. So if on the day it is raining you should not expect to meet me, you
should expect me to be at home. Note that this does not allow you to draw any
conclusions in the case where it is not raining, although many people tend to do
so. (‘But you said you wouldn’t be coming only if it was raining . . . ’.) If I say ‘if it
is raining I will de�nitely stay at home’ I’ve made it clearer that I reserve the right
to stay at home even if it is not raining. Note that in the formal usage of ‘implies’
the meaning is completely precise.

Example 2.13. One might use implication to state that if a student is in a
tutorial group 𝑊𝑛,a where 𝑛 is a natural number, then the student is in lab
group 𝑊 .

In order to show that this is true one has to check all the tutorial groups
that start with 𝑊 and make sure5 their members are in labgroup 𝑊 .

aSimilar statements hold for tutorial groups 𝑋𝑛, 𝑌 𝑛 and 𝑍𝑛.

In order to show that a claimed implication does not hold one has to �nd an
instance where the �rst clause holds while the second does not. So in order to
catch me out as having said an untruth in the above example, you’ve got to �nd
me out of the house when it is raining at the appointed time.

Example 2.14. In order to refute the claim that, for a natural number 𝑛,

𝑛 divisible by 2 implies n divisible by 6

we need to �nd a number that

• ful�ls the �rst part, that is, it must be divisible by 2, but

• does not ful�l the second part, that is, is not divisible by 6.

Since 4 = 2 · 2 the number 4 is divisible by 2 according to De�nition 3. Since
there is no number 𝑘 ∈ N with 4 = 6𝑘. the number 4 is not divisible by 6,
which establishes that the claimed implication is false.

Key phrase If and only if

This phrase is merely a short-cut. When we say that

Statement 1 (holds) if and only if Statement 2 (holds)

then we mean by this that both,

Statement 1 implies Statement 2
5But this is the de�nition of labgroup 𝑊 so we don’t actually have to check this in reality!
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and
Statement 2 implies Statement 1.

To prove for two sets 𝑆, 𝑇 ⊆ 𝑋 that

𝑆 = 𝑇

is equivalent to showing that for all 𝑥 ∈ 𝑋 , we have

𝑥 ∈ 𝑆 if and only if 𝑥 ∈ 𝑇,

which is equivalent to showing that

𝑆 ⊆ 𝑇 and 𝑇 ⊆ 𝑆.

Example 2.15. To show that

𝑆 = {𝑛 ∈ N | 𝑛 mod 6 = 0}

is equal to

𝑇 = {𝑛 ∈ N | 𝑛 mod 2 = 0} ∩ {𝑛 ∈ N | 𝑛 mod 3 = 0}

we show that 𝑆 ⊆ 𝑇 and that 𝑇 ⊆ 𝑆.
It is a good idea to optically structure the proof accordingly.

𝑆 ⊆ 𝑇 . Given 𝑛 ∈ 𝑆 we know that 𝑛 mod 6 = 0 which means that we can
�nd 𝑘 ∈ N with 𝑛 = 𝑘6. This means that both

• 𝑛 = (𝑘3)2 and so 𝑛 mod 2 = 0 and
• 𝑛 = (𝑘2)3 and so 𝑛 mod 3 = 0

and so 𝑛 ∈ 𝑇 .

𝑇 ⊆ 𝑆. Given 𝑛 ∈ 𝑇 we know that both

• 𝑛 mod 2 = 0, which means that there is 𝑘 ∈ N with 𝑛 = 𝑘2
and

• 𝑛 mod 3 = 0, which means that there is 𝑙 ∈ N with 𝑛 = 𝑙3.

This means that 2, which is a prime number, divides 𝑛 = 𝑙3. By
De�nition 17 this means that

• 2 divides 3 (which clearly does not hold) or
• 2 divides 𝑙, which means that there exists 𝑗 ∈ N with 𝑙 = 𝑗2.

Altogether this means that 𝑛 = 𝑙3 = 𝑗2 · 3 = 𝑗6, and so 𝑛 is divisible
by 6.

Quite often when proving an ‘if and only if’ statement the best strategy is to
prove the two directions separately. The only exception is when one can �nd steps
that turn one side into the other, and every single step is reversible.

In order to show that an if and only if statement does not hold it is su�cient
to establish that one of the two implications fails to hold.
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Key phrase For all

Again a phrase that is very common in mathematical de�nitions or arguments,
but there are other uses. For example you might want to ensure that you have an
email address for every customer in your database.

Example 2.16. Consider the following statement.

for all elements 𝑘 of {4𝑛 | 𝑛 ∈ N} we have that 𝑘 is divisible by 2.

In order to show that this is true I have to assume that I have an arbitrary
element 𝑘 of the given set. In order for 𝑘 to be in that set it must be the case
that there exists 𝑛 ∈ N such that 𝑘 = 4𝑛. But now

𝑘 = 4𝑛 = 2(2𝑛)

and according to De�nition 3 this means that 𝑘 is divisible by 2.
Since an arbitrary element of the given set satis�es the given condition,

they must all satisfy it.

A ‘for all’ statement should have two parts.

• For which elements are making the claim? There should be a set associated
with this part of the statement (this is N in the previous example).

• What property or properties do these elements have to satisfy? There
should be a statement which speci�es this. In the previous example it is the
statement that the number is divisible by 2.

Typically when proving a statement beginning with ‘for all’ one assumes that
one has an unspeci�ed element of the given set, and then establishes the desired
property.

Example 2.17. Looking back above at the statement that one set is the subset
of another, we have, strictly speaking, suppressed a ‘for all’ statement.

Given subsets 𝑆 and 𝑇 of a set 𝑋 the statement

𝑆 ⊆ 𝑇

is equivalent to

for all 𝑥 ∈ 𝑋 𝑥 ∈ 𝑆 implies 𝑥 ∈ 𝑇.

In the proof in Example 2.12 we did indeed pick an arbitrary element of the
�rst set, and then showed that it is an element of the second set.

Example 2.18. A nice example of a ‘for all’ statement is that of the equality of
two functions with the same source and target. Let 𝑓 : 𝑆 𝑇 and 𝑔 : 𝑆 𝑇
be two functions. Then

𝑓 = 𝑔
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if and only if
for all 𝑠 ∈ 𝑆 we have 𝑓𝑠 = 𝑔𝑠.

We look at a concrete version of this idea.

Example 2.19. Consider the following two functions.

𝑓 : N N
𝑥 2(𝑥 div 2)

𝑔 : N N

𝑥

{︃
𝑥 𝑥 is even
𝑥− 1 else.

To show that the two functions are equal, assume we have an arbitrary element
𝑛 of the source set N. The second function is given in a de�nition by cases,
and usually it is easier to also split the proof into these two cases.

• Assume that 𝑛 is even, which means that 𝑛 mod 2 = 0 by De�nition 4.
In this case

𝑓𝑛 = 2(𝑛 div 2) def 𝑓
= 2(𝑛 div 2) + 0 0 unit for addition
= 2(𝑛 div 2) + 𝑛 mod 2 𝑛 even
= 𝑛 Lemma 0.1
= 𝑔𝑛 def 𝑔.

• Assume that 𝑛 is not even, which means that 𝑛 mod 2 = 1 by De�ni-
tion 4. In this case

𝑓𝑛 = 2(𝑛 div 2) def 𝑓
= 2(𝑛 div 2) + 0 0 unit for addition
= 2(𝑛 div 2) + 1 − 1 1 − 1 = 0

= 2(𝑛 div 2) + 𝑛 mod 2 − 1 𝑛 not even
= 𝑛− 1 Lemma 0.1
= 𝑔𝑛 def 𝑔.

In every-day language you are more likely to �nd the phrase ‘every’ instead of
‘for all’. Mathematicians like to use phrases that are a little bit di�erent from what
is common elsewhere to draw attention to the fact that they mean their statement
in a formal sense.

Example 2.20. ‘Every �rst year computer science student takes COMP11120’
is a claim that is a ‘for all’ statement. In order to check whether it is true you
have to go through all the �rst year students in the School and check whether
they are enrolled on this unit.

In order to show that a statement beginning ‘for all’ does not hold it is su�cient
to �nd one element of the given set for which it fails to hold.
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Example 2.21. In the previous example, if you can �nd one student in computer
science who is not enrolled on COMP11120 then you have shown that the
statement given above does not hold.

Example 2.22. In order to refute the claim that for all natural numbers 𝑥 and
𝑦 it is the case that

𝑥− 𝑦 = 𝑦 − 𝑥,

it is su�cient to �nd one counterexample, so by merely writing

2 − 1 = 1 ̸= −1 = 1 − 2,

we have proved that the claim does not hold.

Key phrase There exists

This is a phrase that is frequently found both in mathematical de�nitions and
arguments.

Example 2.23. The de�nition of divisibility (compare De�nition 3)

𝑦 is divisible by 𝑥

if and only if there exists 𝑘 ∈ N
such that 𝑦 = 𝑘𝑥.

is an example of a ‘there exists’ statement.

Whenever a statement is made about existence there should be two parts to it:

• Where does the element exist? There should always be a set associated
with the statement. In the above example, 𝑘 had to be an element of N
(and indeed the existence of some 𝑟 ∈ R with the same property would
completely change the de�nition and make it trivial).

• What are the properties that this element satis�es? There should always
be a statement which speci�es this. In the example above the property is
𝑚 = 𝑘𝑛 (for the given 𝑚 and 𝑛).

One proves a statement of this form by producing an element which satis�es
it, which is also known as a witness.

Example 2.24. To show that 27 is divisible by 9, by De�nition 3, I have to
show that

there exists 𝑘 ∈ N with 27 = 𝑘9.

To show this I o�er 𝑘 = 3 as a witness, and observing that

9 · 3 = 27

veri�es that this element has the desired property.
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To go back to the database example you might wonder whether you have a
customer in your database who lives in Italy, or whether you have a customer
who is paying with cheques (so that you can inform them that you will no longer
accept these as a payment method).

Again in every-day language the phrase ‘there is’ is more common than ‘there
exists’. The latter serves to emphasize that a statement including is should be
considered a precise mathematical statement.

Example 2.25. ‘There is a student who is enrolled on both, COMP25212 as
well as MATH20302’ may have implications for the timetable.

Example 2.26. In order to show that there exists a number which is both, even
and prime, it is su�cient to supply the witness 2 together with an argument
that it is both, even and prime.

Often the di�culty with proving a ‘there exists’ statement is �nding the witness,
rather than with proving that it has the required property.

Sometimes instead of merely demanding the existence of an element we might
demand its unique existence. This is equivalent to a quite complex statement and
is discussed below.

In order to show that a statement beginning ‘there exists’ does not hold one has
to establish that it fails to hold for every element of the given set. So to demonstrate
that the statement above regarding students does not hold you have to check every
single second year student.

Key phrase Unique existence

We sometimes demand that there exists a unique element with a particular property.
This is in fact a convenient shortcut.

There exists a unique 𝑠 ∈ 𝑆 with the property 𝑃

holds if and only if

there exists 𝑠 ∈ 𝑆 with property 𝑃 and
for all 𝑠, 𝑠′ ∈ 𝑆, if 𝑠 and 𝑠′ satisfy property 𝑃 then 𝑠 = 𝑠′.

Example 2.27. If 𝑓 : 𝑆 𝑇 is a function from the set 𝑆 to the set 𝑇 then we
know that the function assigns to every element of 𝑆 an element of 𝑇 , and
this means that

for every 𝑠 ∈ 𝑆 there exists a unique6 𝑡 ∈ 𝑇 with 𝑓𝑠 = 𝑡.

Uniqueness is important here: We expect that a function, given an input
value, produces precisely one output value for that input. So if we have valued
𝑡 and 𝑡′ in 𝑇 which both satisfy the statement then we have 𝑡 = 𝑓𝑠 = 𝑡′,
and so 𝑡 = 𝑡′. This idea is used in characterizing graphs of functions, see
De�nition 14.

6Note that this is a di�erent statement from either De�nition 22 or De�nition 23—in exams
students sometimes get confused about this.
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Key phrases: Summary

We have the key ingredients that formal statements are made of, namely the key
phrases which allow us to analyse their structure. Analysing the structure of a
statement allows us to construct a blueprint for a proof of that statement. The
key ideas are given in the text above; we give a summary in form of Table 2.1. By
‘counterproof’ we mean a proof that the statement does not hold. In the table 𝑆,
𝑆1 and 𝑆2 are statements, possibly containing further key phrases.

statement proof counterproof

𝑆1 and 𝑆2
proof of 𝑆1 and proof
of 𝑆2

counterproof for 𝑆1 or
counterproof for 𝑆2

𝑆1 or 𝑆2
proof of 𝑆1 or proof
of 𝑆2

counterproof for 𝑆1 and
counterproof for 𝑆2

if 𝑆1 then
𝑆2

assume 𝑆1 holds and
prove 𝑆2

�nd situation where 𝑆1
holds and 𝑆2 does not

for all 𝑥, 𝑆
assume an arbitrary 𝑥 is
given and prove 𝑆 for
that 𝑥

give a speci�c 𝑥 and show 𝑆
does not hold for that 𝑥

there is 𝑥
such that 𝑆

�nd a speci�c 𝑥 and
show that 𝑆 holds for
that 𝑥

assume you have an
arbitrary 𝑥 and show 𝑆 does
not hold for that 𝑥

Table 2.1: Key phrases and proofs

Tip

Every statement we might wish to prove, or disprove, is constructed from the
key phrases. In order to �nd a blueprint for a proof, or counterproof, all we have
to do is to take the statement apart, and follow the instructions from Table 2.1.
We give a number of additional examples for more complex statements in
the following sections. Note in particular the proof of Proposition 2.1 as an
example of a lengthy proof of this kind.

One shouldn’t think of the above as mere ‘phrases’—they allow us to construct
formal statements and come with a notion of how to establish proofs for these.
This is what mathematics is all about. We look at an even more formal treatment
of these ideas in the material on logic, which is taught after we are �nished with
the current chapter.

In the following sections we look at examples for such statements which give
de�nitions which are important in their own right. The aim is for you to become
familiar with the logical constructions as well as learning about the given example.

2.3 Properties of numbers

We begin by giving examples within some sets of numbers. You will need to use
the de�nitions and properties from Chapter 0 here.
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In the examples that follow on the left hand side we give running commentary
on how to construct the proof that appears on the right hand side.

Example 2.28. We prove the following statement for integers 𝑥, 𝑦 and 𝑧:

If 𝑥 divides 𝑦 then 𝑥 divides 𝑦 · 𝑧.

This is an ‘if . . . then’ statement.
Table 2.1 above tells us we should
assume the �rst statement holds.

Assume that 𝑥 and 𝑦 are integers
and that 𝑥 divides 𝑦.

Sooner or later we have to apply
the formal de�nition of divides to
work out what this means.

By De�nition 3 this means that
there exists an integer 𝑚 such that
𝑥 ·𝑚 = 𝑦.

It is usually a good idea to write
down what we have to prove, again
expanding the de�nition of ‘di-
vides’.

We have to show that 𝑥 divides 𝑦 ·
𝑧, and by De�nition 3 we have to
show that there exists an integer 𝑛
such that 𝑥 · 𝑛 = 𝑦 · 𝑧.

We have to establish a ‘there exists’
statement, and Table 2.1 tells us we
have to �nd a witness for which
the statement is true. At this point
one usually has to stare at the state-
ments already written down to see
whether there is an element with
the right property hidden among
them.

We have

𝑦 · 𝑧 = (𝑥 ·𝑚) · 𝑧 assmptn
= 𝑥 · (𝑚 · 𝑧) Fact 1.

and so we have found an integer,
namely 𝑚 ·𝑧 with the property that
we may multiply it with 𝑥 to get
𝑦 · 𝑧.

Example 2.29. Assume we are asked to prove

for all 𝑥 ∈ N, 2𝑥 is even,

Table 2.1 says to show a statement of the
form ‘for all . . . ’ we should assume we have
a natural number 𝑛. Let 𝑛 be in N.
So far so good. What about the statement
2𝑥 is even? At this point one should al-
ways look up the formal de�nition of the
concepts used in the statements.

We have to show that 2𝑥
is even, by De�nition 4 this
means we have to show that 2
divides 2𝑥.

So now we have put in the de�nition of
evenness, but that leaves us with divisibil-
ity, so we put in that de�nition.

By De�nition 3 we have to
show that there is 𝑚 ∈ N with
2𝑥 = 2𝑚. We pick 𝑚 = 𝑥 and
so the claim is established.

Sometimes you are not merely asked to prove or disprove a statement, but
you �rst have to work out whether you should do the former or the latter. This
changes the work�ow a little.
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Example 2.30. Assume we are asked to prove or disprove the following state-
ment for integers 𝑥, 𝑦 and 𝑘.

If 𝑥 divides 𝑧, and 𝑦 divides 𝑧, then 𝑥 · 𝑦 divides 𝑧.

Now we �rst have to work out
whether we want to prove the
statement, or �nd a counterproof.
Usually it’s a good idea to do some
examples. 2 divides 6 and 3 divides 6,
and 2 · 3 = 6 divides 6, but 2 divides 2
and 2 divides 2, whereas 2 · 2 = 4 does
not divide 2, so this statement is false.

But what does a formal argument look
like in this case? Table 2.1 tells us that it
is su�cient to �nd one way of picking
𝑥, 𝑦, and 𝑧 which makes the claim false.
We show how to use the counter-
example we found informally to form-
ally establish that the statement does
not hold.

We note that

2 · 1 = 2,

and so 2 divides 2 by De�ni-
tion 3. We pick

𝑥 = 𝑦 = 𝑧 = 2.

For those choices, the above es-
tablishes that 𝑥 divides 𝑧 and
that 𝑦 divides 𝑧.
But 𝑥 · 𝑦 = 4 and this number
does not divide 𝑧 = 2, hence
the statement is false.

Example 2.31. Assume we are given the statement

there is an 𝑥 ∈ Z ∖ {0, 1} such that 𝑥 + 𝑥 = −(𝑥 · 𝑥).

and are asked to prove or disprove it.

Do we believe the statement? If we try
2 + 2 we get 4, but −(2 · 2) = −4,
and clearly we get a sign mismatch if
we use any positive integer. But what
about 𝑥 = −2?

Table 2.1 tells us that all we have to do
to give a proof for a ‘there exists’ state-
ment is to �nd one witness for which
the claim is true.

If we set 𝑥 = −2 then we have

𝑥 + 𝑥 = −2 + (−2) def 𝑥
= −4 arithmetic
= −(2 · 2) arithmetic
= −(𝑥 · 𝑥) def 𝑥.

as required.
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Exercise 23. Prove or disprove the following statements about divisibility
for integers making sure to use De�nition 3. Assume that 𝑥, 𝑦 and 𝑧 and 𝑤
are integers. Follow the examples above in style (you don’t have to give the
running commentary).

(a) If 𝑥 divides 𝑧 and 𝑦 divides 𝑤 then 𝑥 · 𝑦 divides 𝑧 · 𝑤.

(b) If 𝑥2 divides 𝑦 · 𝑧 then 𝑥 divides 𝑦 and 𝑥 divides 𝑧.

(c) If 𝑥 divides 𝑦 and 𝑦 divides 𝑧 then 𝑥 divides 𝑧.

(d) If 𝑥 divides 𝑦 and 𝑦 divides 𝑥 then 𝑥 = 𝑦.

Here is a de�nition of a number being prime that will look di�erent from the
one you have seen before. The aim of this is to encourage you to follow the given
formal de�nition, and not your idea of what it should mean.

De�nition 17: prime

An element 𝑥 ̸= 1 of N (or 𝑥 ̸= ±1 in Z) is prime if and only if for all elements
𝑦 and 𝑧 of N (or Z) it is the case that

𝑥 divides 𝑦𝑧 implies 𝑥 divides 𝑦 or 𝑥 divides 𝑧.

Example 2.32. Assume that we have the statement

for all 𝑥 ∈ N ∖ {0, 1}, 𝑥 is prime or 𝑥 is a multiple of 2.

Do we believe the statement? Well, 0
and 1 have been excluded, so let’s look
at the next few numbers. We have that
2 is prime, 3 is prime, 4 is a multiple of
2, 5 is prime. . .
This looks good, but do we really be-
lieve this? Are there really no odd num-
bers which are not prime? The number
9 comes to mind.
So we want to give a counterproof.
Table 2.1 tells us that we are looking
for one 𝑥 such that the statement does
not hold.

Let 𝑥 = 9.
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To give a counterproof we have to show
that 9 does not satisfy the claim. The
two statements are connected with ‘or’,
so according to Table 2.1 we have to
show that neither holds.

We note that 9 is not prime since
9 = 3 · 3, so 9 divides 3 · 3 but 9
does not divide 3, which means that
9 does not satisfy De�nition 17.
If 9 were even it would have to be
divisible by 2 according to De�n-
ition 4. but since 9 mod 2 = 1,
De�nition 3 tells us that this is not
the case.
Hence this is a counterexample to
the claim.

Exercise 24. Establish the following claims for prime numbers using De�ni-
tion 17, and de�nitions and facts from Chapter 0.

(a) Show that if an element 𝑥 of N is prime then

𝑦 divides 𝑥 implies 𝑦 = 1 or 𝑦 = 𝑥.

(b) Show that if 𝑥 and 𝑦 are prime in N, 𝑥 ̸= 𝑦, and 𝑧 is any natural number
then

𝑥 divides 𝑧 and 𝑦 divides 𝑧 implies 𝑥𝑦 divides 𝑧.
Compare this statement and its proof with Example 2.30.

(c) Show that if 𝑥 is prime in Z then

𝑦 divides 𝑥 implies 𝑦 = ±1 or 𝑦 = ±𝑥

Note that the converse of (b) and (c) are also true, that is, our de�nition of
primeness is equivalent to the one you are used to. However, the proof requires
a lot more knowledge about integers than I want to ask about here.

Example 2.33. Assume we are given the statement

There exists 𝑥 ∈ Z such that 𝑥 is a multiple of 3 and 𝑥 is a power of 2.
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Do we believe the statement? A bit of thinking
convinces us that powers of 2 are only divisible
by powers of 2, so they cannot be divisible by
3 and therefore they cannot be a multiple of 3.
But how do we show that such a number cannot
exist? This is a situation where what counts
as a formal proof very much depends on what
properties one may use.
The cleanest proof is via the prime factorization
of integers (or corollaries thereof), but that is
more than I want to cover in these notes.
In a situation where you cannot see how to
write down a formal proof you should write
something along the lines of the �rst paragraph
written here. Never be afraid of expressing your
thoughts in plain English!

If you were to start a formal proof it would look
like something on the right.

Assume that 𝑥 is a
power of 2, that is,
there exists 𝑘 ∈ N such
that 𝑥 = 2𝑘.
If 𝑥 is a multiple of 3
then there is 𝑚 ∈ Z
such that 𝑥 = 3𝑚.
Hence 2𝑘 = 𝑥 = 3𝑚.

This is where you would like to use that 3 can-
not divide 2𝑘 , but this requires a fact that is not
given in Chapter 0. So the best you can do is
to write what I wrote on the right.

This means that 3 di-
vides 2𝑘, which is im-
possible.

CExercise 25. Which of the following statements are valid? Try to give a
reason as best you can, following the previous examples. You should use the
de�nitions from Chapter 0 for the notions of evenness and divisibility (and
there is a formal de�nition of primeness above, but for this exercise you may
use the one you are familiar with).

(a) For all 𝑥 ∈ N, 𝑥 is even or 𝑥 is odd.

(b) There exists 𝑥 ∈ N such that 𝑥 is even and 𝑥 is a prime number.

(c) There exists a unique 𝑥 ∈ Z such that 𝑥 is even and 𝑥 is a prime number.

(d) For all 𝑥 ∈ Z, 𝑥 is divisible by 4 implies 𝑥 is divisible by 2.

(e) For all 𝑥 ∈ Z, 𝑛 is odd implies 𝑥 mod 4 = 1 or 𝑥 mod 4 = 3.

(f) There exists 𝑥 ∈ N such that 𝑥 is even implies 𝑥 is odd.

(g) For all 𝑥 ∈ Z ∖ {−1, 0, 1, 3} there exists 𝑦 in Z such that 𝑥 div 𝑦 = 2.

Examples for treating more complex statements, and giving more formal proofs,
are given in the following sections.
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2.4 Properties of Sets and their Operations

We use this opportunity to give more sample proofs for sets, but also note in
particular the proof of Proposition 0.3 and Examples 2.12 and 2.15.

Example 2.34. Let 𝑆, 𝑆′ and 𝑇 be subsets of a set 𝑋 . We show that

if 𝑆 ⊆ 𝑆′ then 𝑆 ∪ 𝑇 ⊆ 𝑆′ ∪ 𝑇.

In order to show that one set is a subset of another we have to show that
every element of the �rst set is one of the second. So, as suggested by Table 2.1
we begin by assuming we have an arbitrary element of the �rst set.

Let 𝑥 ∈ 𝑆 ∪ 𝑇 . By de�nition of ∪ this means that

𝑥 ∈ 𝑆 or 𝑥 ∈ 𝑇.

In the �rst case we know that 𝑥 ∈ 𝑆 ⊆ 𝑆′, so 𝑥 ∈ 𝑆′, and in the second case
we stick with 𝑥 ∈ 𝑇 . Hence the statement above implies that

𝑥 ∈ 𝑆′ or 𝑥 ∈ 𝑇,

which is equivalent to 𝑥 ∈ 𝑆′ ∪ 𝑇 by the de�nition of ∪.

Exercise 26. Let 𝑆, 𝑆′ and 𝑇 be subsets of a set 𝑋 . Assume that

𝑆 ⊆ 𝑆′.

Show the following statements.

(a) 𝑆 ∩ 𝑇 ⊆ 𝑆′ ∩ 𝑇 .

(b) 𝑋 ∖ 𝑆 ⊇ 𝑋 ∖ 𝑆′.

More proofs involving sets and their operations are given below, see in partic-
ular Examples 2.36 and 2.39.

2.5 Properties of Operations

Functions that appear very frequently are operations on a set. Usually we are
interested in binary operations on a set 𝑆, that is functions

𝑆 × 𝑆 𝑆.

Examples of such functions are

• addition and multiplication for N,

• addition, and multiplication for Z, Q, R or C, as well as the derived operation
of subtraction,

• union and intersection of sets as functions from 𝒫𝑋 × 𝒫𝑋 to 𝒫𝑋 ,

• concatenation of strings in Python;
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• concatenation of lists (see Section 6.1) over some set.

Note that we cannot de�ne a division operation for rational, real or complex
numbers, in the way that we de�ne subtraction. We may not divide by 0 and so
we can only de�ne division as a function where the source has been adjusted, for
example,

R× (R ∖ {0}) R

(𝑥, 𝑦) 𝑥 · 𝑦−1,

where
𝑦−1

is our notation for the multiplicative inverse of 𝑦.
These are operations we use all the time, and they are deserving of further

study. Note that we typically write binary operations in in�x notation, that is, we
write the operation between its two arguments, such as 𝑟 + 𝑟′, 𝑐 · 𝑐′.

For what follows we need an arbitrary binary operation, where we make no
assumptions about the kind of operation, or the set it is de�ned on. For that we
use the symbol ~.

De�nition 18: associative

A binary operation ~ on a set 𝑆 is associative if and only, for all 𝑠, 𝑠′, 𝑠′′ in 𝑆
it is the case that

(𝑠~ 𝑠′) ~ 𝑠′′ = 𝑠~ (𝑠′ ~ 𝑠′′).

Why is this important? We use brackets to identify in which order the opera-
tions should be carried out. We can think of the two expressions as encoding a
tree-like structure (known as a parse tree7), which tells us in which order to carry
out the operations present in the expression.

(𝑠~ 𝑠′) ~ 𝑠′′

~

~

𝑠 𝑠′

𝑠′′

𝑠~ (𝑠′ ~ 𝑠′′)

~

𝑠 ~

𝑠′ 𝑠′′

Example 2.35. Recall that 𝑚−𝑛 is a shortcut for calculating 𝑚+(−𝑛), Using
that derived operation as an example, we illustrate how one can think of this
as allowing the �lling in of the various steps of the calculation:

7Parse trees are studied in detail in COMP11212.
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−

−

3 4

5 becomes

−1 − 5 = −6

3 − 4 = −1

3 4

5

whereas

−

3 −

4 5

becomes

3 − (−1) = 4

3 4 − 5 = −1

4 5

Knowing that an operation is associative means that both trees evaluate to
the same number and therefore we may leave out brackets when using such an
operation. It is safe to write

𝑠~ 𝑠′ ~ 𝑠′′

for such an operation.
This is important to computer scientists for two main reasons:

• When writing a program, leaving out brackets in this situation makes the
code more readable to humans.

• When writing a compiler for a programming language, knowing that an
operation is associative may allow signi�cantly faster ways of compiling.

Note that if we write our operation as a binary function

𝑓 : 𝑆 × 𝑆 𝑆

where we use pre�x notation then associativity means that the following equality
holds:

𝑓(𝑓(𝑠, 𝑠′), 𝑠′′) = 𝑓(𝑠, 𝑓(𝑠′, 𝑠′′))

Example 2.36. Assume we are given a set 𝑋 . Recall from Section 0.2.4 that
we may think of the union operation as a function

∪ : 𝒫𝑋 × 𝒫𝑋 𝒫𝑋 .

We show that this operation is associative.
The statement we wish to show is a ‘for all’ statement. Following Table 2.1

we assume that 𝑆, 𝑆′ and 𝑆′′ are (arbitrary) elements 𝒫𝑋 . We calculate

(𝑆 ∪ 𝑆′) ∪ 𝑆′′ = {𝑥 ∈ 𝑋 | 𝑥 ∈ 𝑆 or 𝑥 ∈ 𝑆′} ∪ 𝑆′′ def union
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= {𝑥 ∈ 𝑋 | (𝑥 ∈ 𝑆 or 𝑥 ∈ 𝑆′) or 𝑥 ∈ 𝑆′′} def union
= {𝑥 ∈ 𝑋 | 𝑥 ∈ 𝑆 or 𝑥 ∈ 𝑆′ or 𝑥 ∈ 𝑆′′} common sense
= {𝑥 ∈ 𝑋 | 𝑥 ∈ 𝑆 or (𝑥 ∈ 𝑆′ or 𝑥 ∈ 𝑆′′)} common sense
= 𝑆 ∪ {𝑥 ∈ 𝑋 | 𝑥 ∈ 𝑆′ or 𝑥 ∈ 𝑆′′} def union
= 𝑆 ∪ (𝑆′ ∪ 𝑆′′) def union

Note that we have justi�ed each step in the equalities used above—this ensures
that we check we only use valid properties, and tells the reader why the steps
are valid.

Note that we had to invoke ‘common sense’ in the example—usually this means
that we are relying on de�nitions that are not completely rigorous mathematically
speaking. What we have done in the de�nition of the union of two sets is to
rely on the meaning of the English language. Only when we are down to that is
it allowable to use ‘common sense’ as a justi�cation (you might also call it ‘the
semantics of the English language’). In formal set theory there is formal logic to
de�ne the union of two sets, but we do not go to this level of detail here.

Example 2.37. Example 2.35 establishes that the derived operation of subtrac-
tion is not associative for the integers since it shows that

(3 − 4) − 5 ̸= 3 − (4 − 5),

and to refute a ‘for all’ claim we merely need to give one counterexample.

Since we so far do not have formal de�nitions of addition and multiplication for
N, Z, Q and R it is impossible to formally prove that these are indeed associative.
You may use this as a fact in your work on this unit, apart from when you are
asked to formally prove them in Chapter 6.8

CExercise 27. Work out whether the following operations are associative.

(a) Intersection for sets.

(b) Addition for complex numbers.

(c) Subtraction for complex numbers.

(d) Multiplication for complex numbers.

(e) De�ne the average ave of two real numbers 𝑟, 𝑟′ as

ave(𝑟, 𝑟′) =
𝑟 + 𝑟′

2
.

Is this operation associative? Would you apply it to calculate the average of
three numbers? If not, can you think of a better averaging function?

8Note that formal de�nitions, and proofs, of these properties for the natural numbers are given
in Section 6.4.
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(f) Multiplication of real numbers where every number is given up to one post-
decimal digit, and where rounding takes place every time after a multiplication
has been carried out.9

(g) The concatenation operator for strings (as, for example, implemented as +
in Python).

(h) The and operator for boolean expressions in Python.

(i) Let 𝑆 be a set and let Fun(𝑆, 𝑆) be the set of all functions with source
𝑆 and target 𝑆. Show that composition is an associative operation on the
set Fun(𝑆, 𝑆).

Some operations allow us even greater freedom: Not only is it unnecessary
to provide brackets, we may also change the order in which the arguments are
supplied.

De�nition 19: commutative

A binary operation ~ on a set 𝑆 is commutative if and only if, for all 𝑠 and 𝑠′

in 𝑆 we have
𝑠~ 𝑠′ = 𝑠′ ~ 𝑠.

If an operation is commutative then it does not matter in which order argu-
ments are supplied to it. Hence the two trees below will evaluate to give the same
result.

𝑠~ 𝑠′

~

𝑠 𝑠′

𝑠′ ~ 𝑠

~

𝑠′ 𝑠

Example 2.38. We know that when we have natural numbers 𝑚 and 𝑛 then

𝑚 + 𝑛

+

𝑚 𝑛

𝑛 + 𝑚

+

𝑛 𝑚

have the same number at the root of the tree, and so addition is a commut-
ative operation.

Example 2.39. As in Example 2.36 we look at the union operation on the
powerset 𝒫𝑋 for a given set 𝑋 . We show that this operation is commutative.

Once more this is a statement of the ‘for all . . . ’ kind. Following Table 2.1

9When programming there is usually limited precision, and rounding has to take place after each
step of the computation. While a computer has more precision, say for �oating point numbers, the
problems that occur are the same as here.
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once again we assume that we have (arbitrary) elements 𝑆 and 𝑆′ of 𝒫𝑋 . The
union of 𝑆 and 𝑆′ is de�ned as follows:

𝑆 ∪ 𝑆′ = {𝑥 ∈ 𝑋 | 𝑥 ∈ 𝑆 or 𝑥 ∈ 𝑆′}

and, once again invoking ‘common sense’, this is the same as

{𝑥 ∈ 𝑋 | 𝑥 ∈ 𝑆′ or 𝑥 ∈ 𝑆} = 𝑆′ ∪ 𝑆.

Alternatively we can argue with more of an emphasis on the property of
elements of the given sets:

𝑥 ∈ 𝑆 ∪ 𝑆′ if and only if 𝑥 ∈ 𝑆 or 𝑥 ∈ 𝑆′ def ∪
if and only if 𝑥 ∈ 𝑆′ or 𝑥 ∈ 𝑆 logic
if and only if 𝑥 ∈ 𝑆′ ∪ 𝑆.

Example 2.40. Consider the following10 operation for complex numbers: Given
𝑧 and 𝑧′ in C we set

𝑧 ~ 𝑧′ = 𝑧𝑧′.

The question is whether this operation is commutative.
First of all we have to work out whether we think it is true, and should try

to prove it, or whether we should aim for a counterproof.
There are two approaches here: You can write down what this operation

does in terms of real and imaginary parts which approach we follow in the
following example, or you can think for a moment about what the conjugate
operation does. It a�ects the imaginary part only, so if we have the product of
one number with imaginary part 0, and one with imaginary part other than 0,
there should be a di�erence. This suggests we should try a counterproof, that
is, we should �nd one choice for 𝑧, and one for 𝑧′, such that the statement
becomes false.

The simplest numbers �tting the description given above, and which are
distinct from 0, are 1 and 𝑖. We check

𝑖~ 1 = 𝑖 · 1 = −𝑖 · 1 = −𝑖,

and
1 ~ 𝑖 = 1 · 𝑖 = 1 · 𝑖 = 𝑖.

Since −𝑖 ̸= 𝑖 we have established that the given operation is not commutative.

Example 2.41. We give an alternative solution to the previous example. We
calculate that

(𝑎 + 𝑏𝑖) ~ (𝑎′ + 𝑏′𝑖) = (𝑎 + 𝑏𝑖)𝑎′ + 𝑏′𝑖

= (𝑎 + 𝑏𝑖)(𝑎′ − 𝑏′𝑖)

= (𝑎𝑎′ + 𝑏𝑏′) + (−𝑎𝑏′ + 𝑏𝑎′)𝑖,

10This appeared in a past exam paper.
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whereas

(𝑎′ + 𝑏′𝑖) ~ (𝑎 + 𝑏𝑖) = (𝑎′𝑎 + 𝑏′𝑏) + (−𝑎′𝑏 + 𝑏′𝑎)𝑖

= (𝑎𝑎′ + 𝑏𝑏′) + (𝑎𝑏′ − 𝑎′𝑏)𝑖

= (𝑎𝑎′ + 𝑏𝑏′) − (−𝑎𝑏′ + 𝑏𝑎′)𝑖.

So the two resulting numbers will have the same real part, but their imaginary
parts will be the negatives of each other. Now it is important to remember
that it is su�cient to �nd just one counterexample, and it is best to keep that
as simple as possible. We pick

𝑎 = 0 𝑏 = 1 𝑎′ = 1 𝑏′ = 0,

and verify that this means

(𝑎 + 𝑏𝑖) ~ (𝑎′ + 𝑏′𝑖) = 𝑖

and

(𝑎′ + 𝑏′𝑖) ~ (𝑎 + 𝑏𝑖) = −𝑖.

CExercise 28. Work out whether the following operations are commutative.
If you think the answer is ‘yes’, give a proof, if ‘no’ a counterexample.

(a) Multiplication for complex numbers.

(b) Subtraction for integers.

(c) Division for real numbers di�erent from 0.

(d) Set di�erence on some powerset.

(e) The ave function from the previous exercise.

(f) The concatenation operator for strings as for example implemented by +
in Python.

(g) The and operator for boolean expressions in Python.

Some operations have an element which does not have any e�ect when com-
bined with any other.

De�nition 20: unit

Let ~ be a binary operation on a set 𝑆. An element 𝑒 of 𝑆 is a11 unit for ~ if
and only if it is the case that for all elements 𝑠 of 𝑆 we have

𝑠~ 𝑒 = 𝑠 = 𝑒~ 𝑠.

If we want to picture this using a tree then it is saying that
11This is sometimes also known as the identity for the operation, but that terminology might

create confusion with the identity function for a set.
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~

𝑠 𝑒

and

~

𝑒 𝑠

become 𝑠

This looks odd, but if you think of the �rst two trees as being part of a larger
tree then this becomes a useful simpli�cation rule.

Example 2.42. Knowing that 0 is the unit for addition for the integers we may
simplify the tree on the left to become the tree on the right.

+

−3 +

0 1

+

−3 1

Example 2.43. We have already seen a number of examples of units. The
number 0 is the unit for addition on all the sets of numbers we cover in these
notes. This is one of the statements from Fact 1 (and corresponding facts about
the other sets of numbers), since for all 𝑥 ∈ N we have

𝑥 + 0 = 𝑥 = 0 + 𝑥.

Example 2.44. If we look at the intersection operation for subsets of a given
set 𝑋 ,

∩ : (𝑆, 𝑆′) 𝑆 ∩ 𝑆′,

we can show that 𝑋 is the unit of this operation. For that we have to calculate,
given an arbitrary subset 𝑆 of 𝑋 ,

𝑆 ∩𝑋 = {𝑥 ∈ 𝑋 | 𝑥 ∈ 𝑆 and 𝑥 ∈ 𝑋} def ∩
= {𝑥 ∈ 𝑋 | 𝑥 ∈ 𝑆}
= 𝑆.

and

𝑋 ∩ 𝑆 = {𝑥 ∈ 𝑋 | 𝑥 ∈ 𝑋 and 𝑥 ∈ 𝑆} def ∩
= {𝑥 ∈ 𝑋 | 𝑥 ∈ 𝑆}
= 𝑆.

Hence the claim is true.

Working out whether a unit exists for some operation can be tricky. The
existence of a unit is equivalent to the statement

there exists 𝑒 ∈ 𝑆 such that for all 𝑠 ∈ 𝑆 𝑠~ 𝑒 = 𝑠 = 𝑒~ 𝑠.
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By Table 2.1 to refute such a statement we have to show that

for all 𝑒 ∈ 𝑆 there exists 𝑠 ∈ 𝑆 (𝑠~ 𝑒 ̸= 𝑠 or 𝑠 ̸= 𝑒~ 𝑠).

Statements like this are quite tricky to prove. The next two examples show how
one might argue in such a situation. The strategy is to deduce properties that 𝑒
would have to have (if it existed), and to then argue that an element with such
properties cannot exist.

Example 2.45. Consider subtraction for integers, where 𝑛−𝑚 is a shortcut
for 𝑛 + (−𝑚). Does this operation have a unit? Once again, we �rst have to
decide whether we should try to give a proof or a counterproof.

The statement in question is of the kind ‘there exists . . . ’. To prove such a
statement we have to give an element with the required property. In a situation
where we’re not sure what such an element might look like, it is often possible
to derive properties it needs to have. This is the strategy we follow here.

If the number we have 𝑒 were a unit for subtraction we would require

𝑛− 𝑒 = 𝑛

for all elements 𝑛 of Z. The only number which satis�es this is 𝑒 = 0, but if
we calculate

0 − 1 = −1,

we see that this element cannot be the unit since we would require that number
to be equal to 1 to satisfy 𝑒− 𝑛 = 𝑛 for all 𝑛 ∈ N. Hence the given operation
does not have a unit.

Note that the subtraction operation satis�es none of our properties! For this
reason it is quite easy to make mistakes when using this operation, and that is
why it is preferable to not to consider subtraction a well-behaved operation.

It is usually harder to establish that an operation does not have a unit, so we
give another example for this case.

Example 2.46. Let us recall the set di�erence operation from Section 0.2 on
𝒫𝑋 for a given set 𝑋 which, for 𝑆, 𝑆′ in 𝒫𝑋 , is de�ned as

𝑆 ∖ 𝑆′ = {𝑠 ∈ 𝑆 | 𝑠 /∈ 𝑆′}.

Does this operation have a unit? As in the previous example we derive prop-
erties that such a unit would have to have.

In order for 𝑆∖𝑆′ = 𝑆 to hold it must be the case that none of the elements
of 𝑆 occurs in 𝑆′. In particular if 𝑈 were the unit we must have, instantiating
𝑆 as 𝑋 ,

𝑋 ∖ 𝑈 = {𝑥 ∈ 𝑋 | 𝑥 /∈ 𝑈} = 𝑋,

which means that 𝑈 must necessarily be empty. But for the empty set we have

∅ ∖𝑋 = {𝑥 ∈ ∅ | 𝑥 /∈ 𝑋} = ∅,

but for ∅ to be the unit this would have to be equal to 𝑋 .
This means that no element of 𝒫𝑋 can satisfy the requirements for a unit

for this operation.

The following exercise asks you to identify units for a number of operations,
if they exist. 89



EExercise 29. Identify the unit for the following operations, or argue that
there cannot be one:

(a) Union of subsets of a given set 𝑋 .

(b) Multiplication for integers, rational, real and complex numbers.

(c) The operation from Example 2.40.

(d) The ave operation for the preceding two exercises.

(e) The concatenation operation for strings as, for example, implemented by +
in Python.

(f) The and operator for boolean expressions in Python.

Note that mathematicians call a set with an associative binary operation which
has a unit a monoid.

Exercise 30. Prove that there is at most one unit for a binary operation ~ on
a set 𝑆. Hint: Assume you have two elements that satisfy the property de�ning
the unit and show that they must be equal.

Exercise 31. Consider the set Fun(𝑆, 𝑆) of all functions from some set 𝑆 to
itself. This has a binary operation in the form of function composition. If
you have not already done so in Exercise 27 then show that this operation is
associative. Find the unit for the operation. Conclude that we have a monoid.
Further show that the operation is not commutative in general.

De�nition 21: inverse element
Let ~ be an associative binary operation with unit 𝑒 on a set 𝑆. We say that
the element 𝑠′ is an inverse for 𝑠 ∈ 𝑆 with respect to~ if and only if we have

𝑠~ 𝑠′ = 𝑒 = 𝑠′ ~ 𝑠.

Note that if

𝑠−1 is the inverse for 𝑠 with respect to ~

then
𝑠 is the inverse of 𝑠−1 with respect to ~

since this de�nition is symmetric.
It is standard12 to write 𝑠−1 for the inverse of 𝑠, but that convention changes if

one uses the symbol + for the operation. In that case one writes −𝑠 for the inverse
of the element 𝑠 with respect to the operation +.

Example 2.47. For addition on the integers the the inverse of an element 𝑛
is −𝑛, since

𝑛 + (−𝑛) = 0 = −𝑛 + 𝑛,

and 0 is the unit for addition. The same proof works for the rationals and the

12This is the usual notation for Q, R and Z.
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reals. For the complex numbers we have de�ned −(𝑎 + 𝑏𝑖) = −𝑎 − 𝑏𝑖, and
shown that this is the additive inverse for 𝑎 + 𝑏𝑖 in Exercise 1.1.

Example 2.48. For addition on the natural numbers 0 is the unit for addition,
but inverses do not exist in general. The number 0 is the only number that
has an inverse.13

Exercise 32. Show that if ~ is a binary operation on the set 𝑆 with unit 𝑒 then
𝑒 is its own inverse.

Example 2.49. For the rational or real numbers the multiplicative inverse of
an element 𝑟 ̸= 0 is 𝑟−1 = 1/𝑟. Note that when you use 𝑟−1, or divide by 𝑟
you must include an argument that 𝑟 is not 0!

Example 2.50. In Chapter 1 we have proved that inverses exist for both, ad-
dition and multiplication for complex numbers, and we have shown how to
calculate them for a given element. Recall that if you want to use 𝑧−1 you
must include an argument that this exists,14 that is, that 𝑧 ̸= 0.

Example 2.51. The proof that inverses for addition exist for integers, rationals,
or reals, is very short: Given such a number 𝑟, we are so used to the fact that
𝑟 + (−𝑟) = 0 = −𝑟 + 𝑟 that it hardly feels as if this is a proof!

Example 2.52. To show that a given operation does not have inverses for
every element one has to produce an element which does not have an inverse.

Assume that 𝑋 is a set. Consider the intersection operation,

∩ : 𝒫𝑋 × 𝒫𝑋 𝒫𝑋

(𝑆, 𝑆′) 𝑆 ∩ 𝑆′.

The unit for this operation is given by 𝑋 as established in Example 2.44.
We show that the empty set does not have an inverse:

If 𝑆 were an inverse for ∅ with respect to ∩ it would have to be the case
that 𝑆 ∩ ∅ = 𝑋 . But 𝑆 ∩ ∅ = ∅, and so as long as 𝑋 is non-empty, an inverse
cannot exist.

Exercise 33. For the following operations, give an argument why inverses do
not exist.

(a) Union of subsets of a given set.

(b) The ave function from the previous exercises.

(c) The concatenation operation for strings.

13Think about why that is.
14Students have lost marks in exams for just dividing by some number 𝑧 without comment.
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(d) The and operation for boolean expressions in Python.

EExercise 34. Let 𝑆 be a set with an associative binary operation ~, and
assume that 𝑒 ∈ 𝑆 is the unit for that operation.

(a) Show that if 𝑠1 and 𝑠2 have inverses then the inverse for the element
𝑠1 ~ 𝑠2 is given by 𝑠−1

2 ~ 𝑠−1
1 .

(b) Show that every element has at most one inverse. Hint: Assume that there
are two inverses and prove that they have to be the same.

Note that mathematicians call a set with an associative binary operation with
a unit, and where element has an inverse, a group. Groups are very nice mathem-
atical entities, but most of the sets with a binary operation you will see will not
have the full structure of a group (typically lacking inverses).

Optional Exercise 6. Assume that 𝐴 is a set with a binary operation ~ which
is associative and has a unit. Consider the set Fun(𝑋,𝐴) of all functions from
some set 𝑋 to 𝐴. Given two elements, say 𝑓 and 𝑔 of Fun(𝑋,𝐴), we de�ne a
new function which we call 𝑓 ~ 𝑔 in Fun(𝑋,𝐴) by de�ning for, 𝑥 ∈ 𝑋 ,

(𝑓 ~ 𝑔)𝑥 = 𝑓𝑥~ 𝑔𝑥,

(in other words the result of applying the new function to the argument 𝑥 is
to apply both, 𝑓 and 𝑔 to 𝑥 and to combine the results by using the binary
operation on 𝐴. This is known as de�ning an operation pointwise on as set
of functions. Find the unit for this operation and show that it is one. If the
operation on 𝐴 is commutative, what about the one on Fun(𝑋,𝐴)?

2.6 Properties of functions

Functions allow us to transport elements from one set to another. Section 0.3 gives
a reminder of what you should know about functions before reading on. Recall
De�nition 14 which says that the graph of a function

𝑓 : 𝑆 𝑇

is de�ned as
{(𝑠, 𝑓𝑠) ∈ 𝑆 × 𝑇 | 𝑠 ∈ 𝑆}.

This is the set we typically draw when trying to picture what a function looks like,
at least for functions from sets of numbers to sets of numbers. The typical case for
that is for 𝑆 and 𝑇 to be subsets of R.

We can characterize all those subsets of 𝑆×𝑇 which are the graph of a function
of the type 𝑆 → 𝑇 .

Proposition 2.1
A subset 𝐺 of 𝑆 × 𝑇 is the graph of a function from 𝑆 to 𝑇 if and only if

for all 𝑠 ∈ 𝑆 there exists a unique 𝑡 ∈ 𝑇 with (𝑠, 𝑡) ∈ 𝐺.
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This statement requires a proof. We give one here as another example for how
to use the key phrases in the statement to structure the proof.

We have an ‘if and only if’ statement, and we split the proof into two parts
accordingly.

• Assume that15 𝐺 is the graph of a function. We would like to have a
name for that function, so we call it 𝑓 , and note that if 𝐺 is its graph
then

𝐺 = {(𝑠, 𝑓𝑠) | 𝑠 ∈ 𝑆}.

We have to show that 𝐺 has the given property. This is a statement of
the form ‘for all . . . ’, so following Table 2.1 we assume that we have an
arbitrary 𝑠 ∈ 𝑆. We now have to establish the remainder of the given
statement. This is a ‘unique existence’ property, which means we have
to show two things:

– Existence. In order to show a ‘there exists’ statement Table 2.1
tells us we must �nd a witness for the variable, here 𝑡, with the
desired property. We know that (𝑠, 𝑓𝑠) is in the graph 𝐺 of 𝑓 , and
so we have found a witness in the form of 𝑡 = 𝑓𝑠 for the existence
part.

– Uniqueness. A uniqueness proof always consists of assuming one
has two elements with the given property and showing that they
must be equal. Assume we have 𝑡 and 𝑡′ in 𝑇 so that (𝑠, 𝑡) and
(𝑠, 𝑡′) are both elements of 𝐺. We can see from the equality for 𝐺
given above that the only element with �rst component 𝑠 in 𝐺 is
the element (𝑠, 𝑓𝑠), and so we must have 𝑡 = 𝑓𝑠 = 𝑡′ and we have
established the uniqueness part.

• Assume that16 𝐺 is a subset of 𝑆 × 𝑇 satisfying the given condition. We
have to show that 𝐺 is the graph of a function, and the only way of
doing this is to

– de�ne a function 𝑓 and
– show that 𝐺 is the graph of 𝑓 .

We carry out those steps in turns.

– We would like to de�ne a function 𝑓 : 𝑆 𝑇 by setting

𝑓 : 𝑠 𝑡 if and only if (𝑠, 𝑡) ∈ 𝐺.

We have to check that this de�nition produces a function, that
is that there is precisely one output in 𝑇 for every input from 𝑆.
By the existence part of the assumed condition we know that for
every 𝑠 ∈ 𝑆 there is at least one element 𝑡 of 𝑇 with (𝑠, 𝑡) ∈ 𝐺 and
so there is indeed an output for every input. But by uniqueness
we know that if (𝑠, 𝑡) and (𝑠, 𝑡′) are in 𝐺 then 𝑡 = 𝑡′, so there is
at most one element for every 𝑠 ∈ 𝑆. Hence given an input our
function creates the unique output required.
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– It remains to check that 𝐺 is the graph of 𝑓 , and for that we note
that by De�nition 14 the graph of a function is given as follows.

{(𝑠, 𝑓𝑠) ∈ 𝑆 × 𝑇 | 𝑠 ∈ 𝑆}
= {(𝑠, 𝑡) ∈ 𝑆 × 𝑇 | (𝑠, 𝑡) ∈ 𝐺} def 𝑓
= 𝐺

This completes the proof.

Our concept of function from Chapter 0 says that a function

𝑓 : 𝑆 𝑇

produces an output in 𝑇 for every input from 𝑆. The proposition above tells us
that this means that for every element of 𝑠 we have a unique element of 𝑇 , namely
𝑓𝑠, which is associated with 𝑠.

Some functions have particular properties that are important to us.

De�nition 22: injective

A function 𝑓 : 𝑆 𝑇 is17 injective if and only if

for all 𝑠 and 𝑠′ in 𝑆 𝑓𝑠 = 𝑓𝑠′ implies 𝑠 = 𝑠′.

Under these circumstances we say that 𝑓 is an injection.

One way of paraphrasing18 this property is to say that two di�erent elements
of 𝑆 are mapped to two di�erent elements of 𝑇 . This means that knowing the
result 𝑓𝑠 ∈ 𝑇 of applying 𝑓 to some element 𝑠 of 𝑆 is su�cient to recover 𝑠.

Example 2.53. The simplest example of an injective function is the identity
function

id𝑆 : 𝑆 𝑆

for any set 𝑆. To prove this formally, note that we have a ‘for all’ statement, so
we assume that 𝑠 and 𝑠′ are elements of 𝑆. We have to prove an implication,
so assume the �rst part holds, that is, we have id𝑆𝑠 = id𝑆𝑠

′. But this implies
that

𝑠 = id𝑆𝑠 = id𝑆𝑠
′,

and so we have 𝑠 = 𝑠′ as required.

Example 2.54. The function 𝑑 from N to N given by

𝑑 : 𝑥 2𝑥

is injective. To show this we have to show a ‘for all’ statement, so according to
Table 2.1 we should assume that we have 𝑛, 𝑛′ in N. To show an implication,

15This direction is sometimes known as the ‘forward’ (in the sense that it shows that the �rst
statement implies the second) or ‘only if’ direction.

16This direction is sometimes known as the ‘backwards’ or ‘if’ direction, in that it shows that the
second given statement implies the �rst.

17Note that some people call such functions ‘one-on-one’ instead.
18But usually not a good way of attempting a proof.
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the same table tells us we should assume the �rst part holds, so we assume
that

𝑑𝑛 = 𝑑𝑛′.

But by inserting the de�nition of 𝑑 this means that

2𝑛 = 𝑑𝑛 = 𝑑𝑛′ = 2𝑛′,

and by multiplying both sides with the multiplicative inverse of 2 we may
conclude that 𝑛 = 𝑛′.

Example 2.55. On the other hand the function from R to R given by

𝑓 : 𝑥 1

is not injective. In order to refute a ‘for all’ statement by Table 2.1 it is su�cient
to produce a counter-example. This means we have to �nd two elements of R.
say 𝑟 and 𝑟′, such that the given implication does not hold.

The same table tells us that for the implication not to hold we must ensure
that the �rst condition is true, which here means that 𝑓𝑟 = 𝑓𝑟′, while the
second condition is false, that is, we must have 𝑟 ̸= 𝑟′.

This is quite easy for our function: The numbers 𝑟 = 0 and 𝑟′ = 1 are
certainly di�erent, but we have

𝑓0 = 1 = 𝑓1,

so we have indeed found a counterexample.

Example 2.56. Typical examples from the real world are unique identi�ers,
for example, student id numbers. We would expect every student to have a
unique id number which is not shared with any other student.

This is certainly a desirable property, but to prove formally that it holds we
would have to know how exactly the university assigns these numbers, and
then we could check that. Nonetheless you should be able to work out whether
real world assignments ought to be injective, and you should be able to come
up with ways of testing this realistically, or write a program that con�rms it.

There are many other situations where we have to ensure this—for example,
in a database we often want to have a unique key for every entry (for example the
customer number).

Also, when casting an element of some datatype to another we expect that if
we cast an int to a double in Java that two di�erent int values will be cast to
di�erent double values. This operation should be performable without losing any
information.

Example 2.57. Showing that a real world assignment is not injective has to
be done by producing two witnesses. For example, the assignment that maps
students to tutorial groups is not injective. To prove that all we have to do
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is to �nd two (di�erent) students who are in the same tutorial group. You all
know students like that.

We can also think of an injection as a ‘unique relabelling’ function: Every
element from the source set 𝑆 is given a new label from the target set 𝑇 in such a
way that no two elements of 𝑆 are given the same label.

The graph of a function can be useful when determining whether a function is
injective. For the squaring function described above the graph looks like this.

0 𝑥

Whenever we can draw a horizontal line that intersects the graph of our
function in more than one place then the function is not injective:

0 𝑥−1 1

The 𝑥-coordinates of the two intersection points give us two di�erent elements
of R where the function takes the same value, namely here for 1 and −1, see
example 2.58.

Note that one has to be careful when using the graph to determine whether a
function is injective: Since most examples have an in�nite graph it is impossible to
draw all of it, so one has to ensure that there isn’t any unwanted behaviour in the
parts not drawn. Further note that a graph cannot provide a proof that a function
is injective (or not), but it can help us make the decision whether we want to give
a proof or a counterproof.

Example 2.58. We show that the function whose graph is given above is not
injective. Consider the function

𝑓 : R R

𝑥 𝑥2.

Injectivity is a ‘for all’ statement. To give a counterproof by Table 2.1 all
we have to do is to �nd witnesses 𝑠 and 𝑠′ such that the implication in the
de�nition of injectivity does not hold. So as in Example 2.55 we are looking
for two elements, say 𝑟 and 𝑟′ of R, which are di�erent, but which are mapped
by the given function 𝑓 to the same element.

As suggested by the graph, let 𝑟 = −1, and let 𝑟′ = 1. Then 𝑓𝑟 =
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(−1)2 = 1, and 𝑓𝑟′ = 12 = 1, and since 𝑟 = −1 ̸= 1 = 𝑟′ we have found a
counterexample.

In the following example we show how a failing proof for injectivity can be
turned into a counterexample for that property. This is a good strategy to follow
if you cannot see from the de�nition of the given function whether it is injective
or not.

Example 2.59. Assume we have the function

𝑓 : C C
𝑥 + 𝑦𝑖 2𝑥− 2𝑥𝑦𝑖.

We would like to work out whether or not it is injective. We do this by
starting with a proof to see if we can either complete the proof, or whether
that leads us to a counterexample.

Assume we have 𝑎+𝑏𝑖, 𝑎′+𝑏′𝑖 in C which are mapped to the same element
by 𝑓 , that is

2𝑎− 2𝑎𝑏𝑖 = 𝑓(𝑎 + 𝑏𝑖) = 𝑓(𝑎′ + 𝑏′𝑖) = 2𝑎′ − 2𝑎′𝑏′𝑖.

Since two complex numbers are equal if and only if their real and imaginary
parts are equal this implies that

2𝑎 = 2𝑎′ and − 2𝑎𝑏 = −2𝑎′𝑏′.

From the �rst equality we may deduce that 𝑎 = 𝑎′. However, the second
equality says that

−2𝑎𝑏 = −2𝑎′𝑏′ from above
= −2𝑎𝑏′ since 𝑎 = 𝑎′.

This implies that
𝑎𝑏 = 𝑎𝑏′,

but that does not allow us to conclude that 𝑏 = 𝑏′ since 𝑎 might be 0. We can
use the reason that this proof fails to help us construct a counterexample: We
are unable to show that our two numbers have the same imaginary part if
their real parts are 0. So if we use

𝑎 + 𝑏𝑖 = 0 + 𝑖 and 𝑎′ + 𝑏′𝑖 = 0 − 𝑖

we can see that
𝑓(𝑎 + 𝑏𝑖) = 𝑓𝑖 = 0 − 2 · 0 · 1 = 0

and
𝑓(𝑎′ + 𝑏′𝑖) = 𝑓(−𝑖) = 0 − 2 · 0 · (−1) = 0,

and we have established that 𝑓 is not injective.

Using something other than the original de�nition of injectivity is often prob-
lematic.
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I sometimes see students paraphrase injectivity as ‘for all ele-
ments of the source set there is a unique element of the target
set which the function maps to’. This is not the property of
injectivity, this is merely the de�nition of a function (compare
Proposition 2.1). Sticking with the given de�nition is simpler.

If you do want to paraphrase injectivity using unique existence, then the valid
formulation for a function

𝑓 : 𝑆 𝑇

is:

for all 𝑡 in the range of 𝑓
there exists a unique 𝑠 in 𝑆

such that 𝑓𝑠 = 𝑡.

But this is more complicated than the original de�nition.

Exercise 35. Show that the statement above is equivalent to 𝑓 being injective.

If there is an injection from some set 𝑆 to some set 𝑇 then we may deduce
that 𝑇 is at least as large as 𝑆. See the Section 5.2 for more detail, in particular
De�nition 47.

Exercise 36. Show that the following functions are injective or not injective
as indicated.

(a) Injective: The function 𝑥 𝑥 + 0𝑖 from R to C de�ned on page 50.

(b) Not injective: The function 𝑥 2𝑥2 − 4𝑥 + 1 from R to R.

(c) Not injective: The function from the set of �rst year CS student to lab
groups 𝑀 + 𝑊 , 𝐵 + 𝑋 , 𝑌 and 𝑍 .

(d) Injective: The function from C to C which given by 𝑥 𝑥.

CExercise 37. Determine which of the following functions are injective. You
have to provide an argument with your answer. You should not use advanced
concepts such as limits or derivatives, just basic facts about numbers. Where
the function is not injective can you restrict the source set to make it injective?

(a) The sin function from R to R.

(b) The log function from [1,∞) to R+.

(c) The function 𝑥 2𝑥 from N to N, or from R to R, you may choose.

(d) The function used by the School from the set of �rst year CS students to
the set of tutorial groups.

(e) The function used by the University from the set of �rst year CS students
to the set of user ids.

(f) The function 𝑥 𝑥(−𝑖) from C to C.
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(g) The function from N× N to N which maps (𝑛,𝑚) to 2𝑛3𝑚.

(h) The function 𝑥 {𝑥} from a set 𝑆 to the powerset 𝒫𝑆.

EExercise 38. Establish the following properties.

(a) If 𝑆 is a one-element set then every function which has it as a source is
injective.

(b) The composite of two injective functions is injective.

(c) If 𝑓 : 𝑆 𝑇 and 𝑔 : 𝑇 𝑈 are two functions such that 𝑔 ∘ 𝑓 is injective
then 𝑓 is injective.

(d) Show for the previous statement that 𝑔 need not be injective by giving an
example.19

(e) Assume that 𝑓 : 𝑆 𝑆′ and 𝑔 : 𝑇 𝑇 ′ are both injections. Show that
this is also true for

𝑓 × 𝑔 : 𝑆 × 𝑇 𝑆′ × 𝑇 ′

(𝑠, 𝑡) (𝑓𝑠, 𝑔𝑡).

In the case where we have a function from one small �nite set to another we
can draw a picture that makes it very clear whether or not the function is injective.

Example 2.60. Consider the function 𝑓 de�ned via the following picture.

∙𝑎

∙𝑏

∙𝑐

∙ 4

∙ 1
∙ 2
∙ 3

We can see immediately that 𝑏 and 𝑐 are mapped to the same element, 3, and
so this function is not injective. Formally, we have found two elements with
𝑓𝑏 = 𝑓𝑐, but 𝑏 ̸= 𝑐.

If a function is given by a picture like this, then all one has to do to check
injectivity is to see whether any element in the target set has more than one arrow
going into it. Exercise 43 invites you to try this technique for yourself.

Exercise 39. Show that if𝑆 is a set with �nitely many elements, and 𝑓 : 𝑆 𝑇
is an injective function from 𝑆 to a set 𝑇 , then the image of 𝑆 under 𝑓 has the
same number of elements as 𝑆.

The connection between injective functions and the sizes of sets is further
explored in Section 5.2. Here is a second important property of functions.

19The smallest example concerns sets with at most two elements. You may want to read the next
two paragraphs to help with �nding one.
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De�nition 23: surjective

A function 𝑓 : 𝑆 𝑇 is20 surjective if and only if

for all 𝑡 ∈ 𝑇 there exists 𝑠 ∈ 𝑆 with 𝑡 = 𝑓𝑠.

We also say in this case that 𝑓 is a surjection.

In other words a function is surjective if its range is the whole target set, or, to
put it di�erently, if its image reaches all of the target set.

We care that a function is surjective if we are using the source set to talk about
members of the target set. It means that we can use it to access all the elements
of the target set. If you are writing code that has to do something with all the
elements of an array, for example, you must make sure that you write a loop that
really does go through all the possible indices of the array. If you have programmed
a graph, and you want to write an algorithm that visits each element of the graph,
you must make sure that your procedure does indeed go to every such node.

Example 2.61. Once again, when we have real world example it is impossible
to formally prove that a given assignment is a surjective function unless we
know how it is de�ned. However, you should be able to tell whether the
assignment ought to be surjective, and you should be able to come up with
ways of testing this, and write a program that con�rms it. If you construct a
mailing list that emails all undergraduate students on a speci�c course unit
you must make sure that your list contains all the students on that course.

Example 2.62. The simplest example of a surjective function is the identity
function

id𝑆 : 𝑆 𝑆

on a set 𝑆. We give a formal proof.
We have to show a ‘for all’ statement, so let 𝑠 in the target of the function,

which is 𝑆. We have to �nd a witness in the form of an element of the source
set of the function which is mapped to 𝑠. For this we can pick 𝑠 itself, since
id𝑆𝑠 = 𝑠.

Example 2.63. Consider the function

𝑓 : N {2𝑛 ∈ N | 𝑛 ∈ N}
𝑥 2𝑥.

In order to show that this function is surjective we have to show a statement
of the ‘for all there is’ kind. By Table 2.1 we may do this by assuming that
we have an arbitrary element for the ‘for all’ part, and then we have to �nd a
witness so that the �nal part of the statement hold.

So let
𝑚 ∈ {2𝑛 ∈ N | 𝑛 ∈ N}.

20Note that some people call such functions ‘onto’ instead.
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By de�nition this means that there is 𝑛 ∈ N with 𝑚 = 2𝑛. This 𝑛 has the
desired property since 𝑚 = 2𝑛 = 𝑓𝑛, and so is the required witness.

One can again take the graph of a function to help decide whether a given
function is surjective. It can be tricky, however, to determine the answer from
looking at the graph. Instead of looking whether there is a horizontal line which
intersects the graph in at least two points we now have to worry about whether
there is a horizontal line that intersects the graph not at all. For some functions
this can by quite di�cult to see.

Example 2.64. Consider for example the function from R+ to R+ given by

𝑥 log (𝑥 + 1).

𝑥

It is really di�cult to judge whether some horizontal line will have an
intersection with this graph or not. The picture above tells us that there is a
number (namely 3) whose image is 2. But for the picture below it is far less
clear whether there is an intersection between the line and the graph of the
function.

𝑥

You might argue that the problem would be solved if we drew a larger
part of the graph, but then we could also move the horizontal line higher up
(remember that one has to show that one can �nd an intersection for every
horizontal line).

Example 2.65. We show formally that a surjective function is given by the
previous example,

𝑓 : R+ R+

𝑥 log (𝑥 + 1).

We proceed following the same blueprint as in Example 2.63. Let 𝑟 be an
arbitrary element of the target set R+. We have to �nd an element 𝑥 of the
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source set which is mapped to 𝑟, that is we are looking for 𝑥 ∈ R+ such that

log (𝑥 + 1) = 𝑟.

We can solve this as an equation where 𝑟 is given and 𝑥 is unknown: This
equation is true if and only if

𝑥 + 1 = 2log (𝑥+1) = 2𝑟,

which holds if and only if
𝑥 = 2𝑟 − 1.

Note that it is very easy, in a case like the above, to write
something that is not a valid proof. The statement we need is
that if we de�ne

𝑥 = 2𝑟 − 1 then 𝑓𝑥 = 𝑟.

I have seen many student answers which say

log (𝑥 + 1) = 𝑟 so 𝑥 = 2𝑟 − 1.

The important thing to note here is that the two statements
are connected by an ‘if and only if’, that is, 𝑥 satis�es the left
hand equality if and only if it also satis�es the right-hand one.
But in general, when students start with 𝑓𝑥 = 𝑟 and perform a
number of steps to arrive at some statement for 𝑥, they typically
have derived a necessary condition for 𝑥. Only when all these
steps are reversible will de�ning 𝑥 in the given way guarantee
that it satis�es the original equation.
Otherwise it is necessary to take 𝑥 de�ned in the given way
and to check that it really does give a solution to the original
problem.

Tip

A correct argument starts with a correct statement, and then applies a number
of valid rules to get to the target statement. Implicitly this means that we read
such arguments as the current line implying the next one.21

If you are constructing an argument which you intend the reader to inter-
pret ‘backwards’, that is, the current line implies the previous line you have
to indicate this in your text (and make sure your justi�cations work in the
intended direction).

Example 2.66. The function

𝑓 : Z Z
𝑥 𝑥 + 1

21The fact that you can derive a valid statement from the given one does not imply anything
about the validity of the given statement.
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is surjective. Surjectivity is a statement of the ‘for all . . . ’ kind, so following
Table 2.1 we assume we are given 𝑛 ∈ Z.

The remainder of the surjectivity property is a ‘there exists’ statement, so
by to the same table we have to �nd a witness, say 𝑥 ∈ Z. This witness has
to satisfy 𝑓𝑥 = 𝑛. Inserting the de�nition of 𝑓 , this means we need to pick 𝑥
such that 𝑥 + 1 = 𝑓𝑥 = 𝑛, so we pick 𝑥 = 𝑛 − 1 and this has the required
property since

𝑓𝑥 = 𝑓(𝑛− 1) = (𝑛− 1) + 1 = 𝑛,

which establishes that 𝑓 is surjective.

Example 2.67. The function

𝑓 : R R

𝑥 𝑥2

is not surjective.
To show this we want to �nd a counterproof to a statement of the ‘for

all . . . ’ kind. According to Table 2.1 means we have to �nd a witness 𝑟 in the
target R of the function that does not satisfy the remainder of the property.

Which property is this? It’s a property of the ‘there exists’ kind, so follow-
ing the same table we have to show that no 𝑥 in R satis�es that 𝑥2 = 𝑟.

Putting it like this should give us the right idea: We choose 𝑟 = −1, and
then no real number 𝑥 can be squared to give 𝑟.

Alternatively, looking at the graph of this function, see Example 2.58, we
can see that any negative number would work as the required witness.

In the following example we illustrate how a failing proof of surjectivity can
be turned into a counterexample for that property.

Example 2.68. We again use the function from Example 2.59,

𝑓 : C C
𝑥 + 𝑦𝑖 2𝑥− 2𝑥𝑦𝑖,

and look at the question of whether it is surjective. Once again we see how
far we can get with a proof of that property.

For that we assume that we have an element of the target set, say 𝑎 + 𝑏𝑖.
We have to �nd an element of the source set, say 𝑥 + 𝑦𝑖, with the property
that

𝑓(𝑥 + 𝑦𝑖) = 𝑎 + 𝑏𝑖.

If such an 𝑥 + 𝑦𝑖 exists then it must be the case that

2𝑥− 2𝑥𝑦𝑖 = 𝑓(𝑥 + 𝑖𝑦) = 𝑎 + 𝑏𝑖.

Since two complex numbers are equal when both, their real and their imaginary
parts, are equal we know that for this to be valid we must have

2𝑥 = 𝑎 and − 2𝑥𝑦 = 𝑏.
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We may think of these as equations in 𝑥 and 𝑦 that we are trying to solve. We
can solve the �rst equation by setting

𝑥 =
1

2
𝑎.

However, the second equation then becomes

𝑏 = −2𝑥𝑦 second equation
= −𝑎𝑦 x = 𝑎/2

and −𝑎𝑦 = 𝑏 is an equation that we cannot solve when 𝑎 = 0. Once again we
can use this information to �nd a counterexample: If 𝑎 = 0 and 𝑏 is a number
other than 0, say 1, then there is no element22 of the source set that is mapped
to 𝑎 + 𝑏𝑖 = 𝑖:

Given an element of the source set 𝑥 + 𝑦𝑖, if

2𝑥− 2𝑥𝑦𝑖 = 𝑓(𝑥 + 𝑖𝑦) = 𝑎 + 𝑏𝑖 = 0 + 𝑖

then it must be the case that
𝑥 = 0

to make the two real parts equal, but in that case we have that

2𝑥𝑦 = 2 · 0 · 𝑦 = 0,

which is not equal to the given imaginary part 1.

Tip

Proving that a function 𝑓 : 𝑆 𝑇 is surjective amounts to solving an equa-
tion: given 𝑡 ∈ 𝑇 we have to �nd 𝑥 ∈ 𝑆 with 𝑓𝑥 = 𝑡. You can think of 𝑥
as the variable in that equation, and 𝑡 as a parameter that is unknown but
�xed. It may be a good idea to make sure that you give typical variable names,
like 𝑥, 𝑦 and 𝑧 to the quantity you are trying to �nd, and typical ‘parameter’
names, like letters earlier in the alphabet, to the quantity which is given (but
unknown).

If there is a surjection from a set 𝑆 to a set 𝑇 then we may deduce that 𝑇 is at
most as large as 𝑆. See Lemma 134 in Section 5.2.

Exercise 40. Show that the following functions are surjective or not surjective
as indicated.

(a) Surjective: The function 𝑥 |𝑥| from Z to N.

(b) Surjective: The function used by the School from the set of �rst year CS
students to the set of tutorial groups.

(c) Not surjective: The function used by the University from the set of all
students currently in the university to the set of valid student id numbers.

22The argument given above already establishes that this is the case but I spell it out here again
to make it clearer to see why that is.

104



(d) Not surjective: The function 𝑥 𝑥 + 0𝑖 from R to C given on
page 50.

CExercise 41. For the following functions determine whether they are sur-
jective and support your claim by an argument. You should not use advanced
concepts such as limits or derivatives, just basic facts about numbers.

(a) The function from Q to Q given by

𝑥

{︃
0 𝑥 = 0

1/𝑥 else.

(b) The function from R to R given by 𝑥 𝑥4 − 100.

(c) The function from C to C given by 𝑥 𝑥𝑖.

(d) The function from C to R given by 𝑥 |𝑥|.

(e) The function that maps each �rst year CS student to their labgroup 𝑊 +𝑀 ,
𝐵 + 𝑋 , 𝑌 or 𝑍 .

(f) The function that maps each member of your tutorial group to one of the
values 𝐸 and 𝑊 , depending on whether they were born in Europe (𝐸) or in
the rest of the world (𝑊 ).

(g) The function from N× N to N given by (𝑥, 𝑦) 𝑥.

(h) The function from the �nite powerset of N,

{𝑆 ⊆ N | 𝑆 has �nitely many elements},

to N that maps 𝑆 to the number |𝑆| of elements of 𝑆.

Exercise 42. Establish the following statements

(a) The composite of two surjections is an surjection.

(b) If 𝑓 : 𝑆 𝑇 and 𝑔 : 𝑇 𝑈 are functions such that 𝑔 ∘ 𝑓 is surjective
then 𝑔 is surjective.

(c) Establish that in the previous statement 𝑓 need not be surjective by giving
an example.

(d) Assume that 𝑓 : 𝑆 𝑆′ and 𝑔 : 𝑇 𝑈 are both surjections. Show that
this is also true for 𝑓 × 𝑔.

Again, if we are looking at functions between small �nite sets then we can
easily work out whether a function is surjective by drawing a picture.

Example 2.69. Consider the function given by the following diagram.
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∙𝑎

∙𝑏

∙𝑐

∙ 4

∙ 1
∙ 2
∙ 3

This function is not surjective since there is no element of the source set
that is mapped to the element 4 of the target set.

For a function to be surjective all one has to check is that every element of the
target set (on the right) has at least one arrow going into it. This example is not
surjective.

CExercise 43. For the following functions draw a picture analogous to the
above and determine whether or not it is injective and/or surjective.

(a) The function from {0, 1, 2, 3, 4} to itself which maps the element 𝑖 to
𝑖 mod 3.

(b) The function from {0, 1, 2, 3, 4, 5, 6, 7} to {0, 1, 2, 3} which maps 𝑥 to
𝑥 mod 4.

(c) The function from {0, 1, 2, 3, 4} to {𝑛 ∈ N | 𝑛 ≤ 9} which maps 𝑖 to 2𝑖.

(d) The function from the set of members of your tutorial group to the set of
letters from 𝐴 to 𝑍 , which maps a member of the group to the �rst letter of
their �rst name.

(e) The function that maps the members of your tutorial group to the set
{M,F} depending on their gender.

We need two further notions for functions. First of all there is a name for
functions which are both, injective and surjective.

De�nition 24: bijective

A function 𝑓 : 𝑆 𝑇 is bijective if and only if it is both, injective and sur-
jective. We say in this case that it is a bijection.

Example 2.70. The simplest example of a bijective function is the identity
function on a set 𝑆. Examples 2.53 and Example 2.62 establish that this function
is both, injective and surjective.

Example 2.71. Consider the function 𝑓 from Z to Z given by

𝑥 𝑥 + 1.

It is shown in Example 2.66 that this function is surjective and so it remains to
show that it is also injective.

Following Table 2.1 to show a ‘for all’ statement we have to assume that
we have arbitrary elements 𝑛 and 𝑚 in Z, and that these have the property on
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the left hand side of the ‘implies’ statement, that is

𝑓𝑛 = 𝑓𝑚.

From this we wish to prove 𝑛 = 𝑚. If we insert the de�nition of 𝑓 then the
given equality means that

𝑛 + 1 = 𝑓𝑛 = 𝑓𝑚 = 𝑚 + 1,

and by deducting 1 on both sides we deduce

𝑛 = 𝑚.

This establishes that 𝑓 is also injective, and so it is bijective.

Exercise 44. Determine which of the following functions are bijections. Justify
your answer.

(a) The function from Q to Q given by

𝑥

{︃
0 𝑥 = 0

1/𝑥 else

(b) The function from C to C given by 𝑥 𝑥𝑖.

(c) The function from Z to N given by 𝑥 |𝑥|.

(d) The function from C to R given by 𝑥 |𝑥|.

Exercise 45. Show that if 𝑓 : 𝑆 𝑇 and 𝑔 : 𝑇 𝑈 are two functions and
𝑔 ∘ 𝑓 is a bijection then 𝑓 is an injection and 𝑔 is a surjection.

Recall that we may think of a function that attaches to every element from
the source set 𝑆 a label from the target set 𝑇 . A bijection is a very special such
function.

• If the function is injective then we know that the label attached to each
element of the source set is unique, that is, no other element of that set gets
the same label.

• If the function is surjective then we know that all the labels from the target
set are used.

If we have two sets with a bijection from one to the other then these sets have
the same size—this idea is developed in Section 5.1, see in particular Exercise 133.

Whenever we have a bijection 𝑓 there is a companion which undoes the e�ect
of applying 𝑓 . In other words, we get a function from the target set to the source
set which reads the label and gives us back the element it is attached to.

De�nition 25: inverse function

A function 𝑔 : 𝑇 𝑆 is the inverse of the function of 𝑓 : 𝑆 𝑇 if and only
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if
𝑔 ∘ 𝑓 = id𝑆 and 𝑓 ∘ 𝑔 = id𝑇 .

Note that if 𝑔 is the inverse function of 𝑓 then 𝑓 is the inverse function of 𝑔
since the de�nition is symmetric.

Example 2.72. Consider the function

𝑓 : Z Z
𝑥 𝑥 + 1.

In Example 2.71 it is shown that this function is a bijection. This function
has an inverse (and indeed, Theorem 2.4 tells us that every bijection has an
inverse).

To give this inverse we need to �nd a function which ‘undoes’ what 𝑓
does, and the obvious candidate for this is the function 𝑔 given by

𝑥 𝑥− 1.

We show that 𝑔 is indeed the inverse function for 𝑓 . Assume that 𝑛 ∈ Z. We
calculate

(𝑔 ∘ 𝑓)𝑛 = 𝑔(𝑓𝑛) De�nition 12
= 𝑔(𝑛 + 1) def 𝑓
= (𝑛 + 1) − 1 def 𝑔
= 𝑛 arithmetic

and so we know that 𝑔 ∘ 𝑓 = idZ. We also have to show that the other
composite is the identity, so again assume we have 𝑛 ∈ Z. We calculate

(𝑓 ∘ 𝑔)𝑛 = 𝑓(𝑔𝑛) De�nition 12
= 𝑓(𝑛− 1) def 𝑔
= (𝑛− 1) + 1 def 𝑓
= 𝑛 arithmetic,

so we also have 𝑓 ∘ 𝑔 = id𝑍 , and both equalities together tell us that 𝑔 is
indeed the inverse function for 𝑓 .

We illustrate how the properties of a function from 𝑆 to 𝑇 say something
about a function one may construct going from 𝑇 to 𝑆: Note that the proposition
tells us that for an injective function we can �nd a function which satis�es one of
the two equalities required for inverse functions.

Proposition 2.2
The function 𝑓 : 𝑆 𝑇 is an injection if and only if either 𝑆 is empty or we
can �nd a function 𝑔 : 𝑇 𝑆 such that 𝑔 ∘ 𝑓 = id𝑆 .

Proof. We begin by assuming that the function 𝑓 is an injection.
If 𝑆 is empty then the function 𝑓 satis�es the de�nition of injectivity.
If 𝑆 is non-empty we pick an arbitrary element 𝑠∙ of 𝑆. Now given 𝑡 ∈ 𝑇
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we would like to de�ne 𝑔 as follows:

𝑔 : 𝑡

{︃
𝑠 if there is 𝑠 ∈ 𝑆 with 𝑓𝑠 = 𝑡

𝑠∙ else

First of all we have to worry whether this does indeed de�ne a function—
we need to ensure that in the �rst case, only one such 𝑠 can exist. But since
𝑓 is an injection we know that 𝑓𝑠 = 𝑓𝑠′ implies 𝑠 = 𝑠′ and so 𝑠 is indeed
unique. Hence our de�nition does indeed give us a function 𝑔.

Secondly we have to check that the equations for 𝑓 and 𝑔 holds as promised.
Given 𝑠 ∈ 𝑆 we calculate

(𝑔 ∘ 𝑓)𝑠 = 𝑔(𝑓𝑠) def composition
= 𝑠 def 𝑔
= id𝑆𝑠 def identity function,

which completes the proof.
Now assume that we have 𝑓 , and a function 𝑔 as given. We want to show

that 𝑓 is injective. Assume that we have 𝑠 and 𝑠′ in 𝑆 such that

𝑓𝑠 = 𝑓𝑠′.

We apply 𝑔 on both sides and obtain that

𝑠 = id𝑆𝑠 def id𝑆
= (𝑔 ∘ 𝑓)𝑠 𝑔 ∘ 𝑓 = id𝑆

= 𝑔(𝑓𝑠) def ∘
= 𝑔(𝑓𝑠′) 𝑓𝑠 = 𝑓𝑠′

= (𝑔 ∘ 𝑓)𝑠′def ∘
= id𝑆𝑠

′ 𝑔 ∘ 𝑓 = id𝑆

= 𝑠′def id𝑆 .

If we have a surjective function we get a function that satis�es the other
inequality for an inverse function:

Proposition 2.3
A function 𝑓 : 𝑆 𝑇 is surjective if and only if there exists a function 𝑔 going
in the opposite direction, that is 𝑔 : 𝑇 𝑆, such that 𝑓 ∘ 𝑔 = id𝑇 .

Proof. We assume �rst that the function 𝑓 is surjective. This means that for
every 𝑡 in 𝑇 we can �nd 𝑠 ∈ 𝑆 such that 𝑓𝑠 = 𝑡. Of course there may be many
potential choices of such an 𝑠, depending on the function 𝑓 . We de�nea 𝑔 to
be the function which gives us such an 𝑠 for each input 𝑡. Then by de�nition
we have for each 𝑡 in 𝑇 that

𝑓(𝑔𝑡) = 𝑡

by the construction of 𝑔.
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The proof that if we have a function 𝑔 as described then 𝑓 is surjective is
given in the solution to Exercise 47.

aStrictly speaking this uses some non-trivial set theory, but we don’t have time to worry
about that here. Exactly what is needed depends on the proof that 𝑓 is surjective.

Theorem 2.4
A function 𝑓 : 𝑆 𝑇 is a bijection if and only if it has an inverse function.

Proof. We carry out the proof in two parts to re�ect the two directions of ‘if
and only if’.

Assume that 𝑓 is a bijection. This means that, in particular, it is a surjection,
so ‘ for every 𝑡 in 𝑇 there is 𝑠 ∈ 𝑆 with 𝑓𝑠 = 𝑡. We would like to de�ne
𝑔 : 𝑇 𝑆 by

𝑡 𝑠,

for this 𝑠. A priori it is not clear that this de�nes a function—how do we know
that there exists precisely one such 𝑠 for each 𝑡?

Existence follows from surjectivity of 𝑓 . Uniqueness comes from injectivity
of that function: Assume we have 𝑠 and 𝑠′ in 𝑆 with 𝑓𝑠 = 𝑡 = 𝑓𝑠′. This implies
𝑠 = 𝑠′, and so we have indeed de�ned a function.

We next show that 𝑔 is indeed the inverse of 𝑓 .
To show that 𝑔 ∘ 𝑓 = id𝑆 let 𝑠 ∈ 𝑆. Then

(𝑔 ∘ 𝑓)𝑠 = 𝑔𝑓𝑠 def function comp
= 𝑠 def 𝑔
= id𝑆𝑠 def id𝑆

The last but one step requires further elaboration. Recall that the de�nition of
𝑔 is to map 𝑡 ∈ 𝑇 to the unique 𝑠 ∈ 𝑆 with 𝑓𝑠 = 𝑡. But this means that when
𝑔 is applied to an element of the form 𝑓𝑠 it returns 𝑠.

To show that 𝑓 ∘ 𝑔 = id𝑇 , let 𝑡 ∈ 𝑇 . Then

(𝑓 ∘ 𝑔)𝑡 = 𝑓(𝑔𝑡) def function comp
= 𝑡 def 𝑔
= id𝑇 𝑡 def id𝑇

Again the last but one step requires further justi�cation. We have de�ned
𝑔𝑡 to be the unique element of 𝑆 with 𝑓𝑠 = 𝑡, so by applying 𝑓 on both sides
we get 𝑓𝑔𝑡 = 𝑡.

Now assume that we have an inverse function 𝑔 for 𝑓 . We have to show
that 𝑓 is both, an injection and a surjection. For the former, let 𝑠, 𝑠′ ∈ 𝑆 with
𝑓𝑠 = 𝑓𝑠′. Then

𝑠 = id𝑆𝑠 def identity function
= (𝑔 ∘ 𝑓)𝑠 𝑔 ∘ 𝑓 = id𝑆

= 𝑔(𝑓𝑠) def function composition
= 𝑔(𝑓𝑠′) 𝑓𝑠 = 𝑓𝑠′

= (𝑔 ∘ 𝑓)𝑠′ def function composition
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= id𝑆𝑠
′ 𝑔 ∘ 𝑓 = id𝑆

= 𝑠′ def identity function

To see that 𝑓 is also surjective, let 𝑡 ∈ 𝑇 . Then 𝑓(𝑔𝑡) = 𝑡 since 𝑓 ∘𝑔 = id𝑇 ,
so 𝑔𝑡 is an element with the property that applying 𝑓 to it results in 𝑡.

Note that the proof given above combines the proofs of Propositions 2.2 and 2.3
with minor alterations.

Note that if we wish that a function is bijective we may use this result and
instead produce an inverse function.

Example 2.73. Consider the function

𝑓 : C C
𝑥 𝑥 + 𝑖.

We show that this function has an inverse. We need to �nd a function that
‘undoes’ the action of 𝑓 , which takes a complex number and moves it ‘up’ one
unit by increasing the imaginary part by 1. To reverse that e�ect all one has to
do is to move it ‘down’ by one unit, so we claim that

𝑔 : C C
𝑥 𝑥− 𝑖

is the inverse of 𝑓 .
The formal proof of this is not long. Based on De�nition 25 we have to

establish that

𝑓 ∘ 𝑔 = idC and 𝑔 ∘ 𝑓 = idC,

which by de�nition of the equality of two functions (compare Example 2.18)
means establishing the two equalities that follow. Let 𝑧 ∈ C.

(𝑓 ∘ 𝑔)(𝑧) = 𝑓(𝑔𝑧) def funct comp
= 𝑓(𝑧 − 𝑖) def 𝑔
= (𝑧 − 𝑖) + 𝑖 def 𝑓
= 𝑧.

(𝑔 ∘ 𝑓)(𝑧) = 𝑔(𝑓𝑧) def funct comp
= 𝑔(𝑧 + 𝑖) def 𝑓
= (𝑧 + 𝑖) − 𝑖 def 𝑔
= 𝑧.

Hence we may conclude that the function 𝑓 is bijective, as is the function 𝑔.

We give another example for a function that is injective and surjective, and
show how to �nd its inverse.
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Example 2.74. Assume we have the function

𝑓 : C C
𝑥 + 𝑦𝑖 2𝑥− 𝑦 + (𝑥 + 2𝑦)𝑖.

We want to know whether it is injective and/or surjective.

Injectivity

Assume we have two elements of the source set, say 𝑎 + 𝑏𝑖 and 𝑎′ + 𝑏′𝑖 which
are mapped by 𝑓 to the same element of the target set, that is

2𝑎− 𝑏 + (𝑎 + 2𝑏)𝑖 = 𝑓(𝑎 + 𝑏𝑖) = 𝑓(𝑎′ + 𝑏′𝑖) = 2𝑎′ − 𝑏′ + (𝑎′ + 2𝑏′)𝑖.

This means that the real and imaginary parts of these two numbers must be
equal, so we must have

2𝑎− 𝑏 = 2𝑎′ − 𝑏′ and 𝑎 + 2𝑏 = 𝑎′ + 2𝑏′.

The �rst equality gives us that

𝑏′ = 2(𝑎′ − 𝑎) + 𝑏,

and inserting that into the second equality gives

𝑎 + 2𝑏 = 𝑎′ + 2(2(𝑎′ − 𝑎) + 𝑏) = 5𝑎′ − 4𝑎 + 2𝑏.

We add 4𝑎 and subtract 2𝑏 on both sides to obtain

5𝑎 = 5𝑎′,

from which we may deduce, by dividing by 3 on both sides, that

𝑎 = 𝑎′.

Inserting this back into the equality for 𝑏′ we get that

𝑏′ = 2(𝑎′ − 𝑎) + 𝑏 = 2(𝑎− 𝑎) + 𝑏 = 𝑏,

and so we have established that overall,

𝑎 + 𝑏𝑖 = 𝑎′ + 𝑏′𝑖,

which means that our function is injective.

Surjectivity

Let us assume we have an element 𝑎 + 𝑏𝑖 of the target set. We want to �nd an
element 𝑥 + 𝑦𝑖 of the source set with the property that

2𝑥− 𝑦 + (𝑥 + 2𝑦)𝑖 = 𝑓(𝑥 + 𝑦𝑖) = 𝑎 + 𝑏𝑖,
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so we try and �nd solutions for 𝑥 and 𝑦. Again we know that the real and
imaginary parts must be equal, so we may deduce that

2𝑥− 𝑦 = 𝑎 and 𝑥 + 2𝑦 = 𝑏.

We can see that for the �rst equation to hold it is su�cient that

𝑦 = 2𝑥− 𝑎,

and inserting this into the second equation we get

5𝑥− 2𝑎 = 𝑥 + 2(2𝑥− 𝑎) = 𝑥 + 2𝑦 = 𝑏,

so if we set
𝑥 =

𝑏+ 2𝑎

5
,

and
𝑦 = 2𝑥− 𝑎 =

2(𝑏+ 2𝑎)

5
− 𝑎 =

2𝑏+ 4𝑎− 5𝑎

5
=

2𝑏− 𝑎

5

we have found 𝑥 and 𝑦 that solve our equation. It’s a good idea to check that
we haven’t made a mistake, so we calculate

𝑓
(︁
𝑏+ 2𝑎

5
+

2𝑏− 𝑎

5

)︁
=

2(𝑏+ 2𝑎)− (2𝑏− 𝑎) + (𝑏+ 2𝑎+ 2(2𝑏− 𝑎))𝑖

5
def f

=
2𝑏+ 4𝑎− 2𝑏+ 𝑎+ (𝑏+ 2𝑎+ 4𝑏− 2𝑎)𝑖

5
calcs in R

=
5𝑎+ 5𝑏𝑖

5
calcs in R

= 𝑎 + 𝑏𝑖 𝑟(𝑎 + 𝑏𝑖) = 𝑟𝑎 + 𝑟𝑏𝑖.

Hence our function is indeed surjective.

Inverse function

Since we have established that 𝑓 is bijective we know that it has an inverse
function. That means that we want to de�ne a function

𝑔 : C C

with the property that

𝑓 ∘ 𝑔 = idC and 𝑔 ∘ 𝑓 = idC.

The second equality tells us that 𝑔 has to undo the e�ect of 𝑓 , and can use the
work we did to show that 𝑓 is surjective to help us. There we answered the
question of which element 𝑥 + 𝑦𝑖 is mapped by 𝑓 to a given element 𝑎 + 𝑏𝑖 of
the target set, which amounts to also answering the question of how to undo
the e�ect 𝑓 had on its input to give the output 𝑎 + 𝑏𝑖.

In other words we want to write an assignment that maps 𝑎+ 𝑏𝑖 to 𝑥+ 𝑦𝑖,
where 𝑥+ 𝑦𝑖 is the solution we worked out above. The real part 𝑥 of the result
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has to be equal to (𝑏 + 2𝑎)/5, while the imaginary part 𝑦 of the result has to
be equal to (2𝑏− 𝑎)/5, so we set

𝑔 : 𝑎 + 𝑏𝑖
1

5
(𝑏 + 2𝑎 + (2𝑏− 𝑎)𝑖) .

We formally show that this 𝑔 is indeed the inverse function for 𝑓 .
Let 𝑎 + 𝑏𝑖 ∈ C. Then

𝑔(𝑓(𝑎 + 𝑏𝑖))

= 𝑔(2𝑎− 𝑏 + (𝑎 + 2𝑏)𝑖) def 𝑓

=
(𝑎+ 2𝑏) + 2(2𝑎− 𝑏) + (2(𝑎+ 2𝑏)− (2𝑎− 𝑏))𝑖

5
def 𝑔

=
𝑎+ 2𝑏+ 4𝑎− 2𝑏+ (2𝑎+ 4𝑏− 2𝑎+ 𝑏)𝑖

5
calcs in R

=
5𝑎+ 5𝑏𝑖

5
calcs in R

= 𝑎 + 𝑏𝑖 𝑟(𝑎 + 𝑏𝑖) = 𝑟𝑎 + 𝑟𝑏𝑖,

while also

𝑓(𝑔(𝑎 + 𝑏𝑖))

= 𝑓
(︁
𝑏+ 2𝑎

5
+

2𝑏− 𝑎

5

)︁
def 𝑔

=
2(𝑏+ 2𝑎)− (2𝑏− 𝑎) + (𝑏+ 2𝑎+ 2(2𝑏− 𝑎))𝑖

5
def f

=
2𝑏+ 4𝑎− 2𝑏+ 𝑎+ (𝑏+ 2𝑎+ 4𝑏− 2𝑎)𝑖

5
calcs in R

=
5𝑎+ 5𝑏𝑖

5
calcs in R

= 𝑎 + 𝑏𝑖 𝑟(𝑎 + 𝑏𝑖) = 𝑟𝑎 + 𝑟𝑏𝑖.

Note how the second proof is almost identical to the one at the end of the
surjectivity argument. So when we do a surjectivity proof then if our function
is also injective we get

• the assignment that gives us the inverse function and

• one of the two proofs that it is indeed the inverse function.

Sometimes giving an inverse function can be easier than doing separate in-
jectivity and surjectivity proofs. If you can give an inverse function to a given
function then you may use Theorem 2.3 to argue that the given function is
bijective.

Exercise 46. Let 𝑓 : 𝑆 𝑇 be a function. Let 𝑓 [𝑆] be the image of 𝑆 under
𝑓 in 𝑇 (also known as the range of 𝑓 , see De�nition 13). We may de�ne a
function 𝑓 ′ as follows.

𝑓 ′ : 𝑆 𝑓 [𝑆]

𝑠 𝑓𝑠.

Show that if 𝑓 is injective then 𝑓 ′ is a bijection.
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EExercise 47. Calculate the inverse for the function from C to C given by

𝑥 + 𝑦𝑖 2𝑥− 𝑦3𝑖

and show it is the required inverse.
Without using Theorem 2.4 show how you can use the inverse function to

give a surjectivity proof. You can either do that for the function given, or in
general which completes the proof of Proposition 2.3. Use the inverse function
to show that the given function is surjective.

Exercise 48. Recall from Exercise 31 the set Fun(𝑆, 𝑆) of all functions from a
set 𝑆 to itself. We de�ne a subset of this set

Bij(𝑆, 𝑆) = {𝑓 ∈ Fun(𝑆, 𝑆) | 𝑓 is a bijection}.

Show that the composite of two bijections is a bijection. This means that we
can use function composition to de�ne a binary operation

Bij(𝑆, 𝑆) × Bij(𝑆, 𝑆) Bij(𝑆, 𝑆),

which is again a monoid. Show that the inverse function of an element of
Bij(𝑆, 𝑆) which is known to exist by Theorem 2.4 is its inverse with respect to
the function composition operation. Conclude that Bij(𝑆, 𝑆) is a group (under
the composition operation).

115



Chapter 3

Formal Systems

The previous chapter concentrates on statements as they are commonly made in
mathematics, using key phrases from the English language, and how to prove such
statements.

Much of the discipline of mathematical logic is concerned with formal systems,
which use a language of particular symbols to mimic (and formalize) this reasoning.
Variations of such systems are often used in computer science to make precise
statements.

This chapter introduces a formal system, and then discusses how to model it,
as well as the question of which formulae should be considered equivalent.

In programming languages a number of the rules that are derived in Section 3.3
have been implemented, giving another reason why this material is important
from a computer science perspective.

3.1 A system for propositional logic

We �rst outline a comparatively simple system known as propositional logic. The
entities in the formal system we are about to describe are known as propositions.1
Propositions are built using connectives (which serve to connect propositions).
See Section 6.3.2 for a formal de�nition of how propositions are built.

3.1.1 Connectives

Conjunction, ∧. Assuming we have propositions 𝐴 and 𝐵 we may form a new
proposition, namely

𝐴 ∧𝐵.

The intended meaning is that this is a formalization of ‘and’ from the previous
chapter, but nothing we have done so far indicates this.

Disjunction, ∨. If we have propositions 𝐴 and 𝐵 we may form the new
proposition

𝐴 ∨𝐵.

The intended meaning for this is a formalization of ‘or’ from the previous chapter.
1Sometimes these are referred to as formulae.
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Implication, →. If we have propositions 𝐴 and 𝐵 we may form the new
proposition2

𝐴→𝐵.

The intended meaning for this is ‘implies’ from the previous chapter.

So how do we make it clear that these symbols have an intended meaning?
There are a number of ways of doing this. One of them is to give rules that govern
reasoning with propositions. We here give (parts of) an inference system known
as natural deduction.

Rules are of the form

proposition 1 proposition 2 . . . proposition 𝑛

proposition 𝑛 + 1

Here the propositions3 above the line are the premises and the proposition
below the line is the conclusion of the rule. We think of this as saying

‘under the assumption that we have the premises we get the conclusion’.

For conjunction we have the following introduction rule:

𝐴 𝐵

𝐴 ∧𝐵
Think of this as ‘if we know 𝐴 and we know 𝐵, then
we have 𝐴 ∧𝐵’.

We also have two elimination rules:
𝐴 ∧𝐵

𝐴

𝐴 ∧𝐵

𝐵
Think of this as ‘if we have 𝐴 ∧ 𝐵 then we
have 𝐴 (or 𝐵)’.

Contrast this with the rules for disjunction. Introduction:

𝐴

𝐴 ∨𝐵

𝐵

𝐴 ∨𝐵
Think of this as ‘if we have 𝐴 (or 𝐵) then we
have 𝐴 ∨𝐵’.

But this is where our simple system runs into problems. With what we have
done so far we cannot give an elimination rule for 𝐴 ∨𝐵—if we know 𝐴 ∨𝐵 we
may not deduce anything that we can express. This is because what we have so
far is not expressive enough.4

3.1.2 Propositions, judgements, inferences

First of all we have to revisit our notion of proposition. In the above we only
say how we may build new propositions from once we already have (using the
connectives), but not how to create a proposition from nothing.

Propositional variables

In order to ensure that our propositions are interesting, and to get started, we
have to allow them to contain variables. We therefore assume that there is a list of
propositional variables, 𝑍1, 𝑍2, and so on. Then the de�nition of a proposition is
as follows.

2You may �nd a few other notations for this, such as 𝐴⇒𝐵 or 𝐴⊃𝐵.
3Note that some people prefer to refer to propositional formulae rather than proposiitons.
4It also does not allow us to give rules for implication.
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• If 𝑍 is a propositional variable then 𝑍 is a proposition.

• If 𝐴 is a proposition, then ¬𝐴 is a proposition.5

• If 𝐴 and 𝐵 are propositions6

– then (𝐴 ∧𝐵) is a proposition,
– also (𝐴 ∨𝐵) is a proposition
– and (𝐴→𝐵) is a proposition.

This is an example of a recursive de�nition. We study such de�nitions formally
in Chapter 6, and Section 6.3.2 talks about how propositions are de�ned recursively.
.

Note that we have two kinds of variables,

𝑍, 𝑍 ′, 𝑍 ′′, . . . or 𝑍1, 𝑍2, 𝑍3, . . .

which range over propositional variables and

𝐴, 𝐵, 𝐶, . . . . . . or 𝐴1, 𝐴2, 𝐴3, . . .

which range over propositions. Do not confuse the two—their
meaning is quite di�erent.

Judgements

In order to express7 rules for the connectives we build a more complicated system,
one which has inferences for judgements8 of the form

𝐴1, 𝐴2, . . . , 𝐴𝑛 ⊢ 𝐵.

We have a list of propositions on the left of the turnstile symbol ⊢ and one
proposition on the right. We may think of this as saying:

‘If we have 𝐴1, 𝐴2, . . . , 𝐴𝑛 then we have 𝐵.’

The 𝐴𝑖 are known as the antecedents and 𝐵 as the consequent of the given judge-
ment. It makes sense to think of the 𝐴𝑖 as assumptions,

‘if we may assume 𝐴1,. . . , 𝐴𝑛 then we get 𝐵’

being another way to think about the judgement above. Because writing lists of
propositions can be a bit tedious it is customary to use capital Greek letters such
as Γ, ∆ instead.

5We look at the meaning of this symbol, known as negation, when we talk about its rules on
page 120.

6Note that we often leave out brackets where they are not required to parse the term.
7There are other solutions for natural deduction systems but these are more liable to lead to

confusion.
8This is also known as a sequent.
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Inference rules

In this new system our rules from above become:

Conjunction introduction ∧I:

Γ ⊢ 𝐴 Γ ⊢ 𝐵
∧I

Γ ⊢ 𝐴 ∧𝐵
‘If given Γ we have 𝐴 and given Γ we also have 𝐵,
then from Γ we have 𝐴 ∧𝐵.’

Conjunction elimination ∧E𝑙 and ∧E𝑟:

Γ ⊢ 𝐴 ∧𝐵
∧E𝑙

Γ ⊢ 𝐴

Γ ⊢ 𝐴 ∧𝐵
∧E𝑟

Γ ⊢ 𝐵

‘If given Γ we have 𝐴 ∧ 𝐵 then
given Γ we have 𝐴 (or 𝐵).’

Disjunction introduction ∨I𝑙 and ∨I𝑟:

Γ ⊢ 𝐴
∨I𝑙

Γ ⊢ 𝐴 ∨𝐵

Γ ⊢ 𝐵
∨I𝑟

Γ ⊢ 𝐴 ∨𝐵

‘If given Γ we have 𝐴 (or 𝐵) then
given Γ we have 𝐴 ∨𝐵.’

Disjunction elimination ∨E:

Γ ⊢ 𝐴 ∨𝐵 Γ, 𝐴 ⊢ 𝐶 Γ, 𝐵 ⊢ 𝐶
∨E

Γ ⊢ 𝐶

‘If given Γ we have 𝐴 ∨𝐵, and
given Γ and 𝐴, or Γ and 𝐵,
we have 𝐶 , then from Γ we
have 𝐶 .’

For implication we have the introduction rule →I:

Γ, 𝐴 ⊢ 𝐵
→I

Γ ⊢ 𝐴→𝐵
‘If given Γ and 𝐴 we have 𝐵, then given Γ we
have 𝐴→𝐵.’

The elimination rule for implication9 →E:

Γ ⊢ 𝐴 Γ ⊢ 𝐴→𝐵
→E

Γ ⊢ 𝐵
‘If given Γ we have 𝐴 and given Γ we have
𝐴→𝐵, then from Γ we have 𝐵.’

Note that each rule has a name, given to the right of the horizontal line. These
rules are known as (some of) the inference rules of our system.

All the rules we have seen so far only tell use how to build new judgements
assuming we already have one, inviting the question: How does one get started?
In other words, which judgements do we accept without requiring any premises?

There is a very obvious rule for this purpose, known as the ‘identity rule I:

I
𝐴 ⊢ 𝐴 ‘Given 𝐴 we have 𝐴.’

There are a couple of rules known as ‘structural rules’.

9This is also known as modus ponens.
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Γ ⊢ 𝐴
W

Γ, 𝐵 ⊢ 𝐴

Γ, 𝐵,𝐵 ⊢ 𝐴
C

Γ, 𝐵 ⊢ 𝐴

Γ, 𝐴,𝐵,∆ ⊢ 𝐶
P

Γ, 𝐵,𝐴,∆ ⊢ 𝐶

The �rst of these, W for weakening, tells us that we may always add antecedents
(and surely if we know that Γ allows us to deduce𝐴, then Γ and an extra assumption
𝐵 will allow us to deduce 𝐴). The second, C for contraction, says that if we have
an assumption once then repeating it does not give us anything more. The �nal
rule, P for permutation, says we may change the order of the assumptions.

There is one more logical construct missing, namely ‘negation’. In our ‘key
phrases’ in Chapter 2 this did not appear, but note that for every phrase we
discussed how to prove that a statement involving it is not valid. That is the
equivalent of the logical ¬. So if 𝐴 is a proposition then ¬𝐴 is a proposition, the
negation of 𝐴. We again have an introduction and an elimination rule.

Negation introduction ¬I:

Γ, 𝐴 ⊢ ¬𝐵 Γ, 𝐴 ⊢ 𝐵
¬I

Γ ⊢ ¬𝐴
‘If given Γ and 𝐴 we have both ¬𝐵 and 𝐵,
then given Γ we have ¬𝐴.’

Negation elimination ¬E:

Γ,¬𝐴 ⊢ ¬𝐵 Γ,¬𝐴 ⊢ 𝐵
¬E

Γ ⊢ 𝐴
‘If given Γ and ¬𝐴 we have ¬𝐵 as well
as 𝐵 then from Γ we have 𝐴.’

Derivations

In this system we may build formal derivations.

Example 3.1. A derivation is a way of getting to propositions from the axioms
using the derivation rules given above.

I
𝐴 ⊢ 𝐴

W
𝐴,𝐵 ⊢ 𝐴

I
𝐵 ⊢ 𝐵

W
𝐵,𝐴 ⊢ 𝐵

P
𝐴,𝐵 ⊢ 𝐵

∧I
𝐴,𝐵 ⊢ 𝐴 ∧𝐵

This tells us that from nothing at all we may deduce that if we have 𝐴
and 𝐵 then have 𝐴 ∧𝐵. This may appear terribly obvious, but once one adds
more rules to the system and studies longer derivations it becomes much less
clear what may be derived in such a system.

A derivation is then a tree where the inference rules have been employed on
each step down the tree. Note that in the derivation each step gives the name of
the rule used. You can see two examples of signi�cantly larger derivations on the
following two pages.
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I
𝐵

⊢
𝐵

W
𝐵
,𝐴

→
(𝐵

→
𝐶

)
⊢
𝐵

P
𝐴
→

(𝐵
→

𝐶
),
𝐵

⊢
𝐵

W
𝐴
→

(𝐵
→

𝐶
),
𝐵
,𝐴

⊢
𝐵

I
𝐴

⊢
𝐴

W
𝐴
,𝐴

→
(𝐵

→
𝐶

)
⊢
𝐴

W
𝐴
,𝐴

→
(𝐵

→
𝐶

),
𝐵

⊢
𝐴

P
𝐴
→

(𝐵
→

𝐶
),
𝐴
,𝐵

⊢
𝐴

P
𝐴
→

(𝐵
→

𝐶
),
𝐵
,𝐴

⊢
𝐴

I
𝐴
→

(𝐵
→

𝐶
)
⊢
𝐴
→

(𝐵
→

𝐶
)

W
𝐴
→

(𝐵
→

𝐶
),
𝐵

⊢
𝐴
→

(𝐵
→

𝐶
)

W
𝐴
→

(𝐵
→

𝐶
),
𝐵
,𝐴

⊢
𝐴
→

(𝐵
→

𝐶
)

→
E

𝐴
→

(𝐵
→

𝐶
),
𝐵
,𝐴

⊢
𝐵

→
𝐶

→
E

𝐴
→

(𝐵
→

𝐶
),
𝐵
,𝐴

⊢
𝐶

→
I

𝐴
→

(𝐵
→

𝐶
),
𝐵

⊢
𝐴
→

𝐶
→

I
𝐴
→

(𝐵
→

𝐶
)
⊢
𝐵

→
(𝐴

→
𝐶

)
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I
𝐴

⊢
𝐴

W
𝐴
,(
𝐴
∨
𝐵
)
→

𝐶
⊢
𝐴

P
(𝐴

∨
𝐵
)
→

𝐶
,𝐴

⊢
𝐴

∨
I

(𝐴
∨
𝐵
)
→

𝐶
,𝐴

⊢
𝐴
∨
𝐵

I
(𝐴

∨
𝐵
)
→

𝐶
⊢
(𝐴

∨
𝐵
)
→

𝐶
W

(𝐴
∨
𝐵
)
→

𝐶
,𝐴

⊢
𝐴

P
𝐴
,(
𝐴
∨
𝐵
)
→

𝐶
⊢
(𝐴

∨
𝐵
)
→

𝐶
P

(𝐴
∨
𝐵
)
→

𝐶
,𝐴

⊢
(𝐴

∨
𝐵
)
→

𝐶
→

E
(𝐴

∨
𝐵
)
→

𝐶
,𝐴

⊢
𝐶

→
I

(𝐴
∨
𝐵
)
→

𝐶
⊢
𝐴
→

𝐶

I
𝐵

⊢
𝐵

W
𝐵
,(
𝐴
∨
𝐵
)
→

𝐶
⊢
𝐵

P
(𝐴

∨
𝐵
)
→

𝐶
,𝐵

⊢
𝐵

∨
I r

(𝐴
∨
𝐵
)
→

𝐶
,𝐵

⊢
𝐴
∨
𝐵

I
(𝐴

∨
𝐵
)
→

𝐶
⊢
(𝐴

∨
𝐵
)
→

𝐶
W

(𝐴
∨
𝐵
)
→

𝐶
,𝐵

⊢
(𝐴

∨
𝐵
)
→

𝐶
→

E
(𝐴

∨
𝐵
)
→

𝐶
,𝐵

⊢
𝐶

→
I

(𝐴
∨
𝐵
)
→

𝐶
⊢
𝐵

→
𝐶

∧
I

(𝐴
∨
𝐵
)
→

𝐶
⊢
(𝐴

→
𝐶
)
∧
(𝐵

→
𝐶
)
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EExercise 49. Give derivations for the following judgements.

(a) ¬¬𝐴 ⊢ 𝐴,

(b) 𝐴 ⊢ ¬¬𝐴,

(c) ¬(𝐴 ∧𝐵) ⊢ ¬𝐴 ∨ ¬𝐵,

(d) ¬𝐴,¬𝐵 ⊢ ¬(𝐴 ∨𝐵).

Instead of only considering derivations which have only instances of the
identity rule at the top we may consider ‘partial’ derivations, where we assume
we already have some judgements. I

Example 3.2. Assume both,

Γ ⊢ ¬𝐴 and Γ ⊢ 𝐵 →𝐴.

Then we can build a derivation using these judgements as starting points.

Γ ⊢ ¬𝐴
w

Γ, 𝐵 ⊢ ¬𝐴

I
𝐵 ⊢ 𝐵

W,P sev times
Γ, 𝐵 ⊢ 𝐵

Γ ⊢ 𝐵 →𝐴
W

Γ, 𝐵 ⊢ 𝐵 →𝐴
→E

Γ, 𝐵 ⊢ 𝐴
¬E

Γ ⊢ ¬𝐵

EExercise 50. This exercise is about giving partial derivations.

(a) Derive, from the judgements Γ ⊢ 𝐵 and Γ ⊢ ¬𝐵 the judgement Γ ⊢ 𝐴 for
arbitrary 𝐴.

(b) Derive, from the judgement Γ ⊢ 𝐴, the judgement Γ ⊢ ¬¬𝐴.

(c) Derive, from the judgement Γ ⊢ ¬¬𝐴, the judgement Γ ⊢ 𝐴.

(d) Derive, from Γ ⊢ 𝐴→𝐵 and Γ ⊢ ¬𝐵, the judgement Γ ⊢ ¬𝐴.

(e) Derive, from Γ ⊢ 𝐴 ∨𝐵 and Γ ⊢ ¬𝐴, the judgement Γ ⊢ 𝐵.

The system we have given here is one for classical logic.10 It aims to only
use principles that are generally accepted as valid in its rules, so the idea is that
everything that can be derived in such a system is valid in some sense.

A judgement of the form
⊢ 𝐴

tells us that the proposition 𝐴 is valid without requiring any assumptions. If we
can derive this judgement in our system then this means it is a this is a ‘true’
proposition in some sense—at least if we believe the rules of our system to be valid.
This gives rise to an obvious query.

Question. Which judgements of the form ⊢ 𝐴 have a derivation in our system?
We call such propositions derivable. There is a theorem which connects

arbitrary derivable judgements with those where the list of assumptions is empty.
10Technically speaking it gives the rules for natural deduction in a sequent calculus with a single

consequent in each judgement.
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Theorem 3.1
The judgement

𝐴1, 𝐴2, . . . , 𝐴𝑛 ⊢ 𝐵

is derivable in this system if and only if the same is true for the judgement

⊢ (𝐴1 ∧𝐴2 ∧ · · · ∧𝐴𝑛) →𝐵.

The original aim of systems like this were to formalize the kind of reasoning
that occurs in mathematical proofs. The idea was to write down rules which ‘make
sense’, with a hope to translating proofs in mathematics into such a formal system,
and with the more modern hope of verifying proofs carried out by humans through
machines.

Moreover, one could then study the system in its own right, with a view to
�nding out which judgements are derivable within it, and that one might be able
to prove formally that in such a system, nothing false (or contradictory) may ever
be deduced. It turns out that the latter is still very much un�nished.11

Meanwhile the associated formalisms have been widely used in other discip-
lines, including computer science, to make precise statements. Examples of this
are given in Section 3.4 once the system has been expanded further.

While in what follows we look at this system through models it is worth
pointing out that there is a branch of mathematical logic known as proof theory
where such systems are studied in their own right: Di�erent derivations of the
same propositions are thought to play a similar role to di�erent programs for the
same problem.

3.2 Models

All that is de�ned above is purely syntactic, that is, we are manipulating symbols,
and while we may have a meaning in mind for these symbols, nothing we have
done so far gives any meaning to a judgement. The fact that each connectives has
particular inference rules does provide some meaning, but not in a way that can
be made explicit very easily.

What should a proposition like 𝐴 ∧ 𝐵 mean, and how should that connect
with the judgement ⊢ 𝐴 ∧𝐵 being derivable (or not)? We want to give a model
which tells us something about derivability in our system.

Because our propositions are built using propositional variables we have to
worry about how to model those variables. We cannot make any assumptions
about the meaning of those variables, and so we employ a trick that is also found
in the formal semantics of programming language.

The way we assign meaning to a proposition is to consider all the possible
meanings a variable could have, one at a time. This leads to the concept of a
valuation:

Assume we have a set 𝑆 in which propositions take their values. For a propos-
ition containing 𝑛 propositional variables, say 𝑍1, 𝑍2, . . . , 𝑍𝑛 a valuation 𝑣 is a
function that assigns a value in 𝑆 to every propositional variable, that is,

{𝑍1, 𝑍2, . . . , 𝑍𝑛} 𝑆.𝑣

11We know thanks to the logician Kurt Gödel that a system which is powerful enough to express
the kinds of things mathematicians are interested in cannot prove its own consistency.
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If we look a all possible valuations, that is at all the functions with the source
and target given above, then we look at all the possible meanings the proposition
could have in our model.

As a consequence we assign a value to each proposition relative to a valuation.
We may state properties of this model by quantifying over all possible valuations.
This process is described in more detail for each of the models given below.

3.2.1 Model 1: Boolean

The Boolean algebra B

We want to interpret, or model, propositions within the set {0, 1}. You may think
of 0 as denoting ‘false’, and of 1 as denoting ‘true’.12 Then we can interpret the
logical connectives as operations on this set.13

Note that the same symbols are used for the operations on {0, 1} as in our
formal system. Indeed we intend to model, for example, the connective ∧ in our
system by the operation ∧ on {0, 1}.

Conjunction:

∧ 0 1
0 0 0
1 0 1

Disjunction:

∨ 0 1
0 0 1
1 1 1

Implication:

→ 0 1
0 1 1
1 0 1

Negation:

¬
0 1
1 0

We use B to refer to the set {0, 1} with these operations. It is also known as
the two element boolean algebra.

Note that there is a di�erent way of displaying what these operations do by
giving a table that lists the possible values of the two arguments in the �rst two
columns and the result in the third.

Conjunction:

𝑥 𝑦 𝑥 ∧ 𝑦

0 0 0
0 1 0
1 0 0
1 1 1

Disjunction:

𝑥 𝑦 𝑥 ∨ 𝑦

0 0 0
0 1 1
1 0 1
1 1 1

12You sometimes �nd people using di�erent names for the elements of this set, for example {F,T}.
You should have no di�culty translating between these.

13Compare these with the rules for logical operators on page 128 of Java: Just in Time, and
with those in the �rst handout for COMP12111—they all talk about the same operations, only that
implication is omitted there. The reason for this is explained in Section 3.3.
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Implication:

𝑥 𝑦 𝑥→ 𝑦

0 0 1
0 1 1
1 0 0
1 1 1

Negation:

𝑥 ¬𝑥
0 1
1 0

Certainly from a common-sense point of view these make sense: If I have two
true statements 𝑆 and 𝑆′ then the statement we obtain by connecting these with
‘and’ is true, but if one of them is false then the combined statement should be false.
You may want to go back and read the text for the key phrases from Section 2.2.1
to compare what is said there with the above de�nitions for these operations.

Mathematically the above tables de�ne four functions, three (namely ∧, ∨ and
→) from {0, 1} × {0, 1} to {0, 1}, and one (namely ¬) from {0, 1} to {0, 1}. The
way to interpret the above tables as functions of type

{0, 1} × {0, 1} {0, 1}

is to

• take the value in the �rst column as the �rst input,

• take the value in the top row as the second input and

• use the corresponding entry in the table as the outcome of applying the
function to these arguments.

An alternative way of using a table to de�ne these functions is to give all the
combinations of inputs in the �rst two columns,14 for example for ∧:

𝑥 𝑦 𝑥 ∧ 𝑦

0 0 0
0 1 0
1 0 0
1 1 1

Exercise 51. There are three binary operations de�ned on {0, 1}. Determine
which of them are commutative and associative, and which of them have a
unit, and what it is.

Valuations

But how do we interpret a proposition such as 𝐴 ∧ 𝐵? As indicated above, we
have to work relative to valuations15 for the propositional variables. We give an
example here.

Assume we have a proposition that contains two variables 𝑍 and 𝑍 ′, such as

((𝑍 ∨ 𝑍 ′) ∧ ¬𝑍) ∨ ¬𝑍 ′.

14Note that the safest way of ensuring that all combinations are listed for the inputs is to ‘count
in binary’.

15Some people call these ‘interpretations’ or ‘truth assignments’ for the boolean model.

126



In this example a valuation 𝑣 is a function

{𝑍,𝑍 ′} {0, 1}.

Our interpretation is relative to a valuation, and to really understand the given
proposition we have to consider all possible valuations.

Exercise 52. If you have a proposition with 𝑛 propositional variables, how
many possible valuations are there?

Interpretation of propositions

Given the set {𝑍,𝑍 ′} assume we have a valuation 𝑣 that takes its values in {0, 1}.
The interpretation of ((𝑍 ∨ 𝑍 ′) ∧ ¬𝑍) ∨ ¬𝑍 ′ relative to 𝑣 is then given by

((𝑣𝑍 ∨ 𝑣𝑍 ′) ∧ ¬𝑣𝑍) ∨ ¬𝑣𝑍,

where ∧, ∨ and ¬ are the respective operations for B de�ned above.

Example 3.3. Assume that we have a valuation 𝑣 which maps

𝑍 to 0 and 𝑍 ′ to 1.

Then the value of ((𝑍 ∨ 𝑍 ′) ∧ ¬𝑍) ∨ ¬𝑍 ′ relative to that 𝑣 is

((𝑣𝑍 ∨ 𝑣𝑍 ′) ∧ ¬𝑣𝑍) ∨ ¬𝑣𝑍 ′ = ((0 ∨ 1) ∧ ¬0) ∨ ¬1 def 𝑣
= ((0 ∨ 1) ∧ 1) ∨ 0 def ¬
= (1 ∧ 1) ∨ 0 def ∨
= 1 ∨ 0 def ∧
= 1. def ∨

Without showing the calculation we give below the value for this proposi-
tion relative to the other valuations. We do this by �lling in a table16 that helps
make the calculations faster.

𝑣𝑍 𝑣𝑍 ′ 𝑣𝑍 ∨ 𝑣𝑍 ′ (𝑣𝑍∨𝑣𝑍 ′)∧¬𝑣𝑍 ((𝑣𝑍 ∨ 𝑣𝑍 ′) ∧ ¬𝑣𝑍) ∨ ¬𝑣𝑍 ′

0 0 0 0 1
0 1 1 1 1
1 0 1 0 1
1 1 1 0 0

In general we use the following de�nition. Given a proposition𝐴with variables
{𝑍1, 𝑍2, . . . , 𝑍𝑛}, and a valuation 𝑣 of {𝑍1, 𝑍2, . . . , 𝑍𝑛} in B we get the boolean
interpretation of 𝐴 relative to 𝑣 by the following steps:

• In the expression 𝐴, replace every occurrence of 𝑍𝑖 by 𝑣𝑍𝑖,

• calculate the value of the resulting expression in B by using the operations
for B.

16This is the same idea as the truth tables in Chapter 8 of Java: Just in Time.
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Exercise 53. Calculate the boolean interpretation of

((𝑍 ∨ 𝑍 ′) ∧ ¬𝑍) ∨ ¬𝑍 ′

relative to the valuation which maps 𝑍 to 1 and 𝑍 ′ to 0.

The boolean interpretation of a proposition is sometimes called its truth value.

De�nition 26: tautology

A proposition 𝐴 is a tautology if and only if for all valuations 𝑣 for 𝐴 it is
the case that the boolean interpretation of 𝐴 relative to 𝑣 is equal to 1. It is
satis�able if and only if there is a valuation such that the boolean interpretation
of 𝐴 relative to 𝑣 is equal to 1.

This interpretation is very strongly connected with what is derivable in our
system.

Theorem 3.2
A judgement of the form ⊢ 𝐴 is derivable if and only if 𝐴 is a tautology.

This is a very important theorem in mathematical logic. We don’t have the
time here to give even a sketch of a proof. Note that it tells us that our system is
very closely related to the model. Or, in other words, the model tells us exactly
which judgements can be derived in our system. It’s usually much easier to check
what happens in the model than to �nd a derivation.

Our example proposition is satis�able since there is a valuation17 relative to
which its boolean interpretation is 1. It is not a tautology since there is a valuation18

relative to which its interpretation is 0. This means that

⊢ ((𝑍 ∨ 𝑍 ′) ∧ ¬𝑍) ∨ ¬𝑍 ′.

cannot be derived in our system, but if we replace the propositional variables 𝑍
and 𝑍 ′ by suitable propositions then the resulting judgement may be derivable.

3.2.2 Model 2: Powersets

Reducing the interpretation of every proposition to just one value, 0 or 1, is
somewhat restrictive, and not very subtle.

Assume we are given a set 𝑋 , and from that we construct the powerset, 𝒫𝑋 .
We may give interpretations to the logical connectives in 𝒫𝑋 as follows:

• conjunction ∧: use intersection ∩;

• disjunction ∨: use union ∪;

• negation ¬: use complement 𝑋 ∖ −;

• implication →: for 𝑆 → 𝑆′ use (𝑋 ∖ 𝑆) ∪ 𝑆′;
17Any of the �rst three in our table works.
18The last one from our table.
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Again we have a notion of valuation, but this time to each variable a valuation
has to assign a subset of 𝑋 . So a valuation 𝑣 for a proposition with variables
{𝑍1, 𝑍2, . . . , 𝑍𝑛} is a function

{𝑍1, 𝑍2, . . . , 𝑍𝑛} 𝒫𝑋.𝑣

The powerset interpretation of a proposition𝐴 relative to a given valuation
𝑣 is given by a subset of 𝑋 , calculated as follows.

• In the expression 𝐴, replace every occurrence of 𝑍𝑖 by 𝑣𝑍𝑖,

• replace the connectives according to the instructions given above and then

• calculate the value of the resulting expression in 𝒫𝑋 by computing the
resulting set.

Example 3.4. We go back to proposition considered in Example 3.3, ((𝑍 ∨
𝑍 ′) ∧ ¬𝑍) ∨ ¬𝑍 ′. Assume that 𝑋 = {𝑎, 𝑏, 𝑐} and that the valuation 𝑣 maps

𝑍 to {𝑎, 𝑏} and 𝑍 ′ to {𝑏, 𝑐}.

Then the value of ((𝑍 ∨ 𝑍 ′) ∧ ¬𝑍) ∨ ¬𝑍 ′ relative to 𝑣 is

((𝑣𝑍 ∪ 𝑣𝑍 ′) ∩ ¬𝑣𝑍) ∪ ¬𝑣𝑍 ′

= (({𝑎, 𝑏} ∪ {𝑏, 𝑐}) ∩ (𝑋 ∖ {𝑎, 𝑏})) ∪ (𝑋 ∖ {𝑏, 𝑐} def 𝑣
= ({𝑎, 𝑏, 𝑐} ∩ {𝑐}) ∪ {𝑎} def ∪, ∖
= {𝑐} ∪ {𝑎} def ∩
= {𝑎, 𝑐}. def ∪

For the powerset interpretation a tautology is that of a proposition which
is mapped to 𝑋 for every valuation. Satis�ability becomes the existence of a
valuation such that the interpretation of the proposition in question is non-empty.
The theorem connecting derivability and and this adaptation of tautology remains
true.

Hence in this interpretation we can see that ((𝑍 ∨ 𝑍 ′) ∧ ¬𝑍) ∨ ¬𝑍 ′ is not
a tautology after making calculations for just one valuation. On the other hand
there are signi�cantly more valuations available, so checking all of them takes
more time.

EExercise 54. Calculate the powerset interpretation in 𝑋 = {𝑎, 𝑏, 𝑐} of

((𝑍 ∨ 𝑍 ′) ∧ ¬𝑍) ∨ ¬𝑍 ′

relative to the valuation which maps 𝑍 to {𝑎, 𝑏, 𝑐} and 𝑍 ′ to {𝑏}.

Exercise 55. Give an argument that this model subsumes Model 1. Hint:
Consider the powerset for a one-element set.
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Exercise 56. Assume that every valuation may assign only the values ∅ or 𝑋
to a propositional variable. What does that mean for this model?

Optional Exercise 7. In general, is there a way of relating the interpretation
in Model 2 for arbitrary 𝑋 (and arbitrary valuations) to the interpretation in
Model 1?

3.2.3 Model 3: Logic Gates

We may build yet another model for our formal system, using logic gates. Each
propositional variable for a given proposition becomes an input wire for our circuit.
We use the following to connect these wires according to the connectives in the
proposition:

• conjunction ∧: use an AND gate;

• disjunction ∨: use an OR gate;

• negation ¬: use a NOT gate;

• implication →: for 𝐴→ 𝐵 use an OR gate where the �rst input has been
negated;

The resulting circuit has one output wire. A valuation means deciding, for each
input wire, whether to put a voltage onto that input wire or not. Given a valuation
we get two possibilities for the output wire: Either it carries a voltage, or it doesn’t.

The circuit interpretation of a proposition is the resulting circuit. The notion
of tautology is then adjusted to this model by demanding that for every valuation
(that is, for every way of putting a voltage, or not, onto the input wires) the output
wire carries a voltage, and satis�ability means that there is at least one way of
assigning voltages to the input wires such that the output wire carries a voltage.
The result connecting tautologies and derivable propositions remains true.

3.2.4 Applications

Instead of thinking of a model as saying something about the formal system, one
could think of the formal system making statements about the intended model.
The fact that there are so many models available is one of the reasons why the
language of logic is applicable in so many ways.

Those of you taking COMP12111 have met logic as a description of what happens
in an electronic circuit. The conditional statements in Java use logic connectives,
just with a di�erent syntax so that they may be typed on a standard keyboard. You
�nd more about these below.

There is also an obvious way of taking our ‘key phrases’ and turning them into
logical connectives, and so we may think of a formal system like ours as talking
about de�nitions and proofs from mathematics, or we can use it to talk about
sets. But statements built from these phrases are used in many other areas as well,
for example in database queries, or to describe the result such a query ought to
have. The key phrases, or the corresponding logical connectives, allow us to make
precise statements about a great variety of di�erent topics. Because they appear in
so many places it is important to understand these connectives and their intended
meanings, as well as their properties.

In general, whenever people wish to formally establish something such as the
correctness of a circuit or a program relative to a given speci�cation they translate
the speci�cation into a formal system, and construct a formal model of the circuit
or program within that system, and then try to establish a formal proof using a
mechanism supplied by the system..
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3.3 Properties of our system

We study the properties of our system with regard to the three models given.
However, we restrict our arguments to Model 1 for the most part, since that is the
one considered by most applications you will encounter in the future.

Redundancy of implication

In our system we have more connectives than we need if we are only concerned
with the interpretations in Models1–3.

Assume we have a proposition of the form 𝐴→ 𝐵, where 𝐴 and 𝐵 may be
complex proposition. Further assume that the propositional variables mentioned
in 𝐴 and 𝐵 are given in {𝑍1, 𝑍2, . . . , 𝑍𝑛}.

Then for every valuation 𝑣 : {𝑍1, 𝑍1, . . . , 𝑍𝑛} {0, 1} it is the case that the
interpretation of

𝐴→𝐵

relative to that valuation is the same as that of

¬𝐴 ∨𝐵

in each of our three models.19
We can check this by �lling in a table that calculates the values for all inputs

for the following two functions from {0, 1} × {0, 1} {0, 1}:

{0, 1} × {0, 1} {0, 1} × {0, 1} {0, 1}
¬×id{0,1} ∨

and
{0, 1} × {0, 1} {0, 1}.→

We give the inputs in the two leftmost columns, use the next column for
an intermediate calculation, and give the outputs for both functions in the two
rightmost columns.

𝑥 𝑦 ¬𝑥 ¬𝑥 ∨ 𝑦 𝑥→ 𝑦

0 0 1 1 1
0 1 1 1 1
1 0 0 0 0
1 1 0 1 1

Since the last two columns are equal we know that the two functions under
consideration give the same output for every possible combination of input values.
As a consequence, no matter which value is assigned to 𝐴 and 𝐵 in our model for
the given valuation, the two propositions will be assigned the same value.

So when we are merely interested in the interpretation of propositions in our
model then we may remove the connective → from consideration entirely, and
instead use negation and conjunction.20

In a case like this, where the boolean interpretation of two terms is the same
for all valuations, we write

𝐴→𝐵 ≡ ¬𝐴 ∨𝐵.

19And indeed, it is also possible to establish that ⊢ 𝐴→𝐵 is derivable precisely when the same
is true for ⊢ ¬𝐴 ∨𝐵.

20But note that if we are interested in our system for other reasons then we should not just remove
connectives.
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De�nition 27: semantic equivalence

Two propositions 𝐴 and 𝐵 are semantically equivalent if and only if it is the
case that for every valuation21 their boolean interpretations are the same. In
this case we write 𝐴 ≡ 𝐵.

In the literature you may �nd 𝐴 = 𝐵, but this is imprecise because the two
terms are not equal as propositions, or 𝐴 ≡ 𝐵, but in computer science this is
usually reserved for a syntactic equality. You may think of the two terms as equal
in the semantics—that is, the model does not distinguish between them.

Note that many computer languages have propositional expressions: every
language that has some kind of conditional ‘if. . . then’ instructions) uses them. The
typical usage is

If <propositional expression> then ... else ...

The propositional expression is evaluated to true or false (our 1 or 0, re-
spectively), and this evaluation is stable under ≡, which means that if

propositional expression 1 ≡ propositional expression 2

then they evaluate to the same truth value. This means that you may use the rules
given in the following sections to rewrite your boolean expressions into a more
easily understandable form. This makes it much easier to check whether one has
captured the various cases as intended.22

Note that in Model 2 we have used this idea as the de�nition of the interpretation
of →: Let the interpretation of 𝐴 relative to valuation 𝑣 be 𝑆, and that of 𝐵 be 𝑇 ,
both subsets of 𝑋 . Then the interpretation of 𝐴→𝐵 relative to 𝑣 is

(𝑋 ∖ 𝑆) ∪ 𝑇

which is exactly the interpretation relative to 𝑣 of ¬𝐴 ∨𝐵.
Similarly one can argue that the two propositions will be assigned the same

value in Model 3.

Exercise 57. In Chapter 2 we have notions of associativity and commutativity
of binary operations. We can adopt these notions, but instead of asking certain
expressions to evaluate to the same value we ask that they are semantically
equivalent.

(a) Give an argument that ∧ is commutative with respect to ≡, that is 𝐴∧𝐵 ≡
𝐵 ∧ 𝐴. Now do the same for ∨. Hint: Consider the argument we made for
𝐴→𝐵 ≡ ¬𝐴 ∨𝐵 on page 131.

(b) Give an argument that ∧ and ∨ are associative with respect to ≡.

Double negation

Applying negation twice to the same proposition is semantically equivalent to not
applying it at all.

21That is every valuation that assigns values to the variables mentioned in 𝐴 and 𝐵 combined.
22In Java: Just in Time in Chapter 8 you �nd truth tables as a way of evaluating propositional

expressions—this is precisely the same idea as our boolean interpretation. Our ‘semantically equi-
valent’ means ‘equivalent’ in that book.
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In other words, for every proposition 𝐴 it is the case that under all valuations,
it will be assigned the same value as ¬¬𝐴.23

We may summarise this24 as

𝐴 ≡ ¬¬𝐴

for all propositions 𝐴.

Exercise 58. Prove the above claim by checking that the two functions

{0, 1} {0, 1} {0, 1} {0, 1} {0, 1}
id{0,1} ¬ ¬

give the same output for every possible input by constructing a table similar
to the one given on page 131.

EExercise 59. Show that in Model 2 the interpretation of negation satis�es
the same property, that is, applying it twice gives the identity function. Hint:
How is negation interpreted in the second model? What happens if you apply
that operation twice to an arbitrary set?

De Morgan’s laws

There are further relations between the remaining connectives, ¬, ∨ and ∧.
If 𝐴 and 𝐵 are arbitrary propositions, then relative to every valuation the

values of
¬(𝐴 ∧𝐵) and ¬𝐴 ∨ ¬𝐵

are the same.25

We write this as
¬(𝐴 ∧𝐵) ≡ ¬𝐴 ∨ ¬𝐵,

and refer to it as De Morgan’s law.

CExercise 60. Prove the claim that

¬(𝐴 ∧𝐵) ≡ ¬𝐴 ∨ ¬𝐵

by constructing a table for the corresponding functions as in the example
establishing that 𝐴→𝐵 ≡ ¬𝐴 ∨𝐵 given on page 131.

Note that this means

𝐴 ∧𝐵 ≡ ¬¬(𝐴 ∧𝐵) 𝐴 ≡ ¬¬𝐴
≡ ¬(¬𝐴 ∨ ¬𝐵) De Morgan ∧

Hence we may take a proposition and replace every occurrence of the ∧ symbol
using De Morgan’s law, and we get a proposition which is semantically equivalent.

23And indeed, in our system 𝐴 is derivable if and only if ¬¬𝐴 is derivable—in fact, something
stronger is true.

24Compare this with Exercise 49 (a) and (b).
25Compare this with Exercise 49 (c) and (d).
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Therefore we may eliminate ∧ in the same way that we may eliminate → provided
we are only interested in the values propositions take in the three models.

We could therefore use only the connectives ¬ and ∨, and still have the same
‘expressive power’ in the model as when using all connectives.

The above law is valid for all propositions, and if we use ¬𝐶 in the place of 𝐴,
and ¬𝐷 in the place of 𝐵, we get

¬(¬𝐶 ∧ ¬𝐷) ≡ ¬¬𝐶 ∨ ¬¬𝐵 ≡ 𝐶 ∨𝐷,

giving us a second version of De Morgan’s law, which by applying ¬ on both sides,
turns into

¬𝐶 ∧ ¬𝐷 ≡ ¬¬(¬𝐶 ∧ ¬𝐷) ≡ ¬(𝐶 ∨𝐷).

Hence we could use only the connectives ¬ and ∧ instead of ¬ and ∨.

Exercise 61. Show that De Morgan’s law also holds for Model 2, that is the
interpretation in a powerset. Hint: Use the instructions from Section 3.2.2 for
replacing logical connections by set operations. Then prove that the two sets you
get are equal.

Idempotence

The two connectives conjunction and disjunction have an additional property in
the boolean model that we have not looked at so far.

It is the case that in B, 𝑥 ∨ 𝑥 = 𝑥 as well as 𝑥 ∧ 𝑥 = 𝑥 for all 𝑥 in {0, 1}. This
can be easily checked by looking only at the diagonal of the tables de�ning these
operations.

Conjunction:

∧ 0 1
0 0
1 1

Disjunction:

∨ 0 1
0 0
1 1

This means that for every proposition 𝐴 we have that the boolean interpreta-
tion of 𝐴 ∨𝐴, and that of 𝐴 ∧𝐴, relative to any valuation, are both equal to the
boolean interpretation of 𝐴 relative to that valuation.

Hence we have for every proposition 𝐴 that

𝐴 ∨𝐴 ≡ 𝐴 and 𝐴 ∧𝐴 ≡ 𝐴.

We say that ∧ and ∨ are idempotent for ≡.

Exercise 62. Show that for Model 2 we also have that the interpretation of
𝐴 ∨𝐴 and 𝐴 ∧𝐴 are equal to that of 𝐴, all relative to a given valuation.

Contradiction and excluded middle

There are some additional statements we can make regarding semantic equivalence
of propositions.

First of all note that when we look at the boolean interpretations of 𝐴 and
¬𝐴 relative to the same valuation, then one of these is always 0 and one of these
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is always 1. This is because the interpretation of ¬𝐴 arises from that of 𝐴 by
applying the negation function for B.

This has the following consequences.

The boolean interpretation of a pro-
position of the form

𝐴 ∧ ¬𝐴

is always 0.

The boolean interpretation of a pro-
position of the form

𝐴 ∨ ¬𝐴

is always 1.

The table below shows this:

boolean interpretation of
𝐴 ¬𝐴 𝐴 ∧ ¬𝐴 𝐴 ∨ ¬𝐴
0 1 0 1
1 0 0 1

We introduce new symbols for this case: We write

𝐴 ≡ ⊥

in the case where the boolean interpretation of 𝐴 relative to every valuation is 0,
and we write

𝐴 ≡ ⊤

in the case where the boolean interpretation of 𝐴 relative to every valuation is 1.
Here ⊤ is a symbol for ‘truth’ and ⊥ is a symbol for ‘falsehood’. These are

quite widely used, but other symbols may also appear in the literature, for example
1 or T for truth, and 0 or F for false. In Java you have the reserved words true
and false, which serve the same purpose.

It is possible to de�ne ⊤ and ⊥ as propositions in our system, but we do not
do this here since it does not add much. However, when we make calculations to
better understand a proposition we allow ourselves to use ⊤ and ⊥ as part of the
calculation in the sense introduced below.

Note that if 𝐴 is a proposition then

• if 𝐴 ≡ ⊤ then for every proposition 𝐵

– we have 𝐴 ∨𝐵 ≡ ⊤ ∨𝐵 ≡ ⊤ and
– we also have 𝐴 ∧𝐵 ≡ ⊤ ∧𝐵 ≡ 𝐵.

• if 𝐴 ≡ ⊥ then for every proposition 𝐵

– we have 𝐴 ∧𝐵 ≡ ⊥ ∧𝐵 ≡ ⊥ and
– we also have 𝐴 ∨𝐵 ≡ ⊥ ∨𝐵 ≡ 𝐵.

Exercise 63. Explain why the above statements about semantic equivalence
are valid.

There are two further useful principles for simplifying formula to ones that
are semantically equivalent. The �rst of these is

𝐴 ∧ (𝐴 ∨𝐵),
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which is semantically equivalent to

𝐴.

Similarly we have
𝐴 ∨ (𝐴 ∧𝐵) ≡ 𝐴.

This requires checking.

Exercise 64. Show that for arbitrary propositions 𝐴 and 𝐵 we have that the
boolean interpretation of 𝐴 ∧ (𝐴 ∨𝐵), and that of 𝐴 ∨ (𝐴 ∧𝐵), is the same
as that of 𝐴.

We give a table to summarize our rules. We assume that 𝐴 and 𝐵 are arbitrary
propositional formula.

name proposition
equivalent
proposition

implication 𝐴→𝐵 ¬𝐴 ∨𝐵

double negation ¬¬𝐴 𝐴

De Morgan ∨ ¬(𝐴 ∨𝐵) ¬𝐴 ∧ ¬𝐵

De Morgan ∧ ¬(𝐴 ∧𝐵) ¬𝐴 ∨ ¬𝐵

idempotence ∨ 𝐴 ∨𝐴 𝐴

idempotence ∧ 𝐴 ∧𝐴 𝐴

excluded middle 𝐴 ∨ ¬𝐴 ⊤

contradiction 𝐴 ∧ ¬𝐴 ⊥

absorption 𝐴 ∧ (𝐴 ∨𝐵) 𝐴

absorption 𝐴 ∨ (𝐴 ∧𝐵) 𝐴

Additionally we have that

⊥ behaves like a unit for ∨

and that
⊤ behaves like a unit for ∧,

but these two are not part of our o�cial formal system.
There is one important rule missing in the form of distributivity laws. We turn

to those in the following section.

Normal forms

In particular in computer science it is customary to write propositions in a partic-
ular form.
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De�nition 28: conjunctive normal form

A proposition is in conjunctive normal form, CNF, if it is of the form

𝐴1 ∧𝐴2 ∧ · · · ∧𝐴𝑚,

where each 𝐴𝑖 is of the form

𝐵1 ∨𝐵2 ∨ · · · ∨𝐵𝑛,

where each 𝐵𝑗 is of the form 𝑍 or ¬𝑍 for some propositional variable 𝑍 .

For every proposition we may �nd a semantically equivalent one that is in
conjunctive normal form, and there is an algorithm for doing this.

Step 0 If the proposition contains any → symbols, replace them according to the
redundancy of implication rule, so 𝐴→𝐵 becomes ¬𝐴 ∨𝐵.

Step 1 For every negation symbol, use De Morgan’s law to

• rewrite ¬(𝐴1 ∧ · · · ∧𝐴𝑛) to (¬𝐴1 ∨ · · · ∨ ¬𝐴𝑛) and
• rewrite ¬(𝐴1 ∨ · · · ∨𝐴𝑛) to (¬𝐴1 ∧ · · · ∧ ¬𝐴𝑛).

Repeat Step 1 until every negation symbol applies to a propositional variable
only. Then erase every occurrence of ¬¬.

Step 2 Rewrite every sub-term of the form

(𝐴1
1 ∧ · · · ∧𝐴1

𝑚1
) ∨ (𝐴2

1 ∧ · · · ∧𝐴2
𝑚2

) ∨ · · · ∨ (𝐴𝑛
1 ∧ · · · ∧𝐴𝑛

𝑚𝑛
)

to one that is the conjunction of all possible combinations of terms of the
form 𝐴1

𝑖1
∨ 𝐴2

𝑖2
∨ · · · ∨ 𝐴𝑛

𝑖𝑛
. Keep repeating this step until the term is in

conjunctive normal form.26

Intuitively speaking it is clear that eventually we will no longer be able to
repeat Step 2: What it does is to swap disjunction and conjunction symbols so that
after the step, the disjunction is carried out before the conjunction when carrying
out the calculation. Since there are only �nitely many conjunction and disjunction
symbols available the process has to stop eventually.

We have not yet justi�ed Step 2 as providing a semantically equivalent pro-
position. This works due to the following distributivity laws:

𝐴 ∨ (𝐵 ∧ 𝐶) ≡ (𝐴 ∨𝐵) ∧ (𝐴 ∨ 𝐶),

which by commutativity of ∨ for ≡ also gives

(𝐵 ∧ 𝐶) ∨𝐴 ≡ (𝐵 ∨𝐴) ∧ (𝐶 ∨𝐴).

Exercise 65. Use this distributivity law to show that

(𝐴 ∧𝐵) ∨ (𝐶 ∧𝐷) ≡ (𝐴 ∨ 𝐶) ∧ (𝐴 ∨𝐷) ∧ (𝐵 ∨ 𝐶) ∧ (𝐵 ∨𝐷).

26Note that this step increases the number of terms in the proposition. In the worst case this
increase is exponential.
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Give the appropriate law for the case where there are three propositions in
each bracket.

What we do in Step 2 is to apply a more general version of the distributivity
law, and the preceding exercise gives you an idea how that is derived.

Many tools expect propositions to be entered in CNF, so you need to be able to
convert a formula into that form. There are also some problems from theoretical
computer science which are concerned with propositions in this shape.

Example 3.5. We turn the proposition

(𝑍 ∧ 𝑍 ′) ∨ ¬(𝑍 ′′ ∧ (𝑍 ∨ 𝑍 ′′))

into conjunctive normal form.

(𝑍 ∧ 𝑍 ′) ∨ ¬(𝑍 ′′ ∧ (𝑍 ∨ 𝑍 ′′))

= (𝑍 ∧ 𝑍 ′) ∨ (¬𝑍 ′′ ∨ ¬(𝑍 ∨ 𝑍 ′′)) Step 1, De Morgan
≡ (𝑍 ∧ 𝑍 ′) ∨ (¬𝑍 ′′ ∨ (¬𝑍 ∧ ¬𝑍 ′′)) Step 1, De Morgan
≡ (𝑍 ∧ 𝑍 ′) ∨ ¬𝑍 ′′ ∨ (¬𝑍 ∧ ¬𝑍 ′′) associativity ∨
≡ (𝑍 ∨ ¬𝑍 ′′ ∨ ¬𝑍) ∧ (𝑍 ∨ ¬𝑍 ′′ ∨ ¬𝑍 ′′)

∧ (𝑍 ′ ∨ ¬𝑍 ′′ ∨ ¬𝑍) ∧ (𝑍 ′ ∨ ¬𝑍 ′′ ∨ ¬𝑍 ′′) Step 2

This is a conjunctive normal form: We have conjunction on the outside and
only one level of disjunction inside that, and all negation symbols are applied
to atoms.

Note that once one has reached a conjunctive normal form one can often apply
further simpli�cations.

Example 3.6. We continue the previous example We know that

• 𝑍 ∨ ¬𝑍 ≡ ⊤ and so also 𝑍 ∨ 𝑍 ′′ ∨ ¬𝑍 ≡ ⊤,

• ¬𝑍 ′′ ∨ ¬𝑍 ′′ ≡ ¬𝑍 ′′ and so also 𝑍 ∨ ¬𝑍 ′′ ∨ ¬𝑍 ′′ ≡ 𝑍 ∨ ¬𝑍 ′′ and
𝑍 ′ ∨ ¬𝑍 ′′ ∨ ¬𝑍 ′′ ≡ 𝑍 ′ ∨ ¬𝑍 ′′.

As a consequence we get that

(𝑍 ∨ ¬𝑍 ′′ ∨ ¬𝑍) ∧ (𝑍 ∨ ¬𝑍 ′′ ∨ ¬𝑍 ′′)

∧ (𝑍 ′ ∨ ¬𝑍 ′′ ∨ ¬𝑍) ∧ (𝑍 ′ ∨ ¬𝑍 ′′ ∨ ¬𝑍 ′′)

≡ ⊤ ∧ (𝑍 ∨ ¬𝑍 ′′)

∧ (𝑍 ′ ∨ ¬𝑍 ′′ ∨ ¬𝑍) ∧ (𝑍 ′ ∨ ¬𝑍 ′′)

≡ (𝑍 ∨ ¬𝑍 ′′) ∧ (𝑍 ′ ∨ ¬𝑍 ′′),

where for the last step we are using

(𝐴 ∨𝐵) ∧𝐴 ≡ 𝐴.

Having a proposition in this form makes it much easier to understand what
it is actually saying! Note that sometimes it is possible to apply simpli�cations
before carrying out Step 2, and this is certainly allowed.
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Example 3.7. Returning to the proposition from Example 3.6 once we have it
in the form

(𝑍 ∨ ¬𝑍 ′′) ∧ (𝑍 ′ ∨ ¬𝑍 ′′)

we can see that this is not a tautology since it evaluates to 0 when we use the
valuation

𝑣 : 𝑋

{︂
0 𝑋 = 𝑍 or 𝑋 = 𝑍 ′

1 else.

𝑋 𝑣𝑋

𝑍 0
𝑍 ′ 0
𝑍 ′′ 1

CExercise 66. Give a conjunctive normal form for the following propositions.
Then simplify them as far as you can.

(a) (𝑍 ∧ ¬𝑍 ′) → (𝑍 ′′ ∧ ¬𝑍),

(b) ¬(𝑍 ∧ 𝑍 ′ ∧ ¬𝑍 ′′) ∨ (¬𝑍 ′′ ∧ 𝑍),

(c) ¬(𝑍 ∨ (𝑍 ′ ∨ 𝑍) ∧ ¬(𝑍 ′ ∧ 𝑍)),

(d) (¬𝑍 ∨ ¬𝑍 ′) ∧ (¬𝑍 ∨ (𝑍 ′ → 𝑍 ′′)).

CExercise 67. For the following propositions, decide whether they are tauto-
logies, and whether they are satis�able. Hint: �nd a conjunctive normal form
�rst, and then simplify. Then calculate the boolean interpretation for the result-
ing proposition for all valuations, as in the example on page 127. Alternatively,
calculate the table for the given proposition.

(a) (𝑍 ∧ ¬𝑍 ′) ∨ 𝑍 ′ ∨ ¬(𝑍 → 𝑍 ′),

(b) (𝑍 ∧ 𝑍 ′) → ((𝑍 ∧ ¬𝑍 ′) ∨ (𝑍 ∧ 𝑍 ′)),

(c) ((𝑍 ∧ 𝑍 ′) → 𝑍 ′′) → (𝑍 → (𝑍 ′ → 𝑍 ′′)),

(d) ((𝑍 → 𝑍 ′) ∧ (𝑍 ′ → 𝑍 ′′)) → (¬𝑍 ∧ 𝑍 ′′),

(e) ((𝑍 → 𝑍 ′) ∧ (𝑍 ′ → 𝑍 ′′)) → (𝑍 → 𝑍 ′′),

(f) ¬(𝑍 →¬𝑍 ′) ∨ (¬𝑍 ∧ ¬𝑍 ′);

(g) ¬(𝑍 ∧ 𝑍 ′) → (¬𝑍 ∨ ¬𝑍 ′).

One can swap the role of conjunction and disjunction and obtain a di�erent
normal form.

De�nition 29: disjunctive normal form

A proposition is in disjunctive normal form, DNF, if it is of the form

𝐴1 ∨𝐴2 ∨ · · · ∨𝐴𝑚,
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where each 𝐴𝑖 is of the form

𝐵1 ∧𝐵2 ∧ · · · ∧𝐵𝑛,

where each 𝐵𝑗 is of the form 𝑍 or ¬𝑍 for some propositional variable 𝑍 .

For every proposition we may �nd a semantically equivalent one that is in
disjunctive normal form, and there is an algorithm for doing this. The algorithm is
very similar to the one for CNF—we merely have to exchange the role of ∧ and ∨.

Step 0 If the proposition contains any → symbols, replace them according to the
redundancy of implication rule, so 𝐴→𝐵 becomes ¬𝐴 ∨𝐵.

Step 1 For every negation symbol, use De Morgan’s law to

• rewrite ¬(𝐴1 ∨ · · · ∨𝐴𝑛) to ¬𝐴1 ∧ · · · ∧ ¬𝐴𝑛 and
• rewrite ¬(𝐴1 ∧ · · · ∧𝐴𝑛) to ¬𝐴1 ∨ · · · ∨ ¬𝐴𝑛.

Repeat Step 1 until every negation symbol applies to a propositional variable
only. Erase every occurrence of ¬¬.

Step 2 Rewrite every sub-term of the form

(𝐴1
1 ∨ · · · ∨𝐴1

𝑚1
) ∧ (𝐴2

1 ∨ · · · ∨𝐴2
𝑚2

) ∧ · · · ∧ (𝐴𝑛
1 ∨ · · · ∨𝐴𝑛

𝑚𝑛
)

to one that is the disjunction of all possible combinations of terms of the
form 𝐴1

𝑖1
∧ 𝐴2

𝑖2
∧ · · · ∧ 𝐴𝑛

𝑖𝑛
. Keep repeating this step until the term is in

disjunctive normal form.

The distributivity law used here is

𝐴 ∧ (𝐵 ∨ 𝐶) ≡ (𝐴 ∧𝐵) ∨ (𝐴 ∧ 𝐶).

Example 3.8. We consider the same proposition as in Example 3.5.

(𝑍 ∧ 𝑍 ′) ∨ ¬(𝑍 ′′ ∧ (𝑍 ∨ 𝑍 ′′))

≡ (𝑍 ∧ 𝑍 ′) ∨ (¬𝑍 ′′ ∨ ¬(𝑍 ∨ 𝑍 ′′)) Step 1, De Morgan
≡ (𝑍 ∧ 𝑍 ′) ∨ (¬𝑍 ′′ ∨ (¬𝑍 ∧ ¬𝑍 ′′)) Step 1, De Morgan
≡ (𝑍 ∧ 𝑍 ′) ∨ ¬𝑍 ′′ ∨ (¬𝑍 ∧ ¬𝑍 ′′) distributivity of ∨

It is coincidence that needed fewer sooner here—this is just a function of
the particular proposition we started with.

In general, converting to CNF and converting to DNF have the same di�culty
level. Both make it easier to see whether some proposition is a tautology. For
satis�ability the DNF can make things easier since one merely has to check whether
there is one term that is interpreted by 1 relative to some valuation.

Example 3.9. If we look at the DNF from the previous example,

(𝑍 ∧ 𝑍 ′) ∨ ¬𝑍 ′′ ∨ (¬𝑍 ∧ ¬𝑍 ′′),
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we can immediately see that any valuation 𝑣 with the property that

𝑣𝑍 ′′ = 0

will result in a boolean interpretation of 1.

Example 3.10. Note that again we may simplify this proposition further: The
boolean interpretation of

¬𝑍 ′′ ∨ (¬𝑍 ∧ ¬𝑍 ′′)

is the same as that of
¬𝑍 ′′.

Hence we may simplify the DNF from the previous example as follows.

(𝑍 ∧ 𝑍 ′) ∨ ¬𝑍 ′′ ∨ (¬𝑍 ∧ ¬𝑍 ′′) ≡ (𝑍 ∧ 𝑍 ′) ∨ ¬𝑍 ′′.

CExercise 68. For the following propositions give a DNF. Then simplify them
as far as you can. Which ones are satis�able? Give a suitable valuation to
support your claim.

(a) (𝑍 ∨ ¬𝑍 ′) ∧ ¬(𝑍 →¬𝑍 ′′),

(b) ¬(𝑍 → 𝑍 ′) ∧ (𝑍 ∨ 𝑍 ′ ∨ ¬𝑍 ′′),

(c) ¬(𝑍 → 𝑍 ′) → (𝑍 ∧ 𝑍 ′′ ∧ ¬𝑍 ′),

(d) (𝑍 ∨ ¬𝑍 ′) ∧ ¬(𝑍 ′′ ∨ ¬𝑍).

Expressiveness

We brie�y turn to the question which functions from (some power of) B to B can
be seen as the interpretation of a proposition.

Let us �rst of all make sense of the question. Given a valuation the boolean
interpretation of a proposition relative to that valuation is just a value in B. We
may, however, think of a proposition as a function which takes a valuation and
returns a value in B.

Assume the propositional variables 𝑍1, 𝑍2, . . . , 𝑍𝑛 occur in our proposition.
Then there are

2𝑛

possible valuations (see Exercise 52). We may think of these as the elements of B𝑛:
An element of B𝑛 is a vector with 𝑛 elements each of which can be 0 or 1. We

may therefore think of such a vector as giving a valuation.

Example 3.11. Consider the vector

(0, 0, 1, 0, 1).

We can think of it as giving us the valuation which assigns
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𝑍1 𝑍2 𝑍3 𝑍4 𝑍5

0 0 1 0 1

In that sense we may think of a proposition containing𝑛 propositional variables
as giving us a function

B𝑛 B.

We �rst look at the question of which functions B B are captured in this
way.

There are four such functions: These are captured respectively by the following
propositions

𝑍 ∧ ¬𝑍 𝑍 ¬𝑍 𝑍 ∨ ¬𝑍.

We can think of what we have done here as thinking of

input 0 decodes ¬𝑍 and input 1 decodes 𝑍

while

output 0 decodes switch o� and output 1 decodes switch on.

So to encode for example the function

0 1

1 0

we want ¬𝑍 to be switched on, and 𝑍 to be switched o�, leading to ¬𝑍 as the
proposition to be used. The only exception is the case where nothing is to be
switched on, in which case we use 𝑍 ∧ ¬𝑍 to ensure the output is always 0.

This gives us the recipe for a function in 𝑛 variables:

• If the output for every input is 0, use 𝑍1 ∧ ¬𝑍1.

• Else: For every output that is equal to 1 do the following:

– If the corresponding input at 𝑖 is 0, choose ¬𝑍𝑖 and
– if the corresponding input at 𝑖 is 1, choose 𝑍𝑖.
– Now connect all the selected terms from this output by ∧.

Finally connect all the terms from this by ∨.

Note that the result is in DNF.

Example 3.12. Assume we want to �nd a proposition which, in this sense,
encodes the function

B2 → B

given by the following table.

inputs
𝑥1 𝑥2 output
0 0 1
0 1 0
1 0 1
1 1 0
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The ‘switched on’ parts are in the �rst and third line. For the �rst of these
the inputs are 0 for both variables, so we have to pick ¬𝑍1 ∧ ¬𝑍2 for the �rst
line. For the third line the inputs are 1 and 0 respectively, so we want to pick
𝑍1 ∧ ¬𝑍2 for that line, giving altogether

(¬𝑍1 ∧ ¬𝑍2) ∨ (𝑍1 ∧ ¬𝑍2).

This is a proposition in DNF.

We give an example of taking a proposition in DNF and turning it into CNF.
This means that only Step 2 of the algorithm has to be applied.

Example 3.13. If we convert it to CNF we get

(¬𝑍1 ∨ 𝑍1) ∧ (¬𝑍1 ∨ ¬𝑍2) ∧ (¬𝑍2 ∨ 𝑍1) ∧ (¬𝑍2 ∨ ¬𝑍2).

We carry out some simpli�cation steps:

(¬𝑍1 ∨ 𝑍1) ∧ (¬𝑍1 ∨ ¬𝑍2) ∧ (¬𝑍2 ∨ 𝑍1) ∧ (¬𝑍2 ∨ ¬𝑍2)

≡ ⊤ ∧ (¬𝑍1 ∨ ¬𝑍2) ∧ (¬𝑍2 ∨ 𝑍1) ∧ ⊤ 𝐴 ∨ ¬𝐴 ≡ ⊤
≡ (¬𝑍1 ∨ ¬𝑍2) ∧ (𝑍1 ∨ ¬𝑍2) ⊤ ∧𝐴 ≡ 𝐴, comm ∨
≡ (¬𝑍1 ∧ 𝑍1) ∨ ¬𝑍2 distr law
≡ ⊥ ∨ ¬𝑍2 𝐴 ∧ ¬𝐴 ≡ ⊥
≡ ¬𝑍2 ⊥ ∨𝐴 ≡ 𝐴

And indeed, if we check the original table then we see that the output is 1 if
and only if the second input is 0.

So given a table it is always worth checking whether there is a simple proposi-
tion to be read o�. The advantage of learning the general method is that it applies
to every problem you may be given to solve.

CExercise 69. For the following function give a proposition whose interpreta-
tion is the given function. Then give a CNF for your proposition and simplify
the result as far as you can.

(a) For the function B3 B given by the following table.

inputs
𝑥1 𝑥2 𝑥3 output
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

(b) For the function B3 B given by the following table.
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inputs
𝑥1 𝑥2 𝑥3 output
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

(c) For the function B3 B given by the following table.

inputs
𝑥1 𝑥2 𝑥3 output
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

(d) For the function B3 B given by the following table.

inputs
𝑥1 𝑥2 𝑥3 output
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

When programming

As already pointed out, many programming languages allow the user to build
propositional expressions.

In Java, for example, this is done using:

• conjunction &&,

• disjunction ||,

• negation !

• relations

– equal ==,
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– not equal !=,
– less than <,
– greater than >,
– less than or equal <=,
– greater than or equal >=,

where the relations can be applied to those data types where there is a
method implementing them.

When such an expression is evaluated at run-time each of the instances of the
relations is evaluated to true or false (by calling the appropriate method), and
then rules analogous to those given for the connectives in Model 1 are applied.27

This evaluation is stable under ≡, that is, for example, two expressions that
arise from each other by applying the rule for double negation or De Morgan’s law,
will always evaluate to the same value. This means that you can use these laws to
rewrite the propositional expressions in your code to turn them into something
that is more easily understandable (for example by putting them into CNF or DNF).
This makes your code easier to read for others, but it also becomes easier to check
whether what has been implemented is as intended. We know that implication
can be expressed up to ≡ by using the other connectives and this is the reason
why many programming languages do not have an implication connective.

3.4 Predicate logic

In what is described above two of the key phrases from Section 2.2.1 do not occur,
namely ‘for all’ and ‘there exists’. The reason for this is that these are more
complicated, and require more ‘infrastructure’ in our system. Even in Section 2.2.1
it was noted that we have to specify where the two phrases have to hold, and this
is something we have to worry about in the formal system as well.

Building blocks

In order to build a formal system that allows the formation of propositions that
might be interpreted by sentences such as ‘for all 𝑖 ∈ N there exists 𝑗 ∈ N such
that...’ we need to include at least the following:

• variables (other than propositional ones) to which we may apply ‘for all’
and ‘there exists’ and

• predicates which allow us to talk about the properties that we may expect
to hold

but possibly also

• symbols that denote functions and

• symbols that denote relations.28

27See page 128 of Java: Just in Time.
28See Section 0.4 for the mathematical meaning of this term, or read on to see examples.
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Because all these new symbols have speci�c rules how they can be used the
rules for stating which propositions may be built also become more complicated.

We here give an outline for such a system, but we study it in less detail.
We now assume that apart from propositional variables, we also have a supply

of

• parameters 𝑎1, 𝑎2, . . . ,

• variables 𝑥1, 𝑥2,. . . ,

• function symbols 𝑓1, 𝑓2, . . . , each of which takes a known �xed number of
arguments, and

• predicate symbols 𝑃1, 𝑃2, . . . , each of which takes a known �xed number of
arguments.

We have to introduce the notion of a term, constructed in the following way:

• If 𝑎 is a parameter then 𝑎 is a term and

• if 𝑥 is a variable then 𝑥 is a term and

• if 𝑡1, 𝑡2,. . . , 𝑡𝑛 are terms, and 𝑓 is a function that takes 𝑛 arguments, then
𝑓(𝑡1, 𝑡2, . . . , 𝑡𝑛) is a term.

Propositions are then given by the following:

• If 𝑍 is a propositional variable then 𝑍 is a proposition,

• if 𝑃 is a predicate that takes 𝑛 arguments and 𝑡1, 𝑡2,. . . 𝑡𝑛 are terms then
𝑃 (𝑡1, 𝑡2, . . . 𝑡𝑛) is a proposition;

• if 𝐴 is a proposition then ¬𝐴 is a proposition;

• if 𝐴 and 𝐵 are propositions then 𝐴∧𝐵, 𝐴∨𝐵 and 𝐴→𝐵 are propositions.

• if 𝐴 is a proposition and 𝑥 is a variable then ∀𝑥.𝐴 and ∃𝑥.𝐴 are propositions.

Inference rules

We adopt all the inference rules we had above (but now using the new meaning of
‘proposition’), and add rules for ∀ and ∃. In order to do so we need to introduce
more notation.

Given a string 𝐴 of symbols we write

[𝑎/𝑥]𝐴

for the string that arises when every occurrence29 of 𝑥 has been replaced by 𝑎. For
example,

[𝑎/𝑥](𝑃 (𝑥, 𝑦) ∧ 𝑍)

is
𝑃 (𝑎, 𝑦) ∧ 𝑍.

The inference rules for our new connectives are as follows.

29Strictly speaking one has to be a bit careful here but we do not have the time to go into the
detail.
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For all’ introduction ∀I:

Γ ⊢ [𝑎/𝑥]𝐴
∀I

Γ ⊢ ∀𝑥.𝐴

‘If given Γ we have 𝐴 where 𝑥 has been replaced
by an arbitrary parameter 𝑎 then given Γ we have
that for all 𝑥, 𝐴.’

‘For all’ elimination ∀E:
Γ ⊢ ∀𝑥.𝐴

∀E
Γ ⊢ [𝑡/𝑥]𝐴

‘If given Γ we have that for all 𝑥, 𝐴, then given Γ
we have 𝐴 where 𝑥 has been replaced by 𝑡.’

This connective is also known as universal quanti�cation.

‘Exists’ introduction ∃I:

Γ ⊢ [𝑡/𝑥]𝐴
∃I

Γ ⊢ ∃𝑥.𝐴

‘If given Γ we have 𝐴, where 𝑥 has been replaced
by 𝑡 then given Γ we have that there exists an 𝑥
such that 𝐴.’

‘Exists’ elimination ∃E:

Γ ⊢ ∃𝑥.𝐴 Γ, 𝐴 ⊢ 𝐵
∃E

Γ ⊢ 𝐵

‘If given Γ we know that there exists 𝑥
so that 𝐴 and if given Γ and 𝐴, we have
𝐵 then from Γ we have𝐵 provided that
𝑥 does not occur in 𝐵.’

This is known as existential quanti�cation.

We have a system for the classical predicate calculus.

3.4.1 Modelling the new system

It should not be di�cult to imagine that a model of the new system is considerably
more complicated than that of the previous one. We have to model all the new
entities. We here give some basic ideas:

Everything takes place with respect to some domain of interpretation.

• Parameters are modelled by speci�c elements of the domain.

• Variables are modelled similarly to propositional variables, but with valu-
ations in the domain, rather than in B.

• Function symbols are modelled by speci�c functions of the appropriate arity
within the domain.

• Predicate symbols are modelled by speci�c relations of the appropriate arity
within the domain that give a value in B for each input.

This means that in the model

• a term is mapped to an element of the domain while

• a proposition is mapped to an element of B as before,

and that this is subject to two valuations,
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• one mapping variables 𝑥1, 𝑥2, . . . to elements of the domain,

• and mapping propositional variables to B as before.

It then remains to have an interpretation for propositions that include the new
connectives, ∀ and ∃. We only cover the boolean interpretation here. Assume for
the given propositions we have

• a valuation 𝑣 for propositional variables and

• a valuation 𝑤 for variables.

The method for calculating boolean interpretations, relative to 𝑣 and 𝑤, for ∀𝑥.𝐴
and ∃𝑥.𝐴 is as follows:

• In 𝐴, replace each variable 𝑦 other than 𝑥 by 𝑤𝑦.

• Replace each propositional variable 𝑍 in 𝐴 by 𝑣𝑍 .

• Replace each predicate and function symbol by its interpretation.

This gives an expression that may almost be evaluated in B by using the previous
model for the connective ∧, ∨, → and ¬, but it my still contain 𝑥, ∀, or ∃.

To interpret
∀𝑥.𝐴

do the following.

• For each element of the domain, replace 𝑥 by that element and calculate a
value in B for the expression obtained from 𝐴 in the previous steps.

• If all the calculations from the previous step return 1, the interpretation of
∀𝑥.𝐴 is 1, else it is 0.

To interpret
∃𝑥.𝐴

do the following.

• For each element of the domain, replace 𝑥 by that value and calculate a value
in B for the expression obtained from 𝐴 in the previous steps.

• If at least one of the calculations from the previous step returns 1, the
interpretation of ∃𝑥.𝐴 is 1, else it is 0.

Note that most programming languages do not support the ∀ and ∃ connectives.
The exceptions are logic programming languages such as Prolog.

Examples of models

We give some examples of this.
Assume that we have the following speci�c symbols:

• A unary predicate 𝑀 .

We model the resulting system by choosing the following:

• the domain is the set of �rst year students in the computer science depart-
ment in Manchester;

• the interpretation of 𝑀(𝑥) is 1 if and only if the student 𝑥 takes COMP11120.
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Example 3.14. The proposition

∀𝑥.𝑀(𝑥)

is a valid proposition in our system (that is, it is syntactically formed correctly,
we are not saying anything about its derivability here). The boolean interpret-
ation of this proposition in our system does not require any valuations, and so
we �nd out what it is by going through the �rst year students in the School
one by one and checking whether they are enrolled on COMP11120.30

Example 3.15. The boolean interpretation of the proposition

∃𝑥.¬𝑀(𝑥)

is very closely related to that of the previous one. It is 1 in our current model
if we can �nd a �rst year student in the department for who does not take
COMP11120.

It should be clear that a lot has been gained by all the complication added to
the system in that we are now able to express quite complicated properties that
allow us to reason about the real world, as well as about bits of mathematics.

We could change our interpretation of 𝑀(𝑥) to mean, for example ‘the student
𝑥 takes COMP16121’. Does that change the boolean interpretation of ∀𝑥.𝑀(𝑥)?

Example 3.16. If we add another unary predicate symbol, say 𝐶 , then we may
form the proposition

∀𝑥.(𝐶(𝑥) →𝑀(𝑥)).

If we add to our previous interpretation that 𝐶(𝑥) means ‘student 𝑥 takes
COMP11212’ then the boolean interpretation of the above proposition is 1
provided that every �rst year CS student who takes COMP11212 also takes
COMP11120.

Since students on the Computer Science and Mathematics (CM) programme
may take COMP11212 without taking COMP11120 this proposition is usually
interpreted by 0.31

On the other hand, we could declare our domain of interpretation to be
the set of �rst year single honours students in the School, in which case the
boolean interpretation of this proposition is 1.

Every computer scientist has to be able to translate between statements made
in English and propositions in predicate logic.

Exercise 70. Consider the system with the two unary predicate symbols 𝐻
and 𝑂.

As the domain of de�nition we use the set of undergraduate students in
the School of Computer Science. We use the following interpretations:

• 𝐻(𝑥) means that 𝑥 has taken and passed the health-and-safety test.

30So is the boolean interpretation of ∀𝑥.𝑀(𝑥) in this model 0, or is it 1?
31There might be a year when no CM students takes COMP11212 but this has not happened so far.
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• 𝑂(𝑥) means that 𝑥 has an out-of-hours pass for the building.

What is the boolean interpretation of

(a) ∀𝑥.(𝑂(𝑥) →𝐻(𝑥)) and

(b) ∀𝑥.(𝐻(𝑥) →𝑂(𝑥))?

Answer to the best of your knowledge, but be prepared to be quizzed about
your answer.

CExercise 71. Consider the system with the following predicate and function
symbols.

• A binary predicate 𝑇 ,

• a binary predicate 𝐿,

Take as the domain of de�nition is that of all �rst year students in the
School. Assume that 𝑇 (𝑥, 𝑦) means that 𝑥 and 𝑦 are in the same tutorial group,
and 𝐿(𝑥, 𝑦) means that 𝑥 and 𝑦 are in the same lab group.

What is the boolean interpretation of the following propositions? Answer
to the best of your knowledge, but be prepared to be quizzed about your
answer.

(a) ∀𝑥.∀𝑦.(𝑇 (𝑥, 𝑦) → 𝐿(𝑥, 𝑦))

(b) ∀𝑥.∀𝑦.(¬𝑇 (𝑥, 𝑦) →¬𝐿(𝑥, 𝑦))

(c) ∀𝑥.∃𝑦.(𝑇 (𝑥, 𝑦) ∧ 𝐿(𝑥, 𝑦))

(d) ∃𝑥.∃𝑦.(𝐿(𝑥, 𝑦) ∧ ¬𝑇 (𝑥, 𝑦))

(e) ∀𝑥.∃𝑦.(¬𝐿(𝑥, 𝑦) ∨ ¬𝑇 (𝑥, 𝑦))

(f) ∃𝑥.∀𝑦.¬𝑇 (𝑥, 𝑦)

Translating into predicate logic

So far we have looked at propositions in the new system and how to �nd their
boolean interpretation in a given model. Often it is necessary to start from an
intended model and to �nd a proposition that expresses a particular statement.

CExercise 72. For the model from the previous exercise, give propositions
which express the following. We use ‘student’ here as a shortcut for ‘every
�rst year student in the School’.

(a) Every student is in the same tutorial group as him- or herself.

(b) For every student there is a student who is in a di�erent tutorial group.

(c) There is a student who is in the same labgroup as all students.

(d) Every two students who are in the same tutorial group are in the same
labgroup.
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(e) No student is in the same labgroup as all the other students.

There are many examples given in Chapter 2 which you should be able to
translate into propositions.

Example 3.17. Assume we wish to express the commutativity of an operation.
What do we need in order to be able to state this? An operation is a binary
function, so we need a binary function symbol, say 𝑚. Further we need to �x
the set 𝑆 on which the operation happens as our domain of interpretation,
and we need to be able to say that two elements of that set are equal, which
means having a binary predicate, say 𝐸. Then we can say

∀𝑥.∀𝑦.𝐸(𝑚(𝑥, 𝑦),𝑚(𝑦, 𝑥)),

to demand that

applying the operation 𝑚to �rst argument 𝑥 and second argument 𝑦
is the same as

applying the operation 𝑚to �rst argument 𝑦 and second argument 𝑥.

Example 3.18. We give one example here in the form of primeness, De�ni-
tion 17. We repeat the de�nition here.

De�nition. An element 𝑛 ̸= 1 of N (or 𝑛 ̸= ±1 in Z) is prime if and only
if for all elements 𝑘 and 𝑙 of N (or Z) it is the case that

𝑛 divides 𝑘𝑙 implies 𝑛 divides 𝑘 or 𝑛 divides 𝑙.

This de�nes a unary predicate on the set of natural numbers, namely prime-
ness, and it requires a binary predicate, namely ‘𝑥 divides 𝑦’, and one binary
operation, namely multiplication (since it has ‘𝑛 divides 𝑘𝑙’). We therefore
choose as our symbols

• a binary predicate 𝐷,

• a unary predicate 𝑃 , and

• a binary function 𝑚.

We pick as the domain of interpretation the set of natural numbers N, and as
the interpretation of 𝑚 multiplication. We set the interpretation of 𝐷(𝑥, 𝑦) to
1 if and only if 𝑥 divides 𝑦, while the interpretation of 𝑃 (𝑥) is 1 if and only if
𝑥 is prime. Then the de�nition of primeness, De�nition 17, is expressed in the
following:

∀𝑥.((𝑃 (𝑥) → (∀𝑦∀𝑧.𝐷(𝑥,𝑚(𝑦, 𝑧)) → (𝐷(𝑥, 𝑦) ∨𝐷(𝑥, 𝑧))))

∧(∀𝑦.∀𝑧.𝐷(𝑥,𝑚(𝑦, 𝑧)) → (𝐷(𝑥, 𝑦) ∧𝐷(𝑥, 𝑧)) → 𝑃 (𝑥)))

This is rather long because we have to express ‘if and only if’. For this reason
a new connective, ↔, is often used, which is intended to mean that each side
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implies the other. If we adopt this then the de�nition become the more readable

∀𝑥.(𝑃 (𝑥) ↔ (∀𝑦.∀𝑧.𝐷(𝑥,𝑚(𝑦, 𝑧)) → (𝐷(𝑥, 𝑦) ∨𝐷(𝑥, 𝑧)))).

Note that the same proposition can be assumed to talk about primeness in Z
merely by changing the domain of interpretation!

EExercise 73. Translate the following de�nitions from Chapter 2 into pro-
positions. Make sure you state what your parameter, function and predicate
symbols are and what your domain of interpretation is and how each symbol
should be interpreted.

(a) Associativity of an operation, De�nition 18.

(b) Existence of an inverse for every element with respect to an operation,
De�nition 21.

(c) Injectivity of a function with the same source and target, De�nition 22.

(d) Surjectivity of a function with the same source and target, De�nition 23.

(e) Bijectivity of a function with the same source and target, De�nition 24.

(f) One function with the same source and target being the inverse of another,
De�nition 25.

(g) One function from N to N eventually dominating another, De�nition 46.

You may want to think about why we demand that our functions have the
same source an target.

3.4.2 De Morgan rules and normal forms

There are De Morgan rules for our new system. Before we describe these there is
something else we need to pay attention to, and that is bracketing.

Strictly speaking when we are building up a proposition we need to put brack-
ets around various parts, which so far we have taken for granted. Once we have
predicate logic putting in all brackets that would be required makes such expres-
sions very hard to read for people (as opposed to machines). There are some
conventions that allow us to leave out some brackets. This is done in analogy with
arithmetic, where you know that

𝑎 · 𝑥 + 𝑏

means you multiply 𝑎 with 𝑥 and add 𝑏 to the result, whereas

𝑎 + 𝑥 · 𝑏

means you add 𝑎 to the result of multiplying 𝑥 by 𝑏. We have swapped the addition
symbol with the multiplication symbol, but we cannot obtain the meaning by
swapping ‘add’ and ‘multiply’ in the instructions in the text. The reason for this is
what we call operator precedence.

We say that multiplication takes precedence over addition, which means that
we carry out multiplication operations before we do so for addition operations.
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If we had ot put brackets everywhere we would write

(𝑎 · 𝑥) + 𝑏

and
𝑎 + (𝑥 · 𝑏)

for the two expressions above. Knowing the multiplication has precedence over
addition allows us to leave out brackets.

The precendence regarding evaluation in predicate logic is as follows:

• negation ¬ is evaluated �rst, followed by

• universal ∀ and existential ∃ quahti�cation, follwed by

• conjunction and disjunction, followed by

• implication.

So if we have the proposiiton

∀𝑥. ∃𝑦. (𝑥 ∧ 𝑦) → 𝑥

then the correct way of putting in brackets without changing the meaning is to
write it as

(∀𝑥. (∃𝑦. (𝑥 ∧ 𝑦))) → 𝑥.

You should bear that in mind when solving the next exercise.
The De Morgan rules given for proposiitonal logic rules remain valid, but we

also obtain one each for the new connectives.
We have that

¬(∀𝑥.𝐴) ≡ ∃𝑥.¬𝐴

and
¬(∃𝑥.𝐴) ≡ ∀𝑥.¬𝐴.

There is a notion of disjunctive and conjunctive normal forms for this kind of
system, but because of the various extra symbols this becomes more di�cult to
describe.

However, if there are only predicates as extra symbols then we may still use
the ideas we have to �nd a semantically equivalent expression that is easier to
understand.

Example 3.19. In such a simpli�ed case we show how to simplify the given
proposition.

∀𝑥.¬(∀𝑦.(𝑃 (𝑥) →𝑄(𝑥, 𝑦)))

≡ ∀𝑥.¬(∀𝑦.(¬𝑃 (𝑥) ∨𝑄(𝑥, 𝑦))) 𝐴→𝐵 ≡ ¬𝐴 ∨𝐵

≡ ∀𝑥.∃𝑦.¬(¬𝑃 (𝑥) ∨𝑄(𝑥, 𝑦)) De Morgan ∃
≡ ∀𝑥.∃𝑦.(¬¬𝑃 (𝑥) ∧𝑄(𝑥, 𝑦)) De Morgan ∨
≡ ∀𝑥.∃𝑦.(𝑃 (𝑥) ∧ ¬𝑄(𝑥, 𝑦)) ¬¬𝐴 ≡ 𝐴

Performing these steps results in a proposition that is easier to understand.
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CExercise 74. Simplify the following propositions as far as you can.

(a) ¬(∀𝑥.(𝑃 (𝑥) →∃𝑦.𝑄(𝑥, 𝑦))),

(b) ∃𝑥.¬(∃𝑦.(𝑄(𝑦) ∧𝑅(𝑥)) →∀𝑧.𝑃 (𝑧, 𝑥, 𝑦)),

(c) ∀𝑦.¬(∃𝑧.(𝑃 (𝑦, 𝑧) →¬𝑄(𝑧))),

(d) ∃𝑧.∀𝑦.(¬𝑃 (𝑦) ∧𝑄(𝑧)) →𝑅(𝑦, 𝑧).

3.4.3 Systems with several types

Note that in the formal system given above there is no way of distinguishing
between di�erent kinds of things. We have no way, for example, to talk about
students and course units as separate entities. In order to do that one would
have to create a typed system. Doing that as a formal inference system results in
something quite complicated, but we here give an idea of what propositions might
look like in such a system.

Take for example:

∀𝑥 : 𝑆.∀𝑦 : 𝑈.((𝐸(𝑥, 𝑦) ∧ 𝐶(𝑥)) →𝐷(𝑦)).

The colon is there to tell us that we wish to demand this only for those 𝑥 which
belong to 𝑆 and for those 𝑦 which belong to 𝑈 . We pick the following interpreta-
tions:

• 𝑆 is the set of �rst year students at the University of Manchester.

• 𝑈 is the set of all course units o�ered by the University of Manchester.

• 𝐸(𝑥, 𝑦) is 1 if and only if32 (student) 𝑥 is enrolled in (course unit) 𝑦.

• 𝐶(𝑥) is 1 if and only if 𝑥 is a SH computer science student.

• 𝐷(𝑦) is 1 if and only if 𝑦 is a COMP unit.

The interpretation of the proposition is that every course unit which a �rst year
SH computer science student is enrolled on must be a COMP unit.

The School has a piece of software that checks whether each student is enrolled
in the course units required for the degree, and the above is one of the many checks
it has to carry out.

This last section is to give you an idea how one might set up a system that
allows us to talk about entities of di�erent kinds.

In practice people often use some of the symbols of our formal system without
de�ning a full formal system themselves—they rely on ideas discussed in this
chapter being known well enough that their expressions can be assumed to have
an intended meaning.

32Note that the �rst input to 𝐸 has to be a student and the second a unit if the given proposition
is legal in the system.
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Chapter 4

Probability Theory

Probabilities play a signi�cant role in computer science. Here are some examples:

• One mechanism in machine learning is to have estimates for the relative
probabilities of something happening, and to adjust those probabilities as
the system gets more data. The most popular way of doing this is Bayesian
updating, see Section 4.3.4.

• If you are running a server of some kind you need to analyse what the
average, and the worst case, load on that server might be to ensure that
it can satisfy your requirements.1 Calculating such averages is one of the
techniques you learn in probability theory.

• When trying to analyse data you have to make some assumptions in or-
der to calculate anything from the data. We look at the question of what
assumptions have what consequences.

• In order to calculate the average complexity of a program you have to work
out how to describe the relative frequency of the inputs, and then calculate
the average number of steps taken relative to these frequencies. This means
you are e�ectively calculating the expected value of a random variable (see
Section 4.4.6).

• There are sophisticated algorithms that make use of random sampling, such
as Monte Carlo methods. In order to understand how to employ these you
have to understand probability theory.

4.1 Analysing probability questions

Before we look at what is required formally to place questions of probability on a
sound mathematical footing we look at some examples of the kinds of issues that
we would like to be able to analyse.

In computer science we are often faced with situations where probabilities play
a role, and where we have to make the decision about how to model the situation.

Every time we are trying to judge the risk or potential bene�ts of a given
decision we are using probabilistic reasoning, possibly without realizing it. We
have to come up with a measure of how big the potential bene�t, or the potential
disadvantage is, and temper that judgement by the likelihood of it occurring.

1You wouldn’t the student system to go down if all students are trying to access their exam
timetable at the same time.
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When somebody buys a lottery ticket, the potential disadvantage is losing
their stake money, and the potential advantage is winning something. How many
people know exactly what their chances are of doing the latter?

Many games include elements of chance, typically in the form of throwing dice,
or dealing cards. When deciding how to play, how many people can realistically
assess their chances of being successful?

In machine learning, one technique is to model a situation by assigning probab-
ilities to various potential properties of the studied situation. As more information
becomes available, these probabilities are updated (this constitutes ‘learning’ about
the situation in question). How should that occur?

When looking at questions of the complexity of algorithms, one often applied
measure is the ‘average complexity’, by which we mean the complexity of the
‘average case’ the program will be applied to. How does one form an ‘average’ in
a situation like that?

All these questions are addressed in probability theory, but we have to restrict
ourselves here to fairly basic situations to study the general principles. The �rst
few problems we look at are particularly simple-minded.

4.1.1 Simple examples

Most people will have been confronted with issues like the following.

Example 4.1. An example much beloved by those teaching probabilities is that
of a coin toss. When a fair coin is thrown we expect it to show ‘heads’ with
the same probability as tails. For the chances to be even, we expect each to
occur with the probability of 1/2. What if we throw a coin more than once?
We also expect that the outcome of any previous toss has no in�uence on the
next one. This means we expect it to behave along the following lines.

𝐻

𝐻𝐻

𝐻𝐻𝐻

1/2

𝐻𝐻𝑇

1/2

1/2

𝐻𝑇

𝐻𝑇𝑇

1/2

𝐻𝑇𝑇

1/2

1/2

1/2

𝑇

𝑇𝐻

𝑇𝐻𝐻

1/2

𝑇𝐻𝑇

1/2

1/2

𝑇𝑇

𝑇𝑇𝐻

1/2

𝑇𝑇𝑇

1/2

1/2

1/2

In order to work out the probability of throwing, say, 𝐻𝑇𝐻 , we follow down
the unique path in the tree that leads us to that result, and we multiply the
probabilities we encounter on the way down, so the probability in question is

1

8
.

Note that because each probability that occurs in the tree is 1/2, the e�ect will
be that each outcome on the same level will have the same probability, which
is as expected.
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The tree also allows us to work out what the probability is of having the
same symbol three times, that is having

𝐻𝐻𝐻 or 𝑇𝑇𝑇,

which means the event2

{𝐻𝐻𝐻,𝑇𝑇𝑇}

occurring. All we have to do is to add up the probabilities for each of the
outcomes in the set, so the probability in question is

1

8
+

1

8
=

1

4
.

See Section 4.1.4 for more examples where it is useful to draw trees.

Example 4.2. Whenever we throw a die, we expect each face to come up with
equal probability, so that the chance of throwing, say, a 3 at any given time is
1/6. It is quite easy to construct more complicated situations here. What if
we throw two dice? What are the chances of throwing two 1s? What about
throwing the dice such that the eyes shown add up to 7? See Exercise 80 and
Example 4.22 for a detailed discussion of this particular question.

There are games where even more dice come into the action (for example
Risk and Yahtzee), and while computing all probabilities that occur there while
you’re playing the game may not be feasible, it might be worth estimating
whether you are about to bet on something very unlikely to occur.

Example 4.3. A typical source of examples for probability questions is as a
measure of uncertainly of something happening. For example, a company
might know that the chance of a randomly chosen motherboard failing within
a year is some given probability. This allows both, the producing company
and other manufacturers using the part, to make some calculations regarding
how many cases of repairs under warranty they are likely to be faced with.

In particular, if you are a manufacturer seeking to buy 100,000 mother-
boards, then you have to factor in the costs of using a cheaper, less reliable
part, compared with a more expensive and more reliable one. If you have a 10$
part which has a 5% chance to be faulty within the given period, you would
expect to have around

100, 000 · .05 = 5000

cases. If on the other hand, you have a 12$ part that has a 3% chance of being
faulty then you will have to pay 200,000$ more for the parts, and expect to
have only

100, 000 · .03 = 3000

cases of failure under warranty. What is the better choice depends on how
expensive it is to deal with each case, how many people you expect to make a
claim, and whether you worry about the reputation of your company among
consumers. Decisions, decisions. . .

2This is formally de�ned in De�nition 32—for now just think of it as any set of outcomes.
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Example 4.4. When you are writing software you may wonder how well your
program performs on the ‘average’ case it will be given.

For a toy example, assume that your program takes in an input string, does
some calculations, and returns a number. The number of calculation steps it
has to carry out depends on the length of the input string. You would like to
know how many calculation steps it will have to carry out on average so that
you have an idea how long a typical call to that program will take.

Assume we have a string of length 𝑛. There is a function which assigns
to each 𝑛 ∈ N the number of calculation steps performed for a string of that
length. It may not be easy to calculate that function, and you will learn more
about how one might do that in both, COMP112 and COMP261. For the moment
let’s assume the function in question is given by the assignment

𝑛 𝑛2

from N to N.
So now all we need is the average length of an input string to calculate

the average number of calculations carried out. But what is that? This will
depend on where the strings come from. Here are some possibilities:

• The strings describe the output of another program.

• The strings are addresses for customers.

• The strings encode DNA sequences.

• The strings describe the potential status of a robot (see Example 4.44).

• The strings are last names of customers.

In each situation the average length will be di�erent. You need to know some-
thing about where they come from to even start thinking about an ‘average’
case.

If we have a probability for each length to occur then we can calculate an
average, see De�nition 42 for that.

Note that typically the number of instructions that has to be carried out in a
typical computer program depends on more than just the size of the input. With
many interesting algorithms (for example searching or sorting ones) what exactly
has to be done depends on the precise nature of the input. See Examples 4.96
and 4.98 for a discussion of two such situations.

4.1.2 Counting

When modelling situations using probability we often have to count how many
possibilities there are, and how many of those have particular properties.

We give some rules here that help with taking care of this.

Selection with return

Assume we are in a situation where there are 𝑛 options to choose from, and that
we may choose the same option as many times as we like. If we choose 𝑖 many

158



times and we record the choices in the order we made them, then there are

𝑛𝑖

possible di�erent possibilities.

Example 4.5. If we toss a coin then on each toss there are two options, heads
and tails. If we toss a coin 𝑖 times then there are 2𝑖 many possible combinations.

Example 4.6. Let’s assume we have various �avours of ice cream, and we
put scoops into a tall glass so that they sit one above each other. If you may
choose 3 scoops of ice cream from a total of 𝑛 �avours then there are 𝑛3 many
combinations, assuming all �avours remain available.

Below we show all the combinations of picking two scoops from three
�avours, say hazelnut, lemon, and raspberry.

There are 32 = 9 possible combinations.

The reason this is known as ‘selection with return’ is that if we think of the
choice being made by pulling di�erent coloured balls from an urn (without being
able to look into the urn), then one should picture this as drawing a ball, recording
its colour before returning it to the urn, drawing a second ball, recording its colour
before returning it, and so on.

Selection without return

If we have a choice of 𝑛 possibilities, and we choose 𝑖 times in a row, but we may
not choose the same item twice, then there are

𝑛(𝑛− 1) . . . (𝑛− 𝑖 + 1) =
𝑛!

(𝑛− 𝑖)!

di�erent combinations, that is listings of choices in the order they were made.
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Example 4.7. If you have to pick three out of �fteen possible runners to �nish
�rst, second and third in that order there are 15 · 14 · 13 = 2730 possibilities.

Example 4.8. If you have a program that gives you a design for a webpage,
where you have to pick three colours to play speci�c roles (for example,
background, page banner, borders), and there are 10 colours overall, then you
have 10 · 9 · 8 = 720 combinations.

Example 4.9. Returning to the ice cream example, if children are given a tall
glass in which they each are allowed two scoops from three �avours, but they
may pick every �avour at most once (to make sure popular �avours don’t run
out) then they have the following choices.

There are now 3 · 2 = 6 possibilities.

This is known as selection without return because we can think of it as having
an urn with 𝑛 di�erently coloured balls, from which we choose one ball after the
other, without returning them to the urn and recording the colours in the order they
appear.

What happens if the balls don’t each have a unique colour?

Ordering

If we have 𝑛 di�erent items then there are 𝑛! many ways of ordering them, that is,
of writing them one after the other. This is the same as choosing without return 𝑛
times from 𝑛 possible options. If the items are not all di�erent then the number of
visibly di�erent possibilities is smaller.

Example 4.10. If we have a red, a blue, and three black mugs and we are lining
them up in a row then the number of possibilities is

5!

3!
= 20.

There would be 5! possibilities for lining up 5 di�erent mugs, but in each one of
those we wouldn’t spot the di�erence if some of the black mugs were swapped.
There are 3! ways of lining up the three black mugs (but if we assume that
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the mugs are indistinguishable then we cannot tell the di�erence between the
di�erent orderings).

In general, if we have 𝑛 items and there are 𝑛1 copies of the �rst design, 𝑛2

copies of the second, and so on, to 𝑛𝑖 items of the 𝑖th design then there are

(𝑛1 + 𝑛2 + · · ·+ 𝑛𝑖)!

𝑛1! · 𝑛2! · · · · · 𝑛𝑖!

visibly di�erent ways of lining up the items.

Selection without ordering

Sometimes we are confronted with the situation where we have to count how
many di�erent selections there are, but where we are not told the order in which
this selection arises. A typical example is a lottery draw:

One way of counting these is to list all the options as we have done above, but
that gets cumbersome if the numbers involved are bigger. An alternative way of
counting is to count how many selections there are with ordering being taken into
account, and then dividing by the number of di�erent orderings there are for each
choice.

Example 4.11. If we return to Example 4.9, then we can look at the situation
where the children are given a shallow bowl rather than a tall glass with scoops
of ice cream. Again they are allowed to choose two scoops from three �avours,
and again they may pick every �avour at most once.

We know from Example 4.9 that there are 6 possible combinations when
the order is taken into account. For each choice of two �avours there are two
ways of ordering them, so we now have

3 · 2
2

= 3

combinations.

In general, when 𝑖 items are picked from a choice of 𝑛 di�erent ones, there are

𝑛(𝑛− 1) . . . (𝑛− 𝑖+ 1)

𝑖!
=

𝑛!

(𝑛− 𝑖)!𝑖!

di�erent selections.

Summary

The formulae given above for the number of possibilities are summarized in the
following table. Here 𝑛 is the number of items available and 𝑖 is the number of
items that are selected. Note that the assumption is that in the unordered case, all
items are di�erent.
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ordered unordered
with return without return

𝑛𝑖 𝑛!

(𝑛− 𝑖)!

𝑛!

(𝑛− 𝑖)!𝑖!

Note that there is no simple formula for the number of possibilities there are
when looking at unordered selections of items some of which may be identical. In
this case the formula for the number of di�erent orderings may be useful. This
says that if there are 𝑛 items, of which there are 𝑛1 indistinguishable copies of a
particular kind, 𝑛2 copies (also indistinguishable among themselves) of a second
kind, and so on, with 𝑖 many kinds altogether, then there are

(𝑛1 + 𝑛2 + · · ·+ 𝑛𝑖)!

𝑛1! · 𝑛2! · · · · · 𝑛𝑖!

many visibly di�erent orderings.

Optional Exercise 8. Work out why there is no simple formula as discussed
in the previous paragraph‘ by looking at some examples.

Exercise 75. Assume you have 3 red socks and 5 black ones. Answer the
following questions

(a) Assume we put all the socks into a bag. Four times we draw a sock from
the bag, putting it back each time. How many di�erent draws are there?

(b) Make the same assumption as for the previous part, but now assume we
don’t put the drawn socks back into the bag. How many draws are there?

(c) Assume we put the socks onto a pile, close our eyes, mix them around, and
pick four socks from the pile. How many di�erent combinations do we get?

(d) Can you answer the same questions if you assume we have 𝑚 red and 𝑛
black socks? What if we pick 𝑘 socks (for 𝑘 ≤ 𝑚 + 𝑛) many socks on each
occasion?

Exercise 76. A researcher in the rain forest has left his laptop unattended and
a curious monkey has come to investigate. When the researcher looks up
from the plant he is studying he sees the monkey at the keyboard. He makes
threatening noises as he runs back. Assume that every time he shouts there’s a
50% chance that he will manage to disrupt the monkey before it makes another
key stroke, and that he will have reached the laptop before he has shouted six
times. Draw a tree similar to that in Example 4.1 for the situation. What do
you think is the average number of key strokes the monkey will manage in
this situation?

4.1.3 Combinations

Sometimes we have to combine these ideas to correctly count something.
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Example 4.12. If we throw a coin three times then there are 23 many possible
outcomes. If we want to know how many of those contain at least two heads
we have to think about how best to count the number of possibilities.

One possibility is to say that we are interested in

• the situation where there are three heads, of which there is one combin-
ation, and

• the situation where there are two heads and one tails. This asks for the
number of di�erent ways of ordering 𝐻,𝐻, 𝑇 and there are

3!

2!
= 3

of those (or there are the positions where the unique 𝑇 can go and then
the two 𝐻 take up the remaining positions).

But this way of thinking does not scale well. What if we want to know
how many outcomes have at least 10 heads when we toss the coin 20 times?
Following the above idea we have to add up the number of combinations with
20, 19, 18, and so on, down to 10 occurrences of 𝐻 .

Or we can argue that there are 220 possibilities overall, of these 20!/(10! ·
10!) contain exactly ten times heads and ten times tails and of the remaining
combinations half will have a higher count of heads, and half will have a higher
count of tails.

There are
20!

10! · 10! =
2 · 19 · 2 · 17 · 2 · 15 · 2 · 13 · 2 · 11

5!
=

19 · 17 · 2 · 13 · 2 · 11
1

= 184756

ways of ordering ten heads and ten tails. The number of combinations of at
least 10 heads is then

220 − 184756

2
+ 184756 =

220

2
+

184756

2
= 616666.

By thinking about how to count in the right way calculations can be shortened
signi�cantly.

CExercise 77. Work out how many outcomes there are in the following cases.
Please give an expression that explains the number you have calculated.

(a) Four digit personal identi�cation numbers (PINs). How many times do
you have to guess to have a 10% chance of �nding the correct PIN?

(b) How many passwords are there using lower case letters? How many times
do you have to guess now to have a 10% chance of being correct?

(c) What if upper case letters are included?

(d) How many possible lottery draws are there if six numbers are drawn
from 49? How many bets do you have to make to have a 1% chance of having
all numbers correct?

(e) Assume you have an array consisting of 10 di�erent integers. What is the
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probability that the array is sorted? What happens if the integers are not all
di�erent?

(f) Assume you have an array consisting of 30,000 id numbers. What is the
probability that you randomly pick the one you were looking for? What can
you say about the case where the array is sorted?

(g) In an examples class there are 60 students and 6 TAs. Each TA marks 10
students. Assuming the students all have sat down in groups of ten, how many
di�erent combinations of TAs and groups are there? What is your chance of
having a particular TA this week?

(h) Assume that there are 6 people who want to randomly split into three
teams. For this purpose they put two red, two green and two yellow ribbons
into a bag, and each person picks one of those out without looking into the
bag.
What is the probability that Amy will be on the red team? What is the chance
that she will be on the same team as Zenia? How many di�erent ways of
splitting the six members into teams are there?

(i) Students from CSSOC are wearing their hoodies. Four of them have a
purple, two a green, and one a black one. They line up in a queue to leave the
room they are in. What is the probability that all the people in the same colour
hoodie are next to each other? What is the probability that no two people
wearing a purple hoodie are next to each other?

Exercise 78. Work out how many outcomes there are in the following cases.
Please give an expression that explains the number you have calculated.

(a) Assume you are at a party. Somebody asks each person when their birthday
is. How many people have to be at the party for the probability that two of
them share a birthday to be larger than 50%?3

(b) Assume you are composing a phrase of music over two four beat bars. You
may use one octave, and any duration from a quaver (an eighth note) to a
semibreve (a whole note). How many melodies are there?

4.1.4 Using trees

Sometimes we can picture what happens in a situation by using trees to provide
structure.

Example 4.13 (Drawing socks). We may use trees to gain a better understand-
ing of a particular situation. The name ‘decision tree’ is slightly misleading
here since we do not just model decisions that somebody might make but also
random moves.

Assume you have a drawer with six individual socks, three red and three

3This is known as the birthday paradox, although it is not strictly a paradox, merely a question
with a surprising answer. It is why computer scientist have to worry about collisions when designing
hash tables.
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black (let’s not worry about how you ended up with odd number of socks in
both colours). We may answer the question of how many socks we have to
pick in order to be sure to get one matched pair—if we pick three socks then
there will be at least two which are the same.

But what if we want to know how many socks we have to pick to have
a chance of at least 50% of achieving this? We picture our �rst two draws as
follows.

𝑅

𝑅𝑅

2/5

𝑅𝐵

3/5

1/2

𝐵

𝐵𝑅

3/5

𝐵𝐵

2/5

1/2

What is the chance of having two socks of the same colour after two
attempts? Of the four possible outcomes two are of the kind we want, namely
𝑅𝑅 and 𝐵𝐵. In order to �nd out the probability of these two events we
multiply probabilities as we go down the tree.

• 𝑅𝑅. The probability for this event is determined by multiplying the
probabilities that appear along the path from the root of the tree to that
outcome, so it is 1/2 · 2/5 = 1/5.

• 𝐵𝐵 The probability is determined in the same way, and also works out
to be 1/2 · 2/5 = 1/5.

To calculate the probability of the event of having two socks of the same colour,

{𝑅𝑅,𝐵𝐵},

we add the probabilities of the two outcomes contained, and so we have

1

2
· 2
5

+
1

2
· 2
5

=
2

5
= 40%.

Hence in order to guarantee a success rate of at least 50% we have to have
(at least) three draws, and in that case we know we will have a 100% success
rate.

Let us look at the question of picking at least two black socks. With two
draws the chance of succeeding is 2/10 = 1/5. If we add a third draw we get
the following.
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𝑅

𝑅𝑅

𝑅𝑅𝑅

1/4

𝑅𝑅𝐵

3/4

2/5

𝑅𝐵

𝑅𝐵𝑅

1/2

𝑅𝐵𝐵

1/2

3/5

1/2

𝐵

𝐵𝑅

𝐵𝑅𝑅

1/2

𝐵𝑅𝐵

1/2

3/5

𝐵𝐵

𝐵𝐵𝑅

3/4

𝐵𝐵𝐵

1/4

2/5

1/2

We may now calculate the probability that any of these draws occurs by
multiplying the probabilities that occur along the corresponding path; we give
these probabilities below each leaf:

𝑅

𝑅𝑅

𝑅𝑅𝑅

1/4

𝑅𝑅𝐵

3/4

2/5

𝑅𝐵

𝑅𝐵𝑅

1/2

𝑅𝐵𝐵

1/2

3/5

1/2

𝐵

𝐵𝑅

𝐵𝑅𝑅

1/2

𝐵𝑅𝐵

1/2

3/5

𝐵𝐵

𝐵𝐵𝑅

3/4

𝐵𝐵𝐵

1/4

2/5

1/2

2

40

6

40

6

40

6

40

6

40

6

40

6

40

2

40

The outcomes where we have two black socks are

{𝑅𝐵𝐵,𝐵𝑅𝐵,𝐵𝐵𝑅,𝐵𝐵𝐵},

If we add up their probabilities we get

6

40
+

6

40
+

6

40
+

2

40
= 20/40 = 50%.

You might arrive at this result without drawing the tree, but it certainly clari�es
matters to have it at hand, and if you have to answer more than one question
about some situation you only have to draw it once.

Example 4.14 (Gold and Silver). Assume there are three bags, each with two
coins. One has two coins of gold, another two coins of silver and a third one
coin of each kind. Somebody randomly picks a bag, and then draws a coin
from the bag without looking inside.

We are shown that the selected coin is gold. What is the chance that the
remaining coin from that bag is also gold?

Again we use a tree to understand what is happening.
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𝐺𝐺

𝐺

1/2

𝐺

1/2

1/3

𝐺𝑆

𝐺

1/2

𝑆

1/2

1/3

𝑆𝑆

𝑆

1/2

𝑆

1/2

1/3

If we know that a gold coin has been drawn we must be seeing the �rst,
second or third outcome from above. All these are equally likely, with a
probability of 1/6 each. Two out of the three have a second coin which is also
gold, so the desired probability is 2/3.

Instead of explicitly looking at both coins in the bag, as we did in the tree
above, we could have a di�erent event, namely the colour of the drawn coin.
If those are our chosen outcomes then the corresponding tree looks like this.

𝐺𝐺

𝐺

1/3

𝐺𝑆

𝐺

1/2

𝑆

1/2

1/3

𝑆𝑆

𝑆

1/3

Now we argue that knowing the drawn coin is gold tells us that we have
either the �rst or the second outcome. The former occurs with probability 1/3,
the second with probability 1/6 overall, so the former is twice as likely as the
latter, again giving a probability of 2/3 that the second coin is also gold.

Example 4.15. Bonny4 and Clyde are playing a game. They put two yellow and
four green ribbons into a bag. Without looking inside, each of them reaches
into the bag and draws a ribbon.

If the ribbons have the same colour Bonny wins and if they are di�erent,
then Clyde wins. We want to know whether the game fair, that is, if they both
have an equal chance of winning.

This is question is much easier to answer if we draw a tree.

𝑌

𝑌 𝑌

1/5

𝑌 𝐺

4/5

1/3

𝐺

𝐺𝑌

2/5

𝐺𝐺

3/5

2/3

From the tree we can read o� that the probability of drawing the same colour,
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the event {𝑌 𝑌,𝐺𝐺}, has the probability

1

3
· 1
5

+
2

3
· 3
5

=
7

15
,

while the probability of drawing di�erent colours, the event {𝑌 𝐺,𝐺𝑌 }, has
the probability

1

3
· 4
5

+
2

3
· 2
5

=
8

15
.

The two numbers are di�erent and so the game is not fair. Clyde has a higher
chance of winning.

Example 4.16 (The Monty Hall problem). A well-known problem that we
may use for illustrative purposes is known as the Monty Hall problem.

Imagine you are in a game show. There are three closed doors labelled 𝐴,
𝐵 and 𝐶 , and you know that behind one of them is a valuable prize (in the
original story a car) and behind two of them is something not worth having
(in the original story a goat).

The way the game works is that you pick a door, and then the show master
opens one of the remaining doors. You see the booby prize. You are now
o�ered the chance to switch to the other closed doors. Should you switch, or
stick with your original choice?

This situation has been endlessly discussed among various groups of
people, often because somebody knows the solution and somebody else doesn’t
want to believe it.

So how does one model a situation like that reliably? Usually when there
are steps in a situation it is worth modelling these steps one by one.

What do we know for sure? We know that at the beginning there are three
doors, let’s assume with two goats and a car. We assume that the probability
of the car being behind any one of the doors is the same. From the point of
view of the contestant this is like a random event. The production company
picks an actual door, and there is no way of telling how they decide which
one to hide the main prize behind, but one might hope that they really do pick
any door with the probability of 1/3, and that’s the assumption the contestant
should make. The action of the show master afterwards has to depend on the
choice made by the contestant, and we make the additional assumption that if
the show master has a choice of opening a door he will open them with equal
probability.

We can model the choices step by step using a tree. In the �rst step we
model the fact that the car might be behind any one of the doors.

A B C

We put probabilities in the tree which indicate that the car can be behind
each of them with equal probability.

4This is a past exam question.
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𝐴

1/3

𝐵

1/3

𝐶

1/3

There are three possibilities for the player to choose a door. But note that
the player does not know which of these three positions she is in. In game
theory one says that the leaves of the tree are in the same information set. So
from the player’s point of view there are three choices (pick door 𝐴, 𝐵 or 𝐶),
and she cannot make that dependent on where the car is since she does not
have that information. This is similar to the situation in many card games
where the player has to choose what to play without knowing where all the
cards are situated. Only in the course of further play does it become clear
what situation the players were in. In the tree we denote this by a dashed line
connecting the positions which the player cannot distinguish.

𝐴

𝐴 𝐵 𝐶

1/3

𝐵

𝐴 𝐵 𝐶

1/3

𝐶

𝐴 𝐵 𝐶

1/3

The next step is for the show master to open one of the doors showing the
booby prize. In some cases there is only one possible door to open, in others
there is a choice between two, and we assume that he picks either one of them
with equal probability.

𝐴

𝐴

𝐵

1/2

𝐶

1/2

𝐵

𝐶

𝐶

𝐵

1/3

𝐵

𝐴

𝐶

𝐵

𝐴

1/2

𝐶

1/2

𝐶

𝐴

1/3

C

𝐴

𝐵

𝐵

𝐴

𝐶

𝐴

1/2

𝐵

1/2

1/3

Now the player has to decide whether she wants to switch or not. Again
we draw the possible options. We �rst give the door where the player has not
switched, and then the one where she has.
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𝐴

𝐴

𝐵

𝐴 𝐶

1/2

𝐶

𝐴 𝐵

1/2

𝐵

𝐶

𝐵 𝐴

𝐶

𝐵

𝐶 𝐴

1/3

𝐵

𝐴

𝐶

𝐴 𝐵

𝐵

𝐴

𝐵 𝐶

1/2

𝐶

𝐵 𝐴

1/2

𝐶

𝐴

𝐶 𝐵

1/3

𝐶

𝐴

𝐵

𝐴 𝐶

𝐵

𝐴

𝐵 𝐶

𝐶

𝐴

𝐶 𝐵

1/2

𝐵

𝐶 𝐴

1/2

1/3

We note that the three principal subtrees are the same up to renaming of
nodes. This is because from the Player’s point of view, there are only three
options (which door to pick), and the �rst step drawn in the tree (the selection
of the door which hides the prize) is completely hidden. The result of that step
is not revealed to the player until the end of the game. We look at the question
of what happens if the player switches or sticks with her �rst choice. In purple
we highlight the case where the player’s �rst choice is 𝐴. The remaining two
possibilities give the same result. We also highlight those position where the
player wins the main prize by giving it in bold. We now look at two strategies:

• Pick 𝐴 on the �rst move and then stick with this choice, given in blue
(this is the left choice in the fourth layer of the tree).

• Pick 𝐴 on the �rst move and then switch when given the chance to do
so, given in red (this is the right choice in the fourth layer of the tree).

𝐴

𝐴

𝐵

A 𝐶

1/2

𝐶

A 𝐵

1/2

𝐵

𝐶

𝐵 A

𝐶

𝐵

𝐶 A

1/3

𝐵

𝐴

𝐶

𝐴 B

𝐵

𝐴

B 𝐶

1/2

𝐶

B 𝐴

1/2

𝐶

𝐴

𝐶 B

1/3

𝐶

𝐴

𝐵

𝐴 C

𝐵

𝐴

B 𝐶

𝐶

𝐴

C 𝐵

1/2

𝐵

C 𝐴

1/2

1/3

If the player picks door 𝐴 on the �rst move, and then sticks to that choice,
there is a chance of 1/3 that the original choice was correct, and then no
matter which door is opened the main prize is achieved. So a player who does
not switch will get the main prize with probability of 1/3.
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A player who picks door 𝐴 on the �rst move and then switches, had the
correct door with probability 1/3 and then switches away, which means that
he obtains the main prize with probability 2/3.

For this reason a player who picks a door and then switches has a chance
which is twice as high to get the main prize than the player who sticks.

Note that in particular we can see from this example that it may be that
what looks like one choice to the player (for example ‘pick door 𝐴’) is ef-
fectively a choice taken in a number of di�erent situations the player cannot
distinguish between (here the player does not know behind which door the
prize is hidden)—in that case the choice will be re�ected in several subtrees.

Note that we can tell if a tree properly describes a probabilistic situation:

Proposition 4.1
A tree with probabilities along some of the edges describes a situation of
choices and probabilistic moves if and only if for every node in the tree the
probabilities of the edges going down from that node add up to 1.

Tip

Drawing a tree is often very useful when trying to understand probabilities.
For a tree to work you have

• structure the process being described into distinct stages, each of which
describes either a probabilistic process or a choice some agent may make
(as in the Monty-Hall problem);

• for each such probabilistic process �nd some way of describing its
possible outcomes (for example all the possible deals in a card game, or
all the possible �rst cards you might receive in such a deal)—for example,
the colour of the sock drawn in Example 4.13;

• annotate each branch that stands for a particular outcome of some
probabilistic process with the probability that it occurs—in the same
example the probability that we draw a red/black sock, given which
socks have already been drawn;5

• the leaves of the tree should cover to all the overall outcomes you are
interested in—for example, the various combinations of socks we may
obtain having drawn three times in Example 4.13.

Note that can be several trees that describe the given situation, and which one
suits you best will depend on what you are expected to calculate with that
tree.

Tip

Once you have a tree it is easy to calculate probabilities of speci�c outcomes.

• The probability that a given leaf (which corresponds to an overall out-
come of the situation we want to describe) can be computed by mul-

5Note that by the previous proposition, if we add up the probabilities annotating all the branches
that start at one particular location, the result must be 1
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tiplying all the probabilities that occur on the path from the root of the
tree to that leaf.

• The probability that a particular set of outcomes occurs can be calculated
by adding the probabilities of all the leaves of the tree which belong to
that set.

CExercise 79. Suppose we have a deck of four cards,

{𝑄♠, 𝐴♠, 𝑄♡, 𝐴♡}.

I draw two cards from this pack so that I can see their values, but you
cannot. You tell me to drop one of my cards, and I do so. You ask me whether
I have the ace of spades 𝐴♠ in my hand, and I answer yes.

What is the probability that the card I dropped is also an ace? Hint: Draw
a tree, but note that if you read the given information carefully you don’t have to
draw all possibilities. How many di�erent draws are there? You’ll make your life
more complicated if your tree contains more nodes than needed.

Exercise 80. Assume you are throwing two dice, a red and a blue one.

(a) What is the probability that the sum of the eyes is exactly 4?

(b) What is the probability that the sum of the eyes is at least seven?

(c) What is the probability that there is an even number of eyes visible?

(d) What is the probability that the number on the red die is higher than that
on the blue?

4.1.5 Further examples

In the previous sections it was clear from the context which principles you had to
apply to �nd a solution. The point of the following exercises is that you �rst have
to think about what would make sense in the given situation.

EExercise 81. Assume two teams are playing a ‘best out of �ve’ series which
means that the team that wins three matches is the winner of the series.6 Note
that once it is clear that one side has won, the remaining matches are no longer
played. For example, if one team wins the �rst three matches the series is
over.

(a) Assume that the two teams are equally matched. After what number of
matches is the series most likely to end?

(b) How does the answer change if the probability of one team winning is
60%?

6Such series take part, for example, in men’s matches in Grand Slam tennis tournaments, where
the winner of each bout is determined in a ‘best out of �ve’ sets. In women’s matches, and men’s
matches outside of Grand Slam tournaments, the winner is determined in a ‘best out of three’ series.
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Exercise 82. Solve the same problem as for the previous exercise, but with a
‘best out of seven’ series.

CExercise 83. Imagine you have a die that is loaded in that even numbers are
twice as likely to occur than odd numbers. Assume that all even numbers are
equally likely, as are all odd numbers.

(a) What is the probability of throwing an even number?

(b) What is the probability that the thrown number is at most 4?

(c) With two dice of this kind what is the probability that the combined number
of eyes shown is at most 5?

Exercise 84. Assume you have a coin that shows heads half the time and tails
the other half, also known as a fair coin. Assume the coin is thrown 10 times
in a row.

(a) What is the probability that no two successive throws show the same side?

(b) What is the probability that we have exactly half heads and half tails?

(c) What is the chance of having at least �ve subsequent throws showing the
same symbol?

Exercise 85. Assume we toss a fair coin until we see the �rst heads. We want
to record the number of tosses it takes. What is the probability that we require
10 tosses ore more?

4.2 Axioms for probability

In the examples above we have assumed that we know what we mean be ‘probab-
ility’, and that we have some rules for calculating with such numbers.

4.2.1 Overview

This section puts these intuitive ideas onto a �rm mathematical footing. It does
so in a very general way which you may �nd di�cult to grasp. However by
setting this up so generally we give rules that can be applied to any situation.
Thinking about these rules also encourages you to think about how to model
speci�c situations you are interested in, and to take care with how you do so.

The idea underlying probability theory is that we often �nd ourselves in a
situation where we can work with

• a sample space 𝑆 of all possible outcomes,

• a set of events ℰ (which is a subset of the powerset of 𝑆) and

• a probability distribution which is given by a function

𝑃 : ℰ [0, 1],

where [0, 1] is the interval of real numbers from 0 to 1.
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Example 4.17. The simplest kind of probability space is one where there are
𝑛 options, say

𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛},

and all these occur with equal probability. In this case the set of events is the
set 𝒫𝑆 of all subsets of 𝑆, and the probability distribution

𝑃 : 𝒫𝑆 [0, 1]

is given by the assignment

𝑆
|𝑆|
𝑛
,

that is, every set is mapped to its number of elements divided by 𝑛.

We give precise de�nitions of what we mean with these notions below, but for
the moment let’s look at a slightly more complicated example.

Example 4.18. In a simple dice game the participants might have two dice
which they throw together. If the aim of the game is to score the highest
number when adding up the faces of the dice then it makes sense to have the
possible outcomes

𝑆 = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

We call the set of possible outcomes the sample space 𝑆. We could now ask
what the probability is of throwing at most 5, which is the event

{2, 3, 4, 5}.

This example is continued below.

Typically when we have a �nite set of outcomes 𝑆 we assume that the set of
events ℰ is the whole powerset 𝒫𝑆. When we have an in�nite set of outcomes
this is not always possible. There is a �eld in mathematics called measure theory
which is concerned with which sets of events can be equipped with probability
functions, but that goes beyond this course.

Often it is possible to make the sample space �nite, and this frequently (but
not always) happens for computer science applications.

Example 4.19. The following example is a toy version of a problem that was the
basis of a lab in the introductory AI unit. It is concerned with a robot wanting
to learn its location in a two-dimensional space. If we think of the location
as being given by two coordinates, and the coordinates as real numbers, then
there are uncountably many locations in the unit square

[0, 1] × [0, 1].

But we cannot measure the location of the robot up to in�nite precision (and
indeed, we’re not interested in the answer to that level of precision), and in
the robot exercise a 100 × 100 grid is imposed on the space, and we are only
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interested in which one of the squares in the grid the robot inhabits. This
means the sample space now has only 100 · 100 = 10, 000 elements.7

Example 4.20. If you are interested in the price of a commodity, it typically
makes sense to measure the price only up to a limited precision (typically a
few post decimal digits), and again this has the e�ect of making the sample
space �nite.

We consider many �nite sample spaces in this chapter, but we do have a look
at in�nite notions as well since that also occurs in some applications in computer
science. For this reason we here give de�nitions which are general enough to
apply to both cases.

Example 4.21. When we consider events that happen over a given time frame
it is often more convenient to treat that time frame as a real interval, [𝑟, 𝑟′],
where 𝑟 is the start time and 𝑟′ is the end time. The reason for this is that
the entities we would like to compute can typically be computed with the
help of integrals. These ideas are pursued in Examples 4.27, 4.28 and 4.84 and
Exercises 89 and 114.

Not every function satis�es the requirements of a probability function, and we
look at what properties we expect below. In order to formulate what we expect
from a probability function 𝑃 we �rst have to look at what we expect from the set
of events.

4.2.2 Events and probability distributions

The following two de�nitions are given here for completeness’ sake.8 Above we
did not worry about the properties required of probability distributions, and we
also did not wonder whether a given set of outcomes could be an event, or not.

When we wish to consider a sample space that is uncountable9, for example the
real interval [0, 1], it is di�cult to �nd a probability space for this set of outcomes.
There are two di�culties:

• If we want to assign the same probability to each element of [0, 1] then this
probability has to be 0 (otherwise the probability for the whole interval
would be in�nite, compare Proposition 4.4). The only way of de�ning a
probability function with this property is to de�ne a function that takes as
its input events (that is, sets of outcomes).

• It is not possible to give a probability distribution that assigns a probability
to every subset of [0, 1], see Proposition 4.5. How to de�ne a probability
space in this situation is sketched in Proposition 11. It has the property that
the probability of any interval [𝑟, 𝑟′] in [0, 1] has a probability proportional
𝑟′ − 𝑟, that is, its probability is determined by its length.

For this reason we describe here which collection of subsets of the sample
space is suitable to form a probability space.

7See Example 4.44 for a simpli�ed version of this scenario.
8In particular these two de�nitions are not part of the examinable material.
9See De�nition 50—for now stay with the example of the unit interval.175



De�nition 30: 𝜎-algebra
Let 𝑆 be a set. A subset ℰ of 𝒫𝑆 is a 𝜎-algebra provided that

• the set 𝑆 is in ℰ ,

• if 𝐸 is in ℰ then so is its complement 𝑆 ∖ 𝐸 and

• if 𝐸𝑖 is in ℰ for 𝑖 ∈ N their union
⋃︁

𝑖∈N𝐸𝑖 is in ℰ .

We note some consequences of this de�nition. First of all, since 𝑆 is in ℰ we
may form its complement to get another element of ℰ , and so

∅ = 𝐸 ∖ 𝐸

is in ℰ .
Further note that the union of a �nite number of events must also be an event:

If we nave events 𝐸0, 𝐸1, . . . , 𝐸𝑛 then we can set 𝐸𝑖 = ∅ for 𝑖 > 𝑛, and then⋃︁
𝑖∈N𝐸𝑖 = 𝐸0 ∪ 𝐸1 ∪ · · · ∪ 𝐸𝑛.

Note that for every set 𝑆 the powerset 𝒫𝑆 is a 𝜎-algebra.
Events which are disjoint play a particular role: If we have two sets of possible

outcomes, say 𝐸 and 𝐸′, and these sets are disjoint, then we expect that the
probability of 𝐸 ∪ 𝐸′ is the probability of 𝐸 added to that of 𝐸′. But this is not a
property of just two sets of outcomes—sometimes we need to apply it to to larger
collections of sets. This means we have to worry about what the appropriate
generalization of ‘disjoint’ is.

If we have three sets of outcomes, events 𝐸, 𝐸′ and 𝐸′′, then in order for

𝑃 (𝐸 ∪ 𝐸′ ∪ 𝐸′′)

to be equal to
𝑃𝐸 + 𝑃𝐸′ + 𝑃𝐸′′

to hold it must be the case that none of these sets ‘overlap’, in other words, we
need that

𝐸 ∩ 𝐸′ = ∅, 𝐸 ∩ 𝐸′′ = ∅, 𝐸′ ∩ 𝐸′′ = ∅,

as for example in the following picture.

𝐸

𝐸′𝐸′′

If we want to apply this idea to more than three sets we need to use a general
de�nition.

De�nition 31: pairwise disjoint
Let 𝑆 be a set. Further assume that we have an arbitrary set 𝐼 , and that for
each element 𝑖 ∈ 𝐼 we have picked a subset 𝑆𝑖 of 𝑆. We say that the collection
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of the 𝑆𝑖, where 𝑖 ∈ 𝐼 , is pairwise disjoint if and only if

for 𝑖, 𝑗 ∈ 𝐼 we have 𝑖 ̸= 𝑗 implies 𝑆𝑖 ∩ 𝑆𝑗 = ∅.

This means that the sets we have picked for di�erent elements of 𝐼 do not
overlap.

EExercise 86. Assume that we have a set 𝑆. We are also given two disjoint
subsets 𝐵1 and 𝐵2 of 𝑆 and a collection 𝐸𝑖, for 𝑖 ∈ N, pairwise disjoint subsets
of 𝑆.

(a) Show that for 𝐴 ⊆ 𝑆 we have that 𝐴 ∩𝐵1 and 𝐴 ∩𝐵2 are disjoint. If you
can do the next part without doing this one you may skip it.

(b) Show that for 𝐴 ⊆ 𝑆 we have that 𝐴 ∩ 𝐸𝑖 is a collection of pairwise
disjoint sets.

(c) Show that for 𝐴 ⊆ 𝑆 we have that

𝐴 ∩ (𝐵1 ∪𝐵2) = (𝐴 ∩𝐵1) ∪ (𝐴 ∩𝐵2).

If you can do the next part without doing this one you may skip it.

(d) Show that for 𝐴 ⊆ 𝑆 we have that

𝐴 ∩
⋃︁

𝑖∈N𝐸𝑖 =
⋃︁

𝑖∈N(𝐴 ∩ 𝐸𝑖).

(e) Show that if 𝐴 ⊆ 𝐵1 ∪ 𝐵2 then 𝐴 is the disjoint union of 𝐴 ∩ 𝐵1 and
𝐴 ∩𝐵2. If you can do the next part without doing this one you may skip it.

(f) Show that if 𝐴 ⊆
⋃︁

𝑖∈N𝐸𝑖 then 𝐴 is the disjoint union of the 𝐴 ∩ 𝐸𝑖.

De�nition 32: probability space

A probability space is given by

• a sample set 𝑆;

• a set of events ℰ ⊆ 𝒫𝑆 which is a 𝜎-algebra and

• a probability distribution, that is a function

𝑃 : ℰ [0, 1],

with the properties that

– 𝑃𝑆 = 1 and
– given 𝐸𝑖, for 𝑖 ∈ N, pairwise disjoint10, then11

𝑃 (
⋃︁

𝑖∈N𝐸𝑖) =
∑︁
𝑖∈N

𝑃 (𝐸𝑖).

10Note that some authors write a disjoint union using the addition symbol +, and
∑︀

for in�nite
such unions, but we do not adopt that practice here in case it causes confusion.

11Note that below appears a potentially in�nite sum, that is, a sum which adds in�nitely many
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These axioms for probability go back to the Russian mathematician Andrey
Kolmogorov who was trying to determine what the rules are that make probabilities
work so well when describing phenomena from the real world. His rules date from
1933. What we have done here is translate them into a more modern setting.

These axioms may seem complicated, but they are quite short, and they have a
lot of consequences which you may have learned about when studying probability
previously. We look at these in the following section.

Tip

You are not expected to fully understand the de�nition of a probability space,
in particular that of a 𝜎-algebra, and in practice it is certainly su�cient to
understand the examples given in the text. The formal de�nition is included
to demonstrate that mathematics is built entirely using formal de�nitions.

Many students lose marks when asked to give a probability
space, because they describe the outcomes, their probabilities
but they neglect to mention the events. Study the examples in
Section 4.2 until you are sure you can always identify the set
of events.

The following optional exercises invite you to understand more about the
formal de�nition of a probability space.

Optional Exercise 9. In the de�nition of a probability distribution we can
see an in�nite sum. Under which circumstances does it make sense to write
something like that? Try to �nd a probability distribution for the natural
numbers, with 𝑃N as the set of events. Hint: It is su�cient to give probabilities
for events of the form {𝑛}.

Optional Exercise 10. Assume you want to �nd a probability distribution for
the sample space [0, 1] with a 𝜎-algebra which contains all sets of the form
{𝑟} as events. What can you say about the probabilities of these sets?

Optional Exercise 11. Assume you are given the sample set [0, 1] and you
know that every interval in [0, 1] is an element of the 𝜎-algebra ℰ . Further
assume that you are being given a probability distribution on ℰ which maps
every interval [𝑟, 𝑟′] in [0, 1] to 𝑟′ − 𝑟. Convince yourself that these data
satisfy the conditions for a probability space. What do you think should be
the probability of the interval (𝑟, 𝑟′)?

Example 4.22. We continue Example 4.18.

• 𝑆 = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} and

• ℰ = 𝒫𝑆

but what is the probability distribution we should use here? Since every subset

numbers. We do not discuss these situations in general in this unit. We say a bit more about how to
think of this rule in De�nition 34 below.
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of 𝑆 can be written as a disjoint union of sets containing one element each
the second condition for probability distributions tells us that it is su�cient to
know the probability for each outcome since, for example

𝑃{2, 3, 4, 5} = 𝑃 ({2} ∪ {3} ∪ {4} ∪ {5})

= 𝑃{2} + 𝑃{3} + 𝑃{4} + 𝑃{5}.

This still leaves us with the question of what 𝑃{2}, 𝑃{3}, and so on,
should be. If we look at our sample space more closely we �nd that it in itself
can be viewed as a collection of simpler events.

If we look at the outcome ‘the sum of the eyes shown by the two dice is 4’
then we see that this is a complex event: Assume we have a red die and a blue
die, then the following combinations will give the sum of four (giving the red
die followed by the blue one):

.

So we might instead decide that our sample space should look di�erent to
make the outcomes as simple as possible to make it easier to determine their
probabilities.

IF we record the result of throwing the two dice simultaneously as a pair

(𝑖, 𝑗),

where the �rst component 𝑖 tells us the value of the red, and 𝑗 the value of the
blue die. Then our new sample space becomes

{(𝑖, 𝑗) | 1 ≤ 𝑖, 𝑗 ≤ 6}.

If we assume that our two dice are both ‘fair’, that is, every number appears
with equal probability then the event of throwing, say, a three with the red
die will be 1/6, as will be the probability for all the other possible outcomes
from 1 to 6. The same is true for the blue die. If we now assume that throwing
the red die has no e�ect on the blue die12 then the probability of each possible
outcome13

(𝑖, 𝑗) is 1

6
· 1
6

=
1

36
.

The outcomes in our previous sample space are now events in the new
space, and the probability that the sum thrown is 4, for example, (the old event
{4}) is given by the new event

{(1, 3), (2, 2), (3, 1)},

and its probability is the sum of the probabilities for each singleton, that is

𝑃{(1, 3), (2, 2), (3, 1)} = 𝑃{(1, 3)} + 𝑃{(2, 2)} + 𝑃{(3, 1)}

=
1

36
+

1

36
+

1

36

=
3

36

=
1

12
.

179



For completeness’ sake we give a full description of both probability spaces.
Because the set of events is the powerset of the sample set it is su�cient to
give the probability of each outcome. We begin by describing the second
probability space in the somewhat boring table below, where the probability for
the outcome (𝑖, 𝑗) is the entry in the row labelled 𝑖 and the column labelled 𝑗.

𝑖∖𝑗 1 2 3 4 5 6
1 1/36 1/36 1/36 1/36 1/36 1/36
2 1/36 1/36 1/36 1/36 1/36 1/36
3 1/36 1/36 1/36 1/36 1/36 1/36
4 1/36 1/36 1/36 1/36 1/36 1/36
5 1/36 1/36 1/36 1/36 1/36 1/36
6 1/36 1/36 1/36 1/36 1/36 1/36

The outcome 𝑘 from the original space can be thought of as an event in
the new space, namely that of

{(𝑖, 𝑗) ∈ {1, 2, 3, 4, 5, 6}2 | 𝑖 + 𝑗 = 𝑘},

and the probability of outcome 𝑘 in the original space is equal to the probability
of the corresponding event in the new space.

Below we give a table that translates the outcomes from our �rst sample
space to events for the second sample space.

2 3 4 5 6 7 8 9 10 11 12
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (3,5) (4,5) (5,5)
(3,1) (3,2) (3,3) (3,4) (4,4) (5,4)

(4,1) (4,2) (4,3) (5,3) (6,3)
(5,1) (5,2) (6,2)

(6,1)

Hence the original probability space has a probability distribution determ-
ined by the following table:

2 3 4 5 6 7 8 9 10 11 12
1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1

36

There is a third sample space one could use here: As outcomes use an
ordered list [𝑖, 𝑗] of numbers, to mean ‘the die with the lower number shows 𝑖
and the die with the higher number shows 𝑗’. The whole sample space is then

{[𝑖, 𝑗] | 𝑖, 𝑗 ∈ {1, 2, 3, 4, 5, 6}, 𝑖 ≤ 𝑗},

and we give the probabilities for those outcomes below. We give the lower
number in the set to determine the row and the higher number for the column.
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𝑖∖𝑗 1 2 3 4 5 6
1 1/36 2/36 2/36 2/36 2/36 2/36
2 1/36 2/36 2/36 2/36 2/36
3 1/36 2/36 2/36 2/36
4 1/36 2/36 2/36
5 1/36 2/36
6 1/36

In summary, we have given here three probability spaces that describe the
given situation, with di�erent underlying sample spaces.

We learn from this example that there may be more than one suitable sample
space, and that by making the possible outcomes as simple as possible we may
�nd their probabilities easier to determine. If the sample space is �nite then
calculating the probability of any event amounts to adding up the probabilities for
the individual outcomes.

Exercise 87. Assume you have two dice, one red, one blue, that show a number
from 1 to 3 with equal probability. You wish to calculate the probabilities for
the numbers that can occur when deducting the number shown by the blue
die from that of the red one. For example, if the red die shows 2 and the blue
die shows 3, the number to be calculated is −1.

Give two probability spaces that describe this situation and describe how
to calculate the probabilities asked for in each case. Hint: If you are �nding this
di�cult then read on to the next section which contains more worked examples.

So picking a suitable sample space for the problem that one tries to solve is
important. It’s not unusual to have a number of candidates, but some of them will
be easier to describe correctly than others.

4.2.3 Discrete probability distributions

The above example suggests the idea of the following result. It tells you that if you
have a �nite sample space then describing a probability space for it can be quite
easy.

Proposition 4.2
Let 𝑆 be a �nite set.

(i) If for each 𝑠 ∈ 𝑆 we have the probability 𝑝𝑠 ∈ [0, 1] that 𝑠 occurs, and
the sum of these probabilities is 1, then a probability space is given by

• the sample space is 𝑆,
• the set of events is the power set of 𝑆, 𝒫𝑆,
• the probability distribution 𝑃 is given by

{𝑠1, 𝑠2, . . . , 𝑠𝑛} 𝑝𝑠1 + 𝑝𝑠2 + · · · 𝑝𝑠𝑛,

12This property is known as independence, see De�nition 34.
13Compare Example 4.77.

181



where 𝑛 ∈ N and 𝑠1, 𝑠2, . . . 𝑠𝑛 ∈ 𝑆, which means that for for
every subset 𝐸 of 𝑆, the probability of 𝐸 is given by

𝑃𝐸 =
∑︁
𝑠∈𝐸

𝑝𝑠.

Moreover this is the only probability space where

• all sets of the form {𝑠} are events and
• the probability of the event {𝑠} occurring is 𝑝𝑠.

(ii) If (𝑆, ℰ , 𝑃 ) is a probability space with the property that for 𝑠 ∈ 𝑆,
{𝑠} ∈ ℰ then

• ℰ = 𝒫𝑆 and
• we may read o� the probability 𝑝𝑠 that any given outcome 𝑠 occurs

by considering 𝑃{𝑠}.

Proof. (i) We have already stated that the powerset of any set is a 𝜎-algebra,
so it is su�cient to check that the probability distribution we selected satis�es
the required properties.

• We note that the way we have de�ned the probability distribution, the
probability of 𝑆 is the sum of the probabilities for the outcomes, and the
assumption explicitly stated is that this adds to 1, so 𝑃 (𝑆) = 1.

• If we have pairwise disjoint events 𝐸𝑖 for 𝑖 ∈ N then the probability of⋃︁
𝑖∈N𝐸𝑖

is the sum of all the probabilities of elements in this set. But if the 𝐸𝑖

are pairwise disjoint then each element of
⋃︁

𝑖∈N𝐸𝑖 occurs in exactly
one of the 𝐸𝑖, and so

𝑃 (
⋃︁

𝑖∈N𝐸𝑖) =
∑︁

𝑠∈
⋃︁

𝑖∈N
𝐸𝑖

𝑃𝑠 def 𝑃

=
∑︁
𝑖∈𝐼

∑︁
𝑠∈𝐸𝑖

𝑃𝑠 𝐸𝑖 pairwise disjoint

=
∑︁
𝑖∈N

𝑃𝐸𝑖 def 𝑃..

(ii) The second statement really has only one property that we need to
prove, namely that 𝒫𝑆 is the set of events for the given space.

But if 𝑆 is �nite, and all sets of the form {𝑠} are events, then for an arbitrary
subset 𝑆′ of 𝑆 we can list the elements, for example

𝑆′ = {𝑠1, 𝑠2, . . . 𝑠𝑛},

and by setting

𝐸𝑖 =

{︃
{𝑠𝑖} for 1 ≤ 𝑖 ≤ 𝑛

∅ else
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we have events 𝐸𝑖 for 𝑖 ∈ N with the property that

𝑆′ =
⋃︁

𝑖∈N𝐸𝑖,

and since ℰ is a 𝜎-algebra we know that 𝑆′ ∈ ℰ . Hence every subset of 𝑆 is
an event, and so ℰ = 𝒫𝑆.

Tip

This proposition says that in order to describe a probability space with a �nite
sample space 𝑆 all we have to do is to

• describe the sample space 𝑆;

• say the 𝜎-algebra ℰ is 𝒫𝑆;

• give the probability for each outcome from 𝑆 and state that the prob-
ability for each event is given by the sum of the probabilities of its
elements.

Example 4.23. Throwing a single die can be described by the probability space
given by

• 𝑆 = {1, 2, 3, 4, 5, 6};

• ℰ = 𝒫𝑆;

• the probability distribution assigns the probability of 1/6 to each out-
come; the probability of an event is given by the sum of the probabilities
of its elements.

In practice we often leave out the last statement, or shorten it.

Example 4.24. Tossing a coin can be modelled by a probability space with

• sample set𝑆 = {𝐻,𝑇},

• set of events ℰ = 𝒫𝑆 and

• a probability distribution determined by the fact that each outcome
occurs with probability 1/2.

Example 4.25. The probability space underlying Exercise 79 has as its under-
lying sample space the set

{{𝑄♡, 𝐴♡}, {𝑄♡, 𝑄♠}, {𝑄♡, 𝐴♠},
{𝐴♡, 𝑄♠}, {𝐴♡, 𝐴♠}, {𝑄♠, 𝐴♠}},

and the probability for each outcome is 1/6. The probability distribution is
derived from this in the usual way.
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Proposition 4.3
If we have a sample set

𝑆 = {𝑠𝑖 | 𝑖 ∈ N},

then a probability space is uniquely determined by assigning to each element
𝑠 of 𝑆 a probability 𝑝𝑠 in [0, 1] such that∑︁

𝑖∈N
𝑝𝑠𝑖 = 1.

Optional Exercise 12. Can you take the proof of Proposition 4.2 and turn it
into one for Proposition 4.3?

Example 4.26. Assume we toss a coin until we see head for the �rst time,
compare Exercise 85. To describe a probability space for this situation we pick
the sample set

{1, 2, 3, . . .} = N ∖ {0},

which tells us how many times we tossed the coin until heads appeared. Again
we may choose the powerset of this set as the set of events.

The probability for each of these outcomes is given in the following table.

1 2 3 4 5 6 . . .
1

2

1

4

1

8

1

16

1

32

1

64
. . .

which means that the probability of the outcome 𝑖 is

𝑝𝑖 =
1

2𝑖
.

It is the case (but a proof is beyond the scope of this unit) that
∑︁
𝑖∈N

𝑝𝑖 =
∑︁
𝑖∈N

1

2𝑖
= 1,

so this distribution satis�es the requirements from Proposition 85.

CExercise 88. Find probability spaces to describe the various situations from
Exercise 77 (a)–(l) and Exercises 83 to 85. Note that your space should describe
the general situation from the question, and the speci�c probabilities you were
asked to calculate in those exercises do not matter now. It is �ne to describe
these in text where you �nd it di�cult to use set and function notation.

4.2.4 Continuous probability distributions

Sometimes it is more appropriate to have a continuous description of a problem.
This is often the case when we are plotting events over time. Note that we can
only talk about ‘continuous behaviour’ if we may use a sub-interval of the real
numbers to describe the outcome of our probability space. See De�nition 38 for a
formal de�nition of what we mean by the discrete versus continuous case here.
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Example 4.27. The following curve of a function 𝑓 , might describe14 the
probability that a piece of hardware will have failed by time 𝑡.

time 𝑡

1

As time progresses the probability of the component having failed ap-
proaches 1. But how do we turn this kind of function into a probability space?

We need to identify a set of events, and we need to be able to derive the
probability of that event. What we know is how to read o� a probability the
our device will have failed in the time interval from 0 to 𝑡: That probability is
given by 𝑓𝑡.

This is, in fact, known as a cumulative probability distribution: As time
progresses the probability becomes higher and higher because the time interval
covered becomes bigger and bigger.

In order to give a probability space we need the probability density function,
which tells us the probability of the device failing at time 𝑡. For the function
above this is given by the function 𝑔 plotted below.

time 𝑡

The relationship between the two functions is that for all 𝑡 in R+ we have

𝑓𝑡 =

∫︁ 𝑡

𝑥=0
𝑔𝑥𝑑𝑥.

The reason for this becomes clear in Section 4.4.6.

It is possible to give a probability space based on the real numbers, but the
precise description is quite complicated. For completeness’ sake we note the
following two facts.

Fact 11
There is a 𝜎-algebra ℰ𝐵 on the set of real numbers R known as the Borel
𝜎-algebra with the property that

• all intervals [𝑟, 𝑟′], where 𝑟, 𝑟′ ∈ R, are elements of ℰ𝐵 .

Let 𝐼 be any interval in R. Then we can restrict the Borel 𝜎-algebra to this
interval to obtain another 𝜎-algebra ℰ𝐼

𝐵 by setting

ℰ𝐼
𝐵 = {𝐸 ∩ 𝐼 | 𝐸 ∈ ℰ𝐵}.

14For an actual piece of hardware one would prefer it if the probability were to rise more slowly
at �rst!
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Fact 12

Let [𝑠, 𝑠′] be an interval in R with 𝑠 < 𝑠′. There is a probability distribution15

𝑃 to give a probability space ([𝑠, 𝑠′], ℰ [𝑠,𝑠′]
𝐵 , 𝑃 ) with the property that for any

interval [𝑟, 𝑟′] in [𝑠, 𝑠′] we have

𝑃 [𝑟, 𝑟′] =
𝑟′ − 𝑟

𝑠′ − 𝑠
.

The probability space for Example 4.27 is then given by (R+, ℰ+
𝐵 , 𝑃𝐵) where

• ℰR+

𝐵 is the restriction of the Borel 𝜎-algebra from Fact 11 and

• the probability distribution is determined by the fact that it satis�es , for all
𝑟 ≤ 𝑟′ in R+,

𝑃 [𝑟, 𝑟′] =

∫︁ 𝑟′

𝑟
𝑔𝑥𝑑𝑥.

Whenever you are asked to de�ne a continuous probability space you may
assume that

• you may use the Borel 𝜎-algebra adjusted as in the above example and

• we can calculate a probability distribution for this 𝜎-algebra from any prob-
ability density function (see the De�nition below).

So it is su�cient for you to give a probability density function in this case.

De�nition 33: probability density function

Let 𝐼 be a sub-interval of the real numbers. A probability density function
for 𝐼 is given by a function

𝑔 : 𝐼 R+

with the property that ∫︁
𝐼
𝑔𝑥𝑑𝑥 = 1,

and such that ∫︁ 𝑟′

𝑟
𝑔𝑥𝑑𝑥

exists for all 𝑟 ≤ 𝑟′ in 𝐼 .

Tip

It might seem odd that intervals play a role in calculating probabilities. Recall16
that the integral from some 𝑡 to some 𝑡′ over a function 𝑔 is the area under
the curve given by 𝑔 from 𝑡 to 𝑡′. This is a generalization of adding up all
the probabilities of outcomes, but this requires too much advanced maths to
explain.17 So my tip is to just treat the integrals as given, and not worry too
much about why that makes sense.

15This is based on the Borel measure.
16If you have not covered integrals in school then the following fact should get you through most

of the two extended exercises that require integrals.
17But see Example 4.81!
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Example 4.28. Assume you have travelled to Yellowstone National Park and
want to see the famous geyser ‘Old Regular’ erupt. You know18 that it does
so every ninety minutes. You are pressed for time, and when you arrive you
know you can only stay for twenty minutes. What is the probability that you
will see the geyser erupt in that time?

We can describe this situation using the fact that we know that as time
goes from 0 to 90 minutes the probability of seeing the geyser erupt rises
steadily towards 1. The set of events is the Borel 𝜎-algebra restricted to the
interval from 0 to 90. The cumulative distribution function 𝑓 looks as follows.

𝑃

time
0 10 20 30 40 50 60 70 80 90 100

0.2
0.4
0.6
0.8

1

We are looking for a function 𝑔 (the probability density function for the
cumulative mass function 𝑓 in the graph above) on the interval from 0 to 90
minutes with property that for all times 𝑡 with 0 ≤ 𝑡 ≤ 90 we have

𝑓𝑡 =

∫︁ 𝑡

0
𝑔𝑥𝑑𝑥.

Solving this tells us that 𝑔 is constant, and it only remains to calculate the
constant which comes from the constraint that the integral over 𝑔 from 0 to
90 must be 1. Assume that 𝑔𝑥 = 𝑐 for all 0 ≤ 𝑥 ≤ 90. Then we need

1 =

∫︁ 90

0
𝑐𝑑𝑥 = 𝑐 · 90,

so we must have 𝑐 = 1/90.

𝑃

time
0 10 20 30 40 50 60 70 80 90 100

0.02
0.04
0.06
0.08
0.1

We can see that it does not matter when exactly you arrive - the distribution
is uniform. So if you arrive at time 𝑡 and stay for 20 minutes then the probability
that you will see the geyser erupt is given by the integral from 𝑡 to 𝑡+ 20 over
the function 𝑔, which is given by the shaded area.
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𝑃

time
0 10 20 30 40 50 80 90 100

0.002
0.004
0.006
0.008
0.01

𝑡 𝑡 + 20

This means that the desired probability, for the case 𝑡 = 45, is∫︁ 65

45

1

90
𝑑𝑥 =

1

90
(65 − 45) =

20

90
= 0.2,

so the probability is just over 20%.

Tip

Whenever you have to describe a probability space whose set of outcomes
is an interval in R you should choose the Borel 𝜎-algebra restricted to that
interval as your set of events.

In the unit on data science COMP13212 you will see quite a few plots of either
a probability density function or for a cumulative mass function (called cumulative
distribution function there), for example in the lecture on hypotheses and how to
test them.

EExercise 89. Describe probability density functions for the following situ-
ations:

(a) It is known that the probability of a component having failed rises from 0
to 1 over the time interval from 0 to 1 unit of time at a constant rate.

(b) A bacterium lives for two hours. It is known that its chance of dying in
any 10 minute interval during those two hours is the same. What do you think
the probability density function should be?

(c) Assume you have an animal which lives in a one dimensional space de-
scribed by the real line R. Assume that its den is at 0, and that the probability
density function has the value 𝑟 at that point and that it falls at a constant
rate and reaches 0 when the animal is one unit away from its den. Give the
probability density function for this situation. What does the corresponding
cumulative probability distribution look like in this case? (If you think an
animal liven in a one dimensional space is a bit limiting you can instead think
of this as expressing the animal’s east/west (or north/south) distance from its
den in a space of two dimensions.)

(d) Try to extend the previous part to an animal that lives in a two dimensional
space described by the real plane, R× R.

18The most famous geyser that actually exists there, known as Old Faithful, does not erupt as
regularly as my imaginary example.
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4.2.5 Consequences from Kolmogorov’s axioms

The axioms from De�nition 32 have a number of consequences that are useful to
know about.

We look at them one by one here and summarize them in a table at the end of
the section.

The empty set

• The empty set ∅ is an event: De�nition 32 says that if 𝐸 is an event then so
is 𝑆 ∖ 𝐸. Since 𝑆 is an event this means that 𝑆 ∖ 𝑆 = ∅ is an event.

• Now that we know that ∅ is an event we may calculate its probability as
follows.

1 = 𝑃𝑆 De�nition 32
= 𝑃 (𝑆 ∪ ∅) 𝑆 ∪ ∅ = 𝑆

= 𝑃𝑆 + 𝑃∅ 𝑆 and ∅𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡,𝐷𝑒𝑓 32

= 1 + 𝑃∅ 𝑃𝑆 = 1

and so
𝑃∅ = 1 − 1 = 0.

Intersection

If we know that 𝐴 and 𝐵 are events, what can we say about 𝐴 ∩𝐵? We note that
there is nothing in the axioms that talks about intersections. But it turns out that
we can use the axioms to argue that the intersection is an event.

We calculate19

𝐴 ∩𝐵 = 𝑆 ∖ ((𝑆 ∖𝐴) ∪ (𝑆 ∖𝐵)).

In the following diagram (𝑆 ∖ 𝐴) ∪ (𝑆 ∖ 𝐵) is the coloured area, and the white
part is its complement, that is the desired set.

𝐴 𝐵 (𝑆 ∖𝐴) ∪ (𝑆 ∖𝐵)

Since the complement of an event is an event we know that 𝑆 ∖𝐴 and 𝑆 ∖𝐵
are events, and we have seen that the union of a �nite number of events is another
event.20

In general there is no way of calculating the probability of 𝐴 ∩ 𝐵 from the
probabilities of 𝐴 and 𝐵. When the two events are independent then this situation
changes, see De�nition 34.

We may summarize this as follows:
19See Exercise 7.
20Note that we can also show that the countable intersection of events is an event by generalizing

this idea.
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• If 𝐴 and 𝐵 are events then so is their intersection 𝐴 ∩𝐵.

• There is no general way of calculating the probability of 𝐴 ∩𝐵 from those
of 𝐴 and 𝐵.

Complement and relative complement

We begin by looking at the complement of a set.

• If 𝐴 is an event then we know that its complement 𝑆 ∖𝐴 is also an event.

• We also know that a set and its complement are disjoint sets whose union
is 𝑆. Hence we know that

1 = 𝑃𝑆 De�nition 32
= 𝑃 (𝐴 ∪ (𝑆 ∖𝐴)) 𝑆 = 𝐴 ∪ (𝑆 ∖𝐴)

= 𝑃𝐴 + 𝑃 (𝑆 ∖𝐴) 𝐴, 𝑆 ∖𝐴disjoint, Def 32

and so 21

𝑃 (𝑆 ∖𝐴) = 1 − 𝑃𝐴.

More generally, assume we have events 𝐴 and 𝐵. The picture shows 𝐴 in red
and 𝑆 ∖𝐵 in pale blue, with violet giving the overlap. The set whose probability
we wish to compute is that overlap, the darkest set in the following picture.

𝐴 𝐵 𝐴 ∖𝐵

We would like to argue that 𝐴 ∖ 𝐵 is an event. We note that the de�nition of a
𝜎-algebra tells us that since

𝑆 ∖𝐴 and 𝐵

are events we may form another event in the form of

(𝑆 ∖𝐴) ∪𝐵

and so we get an event when forming (compare Exercise 7 for the trick we employ
here)

𝑆 ∖ ((𝑆 ∖𝐴) ∪𝐵) = 𝐴 ∩ (𝑆 ∖𝐵) = 𝐴 ∖𝐵.

After all this preparation we may now split the event 𝐴 into two disjoint events,
namely

𝐴 = (𝐴 ∖𝐵) ∪ (𝐴 ∩𝐵),

21Some people write this as 𝑃 (¬𝐴) = 1 − 𝑃𝐴 or 𝑃 (𝐴𝐶) = 1 − 𝑃𝐴, but we do not use that
notation here.
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and so (compare Exercise 86)

𝑃𝐴 = 𝑃 ((𝐴 ∖𝐵) ∩ (𝐴 ∩𝐵)) 𝐴 = (𝐴 ∖𝐵) ∪ (𝐴 ∩𝐵)

= 𝑃 (𝐴 ∖𝐵) + 𝑃 (𝐴 ∩𝐵) (𝐴 ∖𝐵), 𝐴 ∩𝐵 disjoint, Def 32,

which gives us
𝑃 (𝐴 ∖𝐵) = 𝑃𝐴− 𝑃 (𝐴 ∩𝐵).

We may summarize this by saying the following.

• If 𝐴 and 𝐵 are events then so is 𝐴 ∖𝐵.

• We have 𝑃 (𝐴 ∖𝐵) = 𝑃𝐴− 𝑃 (𝐴 ∩𝐵).

Union

If we want to calculate the probability of the union of two events then in order to
apply Kolmogorov’s axiom we must write it as the union of disjoint events.

The Venn diagram for two non-disjoint set looks like this:

𝐴 𝐵 𝐴 ∪𝐵

We can see that if we want to write 𝐴 ∪𝐵 as a disjoint union we have to pick
for example the red and violet regions, which make up 𝐴, and the blue region,
which is 𝐵 ∖𝐴, and write

𝐴 ∪𝐵 = 𝐴 ∪ (𝐵 ∖𝐴).

With the result for the relative complement we get

𝑃 (𝐴 ∪𝐵) = 𝑃 (𝐴 ∪ (𝐵 ∖𝐴)) 𝐴 ∪𝐵 = 𝐴 ∪ (𝐵 ∖𝐴)

= 𝑃𝐴 + 𝑃 (𝐵 ∖𝐴) 𝐴, 𝐵 ∖𝐴 disjoint, Def 32
= 𝑃𝐴 + 𝑃𝐵 − 𝑃 (𝐴 ∩𝐵) 𝑃 (𝐵 ∖𝐴) = 𝑃𝐵 − 𝑃 (𝐴 ∩𝐵).

In summary we can say that

• if 𝐴 and 𝐵 are events then so is 𝐴 ∪𝐵 and

• we have 𝑃 (𝐴 ∪𝐵) = 𝑃𝐴 + 𝑃𝐵 − 𝑃 (𝐴 ∩𝐵).

Note that if 𝐴 and 𝐵 do not overlap then

𝐴 ∩𝐵 = ∅ and 𝑃 (𝐴 ∪𝐵) = 𝑃𝐴 + 𝑃𝐵

as expected.
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Order preservation

Assume we have two events 𝐴 and 𝐵 with the property that 𝐴 is a subset of 𝐵.

𝑆

𝐵

𝐴

What can we say about the probabilities of 𝐴 and 𝐵? Certainly we can see that 𝐵
is the disjoint union of 𝐴 and 𝐵 ∖𝐴, and so

𝑃𝐵 = 𝑃𝐴 + 𝑃 (𝐵 ∖𝐴).

Since the probability of 𝐵 ∖𝐴 is greater than or equal to 0 we must have

𝑃𝐴 ≤ 𝑃𝐵.

Summary

We give all the rules derived above. Let (𝑆,𝒜, 𝑃 ) be a probability space, and
let 𝐴 and 𝐵 be events. Then the following rules hold.

𝑃𝑆 = 1 𝑃∅ = 0

𝑃 (𝑆 ∖𝐴) = 1 − 𝑃𝐴 𝑃 (𝐴 ∖𝐵) = 𝑃𝐴− 𝑃 (𝐴 ∩𝐵)

𝑃 (𝐴 ∪𝐵) = 𝑃𝐴 + 𝑃𝐵 − 𝑃 (𝐴 ∩𝐵)

𝐴 ⊆ 𝐵 implies 𝑃𝐴 ≤ 𝑃𝐵.

It may be worth pointing out that these conditions hold for all probability
spaces, in particular they also hold for the case where we are given a probability
density function. The �rst two conditions are trivially true, and the others are
standard properties of integrals.

Optional Exercise 13. Convince yourself that the various equalities hold if
the probability distribution is given by a probability density function. You may
want to draw some pictures for this purpose.

4.2.6 Kolmogorov’s axioms revisited

How should we think of the Kolmogorov axioms? The de�nition of a 𝜎-algebra is
something of a formality that ensures that the sets for which we have a probability
(namely the events) allow us to carry out operations on them.

We may think of the probability distribution as a way of splitting the probability
of 1 (which applies to the whole set 𝑆) into parts (namely those subsets of 𝑆 which
are events). If 𝑆 is �nite then we only have to know how the probability of 1 is
split among the elements of 𝑆, and then we can assign a probability to each subset
of 𝑆 by adding up all the probabilities of its elements.

This becomes signi�cantly more complicated if the set is in�nite.
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Proposition 4.4
If 𝑆 is an in�nite set then there is no probability distribution which assigns
the same probability to each event {𝑠} of 𝑆.

The simplest in�nite set we have met is the set of natural numbers N. If we had
a probability distribution on N which assigned a �xed probability 𝑟 ∈ [0, 1] to each
element then it would have to be the case that the sum of all these probabilities is
1, that is ∑︁

𝑖∈N
𝑟 =

∑︁
𝑖∈N

𝑃{𝑖} = 1

and there is no real number 𝑟 with that property.
Note that the probability space de�ned in Fact 12 is uniform in that it assigns

the same probability to intervals of the same length. So it is possible to distribute
probability uniformly in two cases:

• the sample set 𝑆 is �nite, in which case we may assign the same probability,
1/|𝑆|, to each outcome or

• the sample set 𝑆 is an interval in R, in which case the probability of any
one outcome is 0, but intervals can have non-0 probabilities which are
determined by their length.

However, there is no way of taking all the subsets of R (or any interval 𝐼), and
turning that into a probability space.

Proposition 4.5
Let 𝐼 be an interval on the real line. There is no probability distribution 𝑃
with the property that, (𝐼,𝒫𝐼, 𝑃 ) is a probability space which maps intervals
of the same size to the same probability.

This proposition explains why we cannot have a simpler de�nition of probab-
ility space, where the set of events is always the powerset of the sample space.

4.3 Conditional probabilities and independence

One of the questions that appears frequently in the context of probability theory is
that of how information can be used. In other words, can we say something more
speci�c if we already know something about the situation at hand. This section
is concerned with describing how we may use the axioms of probability to make
this work.

4.3.1 Independence of events

Kolmogorov’s axioms are not strong enough to allow us to calculate the probability
of

𝐴 ∩𝐵

if we know the probabilities of 𝐴 and 𝐵. This section sheds some light on the
question why there cannot be a general formula that does this.

When we throw two dice, one after the other, or when we throw a coin
repeatedly, we are used to a convenient way of calculating the corresponding
probabilities for the outcomes.
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Example 4.29. Assume we record the outcome of a coin toss with 𝐻 for head
and 𝑇 for tails. We assume the coin is fair and so the probability for each is 1/2.
If we toss the coin twice then the possible outcomes are 𝐻𝐻 , 𝐻𝑇 , 𝑇𝐻 and
𝑇𝑇 and the probability for each is 1/4. We may calculate the probability 𝐻𝑇 ,
that is the �rst coin toss 𝐶1 coming up 𝐻 , and the second, 𝐶2, 𝑇 as follows.

𝑃 ((𝐶1 = 𝐻) ∩ (𝐶2 = 𝑇 )) = 𝑃 (𝐶1 = 𝐻) · 𝑃 (𝐶2 = 𝑇 ) = 1/2 · 1/2 = 1/4

But it is not safe to assume that for general events 𝐴 and 𝐵 we have that the
probability of 𝐴∩𝐵 can be calculated by multiplying the probabilities of 𝐴 and 𝐵,
see Example 4.30.

De�nition 34: independent events

Given a probability space (𝑆, ℰ , 𝑃 ) we say that two events 𝐴 and 𝐵 are
independent if and only if

𝑃 (𝐴 ∩𝐵) = 𝑃𝐴 · 𝑃𝐵.

What we mean by ‘independent’ here is that neither event has an e�ect on the
other. We assume that when we throw a coin multiple times then the outcome of
one toss has no e�ect on the outcome of the next, and similar for dice. We look at
this issue again in Section 4.4.5 when we have random processes which are more
easily described. In particular we talk about independence for processes with a
continuous probability distribution.

Example 4.30. Let us look at a situation where we have events which are not
independent. In Example 4.13 we discussed pulling socks from a drawer. We
assume that we have a drawer with three red and three black socks from which
we draw one sock at a time without looking inside. If you pick a red sock on
the �rst draw, then the probability of �nding a red sock on the second draw is
changed.

The probability of drawing a red sock on the �rst attempt is

𝑃 (𝐷1 = 𝑅) = 1/2,

but what about the probability of drawing a red sock on the second attempt?
Again it is best if we look at the tree that shows us how the draw progresses.

𝑅

𝑅𝑅

2/5

𝑅𝐵

3/5

1/2

𝐵

𝐵𝑅

3/5

𝐵𝐵

2/5

1/2

We can see that the probability of drawing a red sock on the second attempt
is

𝑃 (𝐷2 = 𝑅) =
1

2
· 2
5

+
1

2
· 3
5

=
2 + 3

10
=

1

2
.
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But we can also see from the tree that

𝑃 ((𝐷1 = 𝑅) ∩ (𝐷2𝑅)) =
1

2
· 2
5

=
1

5
,

which is not equal to

𝑃 (𝐷1 = 𝑅) · 𝑃 (𝐷2 = 𝑅) =
1

2
· 1
2

=
1

4
,

so (very much expectedly) the two events are not independent.

Example 4.31. A more serious example is as follows. SIDS, or ‘Sudden Infant
Death Syndrome’ refers to what is also known as ‘cot death’—young children
die for no reason that can be ascertained. In 1999 an ‘expert witness’ told the
court that the approximate probability of a child of an a�uent family dying
that way is one in 8500. Since two children in the same family had died this
way, the expert argued, the probability was one in 73 million that this would
occur, and a jury convicted a young woman called Sally Clark of the murder
of her two sons, based largely on this assessment.

The conviction was originally upheld on appeal, but overturned on a
second appeal a few years later. While Clark was released after three years in
prison she later su�ered from depression and died from alcohol poisoning a
few years after that.

What was wrong with the expert’s opinion? The number of 1 in 73 million
came from multiplying 8500 with itself (although 72 million would have been
more accurate), that is, arguing that if the probability of one child dying in
this way is

1

8500
,

then the probability of two children dying in this way is

1

8500
· 1

8500
.

But we may only multiply the two probabilities if the two events are independ-
ent, that is, if the death of a second child cannot possibly be related to the
death of the �rst one. This explicitly assumes that there is no genetic or envir-
onmental component to SIDS, or that there may not be other circumstances
which makes a second death in the same family more likely. Since then data
have been studied that show that the assumption of the independence of two
occurrences appears to be wrong.

While there were other issues with the original conviction it is shocking
that such evidence could be given by a medical expert without anybody realiz-
ing there was a fallacy involved. I hope that this example illustrates why it
is important to be clear of the assumptions one makes, and to check whether
these can be justi�ed.

Note that if we know that two events are independent then we may derive
from that the independence of other events.

Example 4.32. If 𝐴 and 𝐵 are independent events in a probability space with
sample set 𝑆 then 𝐴 and 𝑆 ∖𝐵 are also independent.
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To prove this we have work out the probability of the intersection of the
two events. We calculate

𝑃 (𝐴 ∩ (𝑆 ∖𝐵)) = 𝑃 (𝐴 ∖𝐵) 𝐴 ∖𝐵 = 𝐴 ∩ (𝑆 ∖𝐵)

= 𝑃𝐴− 𝑃 (𝐴 ∩𝐵) Summary of Section 4.2.5
= 𝑃𝐴− 𝑃𝐴 · 𝑃𝐵 𝐴 and 𝐵 independent
= 𝑃𝐴(1 − 𝑃𝐵) arithmetic
= 𝑃𝐴 · 𝑃 (𝑆 ∖𝐵) 𝑃 (𝑆 ∖𝐵) = 1 − 𝑃𝐵

which establishes that the two given events are indeed independent.

Exercise 90. Show that if 𝐴 and 𝐵 are independent then so are 𝑆 ∖ 𝐴 and
𝑆 ∖𝐵.

A common fallacy is to assume that two events being inde-
pendent has something to do with them being disjoint, that is,
there not being an outcome that belongs to both. The following
exercise discusses why this is far from the truth.

Exercise 91. Assume that you have a probability space with two events 𝐴 and
𝐵 such that 𝐴 and 𝐵 are disjoint, that is 𝐴 ∩𝐵 = ∅. What can you say about
𝑃𝐴, 𝑃𝐵 and 𝑃 (𝐴 ∩𝐵) under the circumstances? What can you say if you
are told that 𝐴 and 𝐵 are independent?

Give a su�cient and necessary condition that two disjoint events are
independent.

4.3.2 Conditional information

For example, if I have to guess the colour of somebody’s eyes, but I already know
something about the colour of their hair then I can use that information to guide
my choice.

Example 4.33. Let us assume we have a particular part of the population
where 56% have dark hair and brown eyes, 14% have dark hair and blue eyes,
3% have fair hair and brown eyes and 27% have fair hair and blue eyes.

If I know a person has been randomly picked from the population, and
I have to guess the colour of their eyes, what should I say to have the best
chance of being right?

brown eyes blue eyes
dark haired 56% 14%
fair haired 3% 27%

We can see from the numbers given that we are better o� guessing brown
(lacking additional information). But what if we can see that the person in
question has fair hair? In that case we are better o� guessing blue. What is the
appropriate way of expressing these probabilities? This example is continued
below.
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What we are doing here can be pictured by assuming that in the sample space
𝑆 we have two sets, 𝐴 and 𝐵.

𝑆

𝐵

𝐴

We are interested in the probability of 𝐴 (say blue eye colour) already knowing
that 𝐵 holds (say fair hair). In the picture above this means the probability that
we are in the red set 𝐴, provided we already know that we are in the blue set 𝐵.

What we are doing e�ectively is to change the sample space 𝑆 to 𝐵, and we
want to know the probability of 𝐴 ∩𝐵.

Proposition 4.6

If (𝑆, ℰ , 𝑃 ) is a probability space and 𝐴 an event with non-zero probability
then a probability space is given by the following data:

• sample set 𝐴,

• set of events
{𝐴 ∩ 𝐸 | 𝐸 ∈ ℰ},

• probability distribution 𝑃 ′ de�ned by

𝐴 ∩ 𝐸
𝑃 (𝐴 ∩ 𝐸)

𝑃𝐴
.

We can think of the new space as a restriction of the old space with sample set
𝑆 to a new space with sample set 𝐴, where we have redistributed the probability
entirely to the set 𝐴, and adjusted all the other probabilities accordingly.

Optional Exercise 14. De�ne a probability space that is an alternative to the
one given in Proposition 4.6. Again assume that you have a probability space
(𝑆, ℰ , 𝑃 ) and a subset 𝐴 of 𝑆 with non-zero probability. Use

• sample set 𝑆,

• set of events: ℰ ,

• a probability density function that assigns to every event of the form
𝐴 ∩ 𝐸, where 𝐸 ∈ ℰ , the same probability as the function given in said
proposition.

Optional Exercise 15. Show that the new set of events in Proposition 4.6 is a
𝜎-algebra.
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Exercise 92. For the probability distribution 𝑃 ′ from Proposition 4.6 carry out
the following:

(a) Calculate 𝑃 ′𝐴.

(b) For 𝐵 ⊆ 𝐴 calculate 𝑃 ′𝐵.

(c) Show that 𝑃 ′ is a probability distribution.

De�nition 35: conditional probability

Let (𝑆, ℰ , 𝑃 ) be a probability space, and let 𝐴 and 𝐵 be events, where 𝐵 has a
non-zero probability. We say that the conditional probability of 𝐴 given 𝐵
is given as

𝑃 (𝐴 | 𝐵) =
𝑃 (𝐴 ∩𝐵)

𝑃𝐵
.

It is the probability of the event 𝐴 ∩𝐵 in the probability space based on the
restricted sample set 𝐵 given by Proposition 4.6.

Note that if 𝑃𝐵 = 0 then 𝑃 (𝐴 | 𝐵) is not de�ned, no matter what 𝐴 is.

Example 4.34. Continuing Example 4.33 we can see that the probability that
a randomly selected person has blue eyes, given that he or she has fair hair, is

𝑃 (blue eyes | fair hair) =
𝑃 (blue eyes and fair hair)

𝑃 (fair hair) =
.27

.3
= .9.

In other words, if I am presented with a randomly selected person whose hair
I happen to know to be fair then by guessing their eye colour is blue I have a
90% chance of being correct.

On the other hand, if I can see the person has dark hair, then the chance
that they have brown eyes is

𝑃 (brown eyes | dark hair) =
𝑃 (brown eyes and dark hair)

𝑃 (dark hair) =
.56

.7
= .8.

Hence we can use conditional probabilities to take into account additional
information we have been given before making a decision.

Example 4.35. If we revisit Example 4.14 we can see that what we calculated
was the probability that we have the bag 𝐺𝐺 given that we have seen a gold
coin. According to the above

𝑃 (𝐺𝐺 | 𝐺) =
𝑃 (𝐺𝐺 ∩𝐺)

𝑃𝐺
=

1
3
1
2

=
2

3
,

just as we concluded on our �rst encounter of this example.

Example 4.36. In the Monty Hall problem, Example 4.16, we can think of
being shown that there is a booby prize behind one of the doors as adding
information. E�ectively the show master is asking us: What is the probability
that you picked the correct door, knowing that the door I’ve just shown you is
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not the correct door? In other words we are interested in the event that

• the prize is behind the door the player chose under the condition that

• we were shown the booby prize behind another door.

The probability that the player has chosen the correct door on the �rst
move is 1/3. The probability that the player chose the incorrect door on the
�rst move is 2/3, and that is the probability that the prize is hidden behind
the door to which the player can switch.

EExercise 93. Assume that (𝑆, ℰ , 𝑃 ) is a probability space with events 𝐴, 𝐴′

and 𝐵. Further assume that 𝑃𝐵 ̸= 0.

(a) If you know that 𝑃𝐴 ≤ 𝑃𝐴′ what can you say about 𝑃 (𝐴 | 𝐵) and
𝑃 (𝐴′ | 𝐵)?

(b) If you know that 𝐴 ∩𝐵 = ∅ what can you say about 𝑃 (𝐴 | 𝐵)?

(c) If you know that 𝐴 and 𝐵 are independent what can you say about
(𝐴 | 𝐵)?

(d) If you know that 𝐴 ⊆ 𝐵 what can you say about 𝑃 (𝐴 | 𝐵)?

(e) What is 𝑃 (𝐵 | 𝐵)?

(f) How do 𝑃 (𝐴 ∩𝐵) and 𝑃 (𝐴 | 𝐵) compare?

In each case justify your answer.

Exercise 94. Assume you know a family with two children.

(a) If you know the family has at least one girl what is the chance that both
children are girls?

(b) If we know that the family’s �rstborn was a girl, what is the probability
that both children are girls?

You may assume that every birth yields a girl and a boy with equal probability.

CExercise 95. Go back to the game described in Exercise 79 whose probability
space is given in Example 4.25. For this exercise the game remains the same:
I draw two cards from the six available ones, and then I randomly drop one
of them. Below you are asked to answer a number of questions about the
situation either directly after the draw, or after I have dropped a card.

(a) What is the probability that I have at least one ace after the draw?

(b) What is the probability that I have two aces after the draw?

(c) What is the probability that the dropped card is an ace?

(d) What is the probability that I have the ace of spades 𝐴♠ given that I
dropped a queen?
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(e) What is the probability that at the end of the game I have the ace of spades
𝐴♠ given that I dropped an ace?

(f) What is the probability that the dropped card was a queen given that at
the end of the game I have the ace of spades 𝐴♠?

(g) In the original exercise you were asked to calculate the probability that
the dropped card was an ace given that at the end the end of the game I
have the ace of spades 𝐴♠. Express this using conditional probabilities
and recalculate the answer.

(h) Consider the following narrative: After the deal you ask me whether one
of my cards is an ace, and I answer in the a�rmative. You then ask me to
drop a card, and to make sure I keep an ace. What is the probability that
the dropped card is an ace?

Exercise 96. Assume you have a probability space (𝑆, ℰ , 𝑃 ), 𝐴 and 𝐵 are
events, and you know the following:

• 𝑃𝐴 > 0, 𝑃𝐵 > 0, 𝑃 (𝐴 ∩𝐵) > 0;

• 𝑃 (𝐴 | 𝐵) = 𝑃 (𝐵 | 𝐴) and

• 𝑃 (𝐴 ∪𝐵) = 1.

Show that 𝑃𝐴 > 1/2. Why is the condition 𝑃 (𝐴 ∩𝐵) > 0 needed?

Note that it does make sense to apply the same ideas in the case where we
have a probability density function.

Example 4.37. Assume that you have a probability density function describing
an animal’s location. Further assume that the space in question is centred on
the animal’s den. Let’s assume the animal is a fox, and that we know that its
presence is in�uenced by the presence of another animal, say a lynx. To make
the situation simpler let’s say that the fox avoids a circle around the lynx.

If we assume the fox avoids the lynx completely then the fox being in the
white area of its range, given there is a lynx at the centre of the white circle,
has a probability of 0. But that means the ‘mass’ of probability that resided in
the white area has to go somewhere else (since the overall probability that the
fox is somewhere in the area has to be equal to 1)! In the above example we
haven’t got enough information to decide where it goes.
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Further if the situation is more interesting, and the lynx only inhibits, but
does not prevent, the foxes presence, the analysis is more complicated. We
return to this question in Section 4.4.5 where we restrict how we think of
the events that occur, which makes it substantially easier to mathematically
describe the situation.

4.3.3 Equalities for conditional probabilities

From the de�nition of the conditional probability we may derive some useful
equalities.

Recall that the probability of an event conditional on another is de�ned only if
the latter has a probability greater than 0, but the following equality is true even if
the probability is 0:

𝑃 (𝐴 | 𝐵) · 𝑃𝐵 = 𝑃 (𝐴 ∩𝐵),

which is also known as the multiplication law.
Note that the expression on the left hand side is symmetric in 𝐴 and 𝐵 since

𝐴 ∩𝐵 = 𝐵 ∩𝐴 and so we have

𝑃 (𝐴 | 𝐵) · 𝑃𝐵 = 𝑃 (𝐴 ∩𝐵) = 𝑃 (𝐵 | 𝐴) · 𝑃𝐴.

If we like we can use this equality to determine 𝑃 (𝐵 | 𝐴) from 𝑃 (𝐴 | 𝐵),
provided that 𝑃𝐴 ̸= 0. The equality

𝑃 (𝐵 | 𝐴) =
𝑃 (𝐴 | 𝐵) · 𝑃𝐵

𝑃𝐴
,

is known as Bayes’s Theorem. It allows us to compute the probability of 𝐵 given
𝐴, provided we have the probabilities for 𝐴 given 𝐵, 𝐴 and 𝐵.

Example 4.38. Revisiting Example 4.34 we have calculated the probability that
a fair-haired person has blue eyes. What about the probability that a blue-eyed
person has fair hair? Using Bayes’s law we have

𝑃 (fair hair | blue eyes) =
𝑃 (blue eyes | fair hair) · 𝑃 (fair hair)

𝑃 (blue eyes)

=
.9 · .3
.41

≈ 65.9%.

On the other hand the probability that a brown-eyed person has dark hair is

𝑃 (dark hair | brown eyes) =
𝑃 (brown eyes | dark hair) · 𝑃 (dark hair)

𝑃 (brown eyes)

=
.8 · .7
.59

≈ 95%.

There are further equalities based around conditional probabilities that can be
useful in practice. Sometimes the sample space can be split into disjoint events,
where we know something about those.

In particular, given an event 𝐵 we know that 𝐵 and 𝑆 ∖ 𝐵 cover the whole
sample space 𝑆. This means we know that (see Exercise 86)

𝐴 = (𝐴 ∩𝐵) ∪ (𝐴 ∩ (𝑆 ∖𝐵)),
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and this is a disjoint union. By Kolmogorov’s axioms given in De�nition 32 this
implies

𝑃𝐴 = 𝑃 ((𝐴 ∩𝐵) ∪ (𝐴 ∩ (𝑆 ∖𝐵)))

= 𝑃 (𝐴 ∩𝐵) + 𝑃 (𝐴 ∩ (𝑆 ∖𝐵)),

and if we use the multiplication law twice, and the properties for probability
distributions as needed, then we obtain the following rule.

𝑃𝐴 = 𝑃 (𝐴 | 𝐵) · 𝑃𝐵 + 𝑃 (𝐴 | 𝑆 ∖𝐵) · 𝑃 (𝑆 ∖𝐵)

= 𝑃 (𝐴 | 𝐵) · 𝑃𝐵 + 𝑃 (𝐴 | 𝑆 ∖𝐵) · (1 − 𝑃𝐵). (*)

This law is a special case of a more general one discussed below. But even
this restricted version is useful, for example, when there is a given property and
whether or not that property holds has an in�uence on whether a second property
holds.

Note that if we pick 𝐵 so that its probability is either 0 or 1 then the law does
not help us in calculating the probability of 𝐴.

Example 4.39. Assume that motherboards from di�erent suppliers have been
stored in such a way that it is no longer possible to tell which motherboard
came from which supplier.

Further assume that subsequently it has become clear that those from Sup-
plier 1 (𝑆1) have a 5% chance of being faulty, while that chance is 10% for ones
from Supplier 2 (𝑆2). It is known that 70% of supplies in the warehouse came
from Supplier 1, and the remainder from Supplier 2. What is the probability
that a randomly chosen motherboard is defective?

The rule (*) from above tells us that

𝑃 (defect)
= 𝑃 (defect | from S1) · 𝑃 (from S1) + 𝑃 (defect | from S2) · 𝑃 (from S2)

= .05 · .7 + .1 · .3
= .065.

Example 4.40. The following is an important case that applies to diagnostic
testing in those cases where there is some error (certainly medical tests fall
into this category).

Assume a test is being carried out whether some test subject su�ers from
an undesirable condition. From previous experience it is known that

• if the subject su�ers from the condition then with a probability of .99
the test will show this correctly and

• if the subject does not have the condition then with a probability of .95
the test will show this correctly.

We assume that for an arbitrary member of the test population the chance
of su�ering from the condition is .00001. If a subject tests positive for the
condition, what is the probability that they have the condition?
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We would like to calculate

𝑃 (has condition | test positive).

We do not have this data given, but we do have

𝑃 (test pos | has cond) and 𝑃 (has cond).

If we apply Bayes’s theorem we get

𝑃 (has cond | test pos) =
𝑃 (test pos | has cond) · 𝑃 (has cond)

𝑃 (test pos) .

We miss
𝑃 (test pos),

but we may use rule (*) above to calculate

𝑃 (test pos)
= 𝑃 (test pos | has cond) · 𝑃 (has cond)

+ 𝑃 (test pos | doesn’t have cond) · 𝑃 (doesn’t have cond)

= .99 · .00001 + .05 · .99999

≈ .05

So we may calculate the desired probability as

𝑃 (has cond | test pos) =
𝑃 (test pos | has cond) · 𝑃 (has cond)

𝑃 (test pos)

≈ .99 · .00001
.05

≈ .0002.

So if we test something, and in the event it tests positive, there’s a .02% chance
that the subject is ill, would we think this is a good test?

The issue in this example is the extremely low probability that anybody
has the condition at all. If we change the numbers and instead assume that
the chance that an arbitrary member of the test population has the condition
is .1 then we get

𝑃 (test pos)
= 𝑃 (test pos | has cond) · 𝑃 (has cond)

+ 𝑃 (test pos | doesn’t have cond) · 𝑃 (doesn’t have cond)

= .99 · .1 + .05 · .9
= .144

and

𝑃 (has cond | test pos) =
𝑃 (test pos | has cond) · 𝑃 (has cond)

𝑃 (test pos)

=
.99 · .01
.144
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= .06875.

So in this case the chance that a subject that tests positive has the condition is
almost 69%.

In general when you are given the outcome of a test you should ideally
also be given enough data to judge what that information means!

Our rule (*)from above is a special case of a more general law. Instead of
splitting the sample space into two disjoint sets, 𝐵 and 𝑆 ∖𝐵, we split it into more
parts. If 𝐵1, 𝐵2,. . . , 𝐵𝑛 is a collection of pairwise disjoint events such that

𝐴 ⊆ 𝐵1 ∪𝐵2 ∪ · · · ∪𝐵𝑛

then it is the case (see Exercise 86) that

𝐴 = (𝐴 ∩𝐵1) ∪ (𝐴 ∩𝐵2) ∪ · · · ∪ (𝐴 ∩𝐵𝑛),

and by Kolmogorov’s axioms given in De�nition 32 we may use the fact that the
𝐴 ∩ 𝐵𝑖, for 1 ≤ 𝑖 ≤ 𝑛, are pairwise disjoint (again see Exercise 86) to calculate
the probability of 𝐴 as

𝑃𝐴

= 𝑃 (𝐴 ∩𝐵1) + 𝑃 (𝐴 ∩𝐵2) + · · · + 𝑃 (𝐴 ∩𝐵𝑛) Def
= 𝑃 (𝐴 | 𝐵1)𝑃𝐵1 + 𝑃 (𝐴 | 𝐵2)𝑃𝐵2 + · · · + 𝑃 (𝐴 | 𝐵𝑛)𝑃𝐵𝑛 mult law

=
𝑛∑︁

𝑖=1

𝑃 (𝐴 | 𝐵𝑖) · 𝑃𝐵𝑖.

This is sometimes referred to as the law of total probability. The way to think
about it is that if we split the event 𝐴 into disjoint parts of the form

𝐴 ∩𝐵𝑖,

then the probability of 𝐴 can be recovered from the probabilities of the parts,
and the probabilities of these parts can be calculated using the multiplication law.
Splitting a set into pairwise disjoint parts is also known as partitioning the set, and
so we can think of this law as telling us something that the probability of an event
can be recovered from the probabilities of its parts, provided the probabilities for
the parts can be calculated from the given data using the multiplication law.

The law of total probability is used for a procedure known as Bayesian updating
which is discussed in the following section. Examples for the application of this
rule can be found there.

Summary
For events 𝐴 and 𝐵, with 𝑃𝐵 ̸= 0, and pairwise disjoint collections of events
(𝐵𝑖), where 𝑖 ∈ N, we have the following laws concerning total probabilities:

𝑃 (𝐴 | 𝐵) · 𝑃𝐵 = 𝑃 (𝐴 ∩𝐵)

𝑃 (𝐵 | 𝐴) =
𝑃 (𝐴 | 𝐵) · 𝑃𝐵

𝑃𝐴

𝑃𝐴 = 𝑃 (𝐴 | 𝐵) · 𝑃𝐵 + 𝑃 (𝐴 | 𝑆 ∖𝐵) · (1 − 𝑃𝐵).
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𝑃𝐴 =
𝑛∑︁

𝑖=1

𝑃 (𝐴 | 𝐵𝑖) · 𝑃𝐵𝑖 if 𝐴 ⊆
𝑛⋃︁

𝑖=1

𝐵𝑖

In the course unit on data science you will use these laws in order to derive
information from data, in particular in the part about Bayesian statistics.

Example 4.41. You have a friend who likes to occasionally bet on a horse, but
no more than one bet on any given day. From talking to him about his bets,
you have some statistical data. There’s a �ve percent chance that he’s won big
and a twenty-�ve percent chance that he has won moderately, or else he has
lost his stake.

If he has won a signi�cant amount of money there’s a seventy percent
chance that he has gone to the pub to celebrate, and if he’s lost there’s an
eighty percent chance that he has gone to drown his losses, whereas if he’s
won a small amount there’s only a twenty percent chance that you’ll �nd him
in the pub.

If you know he has placed a bet today, and you go to the pub, what’s the
chance that you will �nd him there?

We can use the law of total probability to help with that. We partition
the overall space into your friend having won big, moderately, or not at all.
We know the probabilities for each of these events, and also the conditional
probability that he is in the pub for each of those, so the overall probability is

70

100
· 5

100
+

20

100
· 25

100
+

80

100
· 70

100
=

7

10
· 1

20
+

2

10
· 5

20
+

8

10
· 14
20

=
7 + 10 + 112

200
=

129

200
= .645,

so there’s a 64.5% chance that you’ll �nd him in the pub.

Exercise 97. Let (𝑆, ℰ , 𝑃 ) be a probability space, and assume that 𝐴, 𝐵 and
𝐶 are events. What might we mean when we refer to the probability of 𝐴,
given 𝐵, given 𝐶? Can you �nd a way of expressing that probability? You
may assume that 𝐵, 𝐶 and 𝐵 ∩ 𝐶 all have non-zero probabilities.

Exercise 98. Prove that the law of total probability holds.

CExercise 99. Assume that you have found the following statistical facts about
your favourite football team:

• If they score the �rst goal they win the game with a probability of .7.

• If they score, but the other team scores the �rst goal, your team has a
probability of .25 of winning the game.

• If your team scores then the probability that the game is a draw is .1.

You have further worked out that in all the matches your team has played, in
55% of all games they have scored, and in 40% of those they have scored �rst.
What is the probability that your team wins a randomly picked game?
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After further analysis you have worked out that they lose 80% of all games
in which they haven’t scored. What is the probability that a randomly picked
game your team is involved in is a draw?

Exercise 100. One of your friend claims she has an unfair coin that shows
heads 75% of the time. She gives you a coin, but you can’t tell whether it’s
that one or a fair version.

You toss the coin three times and get 𝐻𝐻𝑇 . What is the probability that
the coin you were given is the unfair one?

Exercise 101. Assume you have an unfair coin that shows heads with probab-
ility 𝑝 ∈ (0, 1]. You toss the coin until heads appears for the �rst time. Show
that the probability that this happens after an even number of tosses is

1− 𝑝

2− 𝑝
.

This is a tricky exercise. It depends on cleverly choosing events, and using the law
of total probability.

Exercise 102. Consider the following situation: Over a channel bits are trans-
mitted. The chance that a bit is correctly received is 𝑝. From observing previous
tra�c it is known that the ratio of bits of value 1 to bits of value 0 is 4 to 3.

If the sequence 011 is observed what it the probability that this was trans-
mitted?

4.3.4 Bayesian updating

In AI it is customary to model the uncertainty regarding a speci�c situation by
keeping probabilities for each of the possible scenarios. As more information
becomes available, for example through carrying out controlled experiments, those
probabilities are updated to better re�ect what is now known about the given
situation. This is a way of implementing machine learning. It is also frequently
used in spam detection software.

In this section we look at how probabilities should be updated.

Example 4.42. Assume you are given a bag with three socks in it. You are told
that every sock in the bag are either red or black. You are asked to guess how
many red socks are in the bag. There are four cases:

{0, 1, 2, 3}.

We model this situation by assigning probabilities to the four. At the begin-
ning we know nothing, and so it makes sense to assign the same probability
to every one of these. Our �rst attempt at modelling the situation is to set the
following probabilities.

Original distribution 0 1 2 3

𝑃 1/4 1/4 1/4 1/4

This expresses the fact that nothing is known at this stage. Assume some-
body reaches into the bag and draws a red sock which they hold up before
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returning it to the bag. No we have learned something we didn’t know before:
there is at least one red sock in the bag. This surely means that we should set
𝑃0 to 0, but is this all we can do?

The idea is that we should update all our probabilities based on this in-
formation. The probability 𝑃 (𝑖) that we have 𝑖 red socks in the bag should
become

𝑃 (𝑖 | 𝑅),

that is, it should be the probability that there are 𝑖 red socks given that the
drawn sock was red. Bayes’s Theorem helps us to calculate this number since
it tells us that

𝑃 (𝑖 | 𝑅) =
𝑃 (𝑅 | 𝑖) · 𝑃 (𝑖)

𝑃 (𝑅)
.

Let us consider the various probabilities that occur in this expression:

• 𝑃 (𝑅 | 𝑖). This is the probability that a red sock is drawn, given the total
number of red socks. This is known, and it is given by the following
table:

𝑖 0 1 2 3

𝑃 (𝑅 | 𝑖) 0 1/3 2/3 1

So if the number of red socks is 𝑖 then the probability of 𝑃 (𝑅 | 𝑖) is 𝑖/3.

• 𝑃 (𝑖). We don’t know how many red socks there are in the bag, but we
are developing an estimated guess for the probability, and that is what
we are going to use. So where this appears we use the probabilities
provided by the �rst table, our original distribution.

• 𝑃 (𝑅). This is the the probability that the �rst sock drawn is red, in-
dependent from how many red socks there are. It is not clear at �rst
sight whether we can calculate that. The trick is to use the law of total
probability, as described below.

We should pause for a moment to think about what the underlying prob-
ability space is here to make sensible use of the law of total probability.

In the table above we have assigned probabilities to the potentially possible
numbers of red socks in the bag. But by drawing a sock from the bag we have
expanded the possible outcomes:

These now have to be considered as combinations:: They consist of the
number of red socks in the bag, plus the outcome of drawing a sock from the
bag. We can think of these as being encoded by

• a number from 0 to 3 (the number of red socks in the bag) and

• a colour, 𝑅 or 𝐵, denoting the outcome of the draw.

In other words, for the moment we should think of the sample space as

{0𝑅, 0𝐵, 1𝑅, 1𝐵, 2𝑅, 2𝐵, 3𝑅, 3𝐵}.
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Note that our original outcome 𝑖 now becomes a shortcut for the event

{𝑖𝑅, 𝑖𝐵}.

If we draw further socks from the bag then each current outcome 𝑖𝐶 will
become an event

{𝑖𝐶𝑅, 𝑖𝐶𝐵}.

Returning to the probability that a red sock is drawn, 𝑃 (𝑅), we can now
see that this is the probability of the event

{0𝑅, 1𝑅, 2𝑅, 3𝑅}.

Since we can split this event into the disjoint union of

{0𝑅} ∪ {1𝑅} ∪ {2𝑅} ∪ {3𝑅},

the law of total probability tells us that

𝑃 (𝑅)

= 𝑃 (𝑅 | 0)𝑃 (0) + 𝑃 (𝑅 | 1)𝑃 (1) + 𝑃 (𝑅 | 2)𝑃 (2) + 𝑃 (𝑅 | 3)𝑃3

= 0 · 1/4 + 1/3 · 1/4 + 2/3 · 1/4 + 3/3 · 1/4

= 1/2.

This should be no surprise: At the moment all the events 0 to 3 are considered
to be equally likely, which gives us a symmetry that makes drawing a red and
drawing a black sock equally likely, based on what we know so far.

We use this information to update our description of the situation.

First update 0 1 2 3

𝑃 0 1/6 2/6 = 1/3 3/6 = 1/2

Note that the probability that there is just one red sock has gone down,
and that the sock are all red has gone up the most.

Assume another sock is drawn, and it is another red sock. This extends
the sample space in that events are now of the form

𝑖𝑅𝑅, 𝑖𝑅𝐵, 𝑖𝐵𝑅, 𝑖𝐵𝐵.

But the way most implementations of the algorithm work is not to look at
it from that point of view. Instead of keeping track of the colour of the socks
drawn so far the assumption is that everything we know about what happened
so far is encoded in the probabilities that describe what we know about the
current situation.

This has the advantage that what we have to do now looks very similar
to what we did on the previous round of updates, and it means that one can
write code that performs Bayesian updating which works for every round.

So again we are seeking to update 𝑃 (𝑖) by setting it to

𝑃 (𝑖 | 𝑅) =
𝑃 (𝑅 | 𝑖) · 𝑃 (𝑖)

𝑃 (𝑅)
,

208



where now the 𝑃 (𝑖) are those calculated in the previous iteration, the �rst
update to the distribution. Note that the value of 𝑃 (𝑅) has changed. It is now

𝑃 (𝑅)

= 𝑃 (𝑅 | 0)𝑃 (0) + 𝑃 (𝑅 | 1)𝑃 (1) + 𝑃 (𝑅 | 2)𝑃 (2) + 𝑃 (𝑅 | 3)𝑃3

= 0 · 0 + 1/3 · 1/6 + 2/3 · 1/3 + 3/3 · 1/2

= 7/9.

The updated probabilities are

Second update 0 1 2 3

𝑃 0 1/14 4/14 9/14.

If instead the second drawn sock had been black then we would have to
update 𝑃 (𝑖) to

𝑃 (𝑖 | 𝐵) =
𝑃 (𝐵 | 𝑖) · 𝑃 (𝑖)

𝑃 (𝐵)
,

where we can read o� the probabilities of drawing a black sock given that
there are a given number of red socks from the table

𝑖 0 1 2 3

𝑃 (𝐵 | 𝑖) 1 2/3 1/3 0

which means that

𝑃 (𝐵 | 𝑖) = (3 − 𝑖)/3,

and based on the probabilities after the �rst update we have

𝑃 (𝐵)

= 𝑃 (𝐵 | 0)𝑃 (0) + 𝑃 (𝐵 | 1)𝑃 (1) + 𝑃 (𝐵 | 2)𝑃 (2) + 𝑃 (𝐵 | 3)𝑃3

= 3/3 · 0 + 2/3 · 1/6 + 1/3 · 1/3 + 0 · 1/2

= 2/9.

leading to updated probabilities of

Alternative second update 0 1 2 3

𝑃 0 1/2 1/2 0.

Note that in this case, the probabilities for both cases that have been
ruled out, 0 and 3, have been set to 0. Based on what we have seen in this
situation, that is a red sock being drawn followed by a black one, it seems
reasonable to have the probabilities for the remaining options to be equal

We can see that Bayesian updating is a way of adjusting our model of the
current situation by updating the probabilities we use to judge how likely we are
to be in any of the given scenarios.

The preceding example is comparatively simple, but there are two issues worth
looking at in the context of this example. The �rst of these is already hinted at in
the example: What is the underlying probability space in a case like this?

The sample space changes with the number of socks drawn—one might think
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of it as evolving over time. At the stage when 𝑛 socks have been drawn from the
bag the outcomes are best described in the form of strings

𝑖𝑋1𝑋2 · · ·𝑋𝑛,

where 𝑖 ∈ {0, 1, 2, 3} and 𝑋𝑖 ∈ {𝑅,𝐵} for 1 ≤ 𝑖 ≤ 𝑛. In other words, each
outcome consists of the number of red socks, and the result of the sock draws
conducted.

As we move from one sample space to the next each outcome

𝑖𝑋1𝑋2 · · ·𝑋𝑛

splits into two new outcomes,

𝑖𝑋1𝑋2 · · ·𝑋𝑛𝑅 and 𝑖𝑋1𝑋2 · · ·𝑋𝑛𝐵.

Note that what is happening here is that the number of red socks in the bag is
�xed for the entirety of the experiment, and so the actual probability distribution
for the �rst probability space (before the �rst sock is drawn) is one which

• assigns 1 to the actual number of socks and

• 0 to all the other potential numbers of red socks under consideration.

If, for example, the number of red socks in the bag is 1 then the actual probability
distribution is

0 1 2 3

𝑃 0 1 0 0.

Under those circumstances, the actual probabilities for the probability space
based on the set of outcomes

{0𝑅, 0𝐵, 1𝑅, 1𝐵, 2𝑅, 2𝐵, 3𝑅, 3𝐵}.

is

0𝑅 0𝐵 1𝑅 1𝐵 2𝑅 2𝐵 3𝑅 3𝐵

𝑃 0 0 1/3 2/3 0 0 0 0.

What Bayesian updating is trying to do is to approximate this actual probability
distribution for the original set of outcomes in a number of steps.

Note that since we do not know what the actual distribution does, it is at
�rst sight surprising that with what little information we have, we can write
a procedure that will succeed in approximating the correct distribution. The
probabilities used for 𝑃𝑖 are quite di�erent from the actual ones given above. But
if we keep conducting our random experiments then our approximated distribution
will almost certainly converge towards the actual distribution—see Fact 13 for a
more precisely worded statement.

The underlying probability space is one where the set of events is the powerset
of the sample space, but many events have the probability 0. We don’t know what
the distribution is, and so we cannot describe that space and use that description
in our procedure.

Note that we are very careful about which events play a role in our calculation.
These are of two kinds:
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• The �rst kind consists of events whose probability we are trying to estimate.
These are the outcomes from the original sample space which expand into
events whose number of elements doubles each time we draw a sock.

• The second kind consists of events whose approximated probability is calcu-
lated by forming a ‘weighted average’ over all the events of the �rst kind. In
other words, we are using all the data from our current approximation to
give an approximated probability for those events. In the example, this is
the probability of drawing a red/black sock. The aim here is to ensure that
we do not introduce any additional uncertainty or bias into our calculations.

The reason Bayesian updating is so useful is that it allows us to approximate
the unknown probability distribution by conducting experiments (or observing
events), with very little information being required for the purpose. At each stage
we treat the present approximating distribution as if it were the actual distribution,
and we are relying on the idea that over time, the available information will tell us
enough to ensure that our approximation gets better.

Note that it will not necessarily get better on every step—whenever a comparat-
ively unlikely event (according to the actual distribution) occurs, our approximation
is going to get worse on the next step! But there is the Law of Large Numbers
Fact 13 which can be thought of as saying that if we keep repeating the same
experiment (drawing a sock from the bag) often enough, then almost certainly we
will see red socks appearing in the correct proportion.

It is worth pointing out that the idea in Bayesian updating relies on us being
able to perform the same experiment more than once—if we don’t put the drawn
sock back into the bag the idea does not work.22

An interesting question is also what we can do if the number of socks in the
bag is unknown. It is possible instead to consider the possible ratios between red
and black socks. The most general case would require us to cope with in�nite sums
(since there are in�nitely many possible ratios), and that is beyond the scope of
this unit. Note also that there is no way of starting with a probability distribution
on all possible ratios that assigns to each ratio the same probability in the way we
did here, see Proposition 4.4.

If the number of possible ratios is restricted, however, then one may employ
the same idea as in the example above, see Exercise 105.

A fun example for Bayesian updating, created by my colleague Gavin Brown,
can be found here: http://www.cs.man.ac.uk/~gbrown/BTTF/.

We present a toy23 version of the following example to help you understand
the more complex considerations in that example.

22Of course, if the drawn sock is not returned then after three draws how many red socks were in
the bag originally.

23What do you call a toy version of a toy version of an example?
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Example 4.43. Assume you have a robot that is in a room of size 𝑙 × 𝑙 metres
that has been split into four quadrants. The robot has a sensor, indicated by
the line, which is known to face west.

𝑁𝑊

𝑆𝑊

𝑁𝐸

𝑆𝐸

𝑁

𝑆

𝑊 𝐸

The robot would like to determine which quadrant it is in. To do so it can
invoke its sensor, which will detect how far it is to the nearest wall. Depending
on whether the measured distance is smaller than 𝑙/2 or larger than 𝑙/2 the
robot can then deduce whether it is in the quarter adjacent to that wall or not.
However, the sensor is inaccurate, and will report a wrong distance 1/4 of the
time.

Assume the robot has some information encapsulated in the following
distribution:

Original distribution 𝑁𝑊 𝑁𝐸 𝑆𝑊 𝑆𝐸

𝑃 0 2/6 3/6 1/6.

Assume the robot conducts a sensor reading and �nds that the distance to
the wall is less than 𝑙/2. We use 𝐶 for ‘close’ to record this outcome (one might
use 𝐹 for ‘far’ if the measured distance is greater than 𝑙/2). We can determine
the probability that it gets this reading for each of the four possibilities:

𝑄 𝑁𝑊 𝑁𝐸 𝑆𝑊 𝑆𝐸

𝑃 (𝐶 | 𝑄) 3/4 1/4 3/4 1/4.

It is close to the wall if it is in one of the two western quadrants, and it gets the
correct reading with probability 3/4. If it is in one of the eastern quadrants
then it shouldn’t get this reading unless the measurement is inaccurate, which
happens with probability 1/4.

Using the law of total probability we may now calculate the probability
that the robot gets this reading as

𝑃 (𝐶) = 𝑃 (𝐶 | 𝑁𝑊 ) · 𝑃 (𝑁𝑊 ) + 𝑃 (𝐶 | 𝑁𝐸) · 𝑃 (𝑁𝐸)

+ 𝑃 (𝐶 | 𝑆𝑊 ) · 𝑃 (𝑆𝑊 ) + 𝑃 (𝐶 | 𝑆𝐸) · 𝑃 (𝑆𝐸)

=
1

4
· 1
6
(3 · 0 + 1 · 2 + 3 · 3 + 1 · 1)
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=
1

4
· 1
6
· 12

=
1

2
.

We may now use Bayes’ Theorem to �nd the formula for the updated
probabilities of our distribution. Assume 𝑄 is one of the for quadrants. Then
we want to update 𝑃𝑄 to

𝑃 (𝐶 | 𝑄) · 𝑃𝑄

𝑃𝐶
,

leading to the following.

Updated distribution 𝑁𝑊 𝑁𝐸 𝑆𝑊 𝑆𝐸

𝑃 0 2/12 9/12 1/12.

We can see that the probability that the robot is in the 𝑆𝑊 quadrant has
gone up substantially—and indeed, given the fact that this was already the
most likely position, the sensor reading further con�rmed that opinion.

The following example is a more complicated version of the previous one but
considerably simpler than the one that used to appear in an AI lab.

Example 4.44. We extend the previous example as follows: It is not known
which way the robot is facing.

The location and orientation of the robot can then be described by a string
of length 3, made up from the symbols {𝑁,𝐸, 𝑆,𝑊}: The �rst two of the
symbols give the quadrant in which the robot is, and the third its orientation.
In the picture in Example 4.43 you can see a robot in state 𝑁𝐸𝑊

The �rst symbol has to be 𝑁 or 𝑆, and the second symbol has to be 𝐸 or
𝑊 , so altogether there are

2 · 2 · 4 = 16

possible states the robot could be in:

𝑁𝐸𝑁 𝑁𝐸𝐸 𝑁𝐸𝑆 𝑁𝐸𝑊
𝑁𝑊𝑁 𝑁𝑊𝐸 𝑁𝑊𝑆 𝑁𝑊𝑊
𝑆𝐸𝑁 𝑆𝐸𝐸 𝑆𝐸𝑆 𝑆𝐸𝑊
𝑆𝑊𝑁 𝑆𝑊𝐸 𝑆𝑊𝑆 𝑆𝑊𝑊

Again we assume that there is a probability distribution regarding which
state the robot is in, either by assigning the same probability to each possible
outcome, or by using partial information the robot has.

The robot is using a probability space where the outcomes are as in the
table above. Since this is a �nite set we can calculate the probability for each
potential event, that is each subset of the sample space, by having a probability
for each of the sixteen cases.

The robot can perform the same sensor readings as before. This means
there is an event of taking a sensor reading, and the outcome can be that the
nearest wall in the direction the robot is facing can be less than 𝑙/2 or more
than 𝑙/2. Hence we should think of the sample space as being given by strings
of length four, where the last symbol tells us whether the wall is close (𝐶) or
far (𝐹 ). The robot, however, is only interested in the events consisting of the
outcome where the last symbol has been ignored.
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So where in the table above we wrote, for example, 𝑁𝐸𝑁 , the underlying
event is really {𝑁𝐸𝑁𝐶,𝑁𝐸𝑁𝐹}. We call these events ‘status events’ because
they tell us the potential status of the robot.

Querying the sensor is another event, which we can think of as getting
the reading 𝐶 , or getting the reading 𝐹 , where the former is given by the set

{𝑁𝐸𝑁𝐶,𝑁𝐸𝐸𝐶,𝑁𝐸𝑆𝐶,𝑁𝐸𝑊𝐶,

𝑁𝑊𝑁𝐶,𝑁𝑊𝐸𝐶,𝑁𝑊𝑆𝐶,𝑁𝑊𝑊𝐶,

𝑆𝐸𝑁𝐶, 𝑆𝐸𝐸𝐶, 𝑆𝐸𝑆𝐶, 𝑆𝐸𝑊𝐶,

𝑆𝑊𝑁𝐶,𝑆𝑊𝐸𝐶,𝑆𝑊𝑆𝐶, 𝑆𝑊𝑊𝐶}.

It is convenient to abbreviate that event with 𝐶 .
Based on what we’ve said above it should be clear that we know something

about the conditional probabilities for sensor readings.
If the position of the robot is 𝑁𝐸𝑁 then the nearest wall is close. The

probability that the sensor reading will be 𝐶 is therefore 3/4 (because the
sensor is correct 75% of the time), and 1/4 that the reading will be 𝐹 .

This means that we know that 𝑃 (𝐶 | 𝑁𝐸𝑁) = 3/4, and similarly we can
determine the conditional probabilities for 𝐶 and 𝐹 given the various other
status events.

How should the robot update information about its status? It should apply
Bayesian updating.

When the robot performs a sensor reading it should update the probability
for all status events to re�ect the result. If the sensor reading returns 𝐹 then
the probability that the robot is in, for example, square 𝑁𝐸𝑁 should reduce,
since if everything works properly the sensor should return 𝐶 in that situation.
The new value for the probability of 𝑁𝐸𝑁 should be

the probability of 𝑁𝐸𝑁 given the outcome 𝐹 .

In other words, we would like to set 𝑃 (𝑁𝐸𝑁) to

𝑃 (𝑁𝐸𝑁 | 𝐹 ).

To calculate that probability we can use Bayes’s Theorem which tells us that

𝑃 (𝑁𝐸𝑁 | 𝐹 ) =
𝑃 (𝐹 | 𝑁𝐸𝑁) · 𝑃 (𝑁𝐸𝑁)

𝑃𝐹
.

We know that 𝑃 (𝐹 | 𝑁𝐸𝑁) is 1/4, and we know the current probability for
𝑁𝐸𝑁 . Hence it only remains to calculate 𝑃𝐹 . For this remember that 𝐹 is a
shortcut for all events of the form ???𝐹 , that is, the last symbol is 𝐹 . We have
a pairwise disjoint collection of events with the property that 𝐹 is a subset of
their union, since

𝐹 = {𝑁𝐸𝑁𝐹} ∪ {𝑁𝐸𝐸𝐹} ∪ {𝑁𝐸𝑆𝐹} ∪ {𝑁𝐸𝑊𝐹}
∪ {𝑁𝑊𝑁𝐹} ∪ {𝑁𝑊𝐸𝐹} ∪ {𝑁𝑊𝑆𝐹} ∪ {𝑁𝑊𝑊𝐹}
∪ {𝑆𝐸𝑁𝐹} ∪ {𝑆𝐸𝐸𝐹} ∪ {𝑆𝐸𝑆𝐹} ∪ {𝑆𝐸𝑊𝐹}
∪ {𝑆𝑊𝑁𝐹} ∪ {𝑆𝑊𝐸𝐹} ∪ {𝑆𝑊𝑆𝐹} ∪ {𝑆𝑊𝑊𝐹}
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=
⋃︁

𝑋∈{𝑁,𝑆},𝑌 ∈{𝐸,𝑊},𝑍∈{𝑁,𝐸,𝑆,𝑊}

{𝑋𝑌 𝑍𝐹}.

Hence we may use the law of total probability to deduce that

𝑃𝐹 =
∑︁

𝑋∈{𝑁,𝑆},𝑌 ∈{𝐸,𝑊},𝑍∈{𝑁,𝐸,𝑆,𝑊}
𝑃 (𝐹 | 𝑋𝑌 𝑍) · 𝑃 (𝑋𝑌 𝑍).

This means we now can calculate the updated probability for 𝑁𝐸𝑁 .
In general, given a status event 𝐿 (for location), the robot should update

the probability for 𝐿 to account for the outcome of querying the sensor, so if
the outcome is 𝐶 , it should set

𝑃 (𝐿) to 𝑃 (𝐿 | 𝐶).

More generally, if we use 𝐷 (for distance) for an element of the set {𝐶,𝐹}
then the robot should set

𝑃 (𝐿) to 𝑃 (𝐿 | 𝐷),

after it has observed the event 𝐷. How do we calculate this? We are given

• the probabilities 𝑃 (𝐿),

• the probabilities 𝑃 (𝐷 | 𝐿) for 𝐷 ∈ {𝐶,𝐹}.

As discussed above Bayes’s Theorem allows us to calculate the desired probab-
ility. It tells us that for each status event 𝐿 we have

𝑃 (𝐿 | 𝐷) =
𝑃 (𝐷 | 𝐿) · 𝑃𝐿

𝑃𝐷
.

Looking at the probabilities that appear on the right hand side of this equality,
we know 𝑃 (𝐷 | 𝐿) from the basic setup (information about the robot’s sensor),
and we have a value for 𝑃𝐿 since that is what the robot is keeping track of.
What about 𝑃𝐷?

Remember that this is a shortcut for all events of the form ???𝐷, so re-
peating what we have done above for the case where 𝐷 is equal to 𝐹 we can
see that we have a pairwise disjoint collection of events with the property that
𝐷 is a subset of their union, since

𝐷 = {𝑁𝐸𝑁𝐷} ∪ {𝑁𝐸𝐸𝐷} ∪ {𝑁𝐸𝑆𝐷} ∪ {𝑁𝐸𝑊𝐷}
∪ {𝑁𝑊𝑁𝐷} ∪ {𝑁𝑊𝐸𝐷} ∪ {𝑁𝑊𝑆𝐷} ∪ {𝑁𝑊𝑊𝐷}
∪ {𝑆𝐸𝑁𝐷} ∪ {𝑆𝐸𝐸𝐷} ∪ {𝑆𝐸𝑆𝐷} ∪ {𝑆𝐸𝑊𝐷}
∪ {𝑆𝑊𝑁𝐷} ∪ {𝑆𝑊𝐸𝐷} ∪ {𝑆𝑊𝑆𝐷} ∪ {𝑆𝑊𝑊𝐷}

=
⋃︁

𝑋∈{𝑁,𝑆},𝑌 ∈{𝐸,𝑊},𝑍∈{𝑁,𝐸,𝑆,𝑊}

{𝑋𝑌 𝑍𝐷}.

Hence we may use the law of total probability to deduce that

𝑃𝐷 =
∑︁

𝑋∈{𝑁,𝑆},𝑌 ∈{𝐸,𝑊},𝑍∈{𝑁,𝐸,𝑆,𝑊}
𝑃 (𝐷 | 𝑋𝑌 𝑍) · 𝑃 (𝑋𝑌 𝑍).
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The expressions we have found here get quite unwieldy. We show how to
adapt that notation to our toy example, and give these equalities using that
notation.

Instead of writing 𝑋𝑌 𝑍 to describe the potential location and orientation
of the robot, let’s call the events in question

𝐿𝑖,𝑗,𝑘,

where

• 𝑖 ∈ {0, 1}, where 0 stands for 𝑁 and 1 for 𝑆,

• 𝑗 ∈ {0, 1}, where 0 stands for 𝐸 and 1 for 𝑊 , and

• 𝑘 ∈ {0, 1, 2, 3}, where 0 stands for 𝑁 , 1 for 𝐸, 2 for 𝑆 and 3 for 𝑊.

Our encoding means that 𝐿0,0,3 is equivalent to the status event 𝑁𝐸𝑆. We
can then write the update rule for the probabilities as follows: After a sensor
reading resulting in 𝐷 (where 𝐷 is still in {𝐶,𝐹}), the probability

𝑃𝐿𝑖,𝑗,𝑘

should be set to

𝑃 (𝐿𝑖,𝑗,𝑘 | 𝐷) =
𝑃 (𝐷 | 𝐿𝑖,𝑗,𝑘) · 𝑃𝐿𝑖,𝑗,𝑘∑︁

𝑖′∈{0,1},𝑗′∈{0,1},𝑘′∈{0,1,2,3} 𝑃 (𝐷 | 𝐿𝑖′,𝑗′,𝑘′) · 𝑃𝐿𝑖′,𝑗′,𝑘′

=
𝑃 (𝐷 | 𝐿𝑖,𝑗,𝑘) · 𝑃𝐿𝑖,𝑗,𝑘∑︁

𝑖′,𝑗′,𝑘′ 𝑃 (𝐷 | 𝐿𝑖′,𝑗′,𝑘′) · 𝑃𝐿𝑖′,𝑗′,𝑘′
,

where the last line is a short-cut for the case when it is understood what values
the variables 𝑖′, 𝑗′ and 𝑘′ are allowed to take.

In general, Bayesian updating is performed in the situation where we have the
following.

• There are a number of possibilities that may apply, say 𝑄1, 𝑄2,. . .𝑄𝑛 which
are events in some probability space such that they are disjoint, and their
union is the whole sample space. It is assumed that there are estimates
𝑃 (𝑄𝑖) for all 1 ≤ 𝑖 ≤ 𝑛.

• There is a way of collecting information about the situation, in such a way
that there are a number of outcomes 𝑠1, 𝑠2, . . . , 𝑠𝑚, and so that each event
𝑄𝑖 can be thought of as

𝑄𝑖 = {𝑄𝑖𝑠1, 𝑄𝑖𝑠2, . . . , 𝑄𝑖𝑠𝑚}.

• When the outcome 𝑠𝑘 is observed then for each 𝑄𝑖 its probability is updated
to

𝑃 (𝑄𝑖 | 𝑠𝑘) =
𝑃 (𝑠𝑘 | 𝑄𝑖) · 𝑃 (𝑄𝑖)

𝑃 (𝑠𝑘)
,

where it is assumed that 𝑃 (𝑠𝑘 | 𝑄𝑖) is known for all combinations, and
where the calculation of 𝑃 (𝑠𝑘) is performed as

𝑃 (𝑠𝑘) =
𝑛∑︁

𝑖=1

𝑃 (𝑠𝑘 | 𝑄𝑖) · 𝑃 (𝑄𝑖),
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giving an overall update of 𝑃 (𝑄𝑖) to

𝑃 (𝑠𝑘 | 𝑄𝑖) · 𝑃 (𝑄𝑖)∑︁𝑛

𝑖=1
𝑃 (𝑠𝑘 | 𝑄𝑖) · 𝑃 (𝑄𝑖)

.

Tip

To perform Bayesian updating you need to perform the following steps:

• Determine the possibilities you want to distinguish between,say 𝑄1, 𝑄2,
to 𝑄𝑛. Initialize the probability distribution 𝑃 by setting all probabilities
to be equal, unless you have further information.

• Determine which random experiment you may conduct to �nd out more
about the given situation. For each outcome 𝑠 of this experiment, and
for each possibility 𝑄 from the �rst step, determine

𝑃 (𝑠 | 𝑄).

You must be able to �nd these numbers from the description of the
situation. These numbers are used on every step of the calculation and
they do not change.

• Assume you carry out the experiment once, and �nd the outcome 𝑠.
Calculate

𝑃𝑠 = 𝑃 (𝑠 | 𝑄1) · 𝑃𝑄1 + 𝑃 (𝑠 | 𝑄2) · 𝑃𝑄2 + · · · + 𝑃 (𝑠 | 𝑄𝑛) · 𝑃𝑄𝑛,

where 𝑄1, 𝑄2, . . .𝑄𝑛 are all the possibilities determined in step 1, the
𝑃 (𝑄𝑖) come from the current estimate of the probability distribution,
and the 𝑃 (𝑠|𝑄𝑖) were determined in step 2. This number has to be
recalculated after each update to the distribution.

• Update the probability distribution 𝑃 by setting

𝑃 (𝑄𝑖) =
𝑃 (𝑠 | 𝑄𝑖) · 𝑃 (𝑄𝑖)

𝑃𝑠
.

where these numbers were determined in the previous steps, and repeat
from step 3.

Example 4.45. In Example 4.43 we have the following:

• The possibilities 𝑄𝑖 we are trying to distinguish between are the four
quadrants.

• The outcomes of the experiment that can be conducted to collect further
information are 𝐶 and 𝐹 .

• One may determine the probability of recording 𝐶 given that the current
position is 𝑄 (and similarly for 𝐹 ). The table for 𝐶 is given in the
example. We give the table for 𝐹 here:
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𝑄 𝑁𝑊 𝑁𝐸 𝑆𝐸 𝑆𝑊

𝑃 (𝐹 | 𝑄) 1/4 3/4 3/4 1/4.

Note that if the robot turns to face in a di�erent direction then these
numbers change.

• One may now compute 𝑃𝐶 (or 𝑃𝐹 ) using the law of total probability.

• It is now possible to update the distribution using Bayes’s Theorem, and
then one repeats from step 3.

Example 4.46. In Example 4.42 we have the following.

• The possibilities 𝑄𝑖 we are trying to distinguish between are the possible
number of red socks, that is 0, 1, 2 or 3, At the start the distribution 𝑃
assigns to each outcome the probability 1/4.

• The outcomes of the experiment we can conduct repeatedly are the two
possible colour of the sock drawn, 𝑅 and 𝐵.

• The probability of drawing a red sock if the total number of red socks is
𝑖 as 𝑖/3 (and the probability of drawing a black sock as 1 − 𝑖/3).

• One may now calculate 𝑃 (𝑅) using the law of total probability.

• One may now update the distribution 𝑃 using Bayes’s Theorem, and
then repeat from step 3.

Example 4.47. In Example 4.44 we had the following.

• The possibilities 𝑄𝑖 we are trying to distinguish between are the various
quadrants and the direction in which the robot’s sensor is facing. We
assume there is a given probability distribution 𝑃 at the start.

• The outcomes of the experiment we could conduct repeatedly are the
two possible outcomes of using the sensor, 𝐶 and 𝐹 .

• We determine the probability of getting 𝐶 (or 𝐹 ) for each possibility
𝑄𝑖 based on the probability of the sensor working accurately, and the
currently assumed situation 𝑄𝑖 using the law of total probability.

• Using Bayes’s Theorem one may use this data to update the probability
distribution.

Every time we conduct an experiment we update our estimate of the prob-
ability distribution underlying the situation. In Bayesian statistics the following
terminology is used:

• Let 𝜑 describe parameters whose probability distribution we are aiming to
approximate.

• Let 𝛼 describe evidence that we may collect (for example by carrying out a
random experiment).
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• Let 𝑎 describe a particular outcome of that random experiment.

• Let 𝑃𝜑 be the probability distribution for 𝜑, where we use the current best
approximation.

𝑃 (𝜑 | 𝑎) =
𝑃 (𝑎 | 𝜑) · 𝑃 (𝜑)

𝑃𝑎
posterior

priorlikelihood

evidence

The viewpoint there is that

• The posterior is the updated distribution based on what we know so far, or
more generally in Bayesian statistics it describes what we want to know. It’s
called ‘posterior’ because it is what we know after we have collected (more)
data.

• The prior describes our belief before we acquire more data/evidence.

• The likelihood is the probability that 𝑎 happens given the parameters in 𝜑.

• The evidence, also referred to as normalization can be hard to �nd—in
Bayesian updating it’s the best approximation to the probability that the
observed event does happen.

You will meet these ideas once again in the data science unit in Semester 2.

CExercise 103. Imagine your friend claims to have an unfair coin, which they
give to you. From the rather vague description they gave you you aren’t sure
whether the coin is fair, or whether it gives heads with probability 3/4, or
whether it gives tails with that probability. You want to conduct Bayesian
updating to work out which it is.

You are going to mimic having the coin as follows: Take two coins. Every
time you would toss our �ctitious coin, toss both your coins. If at least one of
them shows 𝐻 , assume the result was 𝐻 , else assume it was 𝑇 .

The above procedure allows you to mimic an unfair coin using two fair ones.
Follow the instructions to carry out three coin tosses and the corresponding
Bayesian updating steps. Hint: Read the text carefully: How many possibilities
for the coin are there that you are trying to distinguish between?

Note that I expect you to really use a random device, and therefore for
di�erent students to have di�erent sequences of coin tosses!

Exercise 104. Assume a friend is trying to send you a message which consists
of ‘yes’ or ‘no’. He’s a bit mischievous, and what he is actually going to do is
tell three of your friends something which he claims you can decode into a
‘yes’ or a ‘no’ each time.

You are very sceptical about whether you will be able to extract the correct
message from your friends, and you only give yourself a 60% chance to do so
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correctly in each case.
Carry out Bayesian updating to determine your friend’s answer. Assume

that the messages you extract from your three friends are ‘yes’, ‘yes’ and ‘no’
in that order.

What do you think of the �nal distribution? How con�dent are you that
you have decoded the message correctly?

Exercise 105. Consider Example 4.42. Instead of knowing the total number of
socks, all you know is that the ratio of red to black socks is an element of the
following set:

{1/4, 1/3, 1/2, 2/3}.

What is the Bayesian update rule for this situation? Assume a black sock is
drawn, followed by a red one. Starting from a probability distribution that
assigns the value of 1/4 to each ratio, give the updated probabilities for each
of the given ratios after each draw.

Optional Exercise 16. Assume you are asked to perform Bayesian updating
in a case where there are only two possible options, and where information is
gained by performing an experiment which also has two possible outcomes.

The resulting case can be described using three parameters:

• The probability 𝑝 that we have assigned to the �rst case’

• the probability 𝑞 that tells us how likely Outcome 1 is if we are in Case 1
and

• the probability 𝑟 that tells us how likely Outcome 1 is if we are in Case 2.

Write down the rule for a Bayesian update in this situation. Can you say
anything about subsequent calculations?

4.4 Random variables

Often when we study situations involving probabilities we want to carry out
further calculations. For example, in complexity theory (see COMP11212 and
COMP26120) we are frequently looking for the ‘average case’—that is, we would
like to know what happens ‘on average’. By this one typically means taking all the
possible cases, each weighted by its relative frequency (not all cases my be equally
frequent), and forming the average over all those. For examples of what is meant
by an ‘average case’ for two search algorithms see Examples 4.95 to 4.98.

But in order to carry out these operations we have to be in a situation where
we can calculate with the values that occur. If we look at some of the examples
studied then we can see that some of them naturally lend themselves to calculating
averages (it is possible, for example, to ask for the average number of eyes shown
when throwing two dice), and some don’t (there’s no average colour of a sock
drawn from one of our bags of socks).

This is why people often design questionnaires by giving their respondents a
scale to choose from. The university does this as well: When you will be asked to
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�ll in course unit questionnaires for all your units, then part of what you are asked
to do is to assign numbers. ‘On a scale of 1 to 5, how interesting did you �nd this
unit.’ This allows the university to form averages. But what does it mean that the
average interest level of COMP11120 was 3.65 (value from 2014/15)?24 Certainly
every time you assign numbers so that you may form averages, you should think
about what those numbers are supposed to mean, and whether people who are
asked to give you numbers are likely to understand the same as you, and as each
other, by those numbers.

Nonetheless, forming averages can be a very useful action to perform, and
that is why there is a name given to functions that turn the outcomes from some
probability spaces into numbers. We see below that this does not merely allow
us to calculate averages but also to describe particular events without knowing
anything about the events or outcomes from the underlying probability space.

4.4.1 Random variables de�ned

Random variables are functions that translate the elements of a sample space, that
is the possible outcomes from a random experiment, to real numbers. But this
translation has to happen in such a way that we know what the probabilities for
the resulting numbers are, and that requires a technical de�nition. In order to
formulate that we have to de�ne an additional concept.

De�nition 36: measurable function

Let (𝑆, ℰ , 𝑃 ) be a probability space. The function

𝑓 : 𝑆 R

is measurable if and only if for all elements 𝑟 of R the sets

• {𝑠 ∈ 𝑆 | 𝑓𝑠 ≤ 𝑟} and

• {𝑠 ∈ 𝑆 | 𝑟 ≤ 𝑓𝑠}

are events, that is, elements of ℰ .

Note that in the case where ℰ = 𝒫𝑆, as is often the case for applications, every
function from 𝑆 to R is measurable.

De�nition 37: random variable

Given a probability space (𝑆, ℰ , 𝑃 ) a random variable over that space is a
measurable function from 𝑆 to R.

Example 4.48. When we toss a coin, but record the outcomes as numbers, say
0 for heads and 1 for tails, you have a random variable.

Example 4.49. If you have a population whose height distribution you know

24On these questionnaires they try to make the numbers slightly more meaningful by assigning
5 to ‘agree’ and 1 to ‘disagree’, but when does one move from one grade to another? Is it really
meaningful to average those out?
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(compare Example 4.59) you may think of randomly picking a person and
recording their height as a random variable.

Example 4.50. When you’re playing a game of chance, and you assign a value
of −1 to losing, 0 to a draw and 1 to a win, you have a random variable. You
could also give 3 for a win, 1 for a draw, and 0 for a loss, and that would also
result in a random variable.

Note that it is often tempting to de�ne a random variable as a
function from a sample set 𝑆 to a subset of R. Strictly speaking
this does not satisfy the above de�nition. One should instead
make the target set of the random variable R and observe that
its range is a proper subset of R. If one changes the de�nition
above then many of the results and de�nitions below become
more complicated. Theorem 4.11 gives a technical result that
argues that we could, instead of looking at all of R, restrict
ourselves to the range of the function from the start.

Note that whenever we assign numbers to outcomes, and then carry out calcu-
lations with those numbers, we have to worry about whether our interpretation
of those numbers makes sense. In game theory it is customary to use any items
(money or points) won or lost to encode the outcome of a game in a number, but
that may not be a faithful description of what a win or loss means to the individual
playing.

Whenever you have a probability space (𝑆, ℰ , 𝑃 ) such that the set of outcomes
𝑆 is a subset of R then you have a probability variable, provided you can calculate
the probabilities of all sets of the form

𝑆 ∩ [𝑟,∞) and 𝑆 ∩ (−∞, 𝑟],

where 𝑟 ∈ R.
For some random experiment one would naturally record the outcome as a

number, and that gives a random variable, but in other cases one has to translate
the outcome to a real number �rst. See the �rst example given above, but also
more interestingly see the following example.

Example 4.51. If you are plotting the position of a butter�y in the form of two
coordinates, (𝑥, 𝑦), then to get a random variable you have to turn those two
numbers into one. You could, for example, compute the distance of the

butter�y from a �xed point, and that could be considered a random variable.
Technically this amounts to doing the following. We have a probability

space with underlying sample set R×R, and a set of events based on the Borel
𝜎-algebra, where all sets of the form

[𝑟, 𝑟′] × [𝑠, 𝑠′],

for 𝑟, 𝑟′, 𝑠, 𝑠′ ∈ R are events. We assume that there is a probability density
function describing the probability that the butter�y is at point a given point
(𝑥, 𝑦). One suitable such function is

R× R R+

(𝑥, 𝑦)
𝑒−1/2(𝑥2+𝑦2)

2𝜋
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−2

−1

0

1

2 −2

−1

0

1

2

0

0.05

𝑥 𝑦

0

0.02

0.04

0.06

To create a random variable we would like to apply the function

R× R R

(𝑥, 𝑦)
√︀
𝑥2 + 𝑦2

to the location, which gives us the butter�y’s distance from some chosen
point that here is assumed to be (0, 0). We have taken two-dimensional data
and turned it into a random variable, which requires the restriction to just
one dimension. However, calculating the probability density function of this
random variable is non-trivial.

Alternatively you could measure the distance relative to a north/south
(or other) axis. For example, you could project your position onto its 𝑥-axis,
and then you could calculate the probability density function of the resulting
random variable as

R R

𝑥

∫︁ ∞

−∞

𝑒−1/2(𝑥2+𝑦2)

2𝜋
𝑑𝑦.

Example 4.52. Consider Example 4.22 where we have given several probability
spaces one might use to describe throwing two dice. If you pick as the space
the one with outcomes

{(𝑖, 𝑗) | 𝑖, 𝑗 ∈ {1, 2, 3, 4, 5, 6}},

then the function which maps the pair (𝑖, 𝑗) from that set to the sum of eyes
shown

𝑖 + 𝑗,
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(viewed as an element of R) is a random variable25

𝑋 : {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6} R

(𝑖, 𝑗) 𝑖 + 𝑗.

Whenever we have a random variable we get an induced probability distri-
bution. In order to calculate the probability that 𝑋 takes the value 4 we have
to calculate26

𝑃 ({(𝑖, 𝑗) ∈ {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6} | 𝑋(𝑖, 𝑗) = 4})

= 𝑃 ({(1, 3), (2, 2), (3, 1)})

= 𝑃 ({(1, 3)}) + 𝑃 ({(2, 2)}) + 𝑃 ({(3, 1)})

=
1

36
+

1

36
+

1

36

=
3

36
=

1

12
.

This is usually written in the shortcut notation of

𝑃 (𝑋 = 4).

But note that since we have translated our outcomes into real numbers we
may also ask, for example, what the following probabilities are:

𝑃 (𝑋 ≤ 4)

𝑃 (𝑋 ≤ −4)

𝑃 (𝑋 ≤ 5.5)

𝑃 (𝑋 ≥ 10)

The events described here do not look as if they have anything to do with
the original experiment of rolling two dice, but since we have translated the
outcome from that experiment into real numbers we may construct such
events.

These probabilities can be calculated as follows:

• 𝑃 (𝑋 ≤ 4). This can be calculated by splitting it into the possible
outcomes satisfying that property.

𝑃 (𝑋 ≤ 4) = 𝑃 ((𝑋 = 2) ∪ (𝑋 = 3) ∪ (𝑋 = 4))

= 𝑃 (𝑋 = 2) + 𝑃 (𝑋 = 3) + 𝑃 (𝑋 = 4)

=
1

36
+

2

36
+

3

36
=

1

6
.

• 𝑃 (𝑋 ≤ −4). Clearly there are no possible outcomes which satisfy this
condition, so this probability is 0.

• 𝑃 (𝑋 ≤ 5.5). This works similar to the �rst calculation.

𝑃 (𝑋 ≤ 5.5)
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= 𝑃 ((𝑋 = 2) ∪ (𝑋 = 3) ∪ (𝑋 = 4) ∪ (𝑋 = 5))

= 𝑃 (𝑋 = 2) + 𝑃 (𝑋 = 3) + 𝑃 (𝑋 = 4) + 𝑃 (𝑋 = 5)

=
1

36
+

2

36
+

3

36
+

4

36
=

10

36
=

5

18
.

• 𝑃 (𝑋 ≥ 10). This is similar to the previous example.

𝑃 (𝑋 ≥ 10) = 𝑃 (𝑋 = 10) + 𝑃 (𝑋 = 11) + 𝑃 (𝑋 = 12)

=
3 + 2 + 1

36
=

1

6
.

Below we describe how this works for arbitrary random variables.

In general given a random variable 𝑋 on a sample space (𝑆, ℰ , 𝑃 ), and real
numbers 𝑟 and 𝑟′, we de�ne

• 𝑃 (𝑟 ≤ 𝑋 ≤ 𝑟′) = 𝑃{𝑠 ∈ 𝑆 | 𝑟 ≤ 𝑋(𝑠) ≤ 𝑟′}

• 𝑃 (𝑟 ≤ 𝑋) = 𝑃{𝑠 ∈ 𝑆 | 𝑟 ≤ 𝑋(𝑠)},
𝑃 (𝑟 < 𝑋) = 𝑃{𝑠 ∈ 𝑆 | 𝑟 < 𝑋(𝑠)},

• 𝑃 (𝑋 ≤ 𝑟′) = 𝑃{𝑠 ∈ 𝑆 | 𝑋(𝑠) ≤ 𝑟′},
𝑃 (𝑋 < 𝑟) = 𝑃{𝑠 ∈ 𝑆 | 𝑋(𝑠) < 𝑟}..

The general case is given by the following proposition.

Proposition 4.7

Let 𝑋 be a random variable over the probability space (𝑆, ℰ , 𝑃 ). The probab-
ility distribution of 𝑋 is determined by the fact that, for any real interval 𝐼 we
have

𝑃 (𝑋 ∈ 𝐼) = 𝑃{𝑠 ∈ 𝑆 | 𝑋(𝑠) ∈ 𝐼}.

In other words, if we are given an interval in R then in order to determine
its probability we ask for the probability of the event given by all those elements
of the original sample space which are mapped into that interval. Note that the
sets that appear on the right hand side of the equal sign appear in the de�nition
of measurability. This ensures that in the original probability space we have a
probability for the set in question.

De�nition 38: discrete/continuous random variable

A random variable 𝑋 is discrete if and only if its range is a countable27 subset
of R. A random variable which is not discrete is continuous.

While there is a mathematical theory that allows the discrete case to be treated
at the same time as the continuous one, covering the mathematics that allows
this is beyond the scope of this course unit. In what follows the discrete case is
frequently treated separately. In the text, and in some of the results given, some
guidance is given on how the discrete case may be seen as a special case of the
continuous one.

25Random variables are typically named using capital letters from the end of the alphabet.
26You may want to return to Example 4.22 for an explanation.
27What this means formally is discussed in Section 5.2. Every �nite set is countable, and you may

think of countable sets as ones that can be described in the form {𝑠𝑖 | 𝑖 ∈ N}.
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Note in particular that if a random variable 𝑋 has a �nite range. then Proposi-
tion 4.7 indicates that we can treat it in much the same way as we did a probability
space with a �nite sample set where every set of the form {𝑠}, for 𝑠 ∈ 𝑆, is an
event.

Example 4.53. If we look at Example 4.48 it is clear that there are only two
possible outcomes of the given random variable 𝑋 , namely 0 and 1, and that
each of those occurs with probability 1/2.

This means that when we calculate the probability

𝑃 (𝑋 ≤ 𝑟),

then this is completely determined by which of 0 and 1 is in the given interval.
In particular we have

𝑃 (𝑋 ≤ 𝑟) =

⎧⎪⎨⎪⎩
0 𝑟 < 0

1/2 0 ≤ 𝑟 < 1

1 else.

Note that every discrete random variable has a range of the form

{𝑟𝑖 ∈ R | 𝑖 ∈ N},

that is a subset of R that is indexed by the natural numbers. For such a random
variable, say 𝑋 , further note that

𝑋 = 𝑟𝑖, for 𝑖 ∈ N

gives us a collection of pairwise disjoint events which collectively have probability 1,
as you are asked to show in the following exercise.

Exercise 106. Let 𝑋 be a discrete random variable with range

{𝑟𝑖 ∈ R | 𝑖 ∈ N}.

Show that ∑︁
𝑖∈N

𝑃 (𝑋 = 𝑟𝑖) = 1.

Example 4.54. Assume we are conducting a random experiment that consists
of tossing a coin three times. In order to record the possible outcomes we can
use strings of length three which give the outcomes for each toss, resulting in
the sample space

𝑆 = {𝐻𝐻𝐻,𝐻𝐻𝑇,𝐻𝑇𝐻,𝐻𝑇𝑇, 𝑇𝐻𝐻, 𝑇𝐻𝑇, 𝑇𝑇𝐻, 𝑇𝑇𝑇}.

This means we can describe the elements of 𝑆 via

𝑆 = {𝑠1𝑠2𝑠3 | 𝑠1, 𝑠2, 𝑠3 ∈ {𝐻,𝑇}.}.

Each of these occurs with probability 1/8. We can turn this experiment
into a random variable by converting each outcome into into a number. Here
we pick the number of heads shown.
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The resulting random variable, say 𝑋 , has the following range:

{0, 1, 2, 3}.

since the number of heads may range from 0 to 3. In order to �nd the probability
of each of the possible results we have to work out which events are mapped
to which number. Recall that a random variable is a function, and our function
is given by

{𝑆} R
𝑠1𝑠2𝑠3 no of 𝐻 in 𝑠1𝑠2𝑠3.

The probability for each possible value for 𝑋 is given by adding all the
probabilities of outcomes from the original space which are mapped to it. For
example,

𝑃 (𝑋 = 2) = 𝑃{𝑠1𝑠2𝑠3 ∈ 𝑆 | no of 𝐻 is 2}
= 𝑃{𝐻𝐻𝑇,𝐻𝑇𝐻, 𝑇𝐻𝐻}

=
1

8
+

1

8
+

1

8

=
3

8
.

We can conveniently give these probabilities in a table. To help illustrate
how those probabilities come about we also give the outcomes from the original
space in the column of the number they are mapped to by 𝑋 .

𝐻𝑇𝑇 𝐻𝐻𝑇
𝑇𝑇𝑇 𝑇𝐻𝑇 𝐻𝑇𝐻 𝐻𝐻𝐻

𝑇𝑇𝐻 𝑇𝐻𝐻

0 1 2 3
1/8 3/8 3/8 1/8

This is the probability mass function for the random variable, which is formally
de�ned below. We can now ask questions such as what is the probability that
the number of heads is at most 2, or what is the average number of heads
tossed.

Exercise 107. Consider the experiment that consists of tossing a fair coin four
times. Consider the random variable 𝑋 which records the number of heads
thrown. Calculate the following probabilities.

(a) 𝑃 (𝑋 = 2),

(b) 𝑃 (𝑋 ≤ 3),

(c) 𝑃 (𝑋 ≤ 𝜋),

(d) 𝑃 (𝑋 ≥ 3),

(e) 𝑃 (𝑋 ≥ 10),

(f) 𝑃 (𝑋 < −1).
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(g) 𝑃 ((𝑋 = 1) ∪ (𝑋 = 3)).

(h) 𝑃 (𝑋 is even). Note that this only makes sense because we know the range
of 𝑋 is a subset of N—it does not make sense to talk of evenness for numbers
in R.

4.4.2 A technical discussion

What follows is a fairly technical discussion regarding why we can de�ne probabil-
ities in the way outlined above. The material from this subsection is not examinable,
and you should feel free to skip it when reading the notes.

Optional Exercise 17. Show that if (𝑆, ℰ , 𝑃 ) is a probability space, and if we
have a random variable 𝑋 : 𝑆 R then given 𝑟 and 𝑟′ in R we have that

(𝑟 ≤ 𝑋 ≤ 𝑟′)

is an event. This means that 𝑃 ((𝑟 ≤ 𝑋 ≤ 𝑟′) is always de�ned.

Proposition 4.8

Let (𝑆, ℰ , 𝑃 ) be a probability space, and let 𝑓 : 𝑆 R be a function. If 𝑓 is
measurable (and so a random variable) then for every 𝐵 in the Borel 𝜎-algebra
ℰ𝐵 on R we have that

{𝑠 ∈ 𝑆 | 𝑓𝑠 ∈ 𝐵}

is an event, that is an element of ℰ .

Proposition 4.9

Let (𝑆, ℰ , 𝑃 ) be a probability space, and let be 𝑓 : 𝑆 R a measurable func-
tion. For 𝑖 ∈ N let 𝐼𝑖 be an interval in R such that the the 𝐼𝑖 are pairwise
disjoint. If we de�ne, for 𝑖 ∈ N,

𝐸𝑖 = {𝑠 ∈ 𝑆 | 𝑓𝑠 ∈ 𝐼𝑖},

then the 𝐸𝑖 are pairwise disjoint and so

𝑃 (
⋃︁
𝑖∈N

𝐼𝑖) = 𝑃 (
⋃︁
𝑖∈N

𝐸𝑖)

=
∑︁
𝑖∈N

𝑃𝐸𝑖

=
∑︁
𝑖∈N

𝑃𝐼𝑖.

As a consequence we get the following result:

Theorem 4.10

Let (𝑆, ℰ , 𝑃 ) be a probability space, and 𝑓 : 𝑆 R a measurable function.
Then a probability space is given by R, the Borel 𝜎-algebra ℰ𝐵 , and the prob-
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ability distribution

ℰ𝐵 [0, 1]

𝐸 𝑃 ({𝑠 ∈ 𝑆 | 𝑓𝑠 ∈ 𝐸}).

Example 4.55. Looking back at Example 4.53 we can see how we have e�ect-
ively de�ned a probability distribution for R. It can be described as follows:
Given an element 𝐸 of the Borel 𝜎-algebra ℰ𝐵 the probability of 𝐸 is given as

𝑃𝐸 =

⎧⎪⎨⎪⎩
0 0, 1 /∈ 𝐸

1/2 exactly one of 0, 1 in 𝐸

1 else.

In general, if a random variable 𝑋 has a �nite range,28 say

{𝑟1, 𝑟2, . . . , 𝑟𝑛} in R

then given an interval 𝐼 we have that

𝑃 (𝑋 ∈ 𝐼) = 𝑃 (𝐼 ∩ {𝑟1, 𝑟2, . . . , 𝑟𝑛}) =
∑︁

𝑖∈{1,2,...,𝑛},𝑟𝑖∈𝐼
𝑃 (𝑋 = 𝑟𝑖).

In other words we add up all the probabilities for those elements 𝑟𝑖 of the range of
𝑋 which are elements of 𝐼 .

Alternatively we may restrict ourselves to the range of the underlying measur-
able function to de�ne a probability space—in this way we remove those parts of
R which are assigned a probability of 0.

Theorem 4.11

Let (𝑆, ℰ , 𝑃 ) be a probability space, and 𝑓 : 𝑆 R a measurable function.
Then a probability space is given by the range 𝑇 of 𝑓 , the 𝜎-algebra

{𝐸 ∩ 𝑇 | 𝐸 ∈ ℰ𝐵},

and the probability distribution

{𝐸 ∩ 𝑇 | 𝐸 ∈ ℰ𝐵} [0, 1]

𝐵 𝑃 ({𝑠 ∈ 𝑆 | 𝑓𝑠 ∈ 𝐵}).

Example 4.56. If we once again look at Example 4.53 then the range of the
random variable is {0, 1}. The set of events given in the previous theorem is
then merely the powerset of this set. The probability distribution is given by
the following assignment:

𝑃∅ = 0

28This result can be extended to the case where 𝑋 has a range that can be expressed as {𝑟𝑖 | 𝑖 ∈
N}.
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𝑃{0} = 𝑃{1} =
1

2

𝑃{0, 1} = 1.

Tip 1

Theorem 4.11 e�ectively tells us that it is okay to de�ne a random variable as
a function from some sample set 𝑆 to a subset of R. This can be useful when
describing speci�c situations. Below we point out when we do this the �rst
few times and then we do this tacitly.

4.4.3 Calculating probabilities for random variables

Above we de�ne probabilities for random variables. You can think of them as
translating the original outcomes into numbers in such a way that we can look
at the probabilities of subsets of R instead of events from the original space. The
previous section establishes that we can take the original probability distribution
and transfer it to the random variable, which gives another probability distribu-
tion, this time over the real numbers, which means that all the usual results (see
Sections 4.2.5 and 4.3.3) hold.

One of the advantages of considering random variables is that it allows us to
compute probabilities with very little information, in particular without knowing
too much about the original probability space.

Example 4.57. Assume that 𝑋 is a random variable and that we know that

• 𝑃 (𝑋 = 1) = 1/2,

• 𝑃 (𝑋 = 2) = 1/4, and

• 𝑃 (𝑋 ≥ 2) = 1/2.

This is enough to allow us to calculate, for example

• 𝑃 (𝑋 = 0) = 0,

• 𝑃 (𝑋 ≤ .5) = 0,

• 𝑃 (𝑋 > 2) = 1/4.

We can see from the given information that the total probability of 1 is distrib-
uted in the following way:

• 1/2 of the available ‘probability mass’ goes to 1;

• 1/4 of it goes to 2;

• the remaining 1/4 goes to the interval (2,∞), and we cannot tell more
precisely where it goes from the given data.
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In particular this means that none of the probability goes to 0, or to any number
below 1, which explains the �rst two claims. We can also derive the �nal result
more formally by noting that

(𝑋 ≥ 2) = (𝑋 = 2) ∪ (𝑋 > 2)

and that the two sets whose union we form are disjoint, which means we have

1/2 = 𝑃 (𝑋 ≥ 2) = 𝑃 (𝑋 = 2) + 𝑃 (𝑋 > 2) = 1/4 + 𝑃 (𝑋 > 2),

from which we may deduce the last result.
Note in particular that we do not know whether 𝑋 is a discrete or a

continuous random variable! The fact that it has non-zero probability for
being equal to 1 and 2 might suggest it is the former, but it could still be the
case that the behaviour is continuous for values beyond 2.

See Example 4.71 for a way of picturing some of this information.

Example 4.58. Recall Example 4.54, where we look at a random variable 𝑋
given by the number of heads recorded when tossing a coin three times.

For this random variable we can see, for example, that

𝑃 (𝑋 > 2) = 𝑃 (𝑋 = 3) =
1

8
,

of that
𝑃 (𝑋 ≤ .5) = 𝑃 (𝑋 = 0) =

1

8
,

and that
𝑃 (𝑋 ∈ (−∞,−2] ∪ [5,∞)) = 0.

Because we know that we may consider the outcomes as real numbers we can write
down (and calculate) the probability for the random variable taking its value in any
interval, for example. This is quite useful, and in Section 4.4.4 we demonstrate that
we can also use this to graphically represent the given probability distribution.

Exercise 108. Assume you have a probability space with outcomes

{𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5},

and that the following hold:

• The outcomes 𝑠1 and 𝑠2 are equally likely.

• The outcomes 𝑠3, 𝑠4 and 𝑠5 are equally likely.

• The outcomes of the �rst kind are three times as likely as the outcomes
of the second kind.
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A random variable is given by the function 𝑋 de�ned by

𝑋 : {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5} R

𝑥

⎧⎪⎨⎪⎩
1 𝑥 = 𝑠1 or 𝑥 = 𝑠2

3 𝑥 = 𝑠3

5 else.

Compute the following:

(a) 𝑃 (𝑋 ≤ 1.5),

(b) 𝑃 (𝑋 ≥ 3),

(c) 𝑃 (2.5 ≤ 𝑋 ≤ 3.2),

(d) 𝑃 (𝑋 ≥ 6).

Sometimes we want to take a random variable, which is a function that maps
outcomes to real numbers), and apply another function to it so as to translate the
outcomes.

Example 4.59. Assume that I’ve been given the measures in height of a group
of people, where the measures have been carried out with great precision. If I
have the measures for everybody in the population I can give the probability
distribution of the random experiment given by picking a person (randomly)
from the group. One might want to treat this like a continuous random variable
if a lot of people are involved.

But maybe for my purposes I only care about how many people I have
in much loser categories. Assume that I’m only interested in the following
categories:

• People who are at most than 140 cm tall or

• people who are from 140 to 160 cm tall or

• people who are from 160 to 180 cm tall and

• people who are taller than 180 cm.29

I would like to count how many people out of the group belong to each category
to construct a probability space which allows me to work out the probabilities
that a randomly chosen person from that group falls into a particular category.

I may create another random variable by composing 𝑋 with the function
𝑓 : R R given by the following assignment.

𝑥

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 𝑥 ≤ 140

2 140 < 𝑥 ≤ 160

3 160 < 𝑥 ≤ 180

4 180 < 𝑥.
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I can then compute the probability for the new outcomes, given by the range
of the composite 𝑓 ∘𝑋 , by counting how many people fall into each category
and dividing by the total population count—which gives the same result as
taking the original probability distribution for 𝑋 and using 𝑓 to translate it to
the new outcomes.

We can see from the preceding example that it can be useful to take a given
random variable and use a function on its possible values (here mapping actual
heights to representative of some height categories) to get a di�erent (but related)
random variable that better expresses whatever we are concerned with.

Example 4.60. In the robot Example 4.44) one might want to consider the
orientation of the robot and view it as an angle from 0 to 360 degrees. The
orientation is a continuously varying entity, but for the purpose of performing
calculations one might split it into a �nite number of parts of equal size,
creating a discretely valued random variable, which makes it easier to carry
out calculations (Bayesian updating in that case).

The following result tells us that composing with a function R R always
gives us another random variable, provided that the function is well behaved.

Proposition 4.12
If 𝑋 is a random variable and 𝑓 : R R is a measurable function then

𝑓 ∘𝑋

is a random variable.
For the random variable 𝑓 ∘𝑋 and an interval 𝐼 in R we have

𝑃 (𝑓 ∘𝑋 ∈ 𝐼) = 𝑃{𝑟 ∈ R | 𝑓𝑟 ∈ 𝐼}.

Optional Exercise 18. Show that if𝑋 is a measurable function from some prob-
ability space to R, and if 𝑓 : R [𝑟, 𝑟′] is measurable for the Borel probability
space on the interval [𝑟, 𝑟′] then their composite 𝑓 ∘𝑋 is measurable.

Example 4.61. Recall Example 4.52 of adding the eyes shown by two dice,
which we may consider a random variable 𝑋 . We might instead only wish
to record whether this number is even or odd. Theorem 4.11 tells us that it is
okay to view 𝑋 as a function with target the set of natural numbers from 2
to 12.

With that observation we may express our new object of interest by com-
posing 𝑋 with the following function.

𝑓 : {2, 3, 4, . . . , 11, 12} {0, 1}
𝑥 𝑥 mod 2

.

29Clearly one has to think about what should happen on the borderline—let’s assume here this
belongs to the lower height category.
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We may now compute the probabilities for 𝑓 ∘𝑋 as follows.

𝑃 (𝑓 ∘𝑋 = 0) = 𝑃{𝑛 ∈ {2, 3, 4, . . . , 11, 12} | 𝑛 mod 2 = 0}
= 𝑃{2, 4, 6, 8, 10, 12}

=
1

36
+

3

36
+

5

36
+

5

36
+

3

36
+

1

36

=
18

36
=

1

2
.

To calculate 𝑃 (𝑓 ∘𝑋 = 1) it is su�cient to note that the two probabilities
have to add up to 1, and so this is also 1/2.

Example 4.62. Recall Example 4.54 where we considered the random variable
𝑋 given by counting the number of heads that appear when tossing a fair coin
three times. We know that the range of 𝑋 is {0, 1, 2, 3}, so we may think of
𝑋 as a function from the original sample space to that set. The probabilities
for the various outcomes are given in the following table.

0 1 2 3
1/8 3/8 3/8 1/8

Now assume we are interested only in whether the number of heads is more
than one away of the number of tails, or not. The outcomes 1 and 2 satisfy
that new property, and the outcomes 0 and 3 do not. Consider the following
function.

𝑓 : {0, 1, 2, 3} {0, 1}

𝑥

{︃
0 𝑥 = 1 or 𝑥 = 2

1 else.

Once again we use Theorem 4.11 to think of 𝑋 as a function with target set
{0, 1, 2, 3}. Then composing 𝑋 with 𝑓 gives another random variable, with
range {0, 1}, where 0 means the number of heads is at most one di�erent from
the number of tails, and 1 means the di�erence is larger.

We can determine the probability for the new outcomes by adding the
probabilities of the old outcomes which are mapped to it. Again we give a table
that provides the probabilities for each outcome, and above each outcome of
𝑓 ∘𝑋 we give the outcomes from 𝑋 that are mapped to it by 𝑓 .

new outcomes 0 1

old outcomes 1, 2 0, 3

𝑃 (𝑋 = 1) + 𝑃 (𝑋 = 2) 𝑃 (𝑋 = 0) + 𝑃 (𝑋 = 3)

probabilities =
3

8
+

3

8
=

3

4
=

1

8
+

1

8
=

1

4

Example 4.63. Assume that we are again starting with the random variable 𝑋
that turns tossing a coin three times into the number of heads that appear
among the three tosses, see the previous example. This time we want to change
the random variable by only recording whether the number of heads is even or

234



odd. This means we are composing the random variable 𝑋 (viewed as having
target set {0, 1, 2, 3} as before with the function

𝑔 : {0, 1, 2, 3} {0, 1}
𝑥 𝑥 mod 2.

Then the probabilities for the possible values of the random variable 𝑔 ∘𝑋 are
given in the following table.

new outcomes 0 1

old outcomes 0, 2 1, 3

𝑃 (𝑋 = 0) + 𝑃 (𝑋 = 2) 𝑃 (𝑋 = 1) + 𝑃 (𝑋 = 3)

probabilities =
1

8
+

3

8
=

1

2
=

3

8
+

1

8
=

1

2

Example 4.64. In Example 4.59 the random variable 𝑋 had four possible
values, namely

{1, 2, 3, 4}.

Assume that the probabilities that a randomly chosen person from the monitor
group �ts into each category is given by the following table:

1 2 3 4
𝑃 1/2 1/4 1/8 1/8

We can now calculate with these probability much as if we had a discrete
probability space at the start.

For example, if I want to know the probability that a member of my
population is below 160cm, that is, belongs to categories 1 or 2,

𝑃 (𝑋 < 160) = 𝑃 (𝑓 ∘𝑋 = 1) + 𝑃 (𝑓 ∘𝑋 = 2) =
1

2
+

1

4
=

3

4
.

Example 4.65. Assume that I am in the situation of Example 4.59, but now I
am only interested whether somebody is below 160 cm or above.

Then I can take my previous random variable, which produced the possible
values

{1, 2, 3, 4},

and compose it with the function

{1, 2, 3, 4} {1, 2}

𝑥

{︃
1 𝑥 = 1 or 𝑥 = 2

2 else

to get a new random variable whose only values which only distinguishes
between people with a height of less than or equal to 160cm, which are in
category 1, and those who are taller than 160cm, which are in category 2.

235



Example 4.66. Assume we have a random variable 𝑋 that has a range of
values

{−𝑛,−(𝑛− 1), . . . ,−2,−1, 0, 1, 2, . . . , 𝑛− 1, 𝑛}.

Maybe for some purposes we are not interested in the values as such, but
only in how far distant they are from the mid-point, 0. This might be because
we are only interested in the di�erence between some value and 0, but not
whether that di�erence is positive or negative (compare also De�nition 43).

By composing the random variable with the absolute function

|·| : R R

𝑥 |𝑥|,

we obtain a new random variable 𝑌 which takes its values in the set

{0, 1, . . . , 𝑛}.

To calculate probabilities for 𝑌 we have to know that

𝑃 (𝑌 = 𝑖) =

{︃
𝑃 (𝑋 = 𝑖) + 𝑃 (𝑋 = −𝑖) 0 ≤ 𝑖 ≤ 𝑛

0 else.

CExercise 109. Recall the unfair die from Exercise 83. Take as a random
variable 𝑋 the number of eyes shown. Calculate the following.

(a) 𝑃 (𝑋 ≤ 3),

(b) 𝑃 (𝑋 ≥ 5),

(c) 𝑃 (4 ≤ 𝑋 < 6),

(d) 𝑃 (𝑋 ≤ 𝜋),

(e) 𝑃 (𝑋 ≥ 7).

Now assume that the random variable 𝑌 is given by the sum of the eyes shown
by two such dice. Calculate the following.

(f) 𝑃 (𝑌 ≤ 4.5),

(g) 𝑃 (𝑌 ≥ 11.5).

Finally assume that we have the random variable 𝑌 and we compose it with
the following function:

𝑓 : R R

𝑥 (𝑥− 7)2.

Calculate the following.
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(h) 𝑃 (𝑓 ∘ 𝑌 ≥ 6),

(i) 𝑃 (𝑓 ∘ 𝑌 ≤ .5).

4.4.4 Probability mass functions and cumulative distributions

There are many example of random variables where we do not need to worry
about all real numbers but only those that appear in the range of the random
variable. We can give a graphical presentation of how the probabilities is spread
over that range. It is the equivalent to a probability density function for the case
where we have discrete values.

De�nition 39: probability mass function
Let 𝑋 be a random variable with a countable range, say

{𝑟𝑖 | 𝑖 ∈ N}.

The probability mass function (pmf) for 𝑋 is given by

{𝑟𝑖 | 𝑖 ∈ N} [0, 1]

𝑟𝑖 𝑃 (𝑋 = 𝑟𝑖).

It is appropriate to think of a probability mass function as the discrete version
of a probability density function.

Example 4.67. For the random variable that consists of assigning the total
number of eyes to the throw of two dice, see Example 4.52, the pmf is given by

2 3 4 5 6 7 8 9 10 11 12
1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1

36

This is of course the original probability distribution from Example 4.2 for one
of the sample spaces discussed there—if the outcomes are already described as
numbers then this is what happens.

Example 4.68. If we throw a coin three times, see Examples 4.54, and use the
random variable that arises from assigning to each output the number of heads
that appear then we get the pmf as described in that example,

0 1 2 3
1/8 3/8 3/8 1/8.

The following is a version of Proposition 4.2 for random variables with �nite
range. It says that if we have a pmf for a random variable then to know the
probability distribution for that random variable we merely need to know the
probabilities for each of the values in that range.
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Corollary 4.13
Let 𝑋 be a random variable with �nite range, say 𝑇 , and pmf 𝑝. Then there is
a unique probability space (𝑇,𝒫𝑇, 𝑃 ) with the property that for all elements
𝑡 ∈ 𝑇 we have

𝑃{𝑡} = 𝑝𝑡.

For this space we may calculate for all subsets 𝐸 of 𝑇 that

𝑃𝐸 =
∑︁
𝑡∈𝐸

𝑝𝑡.

Proof. This is an application of Proposition 4.2.

What this means is that if we have a probability mass function then we have a
uniquely determined probability space, and so for a random variable with �nite
range all we need to understand the situation is the pmf. For this reason some
people call a probability mass function a probability distribution.

In Section 4.2.4 the idea of a cumulative probability distribution is introduced.
At this point we are ready to de�ne that concept generally.

De�nition 40: cumulative distribution function

Given a random variable 𝑋 the cumulative distribution function (cdf) for𝑋
is the function

R [0, 1]

which assigns, for 𝑡 ∈ R,

𝑡 𝑃 (𝑋 ≤ 𝑡.)

We are using here the fact that the real numbers are ordered and so it makes
sense to ask for the probability that the random variable is at most some given
number. In particular we can meaningfully draw the graph of this function and
visualize the probability distribution in a way that we only do when the outcomes
are given as numbers.

When we have a random variable which can take a �nite number of values we
have to draw a non-continuous function, and you may �nd this a bit odd at �rst.
Look at the following example to see how that works.

Example 4.69. If we look at the situation from Example 4.68 where the pmf is
described in the table

0 1 2 3
1/8 3/8 3/8 1/8.

then the corresponding cdf can be drawn as follows.
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𝑃

0 1 2 3 4

0.2

0.4

0.6

0.8

1

Note that when drawing discontinuous functions like the above we have to
specify what the value at at a discontinuity is, the lower or the upper of the two
lines. The convention used in the picture above is to use the interval notation, so
that [ and ] mean that the point at the end of the line belongs, and ( as well as )
mean that it doesn’t. An alternative way of drawing the same function is to use
the following convention:

𝑃

0 1 2 3 4

0.2

0.4

0.6

0.8

1

In the picture above the �lled circle indicates that the endpoint of the line is
included, and the un�lled circle that it is excluded.

In both pictures we can see that the functions jumps to a higher accumulated
probability as the next possible value of the random variable is reached. The
probability of fewer than 0 heads is 0, the probability of getting at least 0, but
fewer than 1 heads is 1/8, and so on.

Example 4.70. If we want to draw the graph of the �oor function ⌊ ⌋ : R N,
see page 42, we need this idea as well.
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1 2 3 4
0

1

2

3

4

−1

Example 4.71. We return to Example 4.57, where the information given is
that 𝑋 is a random variable and the following is known about its probability
distribution is the following:

• 𝑃 (𝑋 = 1) = 1/2,

• 𝑃 (𝑋 = 2) = 1/4, and

• 𝑃 (𝑋 ≥ 2) = 1/2.

This is su�cient to be able to draw some of the cdf, but there is uncertainty:

𝑃

0 1 2 3 4

0.2

0.4

0.6

0.8

1

∙ ?
We know that the probability is 0 until the value 1 is reached, and that it rises
to .5 at that point, and rising further to .75 from 2. What we don’t know is
when it takes on the value 1 or which values it take between .75 and 1.

Example 4.72. An example for the continuous case is given in Section 4.2.4 in
the form of Examples 4.27 and 4.28.

Recall that in the case of a continuous random variable 𝑋 with range contained
in an interval 𝐼 ⊆ R the probability distribution is given in the form of a probability
density function, say

𝑔 : 𝐼 R+.

There are two cases.
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• If the interval is of the form (−∞, 𝑟′), (−∞, 𝑟′] or R then the cdf for 𝑋 is
given by

𝑃 (𝑋 ≤ 𝑡) =

⎧⎪⎨⎪⎩
∫︁ 𝑡

−∞
𝑔𝑥𝑑𝑥 𝑡 ≤ 𝑟′

1 else.

• If the interval is of the form (𝑟, 𝑟′), (𝑟, 𝑟′], (𝑟,∞) [𝑟,∞) then the cdf for 𝑋
is given by

𝑃 (𝑋 ≤ 𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 𝑡 ≤ 𝑟∫︁ 𝑡

𝑟
𝑔𝑥𝑑𝑥 𝑟 ≤ 𝑡 ≤ 𝑟′

1 else.

In the case below 𝐼 is [0,∞), and we calculate the probability that 𝑋 is
below 𝑡.

𝑡

Note that the derivative of a cumulative distribution function is the correspond-
ing probability density function (which in the discrete case is the corresponding
probability mass function). We have no time to discuss here exactly how the
derivative is formed in the discrete case.

However there is something that is easy to see. Assume you have a random
variable whose cdf 𝐹 makes a jump as in the following picture.

𝑟

Then it has to be the case that the probability of the random variable at the
point where the jump is concerned is the di�erence of the two values, that is

𝑃 (𝑋 = 𝑟) = 𝐹 (𝑟) − lim
𝑛→∞

𝐹 (𝑟 − 1

𝑛
).
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Proposition 4.14
Let 𝑋 be a random variable. If 𝑃 is its cumulative distribution function then
its derivative is the corresponding probability density (mass density) function.

CExercise 110. For Exercise 83 consider the random variable given by the
number of eyes the die shows. Give its pmf, and draw a graph for its cdf.

Then do the same with the random variable 𝑓 ∘ 𝑌 from Exercise 109.

EExercise 111. Assume that teams are regularly playing in a ‘best out of �ve’
series against each other, compare Exercise 81. We assume here that the winner
is determined via a random process.

We are interested in the random variable given by the number of matches
Team 𝐴 wins in a given series.

(a) Describe a probability space that describes a ‘best out of �ve’ series. For the
probabilities assume that the two teams have an equal probability of winning
any match.

(b) Describe the function that underlies this random variable by writing down
a mathematical function that carries out the required assignment.

(c) For the case where team 𝐴 is equally matched by Team 𝐵, give the pmf
and draw a graph for its cdf.

(d) Now assume that it is known that 𝐴 wins the �rst match. We can now
look at the random variable 𝑋 conditional on this event. Describe the pmf
and cdf for the resulting random variable. Hint: Because the event 𝐴 is part
of the original probability space, but cannot be formulated for the outcomes
of the random variable 𝑋 , you cannot use the usual formula for conditional
probabilities but have to analyse each case anew. If you are �nding this part hard
then looking ahead to Example 4.75 may help.

Exercise 112. Carry out the same tasks as for the previous exercise for a ‘best
out of seven’ series.

4.4.5 Conditional probabilities for random variables

Recall that there is no example for conditional probabilities in the continuous
case in Section 4.3 above. The reason for this is that describing the probability
density function for the general case, where we may make no assumptions about
the possible outcomes, requires mathematical techniques beyond this course unit.

However, this is feasible once we restrict ourselves to random variables, where
we know that the outcomes are elements of R. We revisit the idea of conditional
probabilities, now con�ned to random variables. You can see below that in that
case the de�nition for the continuous case is the same as that for the discrete one.
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The conditional probability density function

Recall that given two events 𝐴 and 𝐵, where 𝑃𝐵 ̸= 0, the conditional probability
of 𝐴 given 𝐵 is de�ned as

𝑃 (𝐴 | 𝐵) =
𝑃 (𝐴 ∩𝐵)

𝑃𝐵
.

If 𝑋 is a random variable with probability distribution function 𝐹 then we
may de�ne the conditional distribution of 𝑋 given the event 𝐵 (where we still
assume 𝑃𝐵 ̸= 0) as

𝑃 (𝑋 ≤ 𝑟 | 𝐵) =
𝑃 ((𝑋 ≤ 𝑟) ∩𝐵)

𝑃𝐵
.

There is a conditional probability density function, which is once again the de-
rivative of the corresponding distribution. The probability that the conditionally
distributed random variable falls into a given interval is then the integral over that
derivative over the given integral.

If 𝑋 is a discrete random variable with pmf 𝑝 then given an event 𝐵 with
𝑃𝐵 ̸= 0 we can calculate the pmf 𝑞 of the random variable

(𝑋 | 𝐵), 𝑋 given 𝐵,

by setting, for 𝑟 in the range of 𝑋 ,

𝑞𝑟 =

{︃
𝑃 (𝑋 = 𝑟)

𝑃𝐵
𝑟 ∈ 𝐵

0 else.

In other words, if we know that 𝐵 happens, and 𝑟 is a possible result of 𝑋 not
in 𝐵, then it has the probability 0, and otherwise the probability is adjusted by
dividing through 𝑃𝐵 as expected.

Example 4.73. We return to Example 4.54. The pmf for the random variable
𝑋 which gives the number of heads when a coin is tossed three times is as
follows.

0 1 2 3
1/8 3/8 3/8 1/8.

Let the event 𝐴 be that the result heads occurs at least once among the three
tosses. The probability of 𝐴 is 𝑃𝐴 = 7/8. We may calculate

𝑃 ((𝑋 = 𝑖) | 𝐴) =
𝑃 ((𝑋 = 𝑖) ∩𝐴)

𝑃 (𝐴)
,

where

𝑃 ((𝑋 = 𝑖) ∩𝐴) =

{︃
𝑃 (𝑋 = 𝑖) 𝑖 ∈ 𝐴

0 else.

Hence the pmf of

𝑃 (𝑋 | 𝐴) is 0 1 2 3
0 3/7 3/7 1/7.

If 𝐵 is the event that the number of heads is even then 𝑃𝐵 = 1/2 and the
pmf of
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𝑃 (𝑋 | 𝐵) is 0 1 2 3
1/4 0 3/4 0.

We look at the continuous case. Let 𝑋 be a random variable with range R and
probability distribution 𝑓 , let 𝑟 be in R, and assume that 𝐵 is the event

𝐵 = (𝑋 ≤ 𝑟).

We may calculate
𝑃𝐵 = 𝑃 (𝑋 ≤ 𝑟) =

∫︁ 𝑟

−∞
𝑓𝑥𝑑𝑥.

We might then wonder how to calculate, for 𝑠 ∈ R,

𝑃 (𝑋 ≤ 𝑠 | 𝐵).

What we do know is that if we have a probability density function 𝑔 for the
resulting random variable we can calculate this probability as∫︁ 𝑠

−∞
𝑔𝑥𝑑𝑥.

We can work out what the probability density function, say 𝑔, should do: If
the argument is not in 𝐵 it should return 0, and otherwise I should return the
probability of 𝑥 adjusted by the probability of 𝐵. Assuming that the probability of
𝐵 is non-zero, 𝑔 is given by

𝑔 : R R+

𝑥

⎧⎨⎩
𝑓𝑥∫︀ 𝑟

−∞ 𝑓𝑥𝑑𝑥
𝑥 ≤ 𝑟

0 else.

In the general case, where we make no assumptions about the shape of 𝐵, we
merely assume that the probability of 𝐵 is not zero. The probability distribution 𝑔
of the random variable

𝑌 = (𝑋 | 𝐵)

is given by
𝑔 : R R+

𝑥

{︃
𝑓𝑥

𝑃𝐵
𝑥 ∈ 𝐵

0 else.

Note that the range of 𝑌 is included in 𝐵.

Example 4.74. If we return to Example 4.28 we have a random variable given
by the time until the geyser next erupts. The probability density function is

𝑓 : [0, 90] [0, 1]

𝑥
1

90
.

Consider the event 𝐵 that the geyser hasn’t erupted in the 30 minutes we’ve
already waited for it. We may calculate the probability of 𝐵 occurring by
calculating the probability that the geyser does erupt in the �rst 30 minutes,
and deducting that from one. The probability that the geyser erupts between
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minute 0 and 30 is ∫︁ 30

0

1

90
𝑑𝑥 =

[︁
𝑥

90

]︁30
0

=
30

90
− 0 =

1

3
,

so
𝑃𝐵 = 1 − 1

3
=

2

3
.

The probability density function 𝑔 of the random variable

(𝑋 | 𝐵)

is then given by

𝑔 : [0, 90] [0, 1]

𝑥

{︃
0 0 ≤ 𝑥 ≤ 30

1

60
else.

The examples we have considered here only work if the event on which we
are conditioning can be expressed in terms of outcomes of the random variable in
question. Sometimes we wish to condition on an event that can only be formulated
in the original probability space, see Exercise 111 for an example. In that case the
various conditional probabilities have to be calculated more painstakingly since
we cannot apply the formulae derived above. We return to this idea in Section 4.4.6
after considering one more example.

Example 4.75. We return to the random variable 𝑋 which counts the number
of heads when tossing a coin three times, see Example 4.54, and contrast with
Example 4.73. The pmf of 𝑋 is given by the following table.

0 1 2 3
1/8 3/8 3/8 1/8.

Assume we wish to condition this random variable on the event 𝐶 that the
�rst toss is heads. The given pmf does not help us in calculating the pmf of
(𝑋 | 𝐶). Instead we have to start over from the original probability space. We
analyse the possible values of 𝑋 and the probabilities with which they occur.
Assume the �rst toss is heads. The possible numbers of heads among the three
tosses are as follows.

• 0. This cannot occur.

• 1. This means the toss must be 𝐻𝑇𝑇 . This occurs with probability 1/4.

• 2. This means the toss is 𝐻𝐻𝑇 or 𝐻𝑇𝐻 . This occurs with probabil-
ity 1/2.

• 3. This means the toss is 𝐻𝐻𝐻 . This occurs with probability 1/4.

Hence the pmf of
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𝑃 (𝑋 | 𝐶) is 0 1 2 3
0 1/4 1/2 1/4.

Note that it is also possible to perform Bayesian updating for random variables:
In the case of a discrete random variable, the update procedure is just as described
in Section 4.3.4. If the random variable is continuous then instead of updating
the pmf by adjusting all the individual values we have to update the probability
density function. Spelling out the resulting de�nition of the new probability density
function goes beyond this course unit.

One random variable depending on another

The material in this subsection is not examinable. You may want to return to it
if you ever have to cope with a situation where one random variable depends on
another.

Recall Example 4.37, where we were wondering about how to describe the
probability density function for the location or a fox whose behaviour is in�uenced
by the location of a lynx (if the latter is close enough).

What we have there is one random process, describing the movements of the
fox, conditional on another random process, namely the movement of the lynx.

We can only do this in the situation where we have a joint distribution, that is,
a probability distribution, or a density function/pmf, that describes the combined
probability.

It is then the case that if 𝑓 is the joint density function for random variables
𝑋 and 𝑌 , we can derive density functions for 𝑋 and 𝑌 , namely

• The probability density function for 𝑋 is30∫︁ ∞

−∞
𝑓(𝑥, 𝑦)𝑑𝑦,

• while that for 𝑌 is ∫︁ ∞

−∞
𝑓(𝑥, 𝑦)𝑑𝑥.

In this situation we can look at the case of the density function 𝑔 for 𝑋 given
(𝑌 = 𝑠), for some 𝑠 ∈ R. We get

𝑔𝑥 =
𝑓(𝑥, 𝑠)∫︀∞

−∞ 𝑓(𝑥, 𝑠)𝑑𝑦
.

If instead we are interested in the probability distribution for 𝑋 given

(𝑠 ≤ 𝑌 ≤ 𝑠′),

we have

𝑃 (𝑋 = 𝑟 | 𝑠 ≤ 𝑌 ≤ 𝑠′) =

∫︀ 𝑟

−∞

(︁∫︀ 𝑠′

𝑠
𝑓(𝑥, 𝑦)𝑑𝑦

)︁
𝑑𝑥∫︀ 𝑠′

𝑠

(︁∫︀∞
−∞ 𝑓(𝑥, 𝑦)𝑑𝑥

)︁
𝑑𝑦
.

If 𝑋 and 𝑌 are discrete random variables then we can look at their joint pmf.
This is a function that, given

30You can calculate with these integrals by treating the other variable as if it were a parameter,
that is, you integrate the �rst expression for 𝑦 and treat 𝑥 as if it was a number. You swap the
treatment of the two variables for the second expression.
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• a value 𝑟 from the range of 𝑋 and

• a value 𝑠 from the range of 𝑌 ,

returns the probability 𝑃 (𝑋 = 𝑟 and 𝑌 = 𝑠).

Example 4.76. We return to the example of tossing a coin three times, see
Example 4.54. The pmf of the random variable 𝑋 , which counts the number
of heads, is

0 1 2 3
1/8 3/8 3/8 1/8.

The random variable 𝑌 , which records the absolute of the di�erence between
the number of heads and tails, has a pmf given by the following table.

1 3
6/8 2/8.

The joint pmf of 𝑋 and 𝑌 is given by the following table.

𝑌 \𝑋 0 1 2 3
1 0 3/8 3/8 0
3 1/8 0 0 1/8

Independent random variables

When we have two random variables which are independent from each other it
becomes easier to calculate with both.
De�nition 41: independent random variables
Two random variables 𝑋 and 𝑌 are independent if and only if it is the case
that for all elements of the Borel 𝜎 algebra 𝐸 and 𝐸′ we have that

𝑃 (𝑋 ∈ 𝐸 and 𝑌 ∈ 𝐸′) = 𝑃 (𝑋 ∈ 𝐸) · 𝑃 (𝑌 ∈ 𝐸′).

In particular this means that

• if 𝑋 is a random variable with density function 𝑓 and

• 𝑌 is a random variable with density function 𝑔 then

the joint density function for 𝑋 and 𝑌 is given by

(𝑥, 𝑦) 𝑓𝑥 · 𝑔𝑦.

We need this information when we wish to look at situation where we have
several random variables, for example the failure of a number of pieces of equip-
ment. This is easier if we assume that the failure of one is independent from the
failure of the others but this assumption is only justi�ed if we can exclude factors
that would a�ect more than one piece of equipment, such as a power surge at
some location.

Example 4.77. We have already seen an example of this. When we look at the
random variable 𝑋 which gives us the number of eyes shown by the red die,
and the random variable 𝑌 which gives us the number of eyes shown by the
blue die, then their joint pmf is given as follows.
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𝑖∖𝑗 1 2 3 4 5 6
1 1/36 1/36 1/36 1/36 1/36 1/36
2 1/36 1/36 1/36 1/36 1/36 1/36
3 1/36 1/36 1/36 1/36 1/36 1/36
4 1/36 1/36 1/36 1/36 1/36 1/36
5 1/36 1/36 1/36 1/36 1/36 1/36
6 1/36 1/36 1/36 1/36 1/36 1/36

Exercise 113. Are the two random variables 𝑋 and 𝑌 from Example 4.76
independent? Justify your answer.

EExercise 114. Assume that you are tasked by your boss with making sure
that you have enough servers that the probability of no server being currently
online is at most 1% for the entire year. Because you are able to place your
servers at separate locations you are allowed to assume that one server failing
will have no e�ect on the other servers.

(a) Assume that the chance of one of your servers failing in a given year is .05.
How many servers do you need to comply with your boss’s demand? How
much safety do you get out of an extra server?

(b) Assume that the probability of one of your servers failing has the probab-
ility density function31 𝑓 given by

𝑓 : [0, 365] [0, 1]

𝑥
𝑥2

2 · 3653 ,

which we need to consider from 𝑥 = 0 to 𝑥 = 365 to cover the year. In other
words, the probability that the server will have failed by the end of the year
is given by the integral, from 0 to 365, over the given density function. How
many servers do you have to buy and install to comply with the speci�cation
you were given?

4.4.6 Expected value and standard deviation

One of the motivations for introducing the notion of random variables is the ability
to form averages.

Expected value

Example 4.78. Returning to the example of the number of heads when tossing
a coin three times, Example 4.68, you may wonder what the average number of
heads might be. This case is so simple that you can probably guess the answer,
but in more complicated situations you will want to carry out analogous
calculations. If we weigh each possible outcome by its probability then this

31I’m not claiming this is a realistic density function, but hopefully it’s not too bad to calculate
with.

248



number is given by

0 · 1
8

+ 1 · 3
8

+ 2 · 3
8

+ 3 · 1
8

=
0 + 3 + 6 + 3

8
=

12

8
=

3

2
,

so on average the number of heads is 1.5, which in this simple case you may
have been able to guess. Note that if you wanted to bet on the outcome of
this experiment then it does not make sense to bet the expected value since it
cannot occur.

We look at more interesting examples. Note that solving the following two
examples require knowledge beyond this course unit—it is included here to give
you an idea of how powerful the idea is.

Example 4.79. Assume that we have strings which are generated in a random
way, in that after each key stroke, with a probability of 1/2, another symbol
is added to the string. We would like to calculate the average length of the
strings so created. Before we can do this we have to specify when the random
decision starts: Are all strings non-empty, or is there a chance that no symbol
is ever added? We go for the latter case, but the calculation for the former is
very similar.

As is often the case when picturing a step-wise process we can draw a
tree that describes the situation. At each stage there is the random decision
whether another symbol should be added or not. We give the length of each
generated string.

0

1/2

1

1/2

2

1/2

. . .

1/2

1/2

1/2

What this means is that we have a random variable, namely the length of
the generated string, and we can see that its probability mass function has the
�rst few values given by the following table.

0 1 2 3 4
1/2 1/4 1/8 1/16 1/32

More precisely the pmf is given by the function

N R

𝑛
1

2𝑛+1 .
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What is the average string length? The idea is that we should give each possible
length the probability that it occurs. This means that we should calculate

0 · 1
2

+ 1 · 1
4

+ 2 · 1
8

+ · · · =
∑︁
𝑛∈N

𝑛 · 1

2𝑛+1 .

With a bit more mathematics than we can teach on this unit it may be
calculated32 that this required number is 1. So certainly when producing
strings in this way we don’t have to worry about there being a lot of long
ones! But note that we have described a process for producing potentially
in�nite strings (with a probability of 0), and the power of the methods we use
here is such that we can still calculate the average.

We say more about how to cope with situations where we have to compute
an in�nite sum in Section 4.4.6.

Example 4.80. Assume we are tossing a coin until we get heads for the �rst
time, and then we stop (compare Exercise 85 and Example 4.26. We wonder
what the average number of coin tosses is. Again it makes sense to draw a
tree.

1

1/2

2

1/2

3

1/2

. . .

1/2

1/2

1/2

This is quite similar to the previous example! The pmf for this random variable
is given by

N R

𝑛
1

2𝑛
.

The expected value is ∑︁
𝑛∈N

𝑛 · 1

2𝑛
= 2.

Again calculating such expected values is not part of this unit, but it gives
you one motivation why mathematicians care about what happens if in�nitely
many numbers are added up.

We say more about how to cope with situations where we have to compute
an in�nite sum in Section 4.4.6, in particular Example 4.89 is relevant.

What is it that we have calculated in these examples?

32In mathematical parlance, we have de�ned a series whose limit is 1.
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De�nition 42: expected value
Let 𝑋 be a random variable with probability density function 𝑝. Then the
expected value of 𝑋 , 𝐸(𝑋), is given by

𝐸(𝑋) =

∫︁ ∞

−∞
𝑥 · 𝑝(𝑥)𝑑𝑥.

Note that this de�nition does allow for the possibility that 𝐸(𝑋) is in�nite.
This can never occur if 𝑋 is a discrete random variable with a �nite range, but in
the other cases this is a possibility. Calculating with in�nities is beyond the scope
of this unit, and all the examples we study give a �nite result.

Note that if 𝑋 is a discrete random variable with range

{𝑟𝑖 | 𝑖 ∈ N},

then its expected value is

𝐸(𝑋) =
∑︁
𝑖∈N

𝑟𝑖 · 𝑃 (𝑋 = 𝑟𝑖).

This means that if 𝑋 is a discrete random variable with �nite range

{𝑟1, 𝑟2, . . . , 𝑟𝑛},

then its expected value is

𝐸(𝑋) = 𝑟1𝑃 (𝑋 = 𝑟1) + 𝑟2𝑃 (𝑋 = 𝑟2) + · · · + 𝑟𝑛𝑃 (𝑋 = 𝑟𝑛)

=
𝑛∑︁

𝑖=1

𝑟𝑖𝑃 (𝑋 = 𝑟𝑖).

Example 4.81. In Example 4.78 the expected number of heads when tossing
a coin three times is calculated as being 1.5. In Example 4.69 the cumulative
distribution for that random variable is drawn:

𝑃

0 1 2 3 4

0.2

0.4

0.6

0.8

1

The area under the function from 0 to 3, shown in blue above, is given by

.125 · 1 + .5 · 1 + .875 · 1 = 1.5,

which is the same as the expected value. In general this is always the connection
between the expected value and the area under the cdf, and this is the best
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indication I can give that this area (and so an integral) has something to do
with probabilities.

Note that in the discrete case, the expected value need not be in the range of
𝑋 . In Example 4.78 the expected value is 1.5 heads in 3 tosses of a coin, which
clearly is not a valid result of tossing a coin three times.

Further note that even if the expected value is a possible outcome it need not
in itself be particularly likely.

Example 4.82. Assume we are playing a game with a deck consisting of four
aces and the kings of spaces and hearts,

{𝐴♣, 𝐴♠, 𝐴♡, 𝐴♢,𝐾♠,𝐾♡}.

We each draw a card from the pack. If one of us has an ace and the other a
king, the holder of the ace gets two pence from the other player. If we both
have an ace, then if one of us has a black ace 𝐴♣ or 𝐴♠ then he gets three
pence from the other player. If we have aces of the same colour neither of us
gets anything. If both of us have a king then the holder of the black king gets
one penny from the other player.

We look at the random variable formed by the number of pence gained
or lost by one of the players (since the rules are symmetric it does not matter
which player we pick). Its range and pmf are given in the following table.

−3 −2 −1 0 1 2 3
2/15 4/15 1/30 2/15 1/30 4/15 2/15

We calculate the expected pay-o�. It is

1

30
(−3 · 4 + (−2) · 8 + (−1) · 1 + 0 · 4 + 1 · 1 + 2 · 8 + 3 · 4) = 0.

We could have saved us this calculation by making the following deduc-
tions: The game is completely symmetric, and wins for one player are paid for
by the other.33 So if one player were to expect a gain the other player would
have to expect a loss to make up for that game, but the rules are exactly the
same for both.

We note that the expected value 0 does not occur with a particularly high
probability.

Also note that the expected value does not have to be halfway between the
extremes of the possible outcomes. This is illustrated (among other things) in the
following example, where we calculate the average of an average to show that
it is possible to have several layers of random variables, which still allow us to
calculate an overall expected value.

Example 4.83. For a more down to earth example let us revisit Example 4.42.
There we are faced with 4 possibilities regarding which situation we are in
(given by the number of red socks in the bag). This gives us an opportunity to
look at an expected value for di�erent probability distributions.

Here is a tree that describes the drawing of two socks (with replacement)

33This is a zero-sum game in the parlance of game theory.
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from a bag that contains 𝑖 red socks from a total of 3 socks.

𝑅

𝑅𝑅

𝑖/3

𝑅𝐵

(3−𝑖)/3

𝑖/3

𝐵

𝐵𝑅

𝑖/3

𝐵𝐵

(3−𝑖)/3

(3−𝑖)/3

We have here a random variable which maps the outcomes from this tree
to the number of red socks drawn. Hence it maps 𝑅𝑅 to 2, the outcomes 𝑅𝐵
and 𝐵𝑅 to 1 and the outcome 𝐵𝐵 to 0. The pmf of this random variable is

2 1 0

𝑖2

9
2
𝑖(3− 𝑖)

9

(3− 𝑖)2

9

Hence the expected value for the number of socks is

2
𝑖2

9
+ 2

𝑖(3− 𝑖)

9
=

2𝑖2 + 6𝑖− 2𝑖2

9
=

6𝑖

9
.

So the expected value in each case is

𝑖 0 1 2 3

𝐸(𝑋) 0 2/3 4/3 2

Note how the expected value varies with the underlying situation, and note
that in none of the cases we get as the expected value the halfway point
between the two extremes 0 and 2.

We can use these expected values to calculate an overall expected value
based on our current estimate for the true probability distribution.

At the beginning, the probability of the possible outcomes,

{0, 1, 2, 3}

is equal, 1/4 for each. If we draw two socks (returning the sock to the bag
after each draw) then we would expect to draw one red and one black sock on
average.

After the �rst update the pmf is

0 1 2 3

0 1/6 1/3 1/2

If we want the expected value based on our current knowledge, which is
given by the current distribution, then we should form an average where each
of the previously calculated expected values is weighted by the probability
that we think it’s the correct one, giving an overall expected value of

0 · 0 +
2

3
· 1
6

+
4

3
· 1
3

+ 2 · 1
2

=
2 + 8 + 18

18
=

28

18
= 1.5.
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Example 4.84. For a simple continuous example we return to the random vari-
able that describes the amount of time until a geyser erupts from Examples 4.28
and 4.74. The expected time we have to wait until the geyser erupts is∫︁ 90

0

𝑥

90
𝑑𝑥 =

[︂
𝑥2

2 · 90

]︂90
0

=
902

2 · 90 − 0 = 45,

which tells us that we have to wait 45 minutes on average as expected.

Whenever we calculate an expected value we calculate a probability-weighted
average, that is, we try to give some kind of number that occurs ‘on average’. We
should be careful when we use such calculations to make decisions—for example,
the expected pay-o� of playing some game being positive is by itself not a good
enough reason to play that game. We’ve assigned numbers to certain outcomes,
but these numbers might not adequately re�ect our valuation of the situation.

Example 4.85. Assume somebody o�ers you a game: You toss a coin. If it
gives heads, you pay a million pounds, if it’s tails, you get a million and one
pounds. The expected value of this game is 50𝑝 for you, but can you a�ord to
lose this game?

Whenever we use expected values to give an assessment of risk, apart from
making sure we have our probabilities right we should carefully check whether
the numbers of the given random variable truly re�ect how we judge the relevant
outcomes.

Exercise 115. For the expected value given at the end of the previous example,
what is the underlying random variable? Give its range and its pmf.

CExercise 116. You are invited to play the following game: There are three
cards:

• One is black on both sides,

• one is red on both sides,

• one is black on one side and red on the other.

You and another person pay one pound each into a kitty. The three cards are
put into a bag and mixed together. Without looking into a bag you draw a
card. You pull it out of the bag in a way that only the upper side can be seen,
and you place it on the table. The card is red on the side you can see.

The other player bets that the card has the same colour on the hidden side
as is showing. You’re unsure whether you should bet on it having a di�erent
colour on the other side. The other player points out that it can’t be the card
that is black on both sides, so you have a 50-50 chance.

The winner of the bet is to get the two pounds put into the kitty at the
start. Should you accept this as a fair game, or should you ask for your pound
back? Answer this question by calculating the expected value of the amount
you have to pay.
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Using conditioning to calculate expected values

Recall Example 4.80 where we determined the expected number of coin tosses
until we get heads for the �rst time. If we use the de�nition of the expected value
then we have to calculate with an in�nite sum to �nd that number.

We can use conditional probabilities to help with this situation, see Section 4.4.5
for a general account of the probability distribution of a random variable condi-
tioned on an event. In this section we are concerned with how to calculate the
expected value. of such a random variable.

We �rst look at the general case. Let 𝑋 be a random variable with probability
density function 𝑓 and let 𝐵 be an event with non-zero probability which is a
subset of R. Then

𝐸(𝑋 | 𝐵) =

∫︁
𝐵

1

𝑃𝐵
· 𝑥 · 𝑓𝑥𝑑𝑥 =

1

𝑃𝐵

∫︁
𝐵
𝑥 · 𝑓𝑥𝑑𝑥,

Note that the integral looks similar to the integral de�ning the expected value of
𝑋 , but we cannot use one to calculate the other since the areas over which we
integrate di�er.

Example 4.86. In Example 4.84 we calculate the expected value of the time we
have to wait when we visit the geyser from Example 4.28, which is 45 minutes.
In Example 4.74 we give a probability distribution conditioned on the event 𝐵
that the geyser has not erupted in the last thirty minutes. Applying the ideas
above we calculate the expected value of

(𝑋 | 𝐵),

using the probability density function 𝑔 calculated in Example 4.74, which is

𝑔 : [0, 90] [0, 1]

𝑥

{︃
0 0 ≤ 𝑥 ≤ 30

1

60
else.

We have

𝐸(𝑋 | 𝐵) =

∫︁ ∞

−∞
𝑔𝑦𝑑𝑦 =

∫︁ 90

30

𝑥

60
𝑑𝑥 =

[︂
𝑥2

2 · 60

]︂90
30

=
1

2 · 60(902 − 302) =
1

120
· 7200 = 60.

This may strike you as unexpected: When we arrived we thought we might
have to wait 45 minutes, but knowing that the geyser has not erupted for 30
minutes so far means that if we look at the conditional random variable we
have to adjust our expectations to be rather more pessimistic!

In the discrete case the expected value can be expressed as follows. Let the
range of 𝑋 be given by

{𝑟𝑖 | 𝑖 ∈ N},
and let 𝐵 be an event with non-zero probability. Then

𝐸(𝑋 | 𝐵) =
1

𝑃𝐵

∑︁
𝑖∈N, 𝑟𝑖∈𝐵

𝑟𝑖𝑃 (𝑋 = 𝑟𝑖).
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If we further reduce this to the case where the range of 𝑋 is �nite, then we
may calculate the elements of the �nite set

{𝑟 ∈ 𝐵 | 𝑟 is in the range of X}, say {𝑟1, 𝑟2, . . . , 𝑟𝑛}

and then we have

𝐸(𝑋 | 𝐵) =
1

𝑃𝐵
(𝑟1𝑃 (𝑋 = 𝑟1) + 𝑟2𝑃 (𝑋 = 𝑟2) + · · · + 𝑟𝑛𝑃 (𝑋 = 𝑟𝑛)).

Example 4.87. Recall the random variable 𝑋 from Example 4.54 of the number
of heads when tossing a coin three times. We calculate its expected value as
1.5 in Example 4.87 and we calculate its conditional pmf for the event 𝐴 that
there is at least one head in Example 4.73. The expected value of

(𝑋 | 𝐴),

whose pmf is (as per Example 4.73)

0 1 2 3
0 3/7 3/7 1/7.

is given by
𝐸(𝑋 | 𝐴) =

1

7
(1 · 3 + 2 · 3 + 3 · 1) =

12

7
.

Alternatively we can use the formula from above to carry out this calculation
based on the pmf of 𝑋 , which is given by

0 1 2 3
1/8 3/8 3/8 1/8.

The calculation then is

𝐸(𝑋 | 𝐴) =
8

7
· 1
8
(1 · 3 + 2 · 3 + 3 · 1) =

12

7
.

Exercise 117. For the random variable of tossing a coin three times, and the
event 𝐵 from Example 4.73 calculate the expected value of the random variable
𝑌 = (𝑋 | 𝐵).

Note that above we assume that the event on which we are conditioning is
an event that can be formulated regarding the outcomes of the given random
variable 𝑋 . What happens quite frequently is that one wishes to condition on an
event that can only be formulated in the original probability space. In those cases
there is no way of applying the formulae derived above.

Example 4.88. Consider the random variable from Example 4.54 where we
toss a coin three times. We might wish to condition over the event 𝐶 that the
�rst toss is heads. This is not something we can formulate by only referring to
outcomes of this random variable. The pmf for the random variable (𝑋 | 𝐶)
is carried out in Example 4.75, where it is given as follows.

0 1 2 3
0 1/4 1/2 1/4
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With the help of that pmf we can calculate the expected value

𝐸(𝑋 | 𝐶) =
1

4
(0 · 0 + 1 · 1 + 2 · 2 + 3 · 1) =

8

4
= 2,

but we cannot calculate this expected value from the expected value of 𝑋 .

There is a useful technique for calculating expected values of random variables
when it is easier to calculate expected values for conditioned versions of that
random variable. Applications of the following result follow below.

Proposition 4.15

Let 𝑋 be a random variable over the probability space (𝑆, ℰ .𝑃 ) and assume
that we have pairwise disjoint events 𝐵1, 𝐵2, . . .𝐵𝑛 such that

𝑆 ⊆ 𝐵1 ∪𝐵2 ∪ · · · ∪𝐵𝑛.

Then

𝐸𝑋 = 𝐸(𝑋 | 𝐵1) · 𝑃𝐵1 + 𝐸(𝑋 | 𝐵2) · 𝑃𝐵2 + · · · + 𝐸(𝑋 | 𝐵𝑛) · 𝑃𝐵𝑛.

Proof. Proving the general case goes beyond what we cover on this course
unit. For the discrete case, let us assume that the range of 𝑋 is given by

{𝑟𝑖 ∈ R | 𝑖 ∈ N}.

Then

𝐸𝑋

=
∑︁
𝑖∈N

𝑟𝑖𝑃 (𝑋 = 𝑟𝑖) def 𝐸𝑋

=
∑︁
𝑖∈N

𝑟𝑖 (𝑃 (𝑋 = 𝑟1 | 𝐵1)𝑃𝐵1 + 𝑃 (𝑋 = 𝑟𝑖 | 𝐵2)𝑃𝐵2

+ · · · +𝑃 (𝑋 = 𝑟𝑖 | 𝐵𝑛)𝑃𝐵𝑛) tot prob

=
∑︁
𝑖∈N

𝑟𝑖𝑃 (𝑋 = 𝑟1 | 𝐵1)𝑃𝐵1 +
∑︁
𝑖∈N

𝑟𝑖𝑃 (𝑋 = 𝑟𝑖 | 𝐵2)𝑃𝐵2

+ · · · +
∑︁
𝑖∈N

𝑟𝑖𝑃 (𝑋 = 𝑟𝑖 | 𝐵𝑛)𝑃𝐵𝑛

= 𝑃𝐵1

∑︁
𝑖∈N

𝑟𝑖𝑃 (𝑋 = 𝑟1 | 𝐵1) + 𝑃𝐵2

∑︁
𝑖∈N

𝑟𝑖𝑃 (𝑋 = 𝑟𝑖 | 𝐵2)+

· · · + 𝑃𝐵𝑛

∑︁
𝑖∈N

𝑟𝑖𝑃 (𝑋 = 𝑟𝑖 | 𝐵𝑛)

= 𝐸(𝑋 | 𝐵1)𝑃𝐵1 + 𝐸(𝑋 | 𝐵2)𝑃𝐵2 + · · · + 𝐸(𝑋 | 𝐵𝑛)𝑃𝐵𝑛.

This completes the proof.

We show how to use this idea to calculate expected values of a random variable
conditioned over an event of the original probability space.
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Example 4.89. We are interested in the random variable 𝑋 which gives the
number of tosses of a coin until we see heads for the �rst time. We would like
to calculate its expected value 𝐸𝑋 . Note that in Example 4.80 we required an
in�nite sum to �nd that value. Here we give an alternative method that does
works without in�nite sums.

Since the probability of the �rst toss being heads is 1/2, and since this is
also the probability of the �rst toss being tails, we may use the proposition
above to write

𝐸𝑋 =
1

2
𝐸(𝑋 | �rst toss 𝐻) +

1

2
𝐸(𝑋 | �rst toss 𝑇 ).

We look at the two expressions on the right hand side.

• If the �rst toss is heads then we may stop tossing our coin, and so then
the expected value of 𝑋 , conditional on the �rst toss being heads, is 1.

• If the �rst toss is tails then it is as if we had not started to toss at all, and
the expected value of 𝑋 , conditional on that event, is one more than the
expected value of 𝑋 .

From these considerations we get

𝐸𝑋 =
1

2
· 1 +

1

2
(1 + 𝐸(𝑋)) = 1 +

1

2
𝐸𝑋.

We can treat this as an equation in 𝐸𝑋 and solve it to give

𝐸𝑋 = 2.

For an alternative way of looking at the situation we draw the appropriate
tree.

𝐻

1/2

𝑇

𝐻

1/2

. . .

1/2

1/2

we can see that below the node labelled 𝑇 in the picture, we have another
copy of the same tree. In other words, the tree branches to

• 𝐻 , where it ends or

• 𝑇 , below which another copy of the whole tree appears.34

Because a copy of the in�nite tree appears within itself we can use the trick of
establishing an equation for 𝐸𝑋 , where here we argue that the expected value,
that is the ‘average’ number of tosses until the experiment ends, is given by

• with probability 1/2, the �rst toss results in 𝐻 and the experiment ends
after 1 toss and
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• with probability 1/2, the �rst toss results in 𝑇 , and then the expected
number of additional tosses is the same as before, so the overall number
of tosses is 1 added to the expected number of tosses.

This leads to the same equation as above, namely

𝐸𝑋 = 1 +
1

2
𝐸𝑋.

In general we can often avoid having to calculate with in�nite sums by using
similar techniques. Assume we have a random experiment which has a particular
result 𝑠 with property 𝑝, and another result 𝑠′ with property 1 − 𝑝 and that
previous experiments have no e�ect on subsequent ones. We are interested in the
expected value of the random variable 𝑋 of how many times we have to repeat
the experiment to get the second outcome we can see that we have

𝐸𝑋 = (1 − 𝑝)𝐸(𝑋 | �rst outcome 𝑠′) + 𝑝(𝐸(𝑋 | �rst outcome 𝑠))

= (1 − 𝑝) · 1 + 𝑝(𝐸(𝑋 | �rst outcome 𝑠))

= (1 − 𝑝) + 𝑝(1 + 𝐸𝑋)

= 1 + 𝑝𝐸𝑋.

This means that in this situation we get that

𝐸𝑋 =
1

1− 𝑝
.

Example 4.90. Assume we have a coin that shows head with probability 𝑝,
and tails with probability 1 − 𝑝. Let 𝑋 be the random variable of the number
of coin tosses required until we see heads for the �rst time.

In Example 4.89 we calculate the expected value of 𝑋 in the case of a fair
coin. Here we want to establish that it is possible to condition on the two
disjoint events, namely that the �rst toss gives heads, or that the �rst toss
gives tails, and use those to express the expected value of 𝑋 .

𝐸𝑋 =
∑︁
𝑖∈N

𝑖𝑃 (𝑋 = 𝑖) def 𝐸𝑋

=
∑︁
𝑖∈N

𝑖 (𝑃 (𝑋 = 𝑖 | fst toss 𝐻)𝑃 (fst toss 𝐻)

+𝑃 (𝑋 = 𝑖 | fst toss 𝑇 )𝑃 (fst toss 𝑇 )) law of tot prob

=
∑︁
𝑖∈N

𝑖𝑃 (𝑋 = 𝑖 | fst toss 𝐻)𝑃 (fst toss 𝐻)

+
∑︁
𝑖∈N

𝑖𝑃 (𝑋 = 𝑖 | fst toss 𝑇 )𝑃 (fst toss 𝑇 )

= 𝐸(𝑋 | fst toss 𝐻)𝑃 (fst toss 𝐻)

+ 𝐸(𝑋 | fst toss 𝑇 )𝑃 (fst toss 𝑇 )

= 𝐸(𝑋 | fst toss 𝐻)𝑝 + 𝐸(𝑋 | fst toss 𝑇 )(1 − 𝑝).

34This can only work with in�nite structures.
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This idea generalizes to similar experiments with several outcomes. Assume
there are 𝑛 possible outcomes

𝑠1, 𝑠2, . . . 𝑠𝑛

and that

• for 1 ≤ 𝑖 ≤ 𝑛− 1 outcome 𝑠𝑖 occurs with probability 𝑝𝑖 and

• outcome 𝑠𝑛 occurs with probability 1 − (𝑝1 + 𝑝2 + · · · + 𝑝𝑛−1).

Then the expected number of times we have to repeat the experiment to get
outcome 𝑠𝑛 has to satisfy the equation

𝐸𝑋 = 1 − (𝑝1 + 𝑝2 + · · · + 𝑝𝑛−1) + 𝑝1(1 + 𝐸(𝑋 | 1st 𝑠1))
+ · · · + 𝑝𝑛−1(1 + 𝐸(𝑋 | 1st 𝑠𝑛))

= 1 + (𝑝1 + 𝑝2 + · · · + 𝑝𝑛−1)𝐸𝑋

and so we must have

𝐸𝑋 =
1

1− (𝑝1 + 𝑝2 + · · ·+ 𝑝𝑛−1)
.

EExercise 118. Assume you have a fair coin.

(a) What is the expected number of tosses until you have two heads in a row
for the �rst time?

(b) What is the expected number of tosses until you have heads immediately
followed by tails for the �rst time?

(c) Assume you are invited by one of your friends to play the following game:
A coin is tossed unto either

• two heads occur in a row for the �rst time or
• we have heads immediately followed by tails for the �rst time.

In the �rst case you get 6 pounds and in the second case you have to pay the
other player 5 pounds. Should you play this game?

Hint: Use the same idea as in Example 4.89. For the �rst part, check the situations
you may �nd yourself in after two tosses.

Properties of expected values

We know from Proposition 4.12 that we may compose a random variable with
a (measurable) function from its range to (a subset of) R and that gives another
random variable. But in general there is no easy formula for the expected value in
that situation:

Composing with a function will lead to a di�erent probability density function,
and forming the integral over that cannot in general be expressed in terms of the
integral giving the expected value for the original random variable. Even if the
given random variable is discrete we do not get a simple formula: Assume that 𝑓
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is a measurable function from the range of a random variable 𝑋 to a subset of R.
Then the new random variable has an expected value of

𝐸(𝑓 ∘𝑋) =
∑︁

𝑟∈range(𝑓∘𝑋)

𝑟 · 𝑃 (𝑓 ∘𝑋 = 𝑖).

This indicates that there is no easy to calculate the expected value of 𝑓 ∘𝑋 from
that of 𝑋 . This situation only changes when 𝑓 is a very simple function.

Exercise 119. Let 𝑋 be a random variable; consider the following function:

𝑓 : R R
𝑥 1.

Calculate the expected value of the random variable 𝑓 ∘𝑋 .

If the function 𝑓 is a linear function (compare Chapter 0) then we can compute
the expected value of 𝑓 ∘𝑋 from that of 𝑋 . Assume we have a discrete random
variable 𝑋 , with range

{𝑟𝑖 ∈ R | 𝑖 ∈ N‘}.

Let 𝑎 and 𝑏 be real numbers. We can compose 𝑋 with the function

R R
𝑥 𝑎𝑥 + 𝑏.

What is the expected value of the resulting random variable? We can calculate

𝐸(𝑎𝑋 + 𝑏) =
∑︁
𝑖∈N

(𝑎 · 𝑟𝑖 + 𝑏) · 𝑃 (𝑎𝑋 + 𝑏 = 𝑎 · 𝑟𝑖 + 𝑏)

=
∑︁
𝑖∈N

(𝑎 · 𝑟𝑖 + 𝑏) · 𝑃 (𝑋 = 𝑟𝑖)

=
∑︁
𝑖∈N

𝑎 · 𝑟𝑖 · 𝑃 (𝑋 = 𝑟𝑖) + 𝑏 · 𝑃 (𝑋 = 𝑟𝑖)

= 𝑎
∑︁
𝑖∈N

𝑟𝑖 · 𝑃 (𝑋 = 𝑟𝑖) + 𝑏
∑︁
𝑖∈N

𝑃 (𝑋 = 𝑟𝑖)

= 𝑎 · 𝐸(𝑋) + 𝑏.

See Exercise 106 for an explanation of the last step.

Proposition 4.16
Let 𝑋 be a random variable, and let 𝑎 and 𝑏 be real numbers. Then the expected
value of the random variable 𝑎𝑋 + 𝑏, which is formed by composing 𝑋 with
the function

R R
𝑥 𝑎𝑥 + 𝑏.

has an expected value given by

𝐸(𝑎𝑋 + 𝑏) = 𝑎𝐸(𝑋) + 𝑏.
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Proof. An argument for the discrete case is given above. The general argument
proceeds as follows.

𝐸(𝑎𝑋 + 𝑏) =

∫︁ ∞

−∞
𝑎𝑥 + 𝑏 · 𝑝(𝑎𝑥 + 𝑏)𝑑𝑥

= 𝑎

∫︁ ∞

−∞
𝑥 · 𝑝(𝑥)𝑑𝑥 + 𝑏

∫︁ ∞

−∞
𝑝(𝑥)𝑑𝑥

= 𝑎𝐸(𝑋) + 𝑏.

If we have two random variables then we can say something about combining
them.

Proposition 4.17
If 𝑋 and 𝑌 are random variables then

𝐸(𝑋 + 𝑌 ) = 𝐸𝑋 + 𝐸𝑌.

If 𝑋 and 𝑌 are independent then we also have

𝐸(𝑋 · 𝑌 ) = 𝐸𝑋 · 𝐸𝑌.

Example 4.91. This can be a very useful result when we want to calculate
expected values. For example, if we want to calculate the expected number
of heads when tossing a coin 20 times then carrying out a calculation where
we look at all the possible permutations of results we might get is tough. So
instead of doing that we can think of the random variable 𝑋 thus created as
being the sum

𝑡𝑠𝑢𝑚1≤𝑖≤20𝑋𝑖

where 𝑋𝑖 is the random variable we get from the number of heads on the 𝑖th
toss of the coin. For each 𝑋𝑖 we have 𝐸𝑋𝑖 = 12, so

𝐸𝑋 = 𝐸
∑︁

1≤𝑖≤20

𝑋𝑖 =
∑︁

1≤𝑖≤20

𝐸𝑋𝑖 =
∑︁

1≤𝑖≤20

1

2
=

20

2
= 10

and we have found an easy way to calculate this number. I assume many of
you would have guessed this to be the expected value, but now we can be sure
this answer is the correct one.

Exercise 120. For the situation where a ‘best out of �ve’ series is played carry
out the following tasks.

(a) Calculate the expected value for the number of matches that occur in a
‘best out of �ve’ series, see Exercise 81.

(b) Calculate the number of matches 𝐴 can expect to win, see 111.
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(c) There is a connection between these two expected values. What is it, and
can you explain why it has to be like that?

We are now able to paraphrase an important law that, for example, explains
why Bayesian updating works. You will meet this idea again in COMP13212, Data
Science, in one of the early lectures.

Fact 13: The Law of Large Numbers
Let 𝑋𝑖, for 𝑖 ∈ N, be pairwise independent random variables with the same
distribution. Further assume that the expected value of the 𝑋𝑖 is 𝑣 ∈ R, and
that the random variables have a �nite variance (see De�nition 43). Then

𝑋1 +𝑋2 + · · ·+𝑋𝑛

𝑛

converges towards 𝑣 with probability 1, as 𝑛 tends towards in�nity.

Example 4.92. Assume we are tossing a coin, and we use the random variable
𝑋𝑛 (say 0 for heads and 1 for tails) to express the 𝑛th coin toss. The expected
value of each of the random variables is 1/2. Then if we keep tossing the coin
we �nd that with probability 1 the average

𝑋1 +𝑋2 + · · ·+𝑋𝑛

𝑛

will move closer and closer to 1/2—in other words, the more often we toss the
coin, the closer to 1 will be the ratio of heads to tails observed.

A rather simpli�ed way of paraphrasing this law is to say that the more often
we carry out a random process the closer the average of all our observations is to
the expected value.

4.4.7 Variance and standard deviation

The expected value of a random variable allows us to ‘concentrate’ it’s behaviour
into just one number. But as Examples 4.78 and 4.82 illustrate, the expected
value can be misleading regarding which values are likely to occur. One way of
measuring how far a random variable deviates from its expected value is to do the
following:

Let 𝑋 be a random variable.

• Calculate the
expected value 𝑒 of 𝑋.

• Create a new random variable in two steps:

– Subtract the expected value 𝑒 from 𝑋 to form the random variable

𝑋 − 𝑒.

– To ensure that positive and negative di�erences from the expected
value cannot cancel each other out (and to amplify di�erences), form
the square of the previous random variable to give

(𝑋 − 𝑒)2.
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• Calculate the expected value of the new random variable.

Example 4.93. We return to Example 4.68 of tossing a coin three times, where
we count the number of heads seen to get a random variable 𝑋 . We recall
from Example 4.78 that the expected value of 𝑋 is 1.5.

If we form 𝑋 − 1.5 we get a new random variable with range

{−1.5,−.5, .5, 1.5}

and pmf

−1.5 −.5 .5 1.5

1/8 3/8 3/8 1/8.

If we square the result we have the random variable (𝑋 − 1.5)2 with range

{.25, 2.25}

and pmf

.25 2.25

2/8 = 1/4 6/8 = 3/4.

Its expected value is

.25 · 1
4

+ 2.25 · 3
4

=
0.25 + 6.75

4
=

7

4
= 1.75.

Hence the variance (see de�nition below) of the random variable 𝑋 is 1.75.

De�nition 43: variance
If 𝑋 be a random variable with expected value 𝑒 its variance is given by

𝐸((𝑋 − 𝑒)2).

As pointed out above, the variance ampli�es larger deviations from the ex-
pected value by squaring the di�erence, and it returns the square of the expected
di�erence. For some considerations it is preferred not to carry the last step, leading
to a slightly di�erent way of measuring how far a random variable strays from its
expected value.

De�nition 44: standard deviation

If 𝑋 is a random variable then its standard deviation is given by the square
root of its variance.

The standard deviation gives an idea of what is ‘normal’ for a given distribution.
If we only consider ‘normal’ those values which are equal to the expected value then
this is too narrow for most purposes. If the average height in a given population is
167cm, then we don’t consider somebody who measures 168cm far from the norm.

Typically values which are within one standard deviation on either side of the
ave considered ‘normal’. If the standard deviation is large that means that there
are a lot of data points away from the expected value, and we should not have too
narrow an idea of what is ‘normal’.
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Example 4.94. In the Example 4.93 the standard deviation is
√

1.75 ≈ 1.32.
This means that for the coin example, almost anything is normal. If we increase
the number of coin tosses that changes.

The standard deviation can be thought of as giving us a measurement of the
variability of the possible values of a random variable. For some purposes the
variance (which is closely related) has nicer properties. These ideas will appear in
the unit on data science in an early lecture. Related ideas are to use data gathered
to calculate sample variance, also known as empirical variance.

Exercise 121. (a) Show that for a random variable 𝑋 with expected value 𝑒
the variance is 𝐸(𝑋2) − 𝑒2.

(b) Show that if 𝑋 and 𝑌 are independent random variables we have that the
variance of 𝑋 + 𝑌 is the variance of 𝑋 plus the variance of 𝑌 . Hint: You may
want to use part (i).

4.5 Averages for algorithms

A very important application of expected values in computer science is that of the
average complexity of an algorithm. You will meet this idea in COMP11212 and
COMP26120 (and COMP36111. Mathematically it is quite tricky to make precise
the average that is formed here. In subsequent course units you will not see formal
derivations of the average complexity of an algorithm, and the examples we study
below give you an idea why that would take up a great deal of time. The examples
we do look at stand serve as case studies that illustrate the procedure.

4.5.1 Linear search

Assume you have an array of integers (for example of student id numbers, pointing
to the student �le). Assume you are trying to �nd a particular id number in that
array.

A simple-minded algorithm for doing this will look at all the possible values
in the array until the given number is found.

Code Example 4.1. Here’s a code snippet that implements this search idea.

for (int index=1; index < max_index; index++)
if (array[index]=given_number) ...

This algorithm is known as linear search. How many times is the algorithm
going to perform look-up for the array on average? In other words, how often will
array[index] be invoked? We begin by looking at an example.

Example 4.95. If the array has 8 entries then the chance that the entry we are
looking for is any one of them is 1/8. If we are lucky, and we �nd the entry
on the �rst attempt35 at array[1] then we have needed one look-up, whereas
if we have to keep checking until we reach array[8] we need 8 look-ups. We
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have a random variable which takes its values in

{1, 2, 3, 4, 5, 6, 7, 8},

and each of these values occurs with the same probability, namely 1/8. Hence
the expected value for this random variable is

1 · 1
8

+ 2 · 1
8

+ · · · + 8
1

8
=

8∑︁
𝑖=1

𝑖
1

8

=
1

8

8∑︁
𝑖=1

𝑖

=
1

8
· 8(8 + 1)

2

=
8 + 1

2
.

This means we have to expect 4.5 look-ups on average.

Of course most real-world applications have considerably larger arrays. For
this reason it pays to think about the general case.

Example 4.96. We now assume that we have an array with 𝑛 entries, and that
the chance of the searched for entry being in any of the 𝑛 positions is the
same, namely

1

𝑛
.

We apply the same algorithm as before, namely looking at each entry until
we �nd the one we are looking for. In particular note that we are implicitly
assuming that not �nding the entry in the �rst position does not tell us anything
about the probability of it being in the second (or any other) position.

If the looked-for entry is the �rst entry of the array then we need one
look-up operation, if it is the second entry we need two look-ups, and so on
until the end of the array. So we have a random variable that can take values
in the set

{1, 2, . . . , 𝑛},

and for which the probability that any one of them occurs is 1/𝑛. Hence the
expected value for this random variable is

1 · 1

𝑛
+ 2 · 1

𝑛
+ · · · + 𝑛

1

𝑛
=

𝑛∑︁
𝑖=1

𝑖
1

𝑛

=
1

𝑛

𝑛∑︁
𝑖=1

𝑖

=
1

𝑛

𝑛(𝑛+ 1)

2

=
𝑛+ 1

2
.

In other words we have to look through roughly half the array on average
before �nding the looked-for entry. You might have been able to work this

35Typically arrays start at index 0 but for our example it makes life less complicated if we start at
index 1.
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out without any knowledge of random variables, but we can now put these
ideas on a �rm mathematical footing.

People who study algorithms are also interested in the worst case which in this
example is that we have to perform 𝑛 look-up operations until we �nally �nd our
number.

So the average case of the algorithm is that the number of look-ups required is
roughly half the size of the input, whereas the worst case is that it is the size of
the input.

4.5.2 Binary search

In the above example we were using an algorithm that is not particularly clever. If
the entries appear in the array sorted by their size then we can do much better.

Assume we are trying to solve the same problem as in the previous example,
but this time we have an array whose entries are sorted. In that case we can come
up with a faster algorithm e�ectively by making use of this extra information.

Here’s the idea:36 The �rst index we try is the one halfway through the array,
say the 4th entry. If the entry at that position is the one we were looking for then
we are done. If not, then if the entry at that position is below the one we are
looking for then we know that the looked-for entry has to be to the right of the
current position at a higher index, else to the left at a lower index. Of course we
might be really lucky and have found our entry already!

We now apply the same trick again: We �nd an entry roughly halfway through
the appropriate half of the array. If the entry at the current position is below the
one we are looking for. . . .

What’s the expected number of look-ups required for this algorithm? What we
do on each step is to look up one entry, and split the remaining array in two parts
whose sizes di�er by at most 1. We look at a concrete example to better understand
the situation.

Example 4.97. Again we assume that we have an array of size 8. Say our array
looks as follows:

1 2 3 4 5 6 7 8
1 3 4 7 15 16 17 23

If we look for the entry 17 we perform the following steps:

• We look at the entry at index 4, where we �nd the entry 7. This is smaller
then the entry we are looking for.

1 2 3 4 5 6 7 8

1 3 4 7 15 16 17 23

17

We know that if our number is in the array it has to be to the right of
the index 4.
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• On the next step we look halfway through the indices 5, 6, 7 and 8. There
are 4 entries, so (roughly) halfway along is at index 6. We �nd the entry
16, which is again smaller than the one we are looking for.

1 2 3 4 5 6 7 8

1 3 4 7 15 16 17 23

17

• We now have to look halfway along the indices 7 and 8. There are two
entries, so halfway along is at index 7. We have found the number we
were looking for,

1 2 3 4 5 6 7 8

1 3 4 7 15 16 17 23

17

Here is a description of the algorithm when looking for an arbitrary number
in this array:

We assume that we cannot be sure that the entry is in the array at all
(somebody might have given us an invalid id number). On the �rst step we
look up the entry at index 4. If this doesn’t give us the entry we were looking
for then this leaves us with

• either our entry is smaller than the one at index 4, so if it is there it must
be at indices 1, 2 or 3, in which case

– we look up the entry at index 2, and if we are not successful then
∗ if our entry is below that at index 2 we look up index 1 or
∗ if our entry is above that at index 2 we look up index 3,

or

• our entry is greater than the one at index for, so if it is there at all it
must be at indices 5, 6, 7 or 8, in which case we

– look up the entry at index 6, and if that is not the correct one then
∗ if our entry is smaller than that at index 6 we look at index 5
∗ if our entry is greater than that at index 6 we look at index 7.

· and if it is not at index 7 we look at index 8,

This information is more usefully collected in a tree. Here the nodes are
given labels where
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• the �rst part is a list of indices we still have to look at, then there is a
colon and

• the second part is the index we are currently looking at.

[1, 2, 3, 4, 5, 6, 7, 8] : 4

[1, 2, 3] : 2

[1] : 1

1/3

done

1/3

[3] : 3

1/3

3/8

done
1/8

[5.6.7.8] : 6

[5] : 5

1/4

done

1/4

[7, 8] : 7

done

1/2

[8] : 8

1/2

1/2

1/2

We can see that in the worst case we have to look at indices 4, 6, 7 and 8,
which makes four look-ups.

We can also calculate the expected value for this situation:

• The probability that we need only one look-up is 1/8;

• we need two look-ups with probability

3/8 · 1/3 + 1/2 · 1/4 = 2/8;

• we need three look-ups with probability

3/8 · (1/3 + 1/3) + 1/2 · (1/4 + 1/2 · 1/2) = 4/8;

• we need four look-ups with probability 1/2 · 1/2 · 1/2 = 1/8.

Hence the expected value for the number of look-ups is

1 · 1
8

+ 2 · 2
8

+ 3 · 4
8

+ 4 · 1
8

=
21

8
= 2.625.

Again we want to analyse the general case of this algorithm, which is known
as binary search.

Example 4.98. From the example above we can see that some cases are easier
to analyse than others: If the elements of the array exactly �t into a tree then
the calculation becomes much easier.

If we look at the example of eight indices we can see that 7 indices would
�t exactly into a tree with three levels of nodes. We can also see that we don’t
need to have separate nodes labelled ‘done’; instead, we can just use the parent
node to record that the search is over. In the case where there are seven entries
in the array we could calculate the expected value using the following tree,
where now we only list the index that is currently looked up for each node:

36I think you will have seen this if you have been at one of our Visit Days.
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4

2

1 3

6

5 7

The node on the top level requires one look-up, the two nodes on the
second level require two look-ups, and the four nodes on the third level require
three look-ups. Each of those nodes will be equally likely to hold our number.
Hence we can see that the average number of look-ups is

1 · 1 · 1
7

+ 2 · 2 · 1
7

+ 3 · 4 · 1
7

=
17

7
≈ 2.43.

We can generalize the idea from the preceding example provided that the
number of indices is of the form

20 + 21 + · · · + 2𝑘−1 =
𝑘−1∑︁
𝑖=0

2𝑖 = 2𝑘 − 1.

We can think of the situation as being given as in the following tree, where on
each level we give the number of look-ups required.

1

2

3

... ...

3

... ...

2

3

... ...

3

... ...

The expected number of look-ups can be described by a function

𝑓 : N N

which behaves as follows:

𝑓(2𝑘+1 − 1) = 1 + 𝑓(2𝑘 − 1),

because if we have an array with 2𝑘+1 − 1 elements, which exactly �t into a
tree with 𝑘 + 1 layers, we need one look-up, and are then left with a tree with 𝑘
layers, which requires 𝑓(2𝑘 − 1) look-ups. This kind of description of a function
is known as a recurrence relation, and we look at simple cases for solving these in
Section 6.4.5, and give a few further examples in Chapter 8. Here we can analyse
the situation fairly easily:

We start counting the levels from the top, starting with level 0 and ending at
𝑘 − 1. Then

level 𝑖 has 2𝑖 nodes
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each needing 𝑖 + 1 look-ups

each holding the right value with probability 1

2𝑘 − 1
.

Hence the expected value of the number of look-ups is
𝑘−1∑︁
𝑖=0

(𝑖 + 1)
2𝑖

2𝑘 − 1
=

1

2𝑘 − 1

𝑘−1∑︁
𝑖=0

(𝑖 + 1)2𝑖.

To check that we have derived the correct formula we can look at the case
for 𝑘 = 3, that is seven entries in the array, and compare the result we get from
the formula with the one calculated above. The formula gives approximate 2.43
look-ups which agrees with the result previously calculated.

We give a few (approximate) values of this sum:

𝑘 3 4 5 6 7 8
𝑛 7 15 31 63 127 255

exp no look-ups 2.43 3.27 4.16 5.1 6.06 7.03
As 𝑘 grows large the sum given above approximates 𝑘, If we only have values

for arrays of sizes of the form
2𝑘 − 1,

do we have to worry about the other cases? The answer is that one can show
with a more complicated analysis that for an array with 𝑛 entries, we require
approximately log 𝑛 look-ups, even if 𝑛 is not of the shape 𝑠𝑘 − 1. This means that
the average number of look-ups for an array with 𝑛 entries is approximately log 𝑛.

We note that the worst case for this algorithm is that we have to look up one
node on each level in the tree, which means that in the worst case the number
of look-ups is the height of the tree, which is log 𝑛. So here we are in a situation
where the average case is the same as the worst case!

Occasionally it is easier to analyse particular problem sizes, and as long as
the values for other values deviate in only a minor way from the function so
deduced, this is su�cient for most purposes in computer science. You will learn in
COMP11212 that we are typically only interested in the ‘rate of growth’ of a function
describing the number of instructions required for a given problem size, and that
all other aspects of the function in question are dropped from consideration.

Often when looking at issues of complexity it is su�cient to have approxim-
ate counts, and more generally we only care about how quickly the number of
instructions grows as 𝑛 grows large. We look a little into how one can measure
the ‘growth’ of a function in Section 5.1.

EExercise 122. Assume you have an array whose entries are natural numbers,
and you are given a natural number 𝑘 that occurs in the array. You want to
change the order of the entries in the array in such a way that it satis�es the
following two conditions:

• All numbers which are less than 𝑘 occur to the left of 𝑘 and

• all numbers which are larger than 𝑘 occur to the right of 𝑘.

This is a part of an important sorting algorithm called Quicksort. In what
follows we make the assumption that the number 𝑘 occurs in the array exactly
once.37 The way this algorithm is implemented is as follows:
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• There are two pointers, low and high.

• At the start the low pointer points to the lowest index and the highest
pointer points to the highest index.

• You start a loop. This loop runs until the low pointer and the high
pointer point at the same entry.

– Look at the entry the low pointer points to.
∗ If the entry is less than 𝑘 then increase the low pointer by one,

check that it has not reached the index of the high pointer,
and repeat.

∗ If the entry is greater than or equal to 𝑘 then do the following.
· Look at the entry the high pointer points to.
· If the entry is greater than 𝑘 then decrease the high pointer

by one, check that it has not reached the low pointer, and
repeat.

· If the entry is less than or equal to 𝑘 then swap the two
entries.

– Repeat, looking again at the low pointer.

(a) Carry out this algorithm for the following array and 𝑘 = 17.

1 2 3 4 5 6 7 8
19 2 17 5 1 27 0 31

How many times does the algorithm ask you to swap elements?

Now look at carrying out the algorithm for an arbitrary array of size 𝑛.

(b) In the best case, how many times does the algorithm have to swap ele-
ments? Justify your answer.

(c) Assume you have an array with �ve elements. In the worst case, how
many times does the algorithm have to swap elements? Try to generalize your
idea to an array with 𝑛 elements. Justify your answer by describing how to
construct an array where the worst case will occur.

(d) Assume that the element 𝑘 occurs in the middle of the array and that the
array has an odd number of entries. What is the average number of swaps the
algorithm has to perform if you may assume38 that given an arbitrary element
of the array,

• the probability that it is less than 𝑘 is 1/2 and
• the probability that it is greater than 𝑘 is 1/2?

Write one sentence about how this changes if the probability that an arbitrary
element of the array is less than 𝑘 is 𝑝, and the probability that it is greater
than 𝑘 is 1 − 𝑝.

272



(e) On average, how many times does the algorithm have to swap elements if
you may assume everything from the previous part, with the exception that
the element 𝑘 is located in the middle of the array?

(f) Can you say how many times the algorithm has to swap elements on
average if you are not allowed to make this assumption, but if the element 𝑘
still occurs in the middle of the array?

Note that this is a tricky exercise, and its main point is to show how di�cult it is
to properly calculate the average complexity of any algorithm.

Hint: For any of the parts from (b) onwards if you struggle to work out the
general situation try some small arrays to see whether you can see what happens.

You can see from the examples given, however, that a proper analysis can be
quite tricky (the cases discussed above are relatively simple ones), and that one
often has to make decisions about using approximations. When people claim that
an algorithm has, say an average case quadratic complexity then this has to be read
as an approximate description of its behaviour as the input grows large. The above
preceding four examples give you an idea of what is meant by ‘average number
of steps’. Note that the typical assumption is that every possible con�guration
is equally likely (that is in our example that the sought-for number is equally
likely to occur at any given index in the array), and that these assumptions are not
always justi�ed.

4.6 Some selected well-studied distributions

In many situations it is hard to determine the probability distribution of a given
random variable from the given data. In those cases it is standard to make the
assumption that it behaves according to some well known distribution.

Clearly if this assumption is not justi�ed then any calculations based on it
are not going to be of much practical use. When you are asked to cope in such
a situation you should, at the very least, think about what you know about the
given situation and which well-known distribution this suits best.

We here give an overview of only a very small number of distributions. There
is plenty of material available on this topic, and so there is no need to add to that.

4.6.1 Normal distributions

Normal distributions are used on many occasions. They are continuous probability
distributions— although ‘normal distribution’ refers to a whole family people often
use this term in the singular.

In its simplest form the probability density function of a normal distribution is
given by

R R

𝑥
1√
2𝜋

𝑒−𝑥2/2.

37Although it also works if the number doesn’t occur at all in that you get a block of numbers
less than 𝑘 followed by a block of numbers greater than 𝑘.

38The assumption is equivalent to assuming that there are as many numbers below 𝑘 in the array
as there are numbers greater than or equal to 𝑘.
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The expected value of a random variable with this probability density function
is 0, and the standard deviation is 1.

It is possible to create a normal distribution for a given expected value and
a given standard deviation. Let 𝑣 and 𝑠 be real numbers, where 𝑠 > 0. Then a
random variable with probability density function

R R

𝑥
1

𝑠
√
2𝜋

𝑒(𝑥−𝑣)2/2𝑠2

has expected value 𝑣 and standard deviation 𝑠.
One of the reasons that this is such a useful distribution is that, under fairly

general assumptions, it is the case that the average of a (large) number of random
variables which are independent and have independent distributions converges
against having a normal distribution. For this reason random variables that are
created from a number of independent processes obey a distribution which is close
to a normal distribution. You will meet this idea once again in COMP13212, and
we have just summarized the reason why the normal distribution often appears in
applications.

Normal distributions are known to occur in the natural work, for example as
the velocities of molecules in an ideal gas. There are many resources available to
study phenomena which follow these distributions.

4.6.2 Bernoulli and binomial distributions

We have used Bernoulli distributions already without naming them. Given a
random variable with two possible outcomes, say

𝑟 and 𝑟′ in R,

to give a probability distribution of the random variable it is su�cient to determine

𝑃 (𝑋 = 𝑟),

and all other probabilities are then uniquely determined (compare Corollary 4.13).
In particular we know that

𝑃 (𝑋 = 𝑟′) = 1 − 𝑃 (𝑋 = 𝑟),

since the probability of all possible outcomes have to add up to 1.
Typically for a Bernoulli distribution we assume the only possible values of

the random variable are
0 and 1.
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Example 4.99. Tossing a coin is an experiment that follows a Bernoulli distri-
bution, where one of head or tails is assigned the value 1, and the other the
value 0. You can think of this as the random variable that counts the number
of heads (or tails) that appear in a single coin toss.

To make the notation less tedious, assume that

𝑃 (𝑋 = 1) = 𝑝.

The expected value of this distribution is given by

0 · (1 − 𝑝) + 1 · 𝑝 = 𝑝,

and the variance is

𝐸((𝑋 − 𝑝))2) = 𝐸(𝑋2 − 2𝑝𝑋 + 𝑝2)

= (02 − 2𝑝 · 0 + 𝑝2)(1 − 𝑝) + (12 − 2𝑝 · 1 + 𝑝2)𝑝

= 𝑝2(1 − 𝑝) + (1 − 2𝑝 + 𝑝2)𝑝

= 𝑝2 − 𝑝3 + 𝑝− 2𝑝2 + 𝑝3

= 𝑝− 𝑝2

= 𝑝(1 − 𝑝).

The binomial distributions arise from assuming an experiment with a Bernoulli
distribution is carried out repeatedly, in a way where the previous incarnations
have no in�uence on the following ones, such as tossing a coin a number of times,
and adding up the results (for example the number of heads that appear). You can
�nd the description of the pmf, expected value, and standard deviation for these
distributions from many sources, including online.

4.6.3 The Poisson distribution

The Poisson distribution is a discrete distribution that applies to process of a
particular kind, namely ones where

• we look at the probability of how many instances of a given event occur
within a given time interval or a given space,

• we know the average rate for these events and

• the events occur independently from the time of the last event.

Typical examples are:the following.

• The number of births per hour on a given day.

• The number of mutations in a set region of a chromosome.

• The number of particles emitted by a radioactive source within a given time
span.

• The number of sightings of pods of dolphins along a given path followed by
an observing plane.
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• Failures of machines or components in a given time period.

• The number of calls to a helpline in a given time period.

It is assumed that the expected number of occurrences (on average) of the
event in the given time frame is known, so assume this is given by 𝑣 ∈ R+. A
random variable 𝑋 obeying the Poisson distribution has the pmf

𝑃 (𝑋 = 𝑛) =
𝑣𝑛𝑒−𝑣

𝑛!
.

Its expected value is 𝑣, which is also the variance.

Example 4.100. Assume we have motherboards for which it is known that on
average, .5% are faulty. If we pick a sample of 200 motherboards, what is the
probability that three of them are faulty?

From the given data we would expect .005 × 200 = 1 to have one faulty
board on average in such a sample, but this does not tell us how to answer the
question about the probability that we have three of them. If we assume that
this event follows the Poisson distribution then we get

𝑃 (𝑋 = 3) =
13𝑒−1

3!
≈ .06,

so the probability is 6%.

4.6.4 Additional exercises

We look at situations here for which I don’t want you to make any assumptions
about which part of the notes you should use to solve them.

Exercise 123. Consider the following marking scheme for multiple choice
questions: Each question has precisely one correct answer of four choices
given, and students may pick as many of the available choices as they like. The
marking scheme is as follows: For choosing the correct answer the student
gets three marks, and for each chosen incorrect answer the student loses a
mark.

Show that if a student randomly chooses how many alternatives to include,
and which ones those should be, the number of marks they get is 0.

Exercise 124. A lecturer believes that students have a better chance of doing
well on their unit if they also take another unit at the same time. He looks at
the numbers from the past academic year to see whether he can �nd statistical
evidence for his belief. In the past year he had 200 students on his course of
which 40 got a very good mark. Of the student on his course 67 were enrolled
on the other unit in question, and of these 27 receive a very good mark.

Do you think he is right in his belief?

Exercise 125. Assume you have a line with 11 points points from −5 to 5.
There is an ant at point 0.

−5 −4 −3 −2 −1 0 1 2 3 4 5

Assume that with probability 1/2 the ant moves one point to the left, and
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with probability of 1/2 it moves one step to the right. If it wants to make
a step that causes it to leave the grid it stops. This exercise requires a lot of
calculations and is a bit �ddly in places.

(a) What is the probability that the ant will have stopped after 10 steps?

(b) What is the expected position of the ant after 10 steps?

Exercise 126. This exercise is a generalization to 2 dimensions of the previous
one, so you may want to solve that �rst.

Assume you have an eleven-by-eleven grid, which we may give coordinates
from from (−5,−5) to (5, 5) as in the following picture. There is an ant on
the grid, initially in position (0, 0).

Assume that with the probability of 1/4 the ant selects a direction from
{𝑁,𝐸, 𝑆,𝑊} and takes one step in that direction. If it wants to move in a
direction that would cause it to leave the grid it stops.

(a) What is the probability that the ant has stopped after ten steps?

(b) What is the expected position of the ant after ten steps?

Assume that the ant is not allowed to change direction by more than 90
degree on each step, and that each of the possible three directions is equally
likely.

(c) What is the average distance that the ant will have from the starting point
after �ve steps?

(d) What is the probability that the ant will have have stopped after eight
steps?

Exercise 127. Assume you are looking after a cluster containing 50 machines.
One of your machine has been a�ected by an odd virus. Its behaviour is as
follows:

• It randomly picks one of the other 49 machines in the cluster. It copies
itself to that machine. It then becomes inert.

• If a machine that was infected previously becomes infected again it
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behaves as if it hadn’t been infected before, that is, the virus is copied to
one machine randomly picked from the other 49 machines in the cluster.

(a) What is the probability that after eight infection steps, the number of
infected computers is 8? (In other words, no computer has been infected
twice.)

(b) What is the expected number of infected computers after 5 infection steps?
Hint: draw a tree where each node is labelled by the number of machines currently
infected. On the �rst step there is one such machine, on the second step there are
two (you may want to think about why), and after the third step there can be two
or three.

(c) Picture the tree that would fully describe the possible numbers of infected
machines after 50 steps. How many paths in that tree lead to exactly three
machines being infected? What is the probability for each of those paths?

CExercise 128. Calculate the expected values asked for in the following situ-
ations. Make sure you give a full calculation, not just a number, and be prepared
to explain your calculation.

(a) You are staying at a guest house with seven rooms. You know from chatting
to the owner that three rooms have couples staying, two rooms have singles,
and one room is empty. At the breakfast bu�et you get to know one of the
other guests. What is the expected number of occupants of their room?

(b) You have lined up 10 pound coins. You �ip each one of them, and then move
to one side the ones that show heads. You �ip the remaining ones again, and
once more move to one side the ones that show heads. You �ip the remaining
ones again and once more move those showing heads to one side. How many
coins do you expect to have put aside altogether?

(c) Assume you are o�ered the following game: You roll a die. You can decide
to stop here and get the number of points shown on the die, or you can roll it
again. After the second roll you again have the choice to obtain the number of
points shown on that roll, or to roll one �nal time.
Describe the strategy that maximises the expected number of points you win
in this game, and give the number of points you may expect.

Exercise 129. Assume you have an animal that lives on the real interval from
0 to 1, and it is equally likely to be any of these locations. Now assume we
have a second animal of this kind. What is the expected distance between the
two?
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Chapter 5

Comparing sets and functions

In computer science we are interested in comparing functions to each other because
when we decide which algorithm to choose we want to pick the one that shows the
better behaviour for the given range of inputs. By ‘better behaviour’ we mean an
algorithm that performs faster for the given inputs. As you will see in COMP11212
when we do this we only compare such functions regarding how fast they grow,
and one of the aims of this section is to introduce that idea.

We also have to be able to compare sets with each other. In Chapter 4 there is
frequently a distinction between three cases regarding random processes into

• those with a �nite number of outcomes and

• those with a countable1 number of outcomes and

• those we consider continuous.

This chapter makes these ideas formal. There are other applications for these ideas,
and we sketch one here:

• There are countably many Java programs.

• There are uncountably many functions from N to N.

This mismatch tells us that there are some functions from the natural numbers to
the natural numbers which cannot be implemented by a Python or Java program.

5.1 Comparing functions

In Section 4.4.6 we discuss how to calculate the number of instructions that a
program has to carry out on average. It is a �rst step to analysing the e�ciency of
an algorithm.

Sometimes we have a choice of programs (or algorithms) to solve a particular
problem. For small problem sizes it won’t matter too much which one we pick,
but as the size of our problem grows (for example, sorting millions of entries in
some array as opposed to a few tens) we need to seriously think about what is the
best choice. It might be the case that some programs take so long (or requires so
many resources in the form of memory) that one cannot feasibly use them.

To measure the e�ciency of programs it is standard to count the number of
some instructions that measures how long the program is taking, depending on

1These are the ones where the set 𝑆 of outcomes may be described in the form 𝑆 = {𝑠𝑖 | 𝑖 ∈ N}.
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the size of the problem. The question then is how to compare such functions.
Examples 4.96 and 4.98 in Chapter 4 give a measure of e�ciency of two algorithm,
the �rst one being known as linear search while the second is called binary search.
For these algorithms we counted the number of look-up operations performed to
measure their complexity.

For an array with 𝑛 entries, the former has an average number of (𝑛 + 1)/2
look-ups to perform, while the latter requires approximately log 𝑛 look-ups.

We picture the corresponding functions by drawing their graph when viewing
them as functions from R+ (or a subset thereof) to R+.

instead of functions from N to N. In the following graph consider the two
functions given

[1,∞) R+.

𝑥

𝑥+ 1

2

log 𝑥

We can see that for every input value binary search requires fewer look-ups
than linear search. In this case it looks like an easy choice to make between the
two. However, we have to bear in mind that binary search requires the given array
to be sorted, and that does require additional computation time and power.

The picture suggests a de�nition for comparing functions.

De�nition 45: dominate
Let 𝑁 be a set of numbers, N, Z, Q or R, and let 𝑓 and 𝑔 be two functions
from a set 𝑆 to 𝑁 . We say that 𝑓 dominates 𝑔 (or 𝑓 is above 𝑔) if and only if

for all 𝑠 ∈ 𝑆 it is the case that 𝑓𝑠 ≥ 𝑔𝑠.

When we draw the graphs of two functions where one dominates the other
we can see that the graph of the �rst is entirely above the graph of the second (but
the graphs are allowed to touch).

Example 5.1. Consider the following three functions from [1,∞) to R+.
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𝑥

2𝑥 𝑥

2
+ 1

log 𝑥

1

The function
𝑥 2𝑥

dominates the function
𝑥 𝑥/2 + 1

which in turn dominates the function

𝑥 log 𝑥 .

But this notion is not su�cient for the intended application. If we want to
establish whether one program outperforms another then using this idea for, say,
the functions giving the number of instructions as a function of the size of the
input for each program, may not give a useful result. Consider the functions below,
going from R+ to R+.

𝑥

𝑥/2 + 1

𝑥2

Neither function dominates the other. But clearly if the problem size is large
(that is, we move to the right in the graph) then the function

𝑥 𝑥/2 + 1

o�ers a much preferable solution. This idea is encapsulated by the following
de�nition.2

2You will meet the following de�nition again in COMP11212, and COMP21620.
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De�nition 46: eventually dominate

Let 𝑁 and 𝑁 ′ be sets of numbers from N, Z, Q or R, and let 𝑓 and 𝑔 be two
functions from 𝑁 to 𝑁 ′. We say that 𝑓 eventually dominates 𝑔 if and only if

there exists 𝑘 ∈ R
such that for all 𝑥 ∈ 𝑁 with 𝑥 ≥ 𝑘 we have 𝑓𝑥 ≥ 𝑔𝑥.

We can think of this de�nition as saying that 𝑓 dominates 𝑔 if we restrict the
source of 𝑓 and 𝑔 to

{𝑥 ∈ 𝑁 | 𝑥 ≥ 𝑘},

or if we only look at the graphs of the two functions to the right of 𝑘.
Note that there is no need to �nd the smallest 𝑘 ∈ N with this property—any

such 𝑘 will do!

Typically when we are interested in one function eventually
dominating another in computer science, we are interested in
functions from the natural numbers to some subset of the real
numbers. When we try to draw the graph of such a function it
is easier to draw it as a function from the real numbers to the
real numbers. It is not a priori clear what happens when we
change the source set of the function.

Note that if 𝑓 is a function from some set 𝑆 to a subset of the real numbers
then there is a very closely related function whose target is R, given by

𝑆 R
𝑥 𝑓𝑥.

The following result gives us information about extending the domain of de�nition
of our function.

Proposition 5.1
Let 𝑁 be a set of numbers from N, Z, Q or R, and let 𝑓 and 𝑔 be functions
from 𝑁 to R. Assume that 𝑓 ′ and 𝑔′ are functions from R to R such that

• 𝑓 ′ restricted to inputs from 𝑁 is 𝑓 and

• 𝑔′ restricted to inputs from 𝑁 is 𝑔. If 𝑓 ′ eventually dominates 𝑔′ then 𝑓
eventually dominates 𝑔.

Proof. If 𝑓 ′ eventually dominates 𝑔′ then we can �nd 𝑘 ∈ R such that for all
𝑥 ∈ R with 𝑥 ≥ 𝑘 we have that 𝑓 ′𝑥 ≥ 𝑔′𝑥.

To show that 𝑓 eventually dominates 𝑔, assume we have 𝑦 ∈ 𝑁 with
𝑦 ≥ 𝑘. We know the following:

𝑓𝑥 = 𝑓 ′𝑥 assumption about 𝑓 ′

≥ 𝑔′𝑥 𝑥 ≥ 𝑘

= 𝑔𝑥 assumption about 𝑔′.
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Hence we may argue with suitable functions from the real numbers to the real
numbers.

Example 5.2. Consider the two functions

𝑓 : N N

𝑛 𝑛2

𝑔 : N N
𝑛 4𝑛 + 5.

Again we use graphs to picture the situation,3 where we treat both expres-
sions as functions from the non-negative reals to the reals. The preceding
proposition tells us that considering the graphs tells us something about the
functions given.

𝑥
1

25

1 5

𝑥2

4𝑥 + 5

Once the two lines have crossed (at 𝑥 = 5) the graph of 𝑓 stays above
that of 𝑔. This suggests that we should try to �nd a proof that 𝑓 eventually
dominates 𝑔.

• First of all, we have to give a witness for the ‘exists’ part of the statement.
The graph helps us to choose 𝑘 = 5, but note that every natural number
larger than 5 would also work.

• Now that we have 𝑘 we have to show that for all 𝑛 ∈ N, with 𝑛 ≥ 𝑘,
we have 𝑔𝑛 ≤ 𝑓𝑛. So let us assume that 𝑛 ∈ N, and that 𝑛 ≥ 5. Then

𝑔𝑛 = 4𝑛 + 5 ≤ 4𝑛 + 𝑛 5 ≤ 𝑛, Fact 7
= 5𝑛

≤ 𝑛 · 𝑛 5 ≤ 𝑛, Fact 7
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= 𝑛2 = 𝑓𝑛

as required.

Example 5.3. Here’s an alternative way of proving the same statement.

• Again, we have to give a 𝑘, but assume this time we have not drawn the
graph. We have to guess a 𝑘 such that for all 𝑛 ≥ 𝑘 we have

4𝑛 + 5 ≤ 𝑛2.

We can see that we require a number 𝑘 such that multiplying with 𝑘
is at least as large as multiplying with 4 and adding 5. Say we’re a bit
unsure, and we are going to try to use 𝑘 = 10 to be on the safe side.

• We have to show that for all 𝑛 ∈ N

if 𝑛 ≥ 10 then 𝑓𝑛 = 𝑛2 ≥ 4𝑛 + 5 = 𝑔𝑛.

So assume 𝑛 ≥ 10. We work out that

𝑔𝑛 = 4𝑛 + 5 ≤ 4𝑛 + 10 5 < 10, Fact 7
≤ 4𝑛 + 𝑛 10 ≤ 𝑛, Fact 7
= 5𝑛

≤ 10𝑛 5 < 10, Fact 7
≤ 𝑛2 = 𝑓𝑛 10 ≤ 𝑛, Fact 7.

Note that the shape of the proof has not changed much at all.

Example 5.4. We give another variation on this proof.

• Assume we use 𝑘 = 10 again, but this time we produce a proof where
we start by looking at the larger function.

• Let 𝑛 ≥ 10. Then

𝑓𝑛 = 𝑛2 = 𝑛 · 𝑛
≥ 𝑛 · 10 𝑛 ≥ 10, Fact 7
= 4𝑛 + 6𝑛

≥ 4𝑛 + 60 𝑛 ≥ 10, Fact 7
≥ 4𝑛 + 5 = 𝑔𝑛 60 > 5, Fact 7.

Example 5.5. Another variant of a proof of the same statement: Instead of
using the assumption 𝑛 ≥ 𝑘 for whichever 𝑘 we pick we express this as writing
𝑛 = 𝑘 + 𝑖, where 𝑖 is an element of N.

3But note that drawing graphs by hand can be time-consuming, and that in order to help with
answering the question whether one function is eventually dominated by another a quick imprecise
sketch can be su�cient.
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For 𝑘 = 5 the proof could then go like this:

𝑔𝑛 = 𝑔(5 + 𝑖) = 4(5 + 𝑖) + 5 def 𝑔
= 25 + 4𝑖 calculations in N
≤ 25 + 10𝑖 4 ≤ 10, Fact 7
≤ 25 + 10𝑖 + 𝑖2 0 ≤ 𝑖2, Fact 7
= (5 + 𝑖)2 calculations in N
= 𝑓(5 + 𝑖) = 𝑓𝑛 def 𝑓.

You can see from these examples that there are typically many ways of proving
the desired statement. Di�erent strategies are outlined in those examples, and you
can pick whichever one you prefer in order to solve these kinds of questions.

CExercise 130. Determine whether one of the two functions given eventually
dominates the other. Give a justi�cation for your answer. You should not
use advanced concepts such as limits or derivatives, just basic facts about
numbers.

(a) 𝑥 log(𝑥 + 1) and 𝑥 𝑥 as functions from R to R.

(b) 𝑥 𝑥 log(𝑥 + 1) and 𝑥 𝑥2 as functions from R+ to R+.

(c) 𝑥 2𝑥 and 𝑥 1, 000, 000𝑥 as functions from Z to Z.

(d) sin and cos as functions from R to R.

5.2 Comparing sets

In the introduction to this chapter we have argued that it is important to be able
to compare the sizes of di�erent sets. It turns out that the notions of injective and
surjective functions from Section 2.6 is useful for this purpose.

In particular, if there is an injective function from a set 𝑆 to a set 𝑇 , then for
every element of 𝑆 there is an element of 𝑇 , and all these elements are di�erent.
Hence we know that all elements of 𝑆 ‘�t into’ 𝑇 , and 𝑇 must be as least as big
as 𝑆.

De�nition 47: comparison of set size

Let 𝑆 and 𝑇 be sets. We say that the size of 𝑆 is smaller than or equal to that
of 𝑇 if and only if there is an injection from 𝑆 to 𝑇 .

Example 5.6. We have an injection

{0, 1, 2, 3, 4} {0, 1, 2, 3, 4, 5},

which is given by the assignment

𝑥 𝑥 ,
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which is clearly an injection. So the size of the set

{0, 1, 2, 3, 4}

less than or equal to the size of the set

{0, 1, 2, 3, 4, 5}.

This may seem like a trivial observation. Our de�nition really only comes into
its own once we consider in�nite sets.

Lemma 5.2
If 𝑆 and 𝑇 are sets with �nitely many elements then the size of 𝑆 is less than
or equal to the size of 𝑇 if and only if the number of elements of 𝑆 is less than
or equal to the number of elements of 𝑇 .

Proof. Note that in Exercise 39 it is shown that the number of elements in
the image of a set 𝑆 under an injection is the same as the number of elements
of 𝑆.

We show both implications separately.

• Assume that the size of 𝑆 is less than or equal to the size of 𝑇 . Then
there is an injection, say 𝑓 , from 𝑆 to 𝑇 . By Exercise 39 we know that
the number of elements of the image 𝑓 [𝑆] of 𝑆 under 𝑓 is the same as
the number of elements of 𝑆. Since 𝑓 [𝑆] is a subset of 𝑇 we know that
𝑇 has at least as many elements as 𝑆.

• Assume that the number of elements of 𝑆 is less than or equal to the
number of elements of 𝑇 . This means that if we name the elements of
𝑆, say 𝑠1, 𝑠2, . . . , 𝑠𝑚, and those of 𝑇 , say 𝑡1, 𝑡2, . . . , 𝑡𝑛 then 𝑛 ≥ 𝑚. If
we now de�ne the function

{𝑠1, 𝑠2, . . . , 𝑠𝑚} {𝑡1, 𝑡2, . . . , 𝑡𝑛}
𝑠𝑖 𝑡𝑖

from 𝑆 to 𝑇 it is an injection.

Here is an example with in�nite sets.

Example 5.7. The natural numbers N can be mapped via an injection into the
integers Z by de�ning

𝑛 𝑛.

This is clearly an injection. Hence the size of N is less than or equal to the size
of Z.

If I had asked in the lecture whether the size of Z is at least that of N I am sure
everybody would have told me that this is true. You may �nd the following example
less intuitive. It shows that once we have sets with in�nitely many elements our
intuitions about their sizes become suspect.

286



Example 5.8. What you might �nd more surprising is that Z also has a size
smaller than or equal to that of N. We give an injection 𝑓 : Z N by setting4

𝑛

{︃
2𝑛 if 𝑛 ≥ 0

−(2𝑛 + 1) else.

This is an injection for the following reason. Let 𝑚 and 𝑛 in Z. We have to
show that 𝑓𝑚 = 𝑓𝑛 implies 𝑚 = 𝑛. Since the de�nition of 𝑓 is by cases we
have to distinguish several cases in this proof.

• 𝑚 ≥ 0 and 𝑛 ≥ 0. If 2𝑚 = 𝑓𝑚 = 𝑓𝑛 = 2𝑛 we may conclude 𝑚 = 𝑛.

• 𝑚 < 0 and 𝑛 < 0. If −(2𝑚 + 1) = 𝑓𝑚 = 𝑓𝑛 = −(2𝑛 + 1) we may
conclude that 2𝑚 + 1 = 2𝑛 + 1 and so 𝑚 = 𝑛 as required.

• 𝑚 ≥ 0 and 𝑛 < 0. If 2𝑚 = 𝑓𝑚 = 𝑓𝑛 = −(2𝑛+1) we get 2𝑚 = 2𝑛+1
which can never hold for 𝑚, 𝑛 in Z.

• 𝑚 < 0 and 𝑛 ≥ 0. This case is identical to the previous one where 𝑛
and 𝑚 have been swapped.

Exercise 131. Show the following statements.

(a) The size of every set is less than or equal to itself.

(b) If the size of the set 𝑆 is less than or equal to the size of the set 𝑇 , and if
the size of the set 𝑇 is less than or equal to the size of the set 𝑈 then the size
of 𝑆 is less than or equal to the size of 𝑈 .

This means that we have de�ned a re�exive and transitive binary relation,
which means we can think of it as a kind of order. This idea is looked at in
more detail in Chapter 7.4.

What does it mean that N is at least as big as Z, and Z is at least a big as N? It
means that they can be thought of as having the same size.

De�nition 48: same set size

We say that two sets 𝑆 and 𝑇 have the same size if and only if

• the size of 𝑆 is less than or equal to the size of 𝑇 and

• the size of 𝑇 is less than or equal to the size of 𝑆.

The previous two examples show that N and Z have the same size.

EExercise 132. Show that the following sets have the same size.

(a) N and N× N;

(b) N and N𝑘 where 𝑘 is a �nite number.

4Compare this to the function from the mid-term test in 2015/16,
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(c) N and Q.

(d) the set of functions from some set 𝑆 to the two element set {0, 1} and the
powerset 𝒫𝑆 of 𝑆.

Only use facts from Chapter 0.

Exercise 133. Show that if there is a bijection from 𝑆 to 𝑇 then 𝑆 and 𝑇 have
the same size.

You may have wondered why we used injections to determine the size of a
set, and whether we could not have done this using surjections. The following
exercise answers that question.

Exercise 134. Show that given a function 𝑓 : 𝑆 𝑇 the following are equi-
valent:

(i) 𝑓 is a surjection and

(ii) the size of 𝑆 is at least the size of 𝑇 .

Optional Exercise 19. Show that if 𝑆 and 𝑇 have the same size then there
is a bijection between them. This is known as the Cantor-Bernstein-Schröder
Theorem.

We give a formal de�nition of in�nity based on a notion known as Dedekind
in�nite.

De�nition 49: in�nite set

A set 𝑆 is in�nite if and only if there is an injection from 𝑆 to a proper subset
of 𝑆.

Proposition 5.3
A set 𝑆 is in�nite if and only if there is an injective function from 𝑆 to itself
which is not surjective.

Proof. We show the statement in two parts.
Assume that the set is in�nite. Then there is an injective function

𝑓 : 𝑆 𝑆′

where 𝑆′ is a proper subset of 𝑆. We can de�ne a function

𝑔 : 𝑆 𝑆

𝑠 𝑓𝑠

which is obviously also injective, but it is not surjective since we know there
is an element of 𝑆 which is not in 𝑆′, and so cannot be in the image of 𝑔.
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Assume that we have an injective function

𝑔 : 𝑆 𝑆

which is injective but not surjective. Then there is an element 𝑠 of 𝑆 which is
not in the image of 𝑔, that is, there is no 𝑠′ ∈ 𝑆 with 𝑔𝑠′ = 𝑠. We de�ne a new
function

𝑓 : 𝑆 𝑆 ∖ {𝑠}
𝑠 𝑔𝑠

.

We note that 𝑓 is injective since 𝑔 is, and we note that its image is a proper
subset of 𝑆.

Example 5.9. We show that there are in�nitely many Java programs. We have
to give an injective function from the set of Java programs to itself whose
range does not include all Java programs.

We do this as follows: Given a Java’ program we map it to the same Java
program to which the line

System.out.println("Hello world!");

has been added.
This function is injective: If we have two Java programs that are mapped

to the same program then they must be the same program once that new last
line has been removed.

This function is not surjective since there are many programs which do
not contain that line and so are not in the image of the function.

Hence this assignment from the set of all Java programs to itself is injective
but not surjective, and so this set is in�nite by Proposition 5.3.

Example 5.10. We show that the set 𝒫𝑓N of �nite subsets of N is in�nite.
We give an injective function from the 𝒫𝑆 to itself and show that it is not
surjective.

Given a �nite non-empty subset

{𝑠1, 𝑠2, . . . , 𝑠𝑛}

of N we map it to the set

{𝑠1, 𝑠2. . . . 𝑠𝑛, (𝑠1 + 𝑠2 + · · · + 𝑠𝑛)},

and we map the empty set to itself. In other words we have

𝒫𝑓N 𝒫𝑓N

{𝑠1, 𝑠2, . . . , 𝑠𝑛}

{︃
{𝑠1, 𝑠2, . . . , 𝑠𝑛, (𝑠1 + 𝑠2 + · · · + 𝑠𝑛)} 𝑛 > 0

∅ else.
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This assignment maps a given non-empty set to the set where the sum of
all the elements of that set has been added as an extra element. We observe
that the extra element is always the largest element of the resulting set. Note
that if the set we start with has only one element then it is mapped to itself by
this function since no extra element is added.

This function is injective. If two sets are mapped to the same set then in
particular their greatest elements must be equal, so the original sets must have
had elements which add up to the same number. Moreover, all elements (if
any) of the set which are below the largest element must also correspond to
each other, so the sets must have been equal and our function is injective.

This function is not surjective since the set {1, 2} is not in the image of
this function. By Proposition 5.3 we know that the given set is in�nite.

We show that all in�nite sets are at least as big as the set of natural numbers N.

Proposition 5.4
If 𝑆 is an in�nite set then there is an injection from N to 𝑆.

Proof. Let
𝑓 : 𝑆 𝑆

be the function that shows that 𝑆 is in�nite, that is, we assume that 𝑓 is
injective but not surjective. Pick an element 𝑠 of 𝑆 which is not in the image
of 𝑆.

We de�ne a function
𝑔 : N 𝑆

as follows: We set

𝑔0 = 𝑓𝑠, 𝑔1 = 𝑓𝑔0 = 𝑓𝑓𝑠, 𝑔2 = 𝑓𝑔1 = 𝑓𝑓𝑓𝑠, 𝑔3 = 𝑓𝑔2 = 𝑓𝑓𝑓𝑓𝑠, . . .

More generally, we set
𝑔𝑛 = 𝑓𝑛+1𝑠,

where the power indicates applying 𝑓 the given number of times. We have to
show that the resulting function is injective. If we have 𝑚 and 𝑛 in N with

𝑔𝑚 = 𝑔𝑛,

then this means
𝑓𝑚+1𝑠 = 𝑔𝑚 = 𝑔𝑛 = 𝑓𝑛+1𝑠,

since 𝑓 is injective we can conclude from this that

𝑓𝑚𝑠 = 𝑓𝑛𝑠,

and we can continue removing 𝑓 on both sides until we have deleted all 𝑓s on
one side of the equality. This means we have

𝑠 = 𝑓 𝑙𝑠
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for some 𝑙 ∈ N. But 𝑠 is not from the image of 𝑓 , so we must have that 𝑙 = 0,
and so removing 𝑚 many 𝑓s on one side is the same as removing 𝑛 many 𝑓s
on the other side, which means we must have 𝑚 = 𝑛.

This means that the size of N is less than or equal to that of every in�nite set.
Since N itself is in�nite (see Exercise 136) in this sense N is the smallest in�nite
set.

To ensure that our notion of in�nity �ts well with our notion of comparing
the sizes of sets we establish the following proposition.

Proposition 5.5
If the size of N is less than or equal to the size of a set 𝑆 then 𝑆 is in�nite.

Proof. Let 𝑓 : N 𝑆 be the injective function which establishes that the size
of N is less than or equal to the size of 𝑆.

We split 𝑆 into two parts as follows. Let

𝑆1 = {𝑠 ∈ 𝑆 | there is 𝑛 ∈ N such that 𝑓𝑛 = 𝑠}

and
𝑆2 = {𝑠 ∈ 𝑆 | for all 𝑛 ∈ N 𝑓𝑛 ̸= 𝑠.}.

Then
𝑆 = 𝑆1 ∪ 𝑆2,

since every element is either in the range of 𝑓 , and so in 𝑆1, or it is not in the
range of 𝑓 and so in 𝑆2. Note that 𝑆1 and 𝑆2 are disjoint, so every element of
𝑆 is either in 𝑆1 or in 𝑆2, but no element can be in both sets. Note that since
𝑓 is injective, for every 𝑠 in 𝑆1 there is a unique 𝑛 ∈ N with 𝑓𝑛 = 𝑠. Based
on this we de�ne a function 𝑔 from 𝑆 to itself as follows.

𝑔𝑠 =

{︃
𝑓(𝑛 + 1) 𝑠 ∈ 𝑆1, 𝑓𝑛 = 𝑠

𝑠 𝑒𝑙𝑠𝑒.

We claim that this function is injective, but not surjective. To show injectivity
we have to consider four cases, similar to Example 5.8. Let 𝑠 and 𝑠′ be elements
of 𝑆.

• 𝑠 ∈ 𝑆1 and 𝑠′ ∈ 𝑆1. There there exist unique elements 𝑛 and 𝑛′ in N
with 𝑠 = 𝑓𝑛 and 𝑠′ = 𝑓𝑛′ and if 𝑓(𝑛+ 1) = 𝑔𝑠 = 𝑔𝑠′ = 𝑓(𝑛′ + 1) then
by injectivity of 𝑔 we have 𝑛 = 𝑛′, and so 𝑠 = 𝑓𝑛 = 𝑓𝑛′ = 𝑠′.

• 𝑠 ∈ 𝑆2 and 𝑠′ ∈ 𝑆2. If 𝑠 = 𝑔𝑠 = 𝑔𝑠′ = 𝑠′ we immediately have 𝑠 = 𝑠′.

• 𝑠 ∈ 𝑆1 and 𝑠′ ∈ 𝑆2. We know that there exists a unique 𝑛 ∈ N with
𝑠 = 𝑓𝑛. But now 𝑔𝑠 = 𝑓(𝑛 + 1) is an element of 𝑆1, while 𝑔𝑠′ = 𝑠′ is
an element of 𝑆2 and so the two cannot be equal.

• 𝑠 ∈ 𝑆2 and 𝑠′ ∈ 𝑆1. This case is identical to the previous one where 𝑠
and 𝑠′ have been swapped.
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We can see that the function 𝑔 maps the set 𝑆1 to itself, while it maps 𝑆2 to
itself as well, leaving every element as it is. The function 𝑔 is not surjective
since no element is mapped to 𝑓0:

Clearly 𝑓0 is in 𝑆1, so by the previous observation if it were in the image
of 𝑔 there would have to be an element 𝑠 ∈ 𝑆1 with 𝑔𝑠 = 𝑓0. But for any such
𝑠 we know that there exists a unique 𝑛 ∈ N with 𝑠 = 𝑓𝑛, and so we would
have

𝑔𝑠 = 𝑓(𝑛 + 1) = 𝑓0,

which by injectivity of 𝑓 would imply 𝑛+ 1 = 0, but no such number 𝑛 exists
in N.

Exercise 135. Show that if a set has a �nite number of elements then it is not
in�nite.

CExercise 136. Show that the following sets are in�nite by proving that they
satisfy De�nition 49.

(a) N,

(b) R,

(c) the set of functions from N to the two element set {0, 1} or the powerset
𝒫N (you choose),

(d) every superset of an in�nite set.

(e) Any set which is the target of an injective function whose source is in�nite.

Optional Exercise 20. Show that if a set is not in�nite then it has a �nite
number of elements.

Exercise 137. Show that if 𝑆 is a set with a �nite number of elements then so
is its powerset 𝒫𝑆. Do so by determining the number of elements of 𝒫𝑆.

In computer science we particularly care about sets whose size is at most as big
as that of the natural numbers. This is because given a �nite number of symbols
there are only countably many strings (and so programs) that can expressed using
those symbols.

De�nition 50: countable/uncountable

A set is countable if and only if there is an injection from it to the natural
numbers. A set is uncountable if and only if there is no injection from it to
the natural numbers. A set is countably in�nite if it is both, countable and
in�nite.

Note that every �nite set is countable.
Examples of countably in�nite sets are:

• The set of natural numbers N.
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• The set of integers Z.

• The set of rational numbers Q.

• The set of �nite subsets of N, 𝒫𝑓N.

• The set of all programs in your favourite programming language.

• The set of all strings over a �nite alphabet.

Examples of uncountable sets are:

• The set of real numbers R,

• the set of complex numbers C,

• the set of all subsets of N, 𝒫N,

• the set of all functions from N to N.

Note that the last example, together with the following exercise, illustrates that
there are functions from N to N for which we cannot write a computer program!

Optional Exercise 21. Assume we have a �nite set of symbols, say 𝐴.

(a) Show that 𝐴𝑘 is �nite for every 𝑘 ∈ N.

(b) Show that ⋃︁
𝑘∈N

𝐴𝑘

is countable.

(c) Show that there is a bijection between the set of �nite strings built with
symbols from 𝐴 and the set

⋃︀
𝑘∈N𝐴𝑘,

(d) Conclude that there are countably many strings over the alphabet 𝐴.

(e) Put together a set of symbols such that every Python program can be built
from those symbols.

(f) Prove that there is an injection from the set of Python programs to the set
of strings over this set of symbols.

(g) Conclude that the set of Python programs is countable.

Proposition 5.6
A set is countable if and only if its size is at most that of N.

Proof. If a set 𝑆 is countable then by de�nition of that notion there exists an
injection from 𝑆 to N, and by the de�nition of the size of a set this means that
𝑆 is less than or equal to that of N.

Assume that 𝑆 is at most as big as N. Then there is an injection from 𝑆 to
N and so 𝑆 is countable.
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In Chapter 4 the notion of a countable set appears. Indeed, in general, the
de�nition of 𝜎-algebra should refer to countable sets instead of talking about sets
indexed by the natural numbers. In that chapter the notion is avoided as far as
possible since the formal de�nition does not appear until a later chapter. We use
this opportunity to connect the two ideas.

Proposition 5.7
If 𝑆 is countable then there is a way of listing all its elements, that is, there is
a surjective function 𝑔 from N to 𝑆, allowing us to list all the elements of 𝑆 as

𝑔0, 𝑔1, 𝑔2, 𝑔3, . . .

and we may think of them as

𝑠0, 𝑠1, 𝑠2, . . .

where we delete any repeated elements from the list.
If 𝑆 is a set such that there is a surjective function from N to 𝑆 then 𝑆 is

countable.

Proof. We prove the �rst statement. Since 𝑆 is countable there is an injective
function

𝑓 : 𝑆 N.

We use this function as follows: By Proposition 2.2 there is an injective function

𝑔 : N 𝑆

with the property that
𝑔 ∘ 𝑓 = id𝑆 .

This function is surjective, since given 𝑠 ∈ 𝑆 we know that

𝑠 = id𝑆𝑠 = 𝑔𝑓𝑠,

so we have found 𝑓𝑠 ∈ N which is mapped by 𝑔 to 𝑠. This completes the proof.
To prove the second statement assume we have a surjective function

𝑔 : N 𝑆.

By Exercise 134 this means that the size of 𝑆 is at most the size of N, and by
Proposition 5.6 we have completed the proof.

Optional Exercise 22. Show that every uncountable set is at least as big as
any countable set.

Exercise 138. Show that every subset of a countable set is countable. Conclude
that every superset of an uncountable set is uncountable.
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Optional Exercise 23. Show that the following sets do not have the same
size.

(a) Any set and its powerset;

(b) N and R. Conclude that R is not countable.

As a consequence of Exercises 21 and 23 we can see, for example, that there are
more real numbers than there are Python programs. This means that if we cannot
hope to write a Python program that outputs the digits of a given real number,
one at a time, for every real number.

Optional Exercise 24. Show that any two countably in�nite sets have the
same size.

Exercise 139. Give the sizes of the following sets:

(a) {𝑎, 𝑏, 𝑐},

(b) {∅, {∅}, {{∅}}},

(c) the set of regular expressions over the alphabet {0, 1},

(d) the set of �nite state machines over the alphabet {0, 1},

(e) the set of regular languages over the alphabet {0, 1},

(f) the set of real numbers in the interval [0, 1].

(g) the set of subsets of the real interval, 𝒫[0, 1].
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COMP11120, Semester 1

Exercise Sheet 0 (for feedback only)

For examples classes in Week 1

Core Exercises for this week

CExercise 8 on page 29.

CExercise 9 on page 35.

CExercise 10 on page 45.

Extensional Exercises for this week

EExercise 7 on page 24.

EExercise 11 on page 46.

Remember that

• if you are stuck on an exercise move on to the next one after ten minutes,
but write down why you got stuck so that the GTA can see what you were
trying to do, and consider coming back to that exercise again later;

• you may only use concepts which are de�ned in these notes (Chapter 0
establishes concepts for numbers), and for every concept you do use you
should �nd the de�nition in the notes and work with that;

• you should justify each step in your proofs;

• the GTA will assign a rough score—in the examples classes you will �nd out
more about constructing better solutions;

• in the examples classes you have an opportunity to ask the GTA questions,
and you should think of those in advance;

• the GTA may ask you to explain some of your solution.

You should make sure this week that you understand the content and in particular
the notation used in Chapter 0
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COMP11120, Semester 1

Exercise Sheet 1

For examples classes in Week 2

Core Exercises for this week

CExercise 13 on page 54.

CExercise 17 on page 57.

CExercise 22 on page 59. Carry out your proof in the style of that given on page 53
as far as you can.

Extensional Exercises for this week

EExercise 19 on page 58. Carry out your proof in the style of that given on page 53
as far as you can.

EExercise 20 on page 59.

Remember that

• if you are stuck on an exercise move on to the next one after ten minutes,
but write down why you got stuck so that the GTA can see what you were
trying to do, and consider coming back to that exercise again later;

• you may only use concepts which are de�ned in these notes (Chapter 0
establishes concepts for numbers), and for every concept you do use you
should �nd the de�nition in the notes and work with that;

• you should justify each step in your proofs;

• the GTA will assign a rough score—in the examples classes you will �nd out
more about constructing better solutions;

• in the examples classes you have an opportunity to ask the GTA questions,
and you should think of those in advance;

• the GTA may ask you to explain some of your solution.

Exercises you could potentially do this week are all those in Chapter 1.
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COMP11120, Semester 1

Exercise Sheet 2

For examples classes in Week 3

Core Exercises for this week

CExercise 25 on page 80. Do three of the parts, one from (a)–(c) and two from
(d)–(g).

CExercise 27 on page 84. Do three of the parts, one from (a)–(d), one from (e)–(f)
and one from (g)–(i).

CExercise 28 on page 87. Do two of the parts, one from (a)–(d) and one from
(e)–(g).

Extensional Exercises for this week

EExercise 29 on page 90. Do two of the parts, one from (a)–(b) and one from
(c)–(e).

EExercise 34 on page 92.

Remember that

• if you are stuck on an exercise move on to the next one after ten minutes,
but write down why you got stuck so that the GTA can see what you were
trying to do, and consider coming back to that exercise again later;

• you may only use concepts which are de�ned in these notes (Chapter 0
establishes concepts for numbers), and for every concept you do use you
should �nd the de�nition in the notes and work with that;

• you should justify each step in your proofs;

• the GTA will assign a rough score—in the examples classes you will �nd out
more about constructing better solutions;

• in the examples classes you have an opportunity to ask the GTA questions,
and you should think of those in advance;

• the GTA may ask you to explain some of your solution.

Exercises you could do this week or those in Sections 2.1 to 2.5.
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COMP11120, Semester 1

Exercise Sheet 3

For examples classes in Week 4

Core Exercises for this week

CExercise 37 on page 98. Do three of the parts, one from (a)–(c), one from (d)–(f).
and one from (g)–(i). Hint: If you �nd this hard then try to do the previous exercise
�rst, where you know what the answer is in each case.

CExercise 41 on page 105. Do three of the parts, one from (a)–(d), one from (e)–(f),
and one from (g)–(h). Hint: If you �nd this hard then try to do the previous exercise
�rst, where yu know what the answer is in each case.

CExercise 43 on page 106. Do two of the parts, one from (a)–(c) and one from
(d)–(f).

Extensional Exercises for this week

EExercise 38 on page 99. Do any three parts.

EExercise 47 on page 115.

Remember that

• if you are stuck on an exercise move on to the next one after ten minutes,
but write down why you got stuck so that the GTA can see what you were
trying to do, and consider coming back to that exercise again later;

• you may only use concepts which are de�ned in these notes (Chapter 0
establishes concepts for numbers), and for every concept you do use you
should �nd the de�nition in the notes and work with that;

• you should justify each step in your proofs;

• the GTA will assign a rough score—in the examples classes you will �nd out
more about constructing better solutions;

• in the examples classes you have an opportunity to ask the GTA questions,
and you should think of those in advance;

• the GTA may ask you to explain some of your solution.

Exercises you could do this week are those in Section 2.6.
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COMP11120, Semester 1

Exercise Sheet 7

For examples classes in Week 8

Core Exercises for this week

Where the answers are probabilities don’t just give a number, give an expression
that explains how you got to that number!

CExercise 77 on page 163. Do three of the parts, one from (a)–(d), one from (e)–(f)
and one from (g)–(i).

CExercise 79 on page 172.

CExercise 83 on page 173.

Extensional Exercises for this week

EExercise 81 on page 172.

EExercise 86 on page 177. This is ahead of the lecture material but only requires
calculating with sets. It covers important ideas for material to come.

Remember that

• if you are stuck on an exercise move on to the next one after ten minutes,
but write down why you got stuck so that the GTA can see what you were
trying to do, and consider coming back to that exercise again later;

• you may only use concepts which are de�ned in these notes (Chapter 0
establishes concepts for numbers), and for every concept you do use you
should �nd the de�nition in the notes and work with that;

• you should justify each step in your proofs;

• the GTA will assign a rough score—in the examples classes you will �nd out
more about constructing better solutions;

• in the examples classes you have an opportunity to ask the GTA questions,
and you should think of those in advance;

• the GTA may ask you to explain some of your solution.

Exercises you could do this week are those in Section 4.1.
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COMP11120, Semester 1

Exercise Sheet 8

For examples classes in Week 9

Core Exercises for this week

Where the answers are probabilities don’t just give a number, give an expression
that explains how you got to that number!

CExercise 88 on page 184. Do one from Exercise 77 (a)–(l) and two from Exer-
cises 83 to 85.

CExercise 95 on page 199.

CExercise 99 on page 205.

Extensional Exercises for this week

EExercise 89 on page 188. Do any two parts.

EExercise 93 on page 199.

Remember that

• if you are stuck on an exercise move on to the next one after ten minutes,
but write down why you got stuck so that the GTA can see what you were
trying to do, and consider coming back to that exercise again later;

• you may only use concepts which are de�ned in these notes (Chapter 0
establishes concepts for numbers), and for every concept you do use you
should �nd the de�nition in the notes and work with that;

• you should justify each step in your proofs;

• the GTA will assign a rough score—in the examples classes you will �nd out
more about constructing better solutions;

• in the examples classes you have an opportunity to ask the GTA questions,
and you should think of those in advance;

• the GTA may ask you to explain some of your solution.

Exercises you could do this week are those in Sections 4.2 to Section 4.3.3.
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COMP11120, Semester 1

Exercise Sheet 9

For examples classes in Week 10

Core Exercises for this week

Where the answers are probabilities don’t just give a number, give an expression
that explains how you got to that number!

CExercise 103 on page 219.

CExercise 109 on page 236.

CExercise 110 on page 242.

Extensional Exercises for this week

EExercise 111 on page 242.

EExercise 114 on page 248.

Remember that

• if you are stuck on an exercise move on to the next one after ten minutes,
but write down why you got stuck so that the GTA can see what you were
trying to do, and consider coming back to that exercise again later;

• you may only use concepts which are de�ned in these notes (Chapter 0
establishes concepts for numbers), and for every concept you do use you
should �nd the de�nition in the notes and work with that;

• you should justify each step in your proofs;

• the GTA will assign a rough score—in the examples classes you will �nd out
more about constructing better solutions;

• in the examples classes you have an opportunity to ask the GTA questions,
and you should think of those in advance;

• the GTA may ask you to explain some of your solution.

Exercises you could do this week are those in Section 2.6.
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COMP11120, Semester 1

Exercise Sheet 10

For examples classes in Week 11

Core Exercises for this week

Where the answers are probabilities don’t just give a number, give an expression
that explains how you got to that number!

CExercise 116 on page 254.

CExercise 128 on page 278.

CExercise 130 on page 285. Do one from (a)–(b) and one from (c)–(d).

Extensional Exercises for this week

EExercise 118 on page 260.

EExercise 122 on page 271. Carry out parts (a)–(d).

Remember that

• if you are stuck on an exercise move on to the next one after ten minutes,
but write down why you got stuck so that the GTA can see what you were
trying to do, and consider coming back to that exercise again later;

• you may only use concepts which are de�ned in these notes (Chapter 0
establishes concepts for numbers), and for every concept you do use you
should �nd the de�nition in the notes and work with that;

• you should justify each step in your proofs;

• the GTA will assign a rough score—in the examples classes you will �nd out
more about constructing better solutions;

• in the examples classes you have an opportunity to ask the GTA questions,
and you should think of those in advance;

• the GTA may ask you to explain some of your solution.

Exercises you could do this week are those in Section 2.6.
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Chapter 6

Recursion and Induction

Recursion is a powerful principle. It can be used to

• de�ne sets,

• de�ne data types in some programming language such as Java, C, and
Haskell,

• de�ne operations on recursively de�ned sets,

• de�ne operations on recursively de�ned datatypes and

• design recursive algorithms.

Recursion as a tool for de�ning data types and operations on these is covered in
COMP11212 and as a tool in designing algorithms. Recursion goes hand in hand
with a proof principle which is known as induction.
There is a general principle at work in all these.

• In order to recursively de�ne an entity we need

– a number of base cases—these create particularly simple instances of
our set or data type and

– a number of step cases—these create more complicated instances from
simpler ones already available.

• In order to de�ne an operation on such a recursively de�ned entity all one
has to do is

– de�ne what the operation should do for each of the base cases and
– de�ne what the operation should do for each step case, assuming that

it has already been de�ned for the simpler entities.

• In order to prove that a recursively de�ned entity or operation has a partic-
ular property all one has to do is

– check each base case and
– assuming that the property holds for simpler constructs (known as the

induction hypothesis) show that it holds after applying each step case.

Some of you will have come across natural induction as a proof principle. This is a
special case of induction which relies on the idea that the natural numbers can be
constructed via recursion:
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• the base case is given by the number 0 and

• the step case is given by the fact that every number 𝑛 has a unique successor,
the number 𝑛 + 1.

We illustrate the general idea with a number of examples. We begin with the idea
of recursive data types such as lists and trees. Many programming languages allow
us to de�ne recursive data types, typically using pointers or references. You will
meet these ideas other course units.
When computer scientists de�ne syntax they often use recursive de�nitions. For
example, regular expressions (Example 6.24) are de�ned recursively, and in any
programming language the de�nition of what constitutes a valid program provides
another example of a recursive de�nition (see Example 6.30), typically using
something called a grammar, see Examples 6.27 and 6.28. These topics are taught
in COMP11212, but the recursive nature of the de�nitions is not the main focus, so
we brie�y discuss that here.
We �nally look at more mathematical examples, based on the natural numbers.
A recurring theme on this course unit has been the fact that mathematics is all
about rigour. There are a number of formal de�nitions in the notes in preceding
chapters, while we have taken for granted certain facts about sets of numbers, and
familiar operations on these. In this and the following chapter we give an idea of
how these sets of numbers, and their operations, can be formally de�ned. This
allows us to formally prove properties for these operations, such as commutativity
or associativity, that we have taken for granted. This illustrates that rigour in
mathematics is not something built on top of systems of numbers, but instead
these can be formally de�ned, and we don’t have to rely on ‘common sense’ or
‘experience’ to justify properties of their operations.

6.1 Lists

We begin our study of recursion by looking at lists. Lists are a standard recursive
data type. The idea is quite simple: For a set 𝑆 we can have a list of elements from
𝑆, say

[𝑠𝑛, 𝑠𝑛−1, . . . , 𝑠2, 𝑠1].

For example, this might be a list of pages relevant to a particular topic, or a list of
heights of people that somebody has measured, or a list of students on a particular
course unit.

6.1.1 Lists de�ned

We can think of a list as satisfying exactly one of the following conditions:

• The list is empty, that is, there are no elements in the list.1

• The list consists of at least one element, and we can think of it as being a
smaller list, say 𝑙, together with an added element, say 𝑠.

The list
[4, 3, 2, 1]

1For example, if we have a program that calculates which elements should be added to the list
we would like it to start from an empty list.
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is the result of appending2 the number

4 to the list [3, 2, 1],

which in turn is the result of appending the number

3 to the list [2, 1],

which in turn is the result of appending3 the number

2 to the list [1],

which in turn is the result of appending the number

1 to the list [ ],

We can use this idea to give a formal de�nition of lists over a set 𝑆, and we can
use the same idea to de�ne operations on such lists.

De�nition 51: list

A list over a set 𝑆 is recursively de�ned as follows.

Base case list. There is an empty list [ ].

Step case list. Given a list 𝑙 over 𝑆 and an element 𝑠 of 𝑆 there is a list 𝑠 : 𝑙
where 𝑠 has been appended to 𝑙.

We use
Lists𝑆

for the set of all lists over a given set 𝑆.

Example 6.1. What is written above regarding the list

[4, 3, 2, 1]

can now be written in the notation that is introduced in the formal de�nition
of a list to read

[4, 3, 2, 1] = 4 : [3, 2, 1]

= 4 : 3 : [2, 1]

= 4 : 3 : 2 : [1]

= 4 : 3 : 2 : 1 : [ ].

Always having to deal with expressions like the one in the last row would be quite
painful, but that is how a computer thinks of a list which is given by a list element
and a pointer to the remainder of the list. Human readability is improved, however,
by using expressions like that in the top row.
These kinds of recursive de�nitions are very typical for functional programming
languages such as Haskell or ML, but when programming with lists in C you will
�nd a similar idea: An object of class List

2We use terminology from the language Python for our lists. In MLthe append operation
concatenates two lists, and the cons operation adds an element to the list.

3We have made a somewhat arbitrary decision here to append elements to the left of the list.
Instead we could have used [1, 2, 3] to mean the list which arises from appending 1, 2 and 3 (in that
order) to the empty list.
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• is empty or

• it consists of

– an element of the list and
– a pointer to the remainder of the list (if there is one).

Code Example 6.1. Here’s a class that implements this kind of list in Java,
where the elements of the list are integers.

public class List {
public int value;
public List next;

public List (int s, List l)
{value = s; next = l;}

}

We have to cheat slightly to deal with empty lists: We do this by using the
value null to indicate that an empty list is being referenced.
So an object of the class List is

• the empty list if we get the value null when referring to it or

• it consists of an element value and a List object next.

The fact that the class List is closely related to the lists de�ned in De�nition 51
is not immediately obvious, but hopefully this explanation shows why they
correspond to each other.
We give an idea of how to picture an object in this class. Assume that we have

• a List object l with l.value=4 and l.next=l3 and

• a List object l3 with l3.value=3 and l3.next=l2 and

• a List object l2 with l2.value=2 and l3.next=l1 and

• a List object l1 with l1.value=1 and l1.next=null.

You can picture these objects as follows:
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3

2

1 l1

l2

l3

l

Another picture that is sometimes used in this situation is the following.

4 3 2 1
∙ ∙ ∙ ∙

6.1.2 Recursive de�nitions and proof by induction

Operations on such recursive datatypes are usually de�ned recursively. We give a
number of examples for this particular construct.

Example 6.2. We de�ne a very simple-minded function from Lists𝑆 to Lists𝑆 ,
which maps a given list 𝑙 over 𝑆 to the empty list. Because this function is
very simple we do not need recursion to de�ne it, we could merely set

𝑙 [ ].

But the point of this example is to introduce recursive de�nitions, and so we
show here how to de�ne the same function recursively. For this purpose we
have to give it a name, say 𝑘[ ] since it is the constant function which maps
everything to the empty list. Note that the following de�nition is ine�cient,
and one would not use it to program this function, but it is useful as a �rst
simple example for how recursive functions work.

Base case 𝑘[ ]. 𝑘[ ][ ] = [ ] and

Step case 𝑘[ ]. 𝑘[ ](𝑠 : 𝑙) = 𝑘[ ]𝑙,

Note that this de�nition matches the de�nition of a list: We have to say what
the function does if its argument is the base case list, that is, the empty list [ ],
and we have to say what it does if its argument is a list built using the step
case, so it is of the form 𝑠 : 𝑙 for a list 𝑙.

The way this function works is to map

• the empty list to the empty list,

• and a non-empty list, which has an element 𝑠 added to some list 𝑙, to the
result of applying the function to 𝑙.

This is the typical shape of a recursive function on a recursive data type:
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• it speci�es what to do for the base case(s) of the data type and

• it speci�es what to do for the step case(s).

Example 6.3. We continue Example 6.2 by carrying out a sample calculation
to see how this de�nition allows us to compute the value of the function for a
speci�c list, say [𝑖, 1 + 2𝑖, 4] (a list over C). We justify each step by referring
to the de�nition of a list, De�nition 51, and the de�nition of 𝑘[ ].

𝑘[ ][𝑖, 1 + 2𝑖, 4] = 𝑘[ ](𝑖 : [1 + 2𝑖, 4]) step case list
= 𝑘[ ][1 + 2𝑖, 4] step case 𝑘[ ]

= 𝑘[ ](1 + 2𝑖 : [4]) step case list
= 𝑘[ ][4] step case 𝑘[ ]

= 𝑘[ ](4 : [ ]) step case list
= 𝑘[ ][ ] step case 𝑘[ ]

= [ ] base case 𝑘[ ].

Note that in a typical implementation it would not be necessary to invoke step
case list—it is our notation for lists which requires this.

Code Example 6.2. A code snippet that implements this function as a method
knull for an object l of class List looks as follows:

public static List knull (List l)
{
if (l == null)

return null;
else

return knull(l.next);
}

The way a computer carries out the corresponding calculation looks a bit di�erent
to the sample calculation given above: Instead of manipulating an expression that
describes the output a computer stores each call to the recursively de�ned method,
and that requires it to also store all the local variables.

Code Example 6.3. We look at the function calls and returns in an example.
Assume we are calling knull(l), where l is the list from Code Example 6.1. The
calls carried out by the program are as follows:

knull(l)
knull(l3)

knull(l2)
knull(l1)
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knull(null)
return null

return null
return null

return null
return null

This looks a bit boring but becomes more interesting if the function that is being
implemented is more interesting, see Example 6.6.
If we put the mathematical de�nition of the function next to the implementation
the similarities are very clear:

Base case 𝑘[ ]. 𝑘[ ][ ] = [ ] and

Step case 𝑘[ ]. 𝑘[ ](𝑠 : 𝑙) = 𝑘[ ]𝑙,

public static List knull (List l)
{
if (l == null)

return null;
else

return knull(l.next);
}

It is not completely obvious from the de�nition that the function 𝑘[ ] as given there
does indeed map every list to the empty list. We prove this formally as our �rst
example of a proof by induction.
We want to show that for all lists 𝑙 in Lists𝑆 it is the case that

𝑘[ ]𝑙 = [ ].

Such a proof also follows the formal de�nition of the underlying data type. The
pattern consists of a proof for the base case, a proof of the step case, and (optionally
here) in between the statement of the induction hypothesis.

Base case list. We have to show that the statement holds for the empty
list, that is 𝑘[ ][ ] = [ ].

Induction hypothesis. We assume the statement holds for the list4 𝑙, that is we
have

𝑘[ ]𝑙 = [ ].

Step case list. We have to show that given the induction hypothesis the
statement holds for lists of the form 𝑠 : 𝑙, that is we have

𝑘[ ](𝑠 : 𝑙) = [ ].

4Note that sometimes we have to assume that the statement holds for all lists of a given length,
or some other statement applying to more than one list.
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Example 6.4. We continue with Example 6.2 and illustrate the formal proof
of the statement from above.

Base case list. 𝑘[ ][ ] = [ ]. This is a simple application of the base
case of the de�nition of the function 𝑘[ ].

Induction hypothesis. For the list 𝑙 we have

𝑘[ ]𝑙 = [ ].

Step case list. We check that

𝑘[ ](𝑠 : 𝑙) = 𝑘[ ]𝑙 step case𝑘[ ]

= [ ] induction hypothesis.

As is typical the base case is obvious, and it typically does not require many
steps, while the step case has a little more substance.

Note that we were able to de�ne this function without having to specify from
which set 𝑆 our lists take their elements.
Let’s pause a moment to think about how this proof works. The base case is fairly
easy to understand.
It seems as if in the middle of the proof, where the induction hypothesis is stated,
we are assuming the very same thing we aim to prove.
This is not so, however. An analogy that is often invoked is that of a line of
dominoes. Assume that you have got a line of dominoes, standing on their short
side, starting in front of you, and extending to the right (you may imagine in�nitely
many dominoes).

Base case. The �rst domino falls over, to the right.

Induction hypothesis The 𝑛th domino falls over to the right.

Step case. If the 𝑛th domino falls over to the right then the (𝑛+ 1)th
domino falls over to the right.

In this way of writing the proof the induction hypothesis is often skipped because
it appears in the step case (‘If the 𝑛th domino falls over . . . ’). If we do not state it
explicitly we do not lose any information. After the �rst few examples I do not
note the induction hypothesis explicitly if it is a precise copy of the statement
we are proving; See Section 6.4 for examples where more sophisticated induction
hypotheses appear.
The base and the step case together are su�cient to guarantee that if the �rst
domino falls over to the right (the base case) then all dominoes fall over.
Another analogy you may �nd helpful is that of climbing a ladder.

Base case. I can climb the �rst rung of the ladder.

Step case. If I can get to the 𝑛th rung of the ladder then I can climb to the (𝑛+1)th
one.
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If we have both these properties, then we can get onto the �rst, and all subsequent,
rungs of the ladder.
Going back to the case of lists, the base case ensures that we know the desired
result for the empty list, and the step case ensures that if we know the result for
the list 𝑙 then we can prove it for the list where some element 𝑠 had been added to
𝑙 to form 𝑠 : 𝑙.

Example 6.5. We look at the proof that 𝑘[ ]𝑙 = [ ] for a speci�c list 𝑙. Let

𝑙 = [𝑠3, 𝑠2, 𝑠1] = 𝑠3 : (𝑠2 : (𝑠1 : [ ])).

We can see that in order to show that

𝑘[ ](𝑠3 : (𝑠2 : (𝑠1 : [ ]))) = [ ]

we need the step case three times:

𝑘[ ](𝑠3 : (𝑠2 : (𝑠1 : [ ]))) = 𝑘[ ](𝑠2 : (𝑠1 : [ ])) step case 𝑘[ ]

= 𝑘[ ](𝑠1 : [ ]) step case 𝑘[ ]

= 𝑘[ ][ ] step case 𝑘[ ]

= [ ] base case 𝑘[ ]

We can also see that if we have a list with �ve elements then we need the step
case �ve times. A proof by induction takes a shortcut: by proving the base case,
and that given a list with 𝑛 elements which has the desired property we can show
that adding another element to the list results in a list that also has the property
in question, we can establish the property for all �nite lists.
Note that sometimes in order to establish the step case (here 𝑠 : 𝑙) we have to
assume that the induction hypothesis for all entities which are somehow smaller
than the current one. In the case of lists it might be that we assume the induction
hypothesis for all lists we have built on the way to reach the list 𝑙, or possibly even
for all lists which have at most as many elements as 𝑙.
A proof by induction for lists always takes the following shape:

Base case list. The property is established for the base case for lists, that is: We
show it works for [ ]. If the property we want to show is an equality
then we get the statement we want to prove by inserting the empty
list [ ] for every occurrence of 𝑙 in the equality, so for example

𝑘[ ]𝑙 = [ ]

becomes
𝑘[ ][ ] = [ ].,

and5

sum rev 𝑙 = sum 𝑙

becomes
sum rev [ ] = sum [ ].

5Read on to �nd out how the operations used here are de�ned, but that is not required for
understanding the point that is made here.

312



Ind hypothesis. We assume that the statement holds for the list6 𝑙.

Step case list. Assuming the induction hypothesis we show that the property
holds for the list 𝑠 : 𝑙. We obtain the statement we have to show
by replacing every occurrence of 𝑙 by 𝑠 : 𝑙, , so

𝑘[ ]𝑙 = [ ]

becomes
𝑘[ ](𝑠 : 𝑙) = [ ].,

and
sum rev 𝑙 = sum 𝑙

becomes
sum rev(𝑠 : 𝑙) = sum(𝑠 : 𝑙).

We summarize these ideas as follows.

Tip

A proof by induction for lists over a given set 𝑆 always has the following
shape. Assume we are trying to show a statement given for all 𝑙 ∈ Lists𝑆 .

Base case list. Prove the given statement for the case where all occurrences
of 𝑙 have been replaced by [ ].

Ind hyp Assume the given statement holds for the list 𝑙.7

Step case list. Prove the statement where all occurrences of 𝑙 have been re-
placed by 𝑠 : 𝑙, where 𝑠 is an arbitrary element of 𝑆. The
induction hypothesis is used as part of the proof.

Note that when proving something by induction for a recursively de�ned structure
other than the natural numbers, people often speak of structural induction, because
the structure of the data type gives the shape of the induction argument.

6.1.3 Operations on lists

What more sophisticated operations are available on lists? Well, for example one
might add up all the numbers in a list.

Example 6.6. The following is part of a previous exam question. Assume that
𝑁 is a set of numbers N, Z, Q, R or C. We want to de�ne a function

sum: Lists𝑁 𝑁

which adds up all the members of a given list. In other words we would like to
have

sum[4, 3, 2, 1] = 10.

6Note that for advanced properties one may have to extend this, and, for example, assume the
statement for all lists built on the way to reaching 𝑙, or that it holds for all lists that have at most the
same number of elements as 𝑙, but on this course we have no examples like that.

7It may be necessary to assume it for 𝑙 and all sublists of 𝑙.
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Tip

Before de�ning an operation that is described verbally it can be a good idea
to think about what that operation should do to a concrete example to make
sure that you understand the instructions given.

Example 6.7. Continuing our example we ask ourselves how do we de�ne
such an operation recursively? We have to ask ourselves: What do we want to
happen in the base case? So what should it mean to add up all the numbers
that appear in the empty list? The answer is that we should get the unit8 for
addition, 0.
We then have to think about what we want to happen in the step case, so
knowing the result of sum 𝑙, what should the result of sum(𝑠 : 𝑙) be? It can
sometimes help to write it like that, namely

sum(𝑠 : 𝑙) =??? sum 𝑙.

Well, if we already know what happens if we add up all the numbers of the
list 𝑙, then to add up all the numbers in the list 𝑠 : 𝑙, we just have to add 𝑠 to
the result. These considerations lead to the following de�nition.

Base case sum. sum [ ] = 0.

Step case sum. sum(𝑠 : 𝑙) = 𝑠 + sum 𝑙.

Note how this de�nition very closely follows the shape of the de�nition of a
list. This is one of the hallmarks of de�nition by recursion. If you understand
the de�nition of the underlying entity you know what shape an operation for
the type will have. A sample calculation (this time without using our notation
for lists to stay closer to the programming example below) looks as follows:

sum(4 : (3 : (2 : (1 : [ ]))))

= 4 + sum(3 : (2 : (1 : [ ]))) step case sum

= 4 + 3 + sum(2 : (1 : [ ])) step case sum

= 4 + 3 + 2 + sum(1 : [ ]) step case sum

= 4 + 3 + 2 + 1 + sum [ ] step case sum

= 4 + 3 + 2 + 1 + 0.

See Example 6.11 for an inductive proof of a property of this function.

Tip

When you have de�ned an operation recursively it is always a good idea to
apply it to an example to make sure that your de�nition makes sense. Note
how this is done in the preceding example.

8If you were wondering how to deal with the empty list then note that adding no elements at all
is usually taken to describe the number 0. More generally, for an operation with unit 𝑒, applying the
operation to 0 many elements should return 𝑒.
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Code Example 6.4. For our class List this method could be implemented by
the following method add.

public static int sum (List l)
{
if (l == null)

return 0;
else

return l.value + sum(l.next);
}

We can work out the function calls for the calculation for the lists l, l3, l2, l1
as in Code Example 6.1, as follows:

sum(l)
sum(l3)

sum(l2)
sum(l1)

sum(null)
return 0

return 1 + 0
return 2 + 1

return 3 + 3
return 4 + 6

You can see why the computer has to create a stack which contains all the
information needed to know what to do with the various return values and
where to continue the computation.
Again note the similarities between the mathematical function de�nition and
the code implementing it.

Base case sum [ ] = 0.

Step case sum(𝑠 : 𝑙) = 𝑠 + sum 𝑙.

public static int sum (List l)
{
if (l == null)

return 0;
else

return l.value + sum(l.next);
}

In general, de�ning a new operation for lists always takes the following shape:

Base case We have to say what the operation should do when given the base case
of a list, that is, [ ].
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Step case. Assuming that we already know what the operation does for the list 𝑙
we de�ne what it does when the argument is 𝑠 : 𝑙.

We de�ne an operation

Lists𝑆 × Lists𝑆 Lists𝑆

for a more interesting example.

Example 6.8. We want to de�ne an operation that takes as input two lists, and
returns one list where the two have been stuck together, that is, concatenated,
so

[1, 2, 3] ++ [4, 3, 2, 1] = [1, 2, 3, 4, 3, 2, 1].

We would like to have a formal de�nition of this operation. This formal
de�nition can then be turned into code that implements this operation.
Now that we have two arguments we need to think about how to work that
into the de�nition. For simple operations such as this one it is possible to
consider one argument as a parameter and give a recursive de�nition in terms
of the other argument. In this case we can leave the right argument alone an
only have to look inside the left one, which is why we recurse over the left
argument.
We de�ne the operation

++: Lists𝑆 × Lists𝑆 Lists𝑆

by setting

Base case ++. [ ] ++ 𝑙′ = 𝑙′ and

Step case ++. (𝑠 : 𝑙) ++ 𝑙′ = 𝑠 : (𝑙 ++ 𝑙′),

where it is understood that 𝑙 and 𝑙′ are elements of Lists𝑆 .

Note that the only way to de�ne this is by recursion over the left argument. If we
try to do it the other way round we have no way of de�ning the list we want from

𝑙 ++ (𝑠 : 𝑙′).

In Exercise 143 we look at a way of doing this recursing over the right argument,
but that requires another operation and is considerably more complicated.

Example 6.9. We continue Example 6.8 by illustrating how this operation
works in practice. We show how two lists are concatenated step by step by
following the process de�ned by this de�nition.

[4, 3] ++ [2, 1] = (4 : [3]) ++ [2, 1] step case list
= 4 : ([3] ++ [2, 1]) step case ++

= 4 : ((3 : [ ]) ++ [2, 1]) step case list
= 4 : 3 : ([ ] ++ [2, 1]) step case ++

= 4 : 3 : [2, 1] base case ++
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= 4 : [3, 2, 1]

= [4, 3, 2, 1].

Code Example 6.5. We give the code that corresponds to the mathematical
de�nition.

public static List concat (List l, List l2)
{
if (l == null)

return l2;
else

return new List (l.value, concat(l.next,l2));
}

The code also illustrates why we have to use recursion over the left argument
(try writing code which does it over the right argument if you can’t see why—
you just don’t have access to the relevant part of the list).

From the point of view of programming we usually stop at de�ning operations, but
when writing a compiler we have to worry about the properties of such operations.
We illustrate here how the proof principle of induction allows us to establish
properties for operations that have been de�ned using the principle of recursion.
Such proofs once again follow the shape of the original de�nition of the operation,
which in turn follows the shape of the de�nition of the original entity.

Example 6.10. We show that the empty list works like a unit on the right, that
for all lists 𝑙 over a set 𝑆, and all 𝑠 ∈ 𝑆, we have

𝑙 ++ [ ] = 𝑙.

We follow the shape of the de�nition of the concatenation operation, by �rst
considering the base case.

Base case list. We note that

[ ] ++ [ ] = [ ] base case ++ .

ind hyp We assume that the statement holds for the list 𝑙, that is

𝑙 ++ [ ] = 𝑙.

We turn to the step case.

Step case list. We calculate

(𝑠 : 𝑙) ++ [ ] = 𝑠 : (𝑙 ++ [ ]) step case++

= 𝑠 : 𝑙 induction hypothesis.
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Taken together these two cases cover all possibilities, and they form a proof
by induction.
Note that we have immediately from the base case of the de�nition of ++ that
[ ] acts like a unit on the left, so overall we can see that it is the unit for this
operation.

Below on we do not write the induction hypothesis explicitly if it consists of a
statement that is identical to the one we are proving. In other words in examples
of induction proofs which do not have an induction hypothesis spelled out you
may assume that it looks like the statement we are proving.

CExercise 140. Answer the following questions. Give an argument for your
answer, either by providing a counter example or by giving a proof by induction.
Hint: If you want to see more examples for proofs by induction then read on to
Examples 6.11, 6.15 and 6.16.
Compare this question with the one about concatenating strings, as part of
Exercises 27–29.
Do not forget to justify each step of your proofs.

(a) Is the ++ operation commutative?

(b) Is the ++ operation associative?

(c) Does the ++ operation have a unit? If yes, what is it? Justify your answer.

Example 6.11. The operations sum (see Examples 6.6 and 6.7) and ++ (see
Example 6.8) are de�ned above. We show by induction9 that for lists 𝑙 and 𝑙′

in Lists𝑁 it is the case that

sum(𝑙 ++ 𝑙′) = sum 𝑙 + sum 𝑙′.

Base case list.
sum([ ] ++ 𝑙′) = sum 𝑙′ base case ++

= 0 + sum 𝑙′ 0 unit for +

= sum [ ] ++ sum 𝑙′ base case sum .

Step case list.
sum((𝑠 : 𝑙) ++ 𝑙′)

= sum(𝑠 : (𝑙 ++ 𝑙′)) step case ++

= 𝑠 + sum(𝑙 ++ 𝑙′) step case sum

= 𝑠 + (sum 𝑙 + sum 𝑙′) ind hyp
= (𝑠 + sum 𝑙) + sum 𝑙′ + associative
= sum(𝑠 : 𝑙) + sum 𝑙′ step case sum .

9As previously discussed we do not state the induction hypothesis explicitly since its statement
is identical to the statement we are proving.
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Tip

De�ning a function recursively can be quite tricky when you are not used to
it. To get started you might as well make use of the fact that you know what
such a de�nition needs to look like. Assume we intend to de�ne a function

𝑓 : ListsN 𝑆

that behaves in a particular way. Then we know we need to have two cases:

Base case 𝑓 . 𝑓 [ ] =?

Step case 𝑓 . 𝑓(𝑠 : 𝑙) =??? 𝑓𝑙.

It should be easy to read o� from your description of 𝑓 how to de�ne it in
the base case. For the step case you may require a bit of creativity. How does
knowing 𝑓𝑙 help us to calculate 𝑓(𝑠 : 𝑙)? Note that you are allowed to use
operations from the target set of 𝑓 , here 𝑆. If you can answer that question
you should be able to give a correct de�nition. Then check your de�nition
using an example.

Another useful operation is determining the length of a list. You are asked to de�ne
this operator yourself in the following exercise, but assume for the remainder of
this section that there is a function

len : Lists𝑆 N

which, given a list, returns the number of elements in the list.

CExercise 141. This exercise concerns the length function described in the
preceding paragraph.

(a) Give a de�nition of this len function.

(b) Use your de�nition to calculate len[3, 2, 1] step by step.

(c) Give the code for the corresponding function for objects of type List.

(d) Show that for all lists 𝑙 and 𝑙′ over a set 𝑆 we have

len(𝑙 ++ 𝑙′) = len 𝑙 + len 𝑙′.

Justify each step.

Exercise 142. For lists overN give a recursive de�nition of a list being ordered,10
that is, for example for the list

[𝑘, 𝑙,𝑚, 𝑛]

we demand 𝑘 ≥ 𝑙 ≥ 𝑚 ≥ 𝑛. Hint: You want two base cases.

We de�ne additional operations for lists.

10We have chosen here to have the elements to get larger as they are added to the list—the opposite
choice would also make sense. 319



Example 6.12. We can also reverse a list, that is turn it back to front.

Base case rev. rev [ ] = [ ]

Step case rev. rev(𝑠 : 𝑙) = rev 𝑙 ++ [𝑠].

You are asked to work out how this de�nition works in the following exercise.

Code Example 6.6. We give the code that corresponds to the mathematical
de�nition, using the concat method de�ned in Code Example 6.5.

public static List reverse (List l)
{
if (l == null)

return l;
else

return concat(reverse(l.next), new List (l.value, null));
}

EExercise 143. Carry out the following for the rev operator.

(a) Calculate rev[1, 0] step by step.

(b) Show that for every list 𝑙 over an arbitrary set len rev 𝑙 = len 𝑙. Hint: You
may want to use a statement from a previous assessed exercise to help with this.

(c) Show that rev(𝑙 ++ 𝑙′) = rev 𝑙′ ++ rev 𝑙.

(d) Show that rev rev 𝑙 = 𝑙 for all lists 𝑙 over 𝑆. Hint: You may want to show
rev[𝑠] = [𝑠] separately.

(e) Use the rev operator to give an alternative de�nition of the concatenation
operator which uses recursion over the second argument. Give an argument
that your de�nition agrees with the original.

Justify each step in your proofs.

Example 6.13. We give one more example where we look at code. When we
have two lists it seems easy to decide whether they are ‘the same’. By that we
mean they consist of the same elements in the same order. A human being
can check this for two elements of the set Lists𝑆 by inspection, and below we
give a recursive procedure that carries out this check.
When we have two List objects, however, our idea of having ‘the same list’
may not agree with that of the Java programming language. The boolean value

(l1 == l2)

evaluates to true precisely when l1 and l2 refer to the same object. If we want
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to check whether two such objects consist of the same elements in the same
order we have to write code of the following kind.

public static boolean equal (List l1, List l2)
{
if (l1 == null)

return (l2 == null);
else {

if (l2 == null)
return false;

else
return (l1.value == l2.value && equal(l1.next, l2.next));

}
}

In our heads we are e�ectively de�ning a function that takes a List object
and turns it into an element of ListsZ, and we consider two lists equal if this
function maps them to the same list.
The code above can be turned into a mathematical de�nition quite easily. We
want to de�ne a function, say

𝑓= : Lists𝑆 × Lists𝑆 {0, 1} .

Base case 𝑓= : [ ], [ ]. 𝑓=([ ], [ ]) = 1.

Base case 𝑓= : [ ], 𝑠′ : 𝑙′. 𝑓=([ ], 𝑠′ : 𝑙′) = 0.

Base case 𝑓= : 𝑠 : 𝑙, [ ]. 𝑓(𝑠 : 𝑙, [ ]) = 0.

Step case 𝑓=.

𝑓=(𝑠 : 𝑙, 𝑠′ : 𝑙′) =

{︃
𝑓=(𝑙, 𝑙′) 𝑠 = 𝑠′

0 else.

where it is understood that 𝑙 and 𝑙′ are elements of Lists𝑆 .
Why is the mathematical de�nition so much longer? Because in the code we
make use of the equality function for integers and references.
Assume we have two functions

𝑓=[ ] : Lists𝑆 {0, 1}

𝑙

{︃
1 𝑙 = [ ]

0 else
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and
𝑓=𝑆 : 𝑆 × 𝑆 {0, 1}

(𝑠, 𝑠′)

{︃
1 𝑠 = 𝑠′

0 else.

then we can de�ne instead

Base case 𝑓= 𝑓=([ ], 𝑙′) = 𝑓=[ ]𝑙
′.

Step case 𝑓= : [ ]. 𝑓=(𝑠 : 𝑙, [ ]) = 0.

Step case 𝑓= : 𝑠′ : 𝑙′. 𝑓=(𝑠 : 𝑙, 𝑠′ : 𝑙′) = 𝑓=𝑆 (𝑠, 𝑠′) ∧ 𝑓=(𝑙, 𝑙′),

which is very close to the code given above.

Exercise 144. The aim of this exercise is to de�ne a function

search: Lists𝑆 × 𝑆 {0, 1}

(𝑙, 𝑠)

{︃
1 𝑠 occurs in 𝑙

0 else.

(a) Recursively de�ne this function.

(b) If your de�nition is a de�nition by cases then change that, using the 𝑓=𝑆

function from Example 6.13. Hint: You may use boolean operations on the set
{0, 1}.

(c) Write code that implements this function for objects of the class List.

Example 6.14. If we have a list 𝑙 over a set 𝑆, and a way of translating elements
of 𝑆 to elements of some set 𝑇 via a function 𝑓 : 𝑆 𝑇 we may transform
our list to one over the set 𝑇 by using the function map 𝑓 de�ned below. The
type of this function is

map 𝑓 : Lists𝑆 Lists𝑇 .

It is given by the following recursive de�nition.

Base case map. (map 𝑓)[ ] = [ ]

Step case map. (map 𝑓)(𝑠 : 𝑙) = 𝑓𝑠 : (map 𝑓)𝑙.

Assume we have the function 𝑓 : N Z given by

𝑛 −𝑛.

Applying the map function to 𝑓 and the list [3, 2, 1] we get

(map 𝑓)[3, 2, 1] = (map 𝑓)(3 : [2, 1]) Step case list

322



= 𝑓3 : (map 𝑓)[2, 1] step case map

= −3 : (map 𝑓)(2 : [1]) def 𝑓 and step case list
= −3 : 𝑓2 : (map 𝑓)[1] step case map

= −3 : −2 : (map 𝑓)(1 : [ ]) def 𝑓 and step case list
= −3 : −2 : (𝑓1 : map 𝑓 [ ]) step case map

= −3 : −2 : (−1 : [ ]) def 𝑓 , base case map

= −3 : −2 : [−1]

= −3 : [−2,−1]

= [−3,−2,−1].

We use the map operator to give additional examples for proofs by induction.

Example 6.15. We show that for the identity function id𝑆 on a set 𝑆 we have
for all lists 𝑙 over the set 𝑆 that

(map id𝑆)𝑙 = 𝑙.

This is a proof by induction.

Base case list. We have (map id𝑆)[ ] = [ ] by base case map.

Step case list. We note the following.11

(map id𝑆)(𝑠 : 𝑙) = id𝑆𝑠 : (map id𝑆)𝑙 step case map

= 𝑠 : 𝑙 id𝑆𝑠 = 𝑠; ind hyp.

Example 6.16. We show another property for the map operator. For two
functions 𝑓 : 𝑆 𝑇 and 𝑔 : 𝑇 𝑈 we have for all lists 𝑙 over 𝑆 that

(map(𝑔 ∘ 𝑓))𝑙 = (map 𝑔)((map 𝑓)𝑙).

We carry out the proof by induction.

Base case list.
(map(𝑔 ∘ 𝑓))[ ] = [ ] base case map

= (map 𝑔)[ ] base case map

= (map 𝑔)((map 𝑓 [ ])) base case map .

Step case list.
(map(𝑔 ∘ 𝑓))(𝑠 : 𝑙)

= (𝑔 ∘ 𝑓)𝑠 : (map(𝑔 ∘ 𝑓))𝑙 step case map

= 𝑔(𝑓𝑠) : (map 𝑔)((map 𝑓)𝑙) (𝑔 ∘ 𝑓)𝑠 = 𝑔(𝑓𝑠), ind hyp
= (map 𝑔)(𝑓𝑠 : (map 𝑓)𝑙) step case map

= (map 𝑔)((map 𝑓)(𝑠 : 𝑙)) step case map .

11As discussed above we do not spell out the induction hypothesis explicitly since its statement is
identical to the statement we are proving. 323



Exercise 145. Use the map operator to solve the following problems. For each,
de�ne the function that you would like to apply the map operator to, and give
an example of a list with at least three elements and show step-by-step how
the required transformation is carried out.

(a) Turn a list of lengths in metres to one with the same lengths in kilometres.

(b) Turn a list containing numbers from 1 to 7 into a list of the corresponding
days of the week.

(c) Turn a list of UK cities into a list of distances from the corresponding
cities to Manchester (you don’t have to describe the function for this case
formally—just describe the idea and give some of the values).

(d) Turn a list of course units in the School into a list of academic sta� who
are the leaders for the corresponding course units (you don’t have to describe
the function for this case formally—just describe the idea and give some of the
values).

CExercise 146. Show the following by induction, justifying each step.

(a) If 𝑙 is a list over an arbitrary set 𝑆 and 𝑓 a function from 𝑆 to some set 𝑇
then len((map 𝑓)𝑙) = len 𝑙.

(b) If 𝑙 and 𝑙′ are elements of Lists𝑆 and 𝑓 : 𝑆 𝑇 then

(map 𝑓)(𝑙 ++ 𝑙′) = (map 𝑓)𝑙 ++ (map 𝑓)𝑙′.

(c) If 𝑙 is a list over an arbitrary set 𝑆 and 𝑓 a function from 𝑆 to some set 𝑇
then (map 𝑓)(rev 𝑙) = rev((map 𝑓)𝑙).

(d) Let 𝑘0 be the function from N to N which maps every element to 0, that is

𝑘0 : N N
𝑛 0.

Assume that 𝑙 is an element of ListsN. Show by induction that for the list

(map 𝑘0)𝑙

every member is equal to 0.

You may invoke previous parts even if you have not proved them.

Optional Exercise 25. This exercise explores further the connection between
sets, lists over that set, and the map operator.

(a) De�ne a function 𝑖𝑆 from a set 𝑆 to lists over the set by mapping each
element of 𝑆 to the one-element list containing just the element 𝑠, that is

𝑖𝑆 : 𝑠 [𝑠].
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Show that for all functions 𝑓 : 𝑆 𝑇 , and all 𝑠 ∈ 𝑆 we have

(map 𝑓)(𝑖𝑆𝑠) = 𝑖𝑇 (𝑓𝑠).

(b) Note that given a set 𝑆 there is nothing stopping us from building lists
over the set of lists over 𝑆, that is, lists whose elements are lists (over 𝑆).
So given a function 𝑓 : 𝑆 𝑇 we can use map(map 𝑓) to map lists of lists
over 𝑆 to lists of lists over 𝑇 . Give some examples of how this operation works.

(c) Given a list of lists over 𝑆 we can ‘�atten’ this list into a list over 𝑆, for
example by turning

[[2, 3, 4], [1, 5], [ ], [6]]

into
[2, 3, 4, 1, 5, 6].

Give a recursive de�nition of this ‘�attening’ operator, and let’s call this 𝑗𝑆 .

(d) Show that for all lists 𝑙 over the set 𝑆 it is the case that

𝑗𝑆((map 𝑖𝑆)𝑙) = 𝑙.

(e) Show that for all functions 𝑓 : 𝑆 𝑇 , and all lists 𝐿 of lists over 𝑆 it is
the case that

(map 𝑓)(𝑗𝑆𝐿) = 𝑗𝑇 ((map(map 𝑓))𝐿).

We have sketched here some advanced structure from an area called category
theory which tells us something about how lists over a set relate to the original
set.

6.2 Trees

A datatype that appears in many programming languages is that of a binary tree.
Binary trees do feature in the programming in Java course unit COMP16412, where
you will also see them used to introduce notions of writing recursive code in that
language.

6.2.1 Binary trees de�ned

We give a formal de�nition for trees where every node has 0 or two children.

De�nition 52: tree

A full binary tree with labels from a set 𝑆 is given by

Base case tree. For every element 𝑠 of 𝑆 there is a tree, tree 𝑠, consisting of
just one node labelled with the element 𝑠.

Step case tree. Given two trees 𝑡 and 𝑡′ labelled over 𝑆, and an element 𝑠 of
𝑆, there is a tree tree𝑠(𝑡, 𝑡

′).

We use
FBTrees𝑆

for the set of all binary trees with labels from 𝑆.
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Code Example 6.7. Again we show how to de�ne a corresponding class12 in
Java, again for integers as the entries. To emphasize that this is a bit di�erent
from the mathematical notion de�ned above we use a slightly di�erent name
for this class.

public class BTree {
public int value;
public BTree left, right;

public BTree (int s, BTree t1, BTree t2)
{value = s; left = t1; right = t2;}

}

Compare this to the following de�nition from a Java textbook::

public class BinTreeNode
{

private BinTreeNode left, right;
private SomeClass nodeData;

...
}

Both these de�nitions of a class say that every binary tree node has two binary
tree nodes, the left and the right one, and that it has a variable which contains
data of some kind. In our case, the class SomeClass happens to be int, and
with that instantiation we get our class BTree.
How can we picture an object of this class? We use the same idea as the
visualization of an object of class List. Assume we have

• a BTree object t with t.value=5 and t.left=t2 and t.right=t3 and

• a BTree object t2 with t2.value=3 and t2.left=null and t2.right=null and

• a BTree object t3 with t3.value=4 and t3.left=t4 and t3.right=t5 and

• a BTree object t4 with t4.value=2 and t4.left=null and t4.right=null and

• a BTree object t5 with t5.value=1 and t5.left=null and t5.right=null.

These objects may be pictured as follows,giving the whole tree in blue, the left
subtree in red, and the right subtree (and its subtrees) in green.
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5

3 4

2 1

t1

t3t2

t5t4

See the following example for a less space-consuming way of drawing the
corresponding full binary tree.

This kind of picture is a bit elaborate to draw, and in order to visualize instances
of De�nition 6.2 most people draw pictures such as the following for a tree with
label 𝑠 and left and right subtrees 𝑡 and 𝑡′ respectively.

𝑠

𝑡 𝑡′

Note that 𝑡 and 𝑡′ are trees themselves, so the above does not give the full shape of
the tree. To �nd that one has to look into how 𝑡 and 𝑡′ are de�ned.

Example 6.17. We look at the same tree as in Code Example 6.7, but this time
we use the mathematical description.
If we take the complete description of a tree, such as13

tree5(tree 3, tree4(tree 2, tree 1))

over N, we may draw the full shape.

5

3 4

2 1

Note that in our de�nition there is no such thing as an empty tree. Every tree has
at least one node.

12There is one di�erence between the mathematical de�nition and the code below. Can you see
what it is? Think about null references.

13Note that elements of 𝑆 may occur more than once in the tree—we give an example where this
does not happen to make the connection with the picture clearer.
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We introduce some nomenclature for trees. For the tree tree𝑠(𝑡, 𝑡
′) the node

labelled with the 𝑠 that appears in the description is the root of the resulting tree.
In the above example that root has the label 5. The nodes labelled 3 and 4 are the
children or the root node. Nodes that do not have any children are the leaves of
the tree. Note that when you de�ne a tree recursively then the leaves of the �nal
tree are built by invoking the base case at the beginning of the building process.
The inner nodes (that is, non-leaves) of the tree are built by invoking the step case.
In our de�nition the two maximal subtrees of a tree are given one after the other
(in an ordered pair), and so it makes sense to speak of the �rst of these as the
left (rooted at the node labelled 3) and the second as the right (rooted at the node
labelled 4) subtree.
We illustrate these de�nition with the following illustrations.

5

3 4

2 1

rootchildren of the root

leaves

5

3 4

2 1

left subtree right subtree

For completeness’ sake we add two more de�nitions regarding trees. A binary tree
is perfect if every leaf has the same distance to the root, namely the height of the
tree. This is equivalent to demanding that on level 𝑖, counting down, with the root
giving level 0, there are 2𝑖 many nodes.
A binary tree is complete if and only if there are 2𝑖 nodes on level 𝑖, with the
possible exception of the �nal level, which must be ‘�lled’ from left to right.

6.2.2 Operations on trees

Again we give examples for recursive de�nitions of operations for these recursively
de�ned entities and give proofs by induction.

Code Example 6.8. For our Java class BTree we may want to know whether
two objects describe the same tree structure. The following code does this for
us.

public static boolean equal (BTree t1, BTree t2)
{
if (t1 == null)

return (t2 == null);
else {

if (t2 == null)
return false;

else
return ((t1.value == t2.value)
&& equal (t1.left, t2.left)
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&& equal (t1.right, t2.right));
}

}

This method returns true precisely when the two trees providing its arguments
have the same structure as trees.

The height of a tree gives a (crude) notion of the size of the tree.14 Compare the
following de�nition with that of the length of a list, Exercise 141.

Example 6.18. We de�ne the height function15 recursively.

Base case hght. hght tree 𝑠 = 0.

Step case hght. hght tree𝑠(𝑡, 𝑡
′) = max{hght 𝑡,hght 𝑡′} + 1.

We work out how this de�nition works for the sample tree from Example 6.17.

hght tree5(tree 3, tree4(tree 2, tree 1))

= max{hght tree 3,hght tree4(tree 2, tree 1)} + 1 step case hght

= max{0,max{hght tree 2,hght tree 1} + 1} + 1 def hght

= max{0,max{0, 0} + 1} + 1 base case hght

= max{0, 1} + 1 def max

= 1 + 1 def max

= 2

Note that for this de�nition we have that the height of the tree is the integer
part of the value of the logarithm (to base 2) of the number of nodes in the
tree.

Code Example 6.9. We give the code that calculates the height of an object of
class BTree.

public static int height (BTree t)
{
if (t.left == null && t.right == null)

return 0;
else

return 1 + vMath.max(height(t.left), height(t.right));
}

What happens if this program is called for a tree that consists of a null refer-
ence? This is where the distinction between our mathematical binary trees
and the BTree class becomes signi�cant.

14Some people call this the depth of the tree.
15Note that when de�ning the height of a tree it makes sense to either count the number of layers

in a tree, or to count the number of connections between them. If we want to former we set the
height of a one-node tree as 1, and the latter case is given here.
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Example 6.19. We give a recursive de�nition of the function

no: FBTrees𝑆 N

that counts the number of nodes in a tree in with labels from 𝑆.

Base case no. We set no(tree 𝑠) = 1.

Step case no. We set no(tree𝑠(𝑡, 𝑡
′)) = 1 + no 𝑡 + no 𝑡′.

Compare this de�nition with that of the length of a list, Exercise 141. We can
show by induction that the number of nodes in a tree in the set FBTrees𝑁 is
odd.

Base case tree. We calculate no(tree 𝑠) = 1, which is odd.

Ind hyp. We assume that 𝑡 and 𝑡′ are binary trees each with an odd
number of nodes.16

Step case tree. We check this case.

no tree𝑠(𝑡, 𝑡
′) = 1 + no 𝑡 + no 𝑡′ step case no .

By the induction hypothesis we can �nd 𝑘 and 𝑘′ in N such
that

no 𝑡 = 2𝑘 + 1 and no 𝑡′ = 2𝑘′ + 1.

Hence we may continue the above calculation as follows.

no tree𝑠(𝑡, 𝑡
′) = 1 + no 𝑡 + no 𝑡′ step case no

= 1 + 2𝑘 + 1 + 2𝑘′ + 1 ind hyp
= 2(𝑘 + 𝑘′ + 1) + 1 calcs in N

This is an odd number which completes the proof.
Note that this is an example where proving the desired property requires us
to do a bit more than write a sequence of equalities.

Example 6.20. We show by induction that for every tree 𝑡 in the set FBTrees𝑁
it is the case that hght 𝑡 ≤ no 𝑡.

Base case tree.
hght(tree 𝑠) = 0 base case hght

≤ 1

= no(tree 𝑠) base case no .

16This is the standard induction hypothesis for a data type with one step case which has two
previously de�ned entities as inputs—we give it here because it’s the �rst example of this kind.
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Ind hyp. For the trees 𝑡 and 𝑡′ we have

hght 𝑡 ≤ no 𝑡 and hght 𝑡′ ≤ no 𝑡′.

We observe that for all natural numbers 𝑚 and 𝑛 we have that

𝑚 ≤ 𝑚 + 𝑛 and 𝑛 ≤ 𝑚 + 𝑛,

and so
max{𝑚,𝑛} ≤ 𝑚 + 𝑛.

For this reason the induction hypothesis implies

max{hght 𝑡, hght} ≤ hght 𝑡 + hght 𝑡′ ≤ no 𝑡 + no 𝑡′,

which we use below.

Step case tree.

hght(tree𝑠(𝑡, 𝑡
′))

= max{hght 𝑡,hght 𝑡′} + 1 step case hght

≤ max{no 𝑡, no 𝑡′} + 1 ind hyp
≤ no 𝑡 + no 𝑡′ + 1 max{𝑛, 𝑛′} ≤ 𝑛 + 𝑛′ in N
= no tree𝑠(𝑡, 𝑡

′) step case no .

Tip

A proof by induction for trees in the set FBTrees𝑆 always has the following
shape. We are trying to prove a statement formulated in terms of the variable
𝑡 which is an element of FBTrees𝑆 .

Base case tree. Prove the given statement for the case where all occurrences of
𝑡 have been replaced by tree 𝑠, where 𝑠 is an arbitrary element
of 𝑆.

Ind hyp Assume the given statement holds for the trees17 𝑡 and 𝑡′.

Step case tree. Prove the statement where all occurrences of 𝑡 have been
replaced by tree𝑠(𝑡, 𝑡

′), where 𝑠 is an arbitrary element of 𝑆.
The induction hypothesis is used as part of the proof.

Note how the general scheme derives from the shape of the de�nition of our
trees.

Code Example 6.10. We give one last version of code for a recursive function.
Note that once again the di�erence between our mathematical binary trees,
which cannot be empty, and the trees of class BTree, which can, makes a
di�erence.

17It may be necessary to assume it for 𝑡, 𝑡′ and all their subtrees.
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public static int no (BTree t)
{
if (t == null)

return 0;
else

return 1 + no(t.left) + no(t.right);
}

Example 6.21. We give a recursive de�nition of the function

lvs : FBTrees𝑆 N

that counts the number of leaves in a tree in FBTrees𝑆 .

Base case lvs. lvs tree 𝑠 = 1.

Step case lvs. lvs tree𝑠(𝑡, 𝑡
′) = lvs 𝑡 + lvs 𝑡′.

Note how little this de�nition di�ers from that of the function no. A small
change in a recursive de�nition can lead to a very di�erent e�ect.

Tip

To get started on de�ning a recursive function for trees you might as well
make use of the fact that you know what such a de�nition needs to look like.
Assume we intend to de�ne a function

𝑓 : FBTreesN 𝑆

that behaves in a particular way. Then we know we need to have two cases:

Base case 𝑓 . 𝑓 tree𝑛 =?

Step case 𝑓 . 𝑓(tree𝑛(𝑡, 𝑡′)) =??? 𝑓𝑡 ? 𝑓𝑡′.

It should be easy to read o� from your description of 𝑓 how to de�ne it in
the base case. For the step case you may require a bit of creativity. How does
knowing 𝑓𝑡 and 𝑓𝑡′ help us to calculate 𝑓(tree𝑛(𝑡, 𝑡′))? Note that you are
allowed to use operations from the target set of 𝑓 , here 𝑆. When you have a
de�nition check whether it does the right thing using an example.

CExercise 147. Assume that 𝑁 is a set of numbers, namely Z, Q or R.

(a) Draw the following tree: tree3(tree 2, tree−5(tree 2, tree−1))

(b) De�ne a function

sum: FBTrees𝑁 𝑁

332



which sums up all the labels that occur in the tree (compare Example 6.6 where
the analogous operation for lists is de�ned).

(c) Apply your function to the tree from part (a).

(d) Give the code for a function that performs the same job for an object of
class BTree.

(e) Justifying each step show that if the set of labels is N ∖ {0} then for all
binary trees 𝑡 we have

no 𝑡 ≤ sum 𝑡.

Exercise 148. Consider the function

search: FBTrees𝑆 × 𝑆 {0, 1}

which, for inputs 𝑡 and 𝑠, returns 1 precisely when 𝑠 occurs as a label in the
tree 𝑡.

(a) Give a recursive de�nition for this function, You may use the function 𝑓=𝑆

from Example 6.13 as well as the boolean operations on {0, 1}.

(b) Give code that implements this function for objects of class BTree.

CExercise 149. Assume we have a function 𝑓 : 𝑆 𝑇 .

(a) Recursively de�ne a function map 𝑓 that takes a binary tree with labels
from 𝑆 to a binary tree with labels from 𝑇 , that is

map 𝑓 : FBTrees𝑆 FBTrees𝑇 .

Hint: Consider the map function for lists as an example.

(b) For the function
𝑓 : N N

𝑛 2𝑛

apply the function map 𝑓 you de�ned in part (a) step by step to the following
tree.

tree17(tree5(tree 3, tree 19), tree25(tree 19, tree 27))

(c) Show that for every such function 𝑓 , and every tree 𝑡 in the set FBTrees𝑆 ,
we have hght((map 𝑓)𝑡) = hght 𝑡.

(d) Show that for every such function 𝑓 and every tree 𝑡 in the set FBTrees𝑆
we have no((map 𝑓)𝑡) = no 𝑡.

(e) Assume that 𝑁 is a set of numbers between N and R. Show that for the
function

𝑘1 : 𝑁 𝑁

𝑛 1

we have for all binary trees 𝑡 that no 𝑡 = sum((map 𝑘1)𝑡).
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Justify each step in your proofs.

EExercise 150. This exercise is concerned with de�ning a mathematical entity
of binary trees that corresponds to the BTree class. We refer to such a tree
as a binary tree with labels from a set 𝑆, and use BTrees𝑆 for the set of all
these trees.

(a) Give a de�nition, similar to De�nition 52, of a mathematical entity of
binary trees which corresponds to the BTree class.

(b) Recursively de�ne an operation that takes two binary trees and returns a
binary tree where the second argument has been added below the right-most
leaf of the tree.

(c) Write code which implements the operation from the previous part.

Exercise 151. Give the following recursive de�nitions.

(a) Trees with labels from𝑆 such that every node has at most two children.Hint:
You may want to allow an empty tree. You may also want to draw some examples
to give you an idea what you are looking for.

(b) Trees with labels from 𝑆 such that every node can have an arbitrary �nite
number of children.

Exercise 152. This exercise is concerned with perfect binary trees.

(a) Recursively de�ne the set of all those full binary trees with labels from a
set 𝑆 that are perfect. Do so by describing, for each height, those elements
of FBTrees𝑆 which are perfect. Hint: Have a look ahead to Example 6.43, and
for each 𝑛 ∈ N de�ne a set PTrees𝑛𝑆 of those elements of FBTrees𝑆 which are
perfect and have height 𝑛.

(b) Show that for such a tree 𝑡 we have

lvs 𝑡 = 2hght 𝑡.

(c) Show that it is indeed the case that, for 𝑡 ∈ PTrees𝑛𝑆 , we have hght 𝑡 = 𝑛.

(d) Show that for a perfect tree 𝑡 we have lvs 𝑡 = 2hght 𝑡.

(e) Show that for a perfect tree 𝑡 we have

no 𝑡 = 21+hght 𝑡 − 1,

Conclude that
hght 𝑡 = log(1 + no 𝑡) − 1.

6.2.3 Ordered binary trees

Trees are useful structures when it comes to keeping data in a way that makes it
easy to search. In Example 4.98 we looked at searching through an array, here we
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see in Exercise 154 how one can search through entries that are kept in a tree in an
ordered way, rather than in an array. Note that the ideas that follow are usually
employed for trees in binary trees rather than full binary trees.

Example 6.22. Sometimes we require the set of all the labels that occur in a
tree, for example in order to de�ne ordered binary trees, see below. The set of
labels lab 𝑡 that occur in a tree 𝑡 with labels from 𝑆 is given as follows:

Base case lab. We have lab(tree 𝑠) = {𝑠}.

Step case lab. We have lab(tree𝑠(𝑡, 𝑡
′)) = {𝑠} ∪ lab 𝑡 ∪ lab 𝑡′.

Note that this de�nes a function

lab: FBTrees𝑆 𝒫𝑆,

since it maps a binary tree with labels from 𝑆 to a subset of 𝑆.

If we have trees over a set of numbers 𝑁 with N ⊆ 𝑁 ⊆ R then that set comes
with an order18 then we can recursively de�ne what we mean by a binary tree over
𝑁 being ordered.

De�nition 53: ordered binary tree

A binary tree with labels from 𝑁 is ordered under the following conditions.

Base case tree. A tree of the form tree𝑛 is ordered.

Step case tree. A tree of the form tree𝑛(𝑡, 𝑡′) is ordered if and only if

• For every 𝑚 ∈ lab 𝑡 we have 𝑚 ≤ 𝑛,
• for every 𝑚′ ∈ lab 𝑡′ we have 𝑛 ≤ 𝑚′ and
• 𝑡 and 𝑡′ are ordered.

Ordered binary trees are sometimes called binary search trees.

We use OFBTrees𝑆 for the set of ordered full binary trees with labels from the
set 𝑆.
In Java there the TreeSet class is used to store values in trees in ascending order,
so you don’t have to program your own data structure for this kind of thing. Note
that there is a di�erence between that class and our mathematical de�nition.
Ordered binary trees are used to keep an unknown number of data in a structure
that allows for the binary search algorithm to be de�ned. Typically one would like
to be able to insert new nodes, or to delete them. For this application one cannot
use ordered full binary trees because after an insertion or deletion the tree will no
longer be full, and one really should stick to ordered binary trees. Binary trees are
mathematically de�ned in Exercise 150.

Exercise 153. Which of the following trees are ordered over the obvious set
of numbers? Hint: You may �nd it easier to answer this question if you draw the
tree �rst.

18See Section 7.4.1 for a formal de�nition of this concept.
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(a) tree3(tree 2, tree17(tree 5, tree 19))

(b) tree5(tree2(tree 0, tree 1), tree 149)).

(c) tree17(tree5(tree 3, tree 19), tree25(tree 19, tree 27)).

(d) tree25(tree9(tree 4, tree 1), tree49(tree 36, tree 64)).

(e) tree−3(tree−5(tree−7. tree−4), tree5(tree 4, tree 7)).

EExercise 154. Let 𝑁 be a set of numbers between N and R. Consider the
function

search: OFBTrees𝑁 ×𝑁 {0, 1}

that for an input consisting of a full19 ordered binary tree 𝑡 with labels from
𝑁 and an element 𝑛 of 𝑁 gives 1 if 𝑛 occurs as a label in 𝑡, and 0 otherwise.

(a) Give a recursive de�nition of search. We may think of this function as
performing a binary search.

(b) Write code that implements this function, assuming we have a class
OBTree which restricts BTree to ordered binary trees only.

(c) Draw a picture of the ordered binary tree

tree−3(tree−5(tree−7, tree−4), tree5(tree 3, tree 7)).

Imagine you want to add a node with label 4 to the tree. Where should that
go? Draw your solution.20

(d) Write code that takes as inputs an object of the class OBTree and an integer
and returns an object of class OBTree in which the second argument has been
inserted if it is not already present. Use the previous part to guide you.

Hint: Your de�nition should take advantage of the fact that the tree is ordered
and not look at every label.

6.3 Syntax

Many formal languages are recursively de�ned. Examples of these are computer
languages, or the language of logical propositions, or the language of regular
expressions that appears in COMP11212.
This allows us to recursively de�ne operations as well as to give inductive proofs
of properties of such operations. This is one of the reasons why understanding
recursion and induction is very useful in computer science.
We describe some examples of this kind in this section.

19If you have solved EExercise 150 you may want to do the whole exercise for ordered binary
trees without requiring fullness.

20Note that the result is not a full binary tree, but a binary tree, compare Exercise 150.
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6.3.1 Strings

The simplest example of this kind is that of a string over a set 𝑆. We also speak of
a word over the alphabet 𝑆.

Base case string. The empty string21 𝜖 is a string.

Step case string. If 𝑠 ∈ 𝑆 and 𝑤 is a string then 𝑤𝑠 is a string.

One can now give a recursive de�nition of concatenation for strings, and one can
de�ne the length of a string recursively, just as these operations are de�ned for
lists. Indeed, lists and strings are closely related, see the following exercise for the
precise connection.

Exercise 155. Carry out the following tasks. This is a really nice exercise to
work out whether you’ve understood all the concepts from this chapter.

(a) Give a recursive de�nition for the concatenation + of strings over a set 𝑆.
Ditto reusing len and in particular +

(b) Give a recursive de�nition of the length len of a string over a set 𝑆.

(c) Show that if 𝑤 and 𝑤′ are strings over a set 𝑆 then len𝑤 + len𝑤′ =
len(𝑤 + 𝑤′).

(d) Recursively de�ne a function from lists over 𝑆 to strings over 𝑆.

(e) Recursively de�ne a function from strings over 𝑆 to lists over 𝑆.

(f) Show by induction that your two functions are mutual inverses of each
other.

(g) What can you say about your two functions regarding how they behave
with respect to the len functions for strings and lists? What about these
functions and concatenating strings, versus concatenating lists?

Justify each step in your proofs.

6.3.2 Logical propositions

We now turn to the language of logical propositions that is studied in Chapter 3.
We recall the de�nition of the boolean interpretation of a propositional formula22

from Section 3.2.1.

Base case prop. For every propositional variable23 𝑍 , 𝑍 is a proposition.

Step cases prop. Assume that 𝐴 and 𝐵 are propositions. Then the following are
propositions.

Step case ¬. (¬𝐴),
Step case ∧. (𝐴 ∧𝐵),

21Since it’s a bit di�cult to indicate something empty we use a symbol here. This is standard
practice.

22Below we use the shorter ‘proposition’ instead of ‘propositional formula’.
23In this section we use this letter for propositional variables.
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Step case ∨. (𝐴 ∨𝐵) and
Step case →. (𝐴→𝐵).

Example 6.23. The de�nition of an interpretation relative to a valuation of
a proposition is also via recursion. Assume that we have a valuation 𝑣 that
gives a value to each propositional variable in the boolean algebra {0, 1}. We
give the formal de�nition of the boolean interpretation of propositions. This is
given by a function 𝐼𝑣 which maps a proposition to its boolean interpretation
relative to 𝑣. The source of this function is the set of all propositions, and its
target is {0, 1}.

Base cases 𝐼𝑣 . For a propositional variable 𝑍 we de�ne 𝐼𝑣𝑍 = 𝑣𝑍 .

Step cases 𝐼𝑣 . We de�ne:

Step case ¬. 𝐼𝑣(¬𝐴) = ¬𝐼𝑣𝐴,
Step case ∧. 𝐼𝑣(𝐴 ∧𝐵) = 𝐼𝑣𝐴 ∧ 𝐼𝑣𝐵,
Step case ∨. 𝐼𝑣(𝐴 ∨𝐵) = 𝐼𝑣𝐴 ∨ 𝐼𝑣𝐵 and
Step case→. 𝐼𝑣(𝐴→𝐵) = 𝐼𝑣𝐴→ 𝐼𝑣𝐵.

Note that to argue about the properties of semantic equivalence studied in the
material on logic we did not use induction. To show, for example, that the boolean
interpretation of ¬¬𝐴 is the same as that of 𝐴 for all valuations is, when fully
spelled out, an induction proof but it can be made plausible without that. See the
following exercise for an idea of how this works formally.

Tip

A proof by induction for propositions usually takes the following shape:

Base cases prop. We show that the statement holds for every proposition of
the form Z, where Z is a propositional variable.

Ind hyp. We assume that the statement holds for formulae A and B.

Step cases prop. We show that, given the induction hypothesis, the statement
holds for formulae of the form

• ¬𝐴,
• 𝐴 ∧𝐵,
• 𝐴 ∨𝐵,
• 𝐴→𝐵.

CExercise 156. Give the formal de�nition of the powerset interpretation for
the set of all propositions (see Section 3.2.2) relative to a valuation.

EExercise 157. Solve the following problems for propositional logic.

(a) Give a recursive de�nition of the function var which takes as its argument
a propositional formula and returns the set of propositional variables that
occur in that formula.
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(b) Give a recursive de�nition of the subformula construction as a function
subf which takes as its argument a propositional formula and returns the set
of all its subformulae,24 see Section 3.1.

(c) Justifying each step, show by induction that for all propositional formulae
𝐴 we have

var𝐴 ⊆ subf 𝐴.

Note that the de�nition of a formal derivation in a natural deduction system is
also recursive: The base cases are given by the axiom rules and the step cases by
the other derivation rules.

6.3.3 Formal languages

We look at elements of formal languages as found in the course unit COMP11212.

Regular expressions

The following explains a recursive de�nition from Part 1 of COMP11212.

Example 6.24. Let Σ be a set of symbols. A pattern or regular expression
over Σ is generated by the following recursive de�nition.

Base case regexp ∅. The character ∅ is a pattern;

Base case regexp 𝜖. the character 𝜖 is a pattern;

Base case regexp Σ. every symbol from Σ is a pattern;

Step case regexp +. if 𝑝1 and 𝑝2 are patterns then so is25 (𝑝1𝑝2);

Step case regexp |. if 𝑝1 and 𝑝2 are patterns then so is (𝑝1|𝑝2);

Step case regexp *. if 𝑝 is a pattern then so is (𝑝*).

It is typical for formal languages that there are several base cases as well as several
step cases. This is due to the fact that we have several notions of a ‘primitive’
term in our language (that is one that is not built from other terms), and we have
several ways of putting terms together to get new terms.

Example 6.25. There is a related recursive de�nition which tells us when a
string made up of symbols from Σ matches a given regular expression.
Let 𝑝 be a pattern over a set of symbols Σ and let 𝑠 be a string consisting of
symbols from Σ. We say that 𝑠matches 𝑝 if one of the following cases holds:

Base case regexp 𝜖. The empty word 𝜖 matches the pattern 𝜖.

Base case regexp Σ. A character 𝑥 from Σ matches the pattern 𝑝 = 𝑥.

Step case regexp +. The pattern 𝑝 is a concatenation 𝑝 = (𝑝1𝑝2) and there
are words 𝑠1 and 𝑠2 such that 𝑠1 matches 𝑝1, 𝑠2 matches

24You will note that some people use formulas, and some people formulae, for the plural. The
latter is the original Latin form, but in modern English some prefer to form an English plural.

25The name of this step case mentions an operator that does not appear in the term constructed,
but it’s not clear what better name there is for concatenation.
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𝑝2 and 𝑠 is the concatenation of 𝑠1 and 𝑠2.

Step case regexp |. The pattern 𝑝 is an alternative 𝑝 = (𝑝1|𝑝2) and 𝑠matches
𝑝1 or 𝑝2 (it is allowed to match both).

Step case regexp *. The pattern 𝑝 is of the form 𝑝 = (𝑞*) and 𝑠 can be written
as a �nite concatenation 𝑠 = 𝑠1𝑠2 · · · 𝑠𝑛 such that 𝑠1,
𝑠2, . . . , 𝑠𝑛 all match 𝑞; this includes the case where 𝑠 is
empty (and thus an empty concatenation, with 𝑛 = 0).

Noticeably there is no entry for Base case regexp ∅, and the reason for this is
that no string matches the pattern ∅. Consequently there is no need to include
that base case.

Example 6.26. A result that is given in the notes for COMP112, but not proved,
is covered in the following (somewhat extended) example.
Given a regular expression 𝑝, we recursively de�ne

ℒ(𝑝)

as follows:

Base case regexp ∅. ℒ(∅) = ∅.

Base case regexp 𝜖. ℒ(𝜖) = {𝜖}.

Base case regexp Σ. ℒ(𝑥) = {𝑥} for all 𝑥 ∈ Σ.

Step case regexp +. ℒ(𝑝1𝑝2) = ℒ(𝑝1) · ℒ(𝑝2).

Step case regexp |. ℒ(𝑝1|𝑝2) = ℒ(𝑝1) ∪ ℒ(𝑝2).

Step case regexp *. ℒ(𝑝*) = (ℒ(𝑝))*.

The operations · and (−)|* for sets of strings are de�ned in the COMP112
notes.

Note that we can think of ℒ as a function from the set of all regular expressions
over the alphabet Σ to the powerset of the set of strings over Σ, 𝒫Σ*.
The claim made, but not proved, in the COMP112 notes is

Proposition
For all regular expressions 𝑝 over the alphabet Σ we have that

ℒ(𝑝) = {𝑠 ∈ Σ* | 𝑠 matches 𝑝}.

Proof. One may prove this by induction. Note that the induction proof has
the number of base and step cases indicated by the recursive de�nition of a
regular expression.

Base case regexp ∅. ℒ(∅) = ∅. Since no string matches the pattern
∅ the set of strings that match this pattern is indeed the empty set.

Base case regexp 𝜖. ℒ(𝜖) = {𝜖}. By de�nition, 𝜖 is the only string
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that matches the pattern ∅.

Base case regexp Σ. ℒ(𝑥) = {𝑥} for all 𝑥 ∈ Σ. By de�nition the
string 𝑥 is the only string that matches the pattern 𝑥.

Step case reg-ex +. ℒ(𝑝1𝑝2) = ℒ(𝑝1) · ℒ(𝑝2). By de�nition of · for
sets of words we have that,

ℒ(𝑝1) · ℒ(𝑝2) = {𝑠1𝑠2 | 𝑠1 ∈ ℒ(𝑝1), 𝑠2 ∈ ℒ(𝑝2),

By the induction hypothesis, this latter set is the set of all concatenations
of strings 𝑠1𝑠2 such that

𝑠1 matches 𝑝1 and 𝑠2 matches 𝑝2,

and by de�nition, a string 𝑠 matches the pattern 𝑝1𝑝2 if and only if there
exist strings 𝑠1 and 𝑠2 such that

𝑠1 matches 𝑝1 and 𝑠2 matches 𝑠2

and 𝑠 = 𝑠1𝑠2,

which gives the claim.

Step case regexp |. ℒ(𝑝1|𝑝2) = ℒ(𝑝1)∪ℒ(𝑝2). By de�nition a string
𝑠 matches 𝑝1|𝑝2 if and only if at least one of

𝑠 matches 𝑝1 or 𝑠 matches 𝑝2,

which by the induction hypothesis means that this is the case if and
only if

𝑠 ∈ ℒ(𝑝1) ∪ ℒ(𝑝2).

Step case regexp *. ℒ(𝑝*) = (ℒ(𝑝))*. By de�nition the pattern 𝑝*
is matched by the string 𝑠 matches if and only if there is

𝑛 ∈ N and 𝑠1, 𝑠2, . . . 𝑠𝑛 ∈ Σ*

with

𝑠 = 𝑠1𝑠2 · · · 𝑠𝑛
and 𝑠𝑖 matches 𝑝 (0 ≤ 𝑖 ≤ 𝑛).

But by the induction hypothesis, this means that

𝑠𝑖 ∈ ℒ(𝑝) for 0 ≤ 𝑖 ≤ 𝑛,

and this is equivalent to

𝑠 = 𝑠1𝑠2 · · · 𝑠𝑛 ∈ (ℒ(𝑝))*

as required.

In the notes for COMP11212 no formal proof is given that for every regular ex-
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pression there is a �nite state automaton de�ning the same language—what is
described there is e�ectively a sketch of such an argument. Such a proof would
proceed by induction over the above de�nition, including all the given cases. If
you look at the text that explains how to turn a regular expression into a �nite
state automaton you should be able to see how each base case, and each step case,
is treated there. As a consequence the essence of the proof is given in those notes,
and all you would have to do to complete it is to introduce the formal induction
structure.

Context-free grammars

There are a number of recursive de�nitions connected with context-free grammars.
If we look at the de�nition of a string being generated by a grammar we can see
that these are instructions that follow recursive rules, using the following pattern:

Base case Γ. This is provided by the start symbol 𝑆.

Step cases Γ. We have a step case for each production rule.

If we generalize the de�nition of a string being generated by a grammar to strings
consisting of both, terminal and non-terminal, symbols the recursive nature of the
construction becomes obvious.

Example 6.27. The de�nition of when a string is generated by a grammar is
one example:

Base case gen. by Γ. The string 𝑆 is generated by Γ.

Step cases gen. by Γ. If 𝑅 → 𝑌 is a rule of the grammar and the string
𝑋 is generated by Γ then the string that results from
replacing one occurrence of 𝑅 in 𝑋 by 𝑌 is a string
generated by Γ.

Example 6.28. Similarly the notion of a parse tree26 for a grammar has an
underlying recursive de�nition:

Base case parse tree for Γ. The tree consisting of only one node, which is
labelled 𝑆, is a parse tree for Γ.

Step cases parse tree for Γ. If 𝑅 → 𝑌 is a rule of the grammar and the tree 𝑡
is generated by Γ then the tree that results from
the following process is a parse tree for Γ:

• Identify a leaf labelled 𝑅.
• Add new children to that leaf, one for every

symbol that occurs in 𝑌 in that order.

For example assume we have a grammar with non-terminal symbols 𝑆, 𝑈 and
𝑉 , and terminal symbols digits from 0 to 9, if we have a parse tree as follows.
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𝑆

3 𝑉

𝑈 𝑈

and a rule
𝑈 → 1𝑉 2

then both of the following trees are parse trees for Γ:

𝑆

3 𝑉

𝑈

1 𝑉 2

𝑈

𝑆

3 𝑉

𝑈 𝑈

1 𝑉 2

6.3.4 Elements of programming languages

Example 6.29. To give another example, assume that we have a set of numbers
𝑁 , on which we have various operations and properties, see below for a
concrete example. For such a set of numbers we may express calculations by
forming terms that consist of various elements of 𝑁 connected by the available
operations. This gives us a language of such expressions. Many programming
languages have such a notion of arithmetic expressions built in.
One might try to specify an arithmetic expression over the set 𝑁 by the
following recursive de�nition:

Base cases arex. For every 𝑛 ∈ 𝑁 we have that 𝑛 is an arithmetic expression.

Step cases arex. Assume that 𝑎 and 𝑎′ are arithmetic expressions. Then the
following are arithmetic expressions:

Step case (). (𝑎),
Step case −. −𝑎,
Step case −1. 𝑎−1,
Step case +. 𝑎 + 𝑎′ and
Step case ·. 𝑎 · 𝑎′.

This is the kind of de�nition (see the While language below) that appears as part of
26In the COMP11212 notes the only parse trees drawn are those whose leaves are labelled with

terminal symbols, but for a formal de�nition one needs to �rst allow a more general version.
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a larger de�nition of a programming language.27 If the set of numbers in question
is some approximation to the real numbers then one might also have built-in
operations such as the trigonometric functions, and there is probably support for
exponentiation of numbers.
Typically the idea is that the programmer, as part of the code, uses arithmetic
expressions to specify calculations to be carried out by the computer at run-time.
There’s one problem with the de�nition from Example 6.29: Not all arithmetic
expressions de�ned in this way work as intended: This is because we have done
nothing to ensure that the multiplicative inverse is only applied to expressions
which are di�erent from 0. Some languages (such as Java) have mechanisms to
deal with situations like this, for example by raising an exception, while in other
cases one might actually get a result, but there are no guarantees that this result
makes any sense.
This means that at run-time (or in some cases at compile-time) the machine will
�nd itself being asked to carry out a multiplication by an inverse that does not
exist, such as a division by 0 in the integers.
One would like to change the above de�nition by specifying a changed step case:

• If 𝑎 is an arithmetic expression with 𝑎 ̸= 0 then 𝑎−1 is an arithmetic expres-
sion.

But in order to carry out the test to check whether an arithmetic expression is
equal to 0, either the programmer, or the machine, would e�ectively have to do
all the required calculations before the program is compiled. Clearly it would
be pointless to expect the programmer to carry out this check when writing the
program. After all, the point of writing code is to have the computer deal with
such calculations. But it turns out that one can not ask the computer to do these
calculations prior to run-time either. This is an issue related to the Halting Problem,
which is explained in more detail in COMP11212.
Every programming language that supports arithmetic expressions has a recursively
de�ned evaluation procedure for these expressions, which tell the machine how
to calculate the value of such an arithmetic expression (or throw up an error if a
division by 0 occurs).
For most programming languages the valid programs are de�ned recursively, typ-
ically using grammars. For most languages this de�nition is very large. Typically
it involves de�ning more than one kind of entity. Below we give an example of a
language that has a short de�nition to given an idea of how this might work. Note
that this language is no less powerful (in a formally de�nable way) than, say, Java.

Example 6.30. We give the de�nition28 of the While programming language
as it appears in the notes for COMP11212.
First it is necessary to de�ne arithmetic expressions for While. This assumes
that there is a notion of number prede�ned, and that we have a notion of
variable. To keep this de�nition short we do not cover those here.29

Base case AExp 𝑛. For every number 𝑛 we have that 𝑛 is a While arithmetic
expression.

Base case AExp var. For every variable 𝑥 we have that 𝑥 is a While arithmetic

27Typically there are more expressions, for example the programmer is allowed to write 𝑎− 𝑎′ as
a shortcut for 𝑎+ (−𝑎′).

344



expression.

Step case AExp +. If 𝑎1 and 𝑎2 are While arithmetic expressions then so is
𝑎1 + 𝑎2.

Step case AExp −. If 𝑎1 and 𝑎2 are While arithmetic expressions then so is
𝑎1 − 𝑎2.

Step case AExp ×. If 𝑎1 and 𝑎2 are While arithmetic expressions then so is
𝑎1 × 𝑎2.

These arithmetic expressions are used in the following de�nition of While
boolean expression:

Base case BExp True. There is a While boolean expression True.

Base case BExp False. There is a While boolean expression False.

Step case BExp =. If 𝑎1 and 𝑎2 are While arithmetic expressions then
𝑎1 = 𝑎2 is a While boolean expression.

Step case BExp ≤. If 𝑎1 and 𝑎2 are While arithmetic expressions then
𝑎1 ≤ 𝑎2 is a While boolean expression.

Step case BExp ¬. If 𝑏 is While boolean expressions then so is ¬𝑏.

Step case BExp ∧. If 𝑏1 and 𝑏2 are While boolean expressions then so is
𝑏1 ∧ 𝑏2.

Finally we can de�ne While statements.

Base case Stm :=. If 𝑥 is a variable and 𝑎 is a While arithmetic expression
then 𝑥 := 𝑎 is a statement.

Base case Stm skip. There is a statement skip.

Step case Stm ;. If 𝑆1 and 𝑆2 are statements then so is 𝑆1;𝑆2.

Step case Stm if. If 𝑏 is a While boolean expression and 𝑆1 and 𝑆2 are
statements then if 𝑏 then 𝑆1 else 𝑆2 is a statement.

Step case Stm while. If 𝑏 is a While boolean expression and 𝑆 is a statement
then while 𝑏 do 𝑆 is a statement.

This is not how a computer scientist would write down the de�nition. You can
see that it is very verbose, and that many of the words are not really required
to understand what is being de�ned. For this reason computer scientists have
created their own notations for making such de�nitions more compact, and
you will see some of those in COMP11212.
But it is only the notation that di�ers—mathematically speaking, the corres-
ponding de�nitions are still examples of recursive de�nitions.
When we have a formal de�nition of a programming language we can then
reason about all programs for that language. One area of computer science
where this happens is the semantics of programming languages.
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Also note that the de�nition from Example 6.30 only tells us what the valid While
programs are—it does not tell us anything about how those should be executed,
and what the result of any computation should be. You will see how one can do
that, again making use of a recursive de�nition, in the second part of COMP11212.

6.4 The natural numbers

The classic example of a recursively de�ned set is that of the natural numbers, and
it is the only way of formally de�ning what this set should be. Very little has to be
assumed for this de�nition.

6.4.1 A formal de�nition

De�nition 54: natural numbers

The elements of the set of natural numbers N are given by the following
recursive de�nition.

Base case N. There is a natural number 0.

Step case N. For each natural number 𝑛 there is a natural number 𝑆𝑛, the
successor of n.

It is more customary to write 𝑛 + 1 for 𝑆𝑛, but strictly speaking this has to be
justi�ed (see Exercise 159 (b)), and we use 𝑆𝑛 for the time being. We introduce

1 as a shortcut for 𝑆0.

Code Example 6.11. We give a Java class that corresponds to this de�nition.

public class Nat {

public Nat next;

public Nat (Nat n);
{next=n;}

}

This is a very odd class that one wouldn’t want to use in practice, but the
example here is to show you that this can be done. Note that this class does not
have a built-in upper bound for the numbers so de�ned (unlike the Java class
List). In practice the size of the numbers you can use in this way is limited by
the machine’s memory. Note also the way the class is constructed the number
you get from using the argument encoding 𝑛 is the number encoding 𝑛 + 1.
You can picture an object of this class as shown below.

28Note that the de�nition given does not involve brackets but these are introduced by the backdoor
in the paragraph following the de�nition, and you might argue that it would be cleaner to make
them explicit from the start.

29Also, symbols used in such de�nitions are usually restricted to those that are readily available
from a keyboard. In order to make our de�nition human readable we stick to symbols used in this
course unit.
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Assume that we have

• a Nat object n4 with n.next=n3 and

• a Nat object n3 with n3.next=n2 and

• a Nat object n2 with n2.next=n1 and

• a Nat object n1 with n1.next=null.

You may picture these objects as follows:

n1

n2

n3

n4

Just as we need to count the number of symbols 𝑆 to know which number is
given by

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆0,

so we have to check how many references we have to follow until we reach
the null reference to know which number is given by some object of class Nat.

Previously most of you will have assumed that the natural numbers exist, and that
you know what they are, and how their operations work, without having seen a
formal de�nition. For now you are expected to work with this formal de�nition.

6.4.2 Formal de�nitions for basic operations on the natural numbers

In what follows we illustrate how the familiar operations may be formally de�ned.
You could also think of the following as something that could be implemented on
a fairly primitive computer.

Example 6.31. An example of a recursively de�ned operation30 is addition.
The sum𝑚 + 𝑛 of two natural numbers 𝑛 and 𝑚 is de�ned as follows. For all
𝑚 in N:

Base case +. 𝑚 + 0 = 𝑚 and

Step case +. 𝑚 + 𝑆𝑛 = 𝑆(𝑚 + 𝑛).

We have de�ned 𝑚 + 𝑛 by recursion over the argument 𝑛, covering the base
case and the step case for natural numbers. Note that in the step case we are
using the fact that 𝑚+𝑛 may be assumed to be already de�ned when giving a
de�nition for 𝑚 + 𝑆𝑛. Further note that nothing is assumed about the nature
of +, but, of course, our de�nition here gives the common notion of addition.

30Compare this with the de�nition of concatenating two lists, Example 6.8.
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Example 6.32. We could just as well have used 31

Base case +. 0 + 𝑛 = 𝑛 and

Step case +. 𝑆𝑚 + 𝑛 = 𝑆(𝑚 + 𝑛)

as our de�nition.32 Since we are aiming to de�ne the usual addition operator,
we expect the result to be commutative, and so it should not matter which
argument we recurse over. We show below that this de�nition does indeed
give a commutative operator.
Note that the o�cial de�nition of addition is the �rst one given—this is the
one you must use in the exercises.

Code Example 6.12. We give the code for this operation for the class de�ned
above.33

public static Nat plus (Nat n, Nat n2)
{

if (n2 == null)
return n;

else
return new Nat (plus(n,n2.next));

}

Now assume that we had a class nat in Java like int, but restricted to the natural
numbers. Then you could write the following code to implement addition.

public static nat plus (nat n, nat n2)
{

if (n == 0)
return n2;

else
return 1 + (plus(n−1,n2));

}

Obviously one wouldn’t write this in practice, but it does work and implements
addition.

Exercise 158. Assume you would prefer your natural numbers to start with 1
rather than 0.

(a) Give a de�nition for the natural numbers starting with 1.

(b) Give code for a corresponding class.

31This is where the situation here di�ers from the ++ operation for lists.
32You may want to compare this de�nition with that of concatenating two lists, Example 6.8.
33Compare this with the code for concatenating two lists, Code Example 6.5.
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(c) Give a de�nition for addition.

(d) Give the code for an addition operation for your class from part (b).

Example 6.33. Once again we may use induction to prove properties of the
operation just de�ned. For a very simple example let us prove that for all
natural numbers 𝑛 we have

0 + 𝑛 = 𝑛.

Here the base case is for 𝑛 = 0, and the step case is for 𝑆𝑛, and we may use
the induction hypothesis 0 +𝑛 = 𝑛 for the latter. This is what the formal proof
looks like.

Base case N. We note 0 + 0 = 0 by base case +.

Ind hyp. We assume that we have 0 + 𝑛 = 𝑛.

Step case N. We calculate

0 + 𝑆𝑛 = 𝑆(0 + 𝑛) step case +

= 𝑆𝑛 induction hypothesis.

Tip

The standard structure for an inductive proof over the natural numbers is
the following. Assume we have a statement given in terms of the variable 𝑛
denoting an element of N.

Base case. We show the statement for some number 𝑏. The base case is
the case of the smallest number 𝑏 for which the given statement
holds, and it is obtained by replacing every occurrence of 𝑛 by
that smallest number.

Ind hyp We assume that the statement holds for 𝑛 (in which case it coin-
cides with the given statement), or possibly all numbers that are
less than or equal to 𝑛, and greater than or equal to the number 𝑏
from the base case.

Step case. We show the statement for 𝑆𝑛 by proving the statement where
every occurrence of 𝑛 has been replaced by 𝑆𝑛.

Below we do not give the induction hypothesis explicitly if it coincides with the
statement we are proving.

Example 6.34. As another example we show that

𝑚 + 𝑆𝑛 = 𝑆𝑚 + 𝑛. (*)

Often in a statement with two variables where induction is required it is
su�cient to carry out the induction over one of the variables. Usually the
better choice is to follow the pattern given by the recursive de�nition, here the
de�nition of +, and so we carry out an induction over the variable 𝑛.
Note that for more complicated statements it may be necessary to carry out a
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double induction proof, that is, a proof where induction has to be carried out
over both arguments.
We begin the proof of statement (*) with the base case, 𝑛 = 0.

Base case N. We have

𝑚 + 𝑆0 = 𝑆(𝑚 + 0) step case +
= 𝑆𝑚 base case +
= 𝑆𝑚 + 0 base case + .

Next one has to establish the step case, where 𝑆𝑛 appears in the place of 𝑛, and
where one may use the induction hypothesis, that is the claim𝑆𝑚+𝑛 = 𝑚+𝑆𝑛.

Step case N. We have

𝑚 + 𝑆𝑆𝑛 = 𝑆(𝑚 + 𝑆𝑛) step case +

= 𝑆(𝑆𝑚 + 𝑛) induction hypothesis
= 𝑆𝑚 + 𝑆𝑛 step case + .

What is the point of property (*)? It turns out to be very useful, see below, and it
will be helpful for you in Exercise 159. It takes a statement where we cannot apply
the step case of the de�nition of + and turns it into a statement where we can.
This is how it is used below.

Example 6.35. As a more complicated example we show that addition is
commutative, that is

for all 𝑚, 𝑛 ∈ N we have 𝑚 + 𝑛 = 𝑛 + 𝑚.

Base case N. This is established as part of Exercise 159 (a).

Step case N. We have

𝑚 + 𝑆𝑛 = 𝑆(𝑚 + 𝑛) step case +
= 𝑆(𝑛 + 𝑚) induction hypothesis
= 𝑛 + 𝑆𝑚 step case +
= 𝑆𝑛 + 𝑚 property (*).

CExercise 159. This exercise is concerned with the properties of addition.
For this exercise use the de�nition from Example 6.31—do not switch to the
alternative mentioned in Example 6.32. Justify each step.

(a) Show that 0 is a unit for addition on the natural numbers.

(b) Show that 𝑚 + 1 = 𝑆𝑚 = 1 + 𝑚 for all 𝑚 ∈ N, where 1 is a shortcut
for 𝑆0.

(c) Show that addition on the natural numbers is associative.
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De�ning further operations for the natural numbers, for example multiplication,
is now possible. The more complicated the operation, the more complicated is the
formal de�nition likely to be, and the same goes for proving properties of such
operations. However, it is possible to use operations previously de�ned, and so
one can build up complicated operations step by step.

Example 6.36. The product𝑚 · 𝑛 of two natural numbers 𝑚 and 𝑛 is de�ned
as follows. For all 𝑚 ∈ N we have

Base case ·. 𝑚 · 0 = 0

Step case ·. 𝑚 · 𝑆𝑛 = 𝑚 · 𝑛 + 𝑚.

Again we could have instead recursed over the �rst variable instead of doing
so for the second.

Exercise 160. This exercise is concerned with properties of multiplication.
Justify each step.

(a) Show that 1 is a unit for multiplication on the natural numbers.

(b) Show that for all 𝑚 ∈ N we have

𝑚 · 0 = 0 = 0 ·𝑚.

(c) Show that for natural numbers 𝑚 and 𝑛 we have 𝑆𝑚 · 𝑛 = 𝑚 · 𝑛 + 𝑛.

(d) Show that multiplication for natural numbers is a commutative operation.

(e) Show that we have the following distributivity law for natural numbers:

𝑘 · (𝑚 + 𝑛) = 𝑘 ·𝑚 + 𝑘 · 𝑛.

(f) Show that multiplication for natural numbers is associative.

CExercise 161. Carry out the following tasks, justifying each step in your
proofs.

(a) De�ne a function 𝑑 from N to N that doubles its argument, without refer-
ring to the operations + or ·.

(b) Give code that implements this operation for the class nat from Code
Example 6.11.

(c) Show that for all 𝑛 ∈ 𝑁 we have 𝑑𝑛 = 𝑆𝑆0 ·𝑛. Hint: You may �nd property
(*) useful, and you will de�nitely require addition in this proof.

(d) Consider the function mod2 de�ned as follows:

Base case mod2 : 0. mod20 = 0.
Base case mod2 : 𝑆0. mod2𝑆0 = 𝑆0.

Step case mod2. mod2(𝑆𝑆𝑛) = mod2𝑛.
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How would you describe the action of this function? Why do we need two
base cases to de�ne this function? Show that

for all 𝑛 ∈ N we have mod 2𝑑𝑛 = 0.

Exercise 162. For natural numbers 𝑚 and 𝑛 de�ne 𝑚𝑛. You are allowed to
use operations de�ned above in this chapter. Then prove that for all 𝑛, 𝑘 and 𝑙
in N we have 𝑛𝑘+𝑙 = 𝑛𝑘 · 𝑛𝑙, justifying each step. You may use results from
previous exercises as needed.

Example 6.37. We can de�ne the predecessor 𝑃𝑛 of a natural number 𝑛 as
follows.

Base case 𝑃 . 𝑃0 = 0

Step case 𝑃 . 𝑃 (𝑆𝑛) = 𝑛.

Code Example 6.13. Again we give code that implements this operation for
the class Nat.

public static Nat pred (Nat n)
{
if (n == null)

return n;
else

return n.next;
}

Example 6.38. The notion of a predecessor allows us to de�ne an operation
related to subtraction for the natural numbers, which satis�es

𝑚 −̇ 𝑛 = 0 if 𝑚 < 𝑛,

that is we use the value 0 wherever subtraction in the integers would lead to a
negative number. In other words we give a recursive de�nition of the function

𝑚 −̇ 𝑛 =

{︃
𝑚− 𝑛 𝑚 ≥ 𝑛

0 else

Base case −̇. 𝑚 −̇ 0 = 𝑚

Step case −̇. 𝑚 −̇ 𝑆𝑛 = 𝑃 (𝑚 −̇ 𝑛).
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Note that there is no sensible way of de�ning this operation by recursing
over the �rst argument: The reason our de�nition works is that the result
of 𝑚 −̇ 𝑆𝑛 is related to that of 𝑚 −̇ 𝑛: The result of 𝑚 −̇ 𝑆𝑛 should be one
below that of 𝑚 −̇ 𝑛, unless the result of 𝑚 −̇ 𝑛 is 0 already, in which case
𝑚 −̇ 𝑆𝑛 must be 0 as well. This is exactly how the predecessor function 𝑃
works. There is no such simple relation between 𝑆𝑚 −̇ 𝑛 and 𝑚 −̇ 𝑛.

Optional Exercise 26. Think about what would be required to de�ne the −̇
operator by recursing over the �rst argument. You may �nd that you need to
de�ne ≤ for natural numbers, see Exercise 163.

Example 6.39. Recall integer division from page 5. This is more complicated
to de�ne formally since we require case distinctions. For natural numbers 𝑚
and 𝑛, where 𝑚 ̸= 0, we make the following de�nition.34

Base case mod. 0 mod 𝑚 = 0 and

Step case mod.

𝑆𝑛 mod 𝑚 =

{︂
0 if 𝑆(𝑛 mod 𝑚) = 𝑚
𝑆(𝑛 mod 𝑚) else

Base case div. 0 div𝑚 = 0.

Step case div.

𝑆𝑛div𝑚 =

{︂
𝑆(𝑛 div𝑚) if (𝑆𝑛 mod 𝑚) = 0
𝑛 div𝑚 else

Again there is a reason we recurse over the �rst argument: The result of
dividing 𝑆𝑛 by 𝑚 is closely related to that of dividing 𝑛 by 𝑚, but the result
of dividing 𝑛 by 𝑆𝑚 is not close to that of dividing 𝑛 by 𝑚. Working with
these de�nitions is quite delicate and proofs of simple statements are quite
involved. Note that giving a de�nition by cases may not be what one would
like, and you are asked to �nd an alternative in Exercise 164.

Example 6.40. Note that in the preceding example we are assuming that we
know when two elements of N are equal. Strictly speaking that is something
we have not yet de�ned. We do this by thinking of it as function which takes
two arguments from N and returns 0 or 𝑆0 = 1. We want to give a recursive
de�nition of a function which for input 𝑚 and 𝑛 gives 1 if and only if 𝑚 = 𝑛,
and 0 else. This can be done as follows (compare Example 6.13).

Base case 𝑓=. 𝑓=(0, 0) = 𝑆0.

Step case 𝑓=:𝑚, 0. 𝑓=(𝑆𝑚, 0) = 0.

Step case 𝑓=:0, 𝑛. 𝑓=(0, 𝑆𝑛) = 0.

Step case 𝑓=:𝑚,𝑛. 𝑓=(𝑆𝑚,𝑆𝑛) = 𝑓=(𝑚,𝑛).

34Note that a special case of this operation appears in Exercise 161.
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Here you can see how recursion over two arguments works, but note that this
is a particularly simple case. The code from Code Example 6.13 can be adjusted
to implement this function for the class Nat.
Note that we have not said which source and target is intended for this function.
Clearly the source is meant to be N × N, but there are at least two sensible
target sets: One might pick {0, 1}, or one might pick N again. It is the latter
option that you are expected to use in Exercise 164.

Exercise 163. Similar to the de�nition of 𝑓= above give a de�nition of 𝑓≤,
with 𝑓≤(𝑚,𝑛) = 1 if and only if 𝑚 ≤ 𝑛.

It is possible to combine 𝑓= with the previously de�ned operations −̇ and · to give
a de�nition of mod which does not require the use of a de�nition by cases, see
the following exercise.

EExercise 164. Justifying each step show the following statements by induc-
tion.

(a) 0 −̇ 𝑛 = 0 for all 𝑛 ∈ N.

(b) 𝑃 (𝑆𝑛) = 𝑛 for all 𝑛 ∈ N.

(c) 𝑃 (𝑆𝑛 −̇𝑚) = 𝑛 −̇𝑚 for all 𝑚,𝑛 ∈ N.

(d) 𝑛 −̇ 𝑛 = 0 for all 𝑛 ∈ N.

(e) Give a de�nition of mod which does not use a case distinction, but which
instead uses the function 𝑓= from Example 6.40, viewed as a function from N
to N. Argue that your de�nition agrees with the one from the notes.

(f) Show that 𝑛 mod 𝑆0 = 0 for all 𝑛 ∈ N. Hint: Use the de�nition of mod
from the previous part.

Hint: You may use statements from previous parts even if you have not proved
them.

Optional Exercise 27. If you are looking for a more challenging proof, try to
show that 𝑛 mod 𝑛 = 0 for all 𝑛 ∈ N, or that 𝑛 div 1 = 𝑛 for all 𝑛 ∈ N.

The material in this section to this point gives us a rigorous de�nition of the
natural numbers, as well as de�nitions of commonly used operations on them.
This may appear somewhat tedious, covering only things you already knew. But
mathematics is all about building everything from �rst principles, and doing so in
a rigorous way. One might continue the development sketched above until one
has assembled all the information about the operations on the natural numbers
that is summarized in Chapter 0, but we don’t have the time for this. Hopefully
the above gives you a �avour of how this might work.

6.4.3 Advanced operations for natural numbers

From here on we go back to using the usual names for natural numbers, so we
write 1 instead of 𝑆0, 𝑛+ 1 instead of 𝑆𝑛, and so on. The step case in an induction
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proof is now the more familiar step from 𝑛 to 𝑛 + 1. Note that in some of the
examples below we use induction hypotheses which are more complicated than
assuming that the given statement holds for some number 𝑛 and then proving that
this implies it holds for 𝑛 + 1. In these cases we make the induction hypothesis
explicit.
From here on we also use the usual operations for natural numbers without
referring to their formal recursive de�nitions. But you should still think about the
properties you use, and make them explicit in your proofs.

Example 6.41. A standard example given to introduce the idea of a recursively
de�ned function is that of the factorial function. We de�ne this operation as
follows.

Base case !. 0! = 1.

Step case !. (𝑛 + 1)! = (𝑛 + 1) · 𝑛!.

Turned into Java code (for integers) this looks something like this:

public static int factorial (int n);
{

if (n==0)
return 1;

else
return n * factorial(n−1);

}

Note that we are explicitly carrying out a test:

• If we are in the base case then we return the appropriate number,

• else we know that we are in a case were 𝑛 is of the form 𝑚 + 1, and so
it is safe to subtract one from 𝑛, and stay in N.

Also note that this code makes no attempt to determine whether the argument
is a negative number. You may want to think about what happens if it is called
for a negative number n.
But apart from these minor di�erences the code is a very straightforward trans-
lation of the mathematical de�nition. Understanding how the mathematics
works therefore can help you write recursive programs.
You might note that 1! = 1, and so if 𝑛 = 1 there’s really no need to do a
recursion step. You can therefore make the code more e�cient (but maybe
less clear) by writing instead:

public static int factorial (int n);
{

if (n <= 1)
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return 1;
else

return n * factorial(n−1);
}

When it comes to calculating the result of reasonably complex operations on
natural numbers recursion can be a useful tool.

Euclid’s algorithm

Given two natural numbers 𝑚 and 𝑛 we can �nd the largest number dividing both
of them, their greatest common divisor.

Example 6.42. The following is known as Euclid’s algorithm. It appears in
COMP26120 as an example algorithm.
Assume that 𝑎 ≤ 𝑏 are natural numbers. We set

𝑟0 = 𝑏 and 𝑟1 = 𝑎.

By Fact 2 from Chapter 0 we can �nd natural numbers 𝑘1 and 𝑟2 < 𝑟1 with
the property that

𝑏 = 𝑟0 = 𝑘1𝑟1 + 𝑟2 = 𝑘1𝑎 + 𝑟2.

We keep applying this idea and, invoking Fact 2, we de�ne

𝑟𝑖+2 with 0 ≤ 𝑟𝑖+2 < 𝑟𝑖+1 and 𝑘𝑖+1

to be the unique numbers with the property that

𝑟𝑖 = 𝑘𝑖+1𝑟𝑖+1 + 𝑟𝑖+2.

In other words, we have

𝑘𝑖+1 = 𝑟𝑖 div 𝑟𝑖+1 and 𝑟𝑖+2 = 𝑟𝑖 mod 𝑟𝑖+1.

Note that we have that
𝑟0 > 𝑟1 > · · ·

Any strictly descending sequence of natural numbers must be �nite. We may
apply Fact 2 and construct new elements for the sequence until we get the
number 0, let’s say when we reach 𝑟𝑛+1, so that

𝑟𝑛−1 = 𝑘𝑛𝑟𝑛 + 0.

The number 𝑟𝑛 plays a particular role for 𝑎 and 𝑏.
We claim that 𝑟𝑛 is the greatest common divisor of 𝑎 and 𝑏. More speci�cally
we show that

• the number 𝑟𝑛 divides both, 𝑎 and 𝑏 and

• if 𝑐 divides both, 𝑎 and 𝑏 then 𝑐 divides 𝑟𝑛.
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These proofs are carried out by induction. To prove the �rst claim we show
that

for all 0 ≤ 𝑖 ≤ 𝑛 𝑟𝑛 divides 𝑟𝑖.

This means that in particular, 𝑟𝑛 divides both, 𝑟1 = 𝑎 and 𝑟0 = 𝑏.
Note that this proof is a bit di�erent from other induction proofs we have seen
in that

• It proceeds backwards from 𝑛 down to 0.

• It requires two base cases since the step case requires that the claim
holds for the two previously considered numbers.

For this reason we state the induction hypothesis explicitly.

Base case 𝑛. Obviously 𝑟𝑛 divides 𝑟𝑛.

Base case 𝑛− 1. Since 𝑟𝑛−1 = 𝑘𝑛𝑟𝑛 we have that 𝑟𝑛 divides 𝑟𝑛−1.

Ind hyp. We know that 𝑟𝑛 divides 𝑟𝑖+1 and 𝑟𝑖+2.

Step case. We show that 𝑟𝑛 divides 𝑟𝑖. By construction we have

𝑟𝑖 = 𝑘𝑖+1𝑟𝑖+1 + 𝑟𝑖+2.

Since by induction hypothesis we know that

𝑟𝑛 divides 𝑟𝑖+1 and 𝑟𝑛 divides 𝑟𝑖+2

we can �nd natural numbers 𝑙𝑖+1 and 𝑙𝑖+2 with the property
that

𝑟𝑖+1 = 𝑙𝑖+1𝑟𝑛 and 𝑟𝑖+2 = 𝑙𝑖+2𝑟𝑛,

and so

𝑟𝑖 = 𝑘𝑖+1𝑟𝑖+1 + 𝑟𝑖+2

= 𝑘𝑖+1𝑙𝑖+1𝑟𝑛 + 𝑙𝑖+2𝑟𝑛

= (𝑘𝑖+1𝑙𝑖+1 + 𝑙𝑖+2)𝑟𝑛,

which means that
𝑟𝑛 divides 𝑟𝑖.

We leave the proof of the second claim as an exercise.
In COMP26120 you will think about the complexity of such algorithms, that
is, you will worry about how many 𝑟𝑖 have to be calculated until the greatest
common divisor has been reached.

Exercise 165. Show the second claim from the preceding example.

Recursion can be used beyond de�ning operations on natural numbers.
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Example 6.43. We can also use recursion to de�ne subsets of sets already
de�ned. For example, the set of even numbers (compare Examples 0.9 and 0.17)
𝑀2 can be de�ned to be the smallest set satisfying the following conditions.

Base case𝑀2. 0 ∈ 𝑀2.

Step case 𝑀2. 𝑛 ∈ 𝑀2 implies 2 + 𝑛 ∈ 𝑀2.

The base case tells us that 2 · 0 = 0 is in 𝑆, and using the step case we get

0 + 2 = 2 = 2 · 1 ∈ 𝑆,

and applying the step case again we get

2 + 2 = 4 = 2 · 2 ∈ 𝑆,

and so on. Note that we do not have to refer to multiplication in this de�nition—
all we have to do is keep adding 2.

Example 6.44. For another example, to de�ne a set 𝑃2 ⊆ N containing exactly
the powers of 2 we can use the following.

Base case 𝑃2. 1 ∈ 𝑃2.

Step case 𝑃2. 𝑛 ∈ 𝑃2 implies 2 · 𝑛 ∈ 𝑃2.

The base case tells us that 20 = 1 is in 𝑆, and using the step case we get

1 · 2 = 2 = 21 ∈ 𝑆,

and applying the step case again we get

2 · 2 = 4 = 22 ∈ 𝑆,

and so on. Note that we do not have to refer to exponentiation in this
de�nition—all we have to do is keep multiplying with 2.

Exercise 166. Give a recursive de�nition for each of the following sets.

(a) The set of odd natural numbers as a subset of the natural numbers.

(b) The set of all non-empty lists over N for which the 𝑛th element (from the
right), for 𝑛 ≥ 2, is equal to twice the previous element.

(c) The set of all non-empty lists over N for which the 𝑛th symbol (from the
right), for 𝑛 ≥ 3, is equal to the sum of the previous symbols.

(d) The set of full binary trees such that each label of a node that is not a leaf
is the sum of the labels of its children.

(e) The set of full binary trees such that each label of a node that is not a leaf
is the sum of the leaves below it.
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Hint: You may use previously de�ned operations. If you aren’t sure what the step
case might look like, construct some lists or trees that satisfy the given criteria.

Example 6.45. We give a de�nition of the the
∑︀

operator which makes an
appearance in Chapter 4. Assume that 𝑁 is a set of numbers. Assume that 𝑛
is a natural number and that 𝑎𝑖 ∈ 𝑁 for 1 ≤ 𝑖 ≤ 𝑛, The operation

𝑛∑︁
𝑖=1

𝑎𝑖

is recursively de�ned as follows.

Base case
∑︀

.
∑︀0

𝑖=1 𝑎𝑖 = 0

Step case
∑︀

.
∑︀𝑛+1

𝑖=1 𝑎𝑖 = (
∑︀𝑛

𝑖=1 𝑎𝑖) + 𝑎𝑛+1.

For some sums it is possible to �nd a simpli�cation, and in those cases a proof that
this works is usually by induction.

Example 6.46. We show that for all 𝑛 ∈ N,

𝑛∑︁
𝑖=1

𝑖 =
𝑛(𝑛+ 1)

2
.

Base case N. We have
0∑︁

𝑖=1

𝑖 = 0 base case ∑︀
=

0 · 1
2

0 · 𝑛 = 0 in N.

Step case N. For this case we have

𝑛+1∑︁
𝑖=1

𝑖 =
𝑛∑︁

𝑖=1

𝑖 + (𝑛 + 1) step case ∑︀
=

𝑛(𝑛+ 1)

2
+ (𝑛 + 1) ind hyp

=
𝑛(𝑛+ 1)

2
+

(𝑛+ 1)2

2
2/2 = 1, 1 unit for mult

=
(𝑛+ 1)𝑛+ (𝑛+ 1)2

2
distr and comm of mult

=
(𝑛+ 1)(𝑛+ 2)

2
distr for mult.

Note that sometimes sums start at 0 instead of at 1, such as in the exercise below.
In that case you have

𝑛∑︁
𝑖=0

𝑎𝑖 =

𝑛+1∑︁
𝑖=1

𝑎𝑖−1,

which is equivalent to the de�nition below:
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Base case
∑︀

.
∑︀0

𝑖=0 𝑎𝑖 = 𝑎0

Step case
∑︀

.
∑︀𝑛+1

𝑖=0 𝑎𝑖 = (
∑︀𝑛

𝑖=0 𝑎𝑖) + 𝑎𝑛+1.

CExercise 167. Show the following statements by induction.

(a) For 𝑟 ∈ R ∖ {1} and 𝑛 ∈ N we have
∑︀𝑛

𝑖=0 𝑟
𝑖 =

𝑟𝑛+1 − 1

𝑟 − 1
.

(b) For 𝑛 ∈ N we have
∑︀𝑛

𝑖=0 𝑖(𝑖 + 1) =
𝑛(𝑛+ 1)(𝑛+ 2)

3
.

(c) For 𝑛 ∈ N we have
∑︀𝑛

𝑖=0 𝑖
2 =

𝑛(𝑛+ 1)(2𝑛+ 1)

6
.

(d) For 𝑛 ∈ N we have
∑︀𝑛

𝑖=0
1

2𝑖
=

2𝑛+1 − 1

2𝑛
.

(e) For 𝑛 ∈ N we have
∑︀𝑛

𝑖=0 𝑖!𝑖 = (𝑛 + 1)! − 1.

(f) For 𝑛 ∈ N we have 1 +
∑︀𝑛

𝑖=0 2𝑖 = 2𝑛+1.

6.4.4 Combinatorial rules

Looking back to the formulae for counting combinations that appear in Section 4.1.2
we can see that these can be shown to do what they are supposed to do by using
inductive arguments.

Selection with return.

Consider a situation where we have 𝑛 items to randomly pick from, returning
them each time. The claim we have from Section 4.1.2 is that there are

𝑛𝑖

combinations when drawing 𝑖 times. Can we use induction to create a formal
argument that this is indeed so?

Base case 𝑁 . If there is no draw there is one possible outcome.35

Step case 𝑁 . If there are 𝑖 + 1 draws then by the induction hypothesis there are
𝑛𝑖 many outcomes from the �rst 𝑖 draws. Each of those has to be
combined with the 𝑛 possible outcomes of the (𝑖+1)th draw, which
means there are

𝑛𝑖 · 𝑛 = 𝑛𝑖+1

many outcomes for 𝑖 + 1 draws.

Selection without return

If we have 𝑛 items to pick from then according to the formula from Section 4.1.2
for 𝑖 draws without return there are

𝑛!

(𝑛− 𝑖)!

many combinations. Again we want to give a proof.
35If you prefer you can start with ‘If there is one draw there are𝑛 possible outcomes by assumption’.
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Base case 𝑁 . If there is no draw there is one possible outcome.34

Step case 𝑁 . If there are 𝑖 + 1 draws then by the induction hypothesis there are
𝑛!

(𝑛− 𝑖)!

many outcomes from the �rst 𝑖 draws. Since 𝑖 items have been
removed there are 𝑛− 𝑖 possibilities for the (𝑖 + 1)th draw, each of
which has to be combined with every outcome from the previous
draws, giving

𝑛!

(𝑛− 𝑖)!
· (𝑛− 𝑖) =

𝑛!

(𝑛− 𝑖− 1)!
=

𝑛!

(𝑛− (𝑖+ 1))!

many outcomes

Unordered selection without return

We leave the remaining case as an exercise.

Exercise 168. For unordered selection without return prove by induction that
the number of possible outcomes is

𝑛!

(𝑛− 𝑖)!𝑖!
.

6.4.5 Functions given via recursive speci�cations

When trying to compute the complexity of a recursive algorithm, that is trying
to see how the number of steps changes as the problem size grows, one often
ends up having to solve a recurrence relation. This means that one has a recursive
speci�cation of a function, and one would like to �nd a simpler description of that
function (using known functions).

Example 6.47. Assume we have a program whose complexity we are trying to
work out as a function which takes as its input the problem size 𝑛, and gives
as its output the number of steps (or an approximation thereof) the program
will take when given an input of size 𝑛. Further assume that by studying the
program we have worked out that

Base case 𝑓 . 𝑓0 = 1, that is, if the problem size is 0 the program takes
one step and

Step case 𝑓 . 𝑓(𝑛 + 1) = 𝑘𝑓𝑛, for some 𝑘 ∈ N, that is, if the problem
size grows by one the program needs 𝑘 times the number of
steps from before.

Working with this speci�cation is unwieldy. In this case it’s quite easy to give
an alternative description of 𝑓 , but let’s see how one might arrive there. It’s
probably easiest to �rst of all compute the �rst few values.

𝑛 0 1 2 3 4
𝑓𝑛 1 𝑘 𝑘2 𝑘3 𝑘4

We might now guess that 𝑓𝑛 = 𝑘𝑛, but we really should verify that this �ts
with the original description. As with most recursive statements the obvious
way of proving this is by induction.
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Base case 𝑓 . 𝑓0 = 1 = 𝑘0, so we have a match.

Step case 𝑓 .
𝑓(𝑛 + 1) = 𝑘𝑓𝑛 de�nition 𝑓

= 𝑘 · 𝑘𝑛 induction hypothesis
= 𝑘𝑛+1 calcs in N,

and this gives another match.

Example 6.48. Let’s do a more complicated example.

Base case 𝑔:0. 𝑔0 = 0.

Base case 𝑔:1. 𝑔1 = 1.

Step case 𝑔. 𝑔(𝑛 + 2) = 2𝑔(𝑛 + 1) − 𝑔𝑛 + 2.

Note that we have two base cases here.They are required because the step case
relies on two previously calculated values. Again we work out the �rst few
values.

𝑛 0 1 2 3 4
𝑔𝑛 0 1 4 9 16

Once more there’s an obvious guess: We guess that 𝑔𝑛 = 𝑛2. Again we have
to provide a proof. Note that we have to cover two base cases now, and that
the induction hypothesis is now: 𝑔𝑘 = 𝑘2 for all 𝑘 < 𝑛 + 2. In particular we
use below the induction hypothesis that

𝑔(𝑛 + 1) = (𝑛 + 1)2 and 𝑔𝑛 = 𝑛2.

Base case 𝑔:0. 𝑔0 = 0 = 02.

Base case 𝑔:1. 𝑔1 = 1 = 12.

Ind hyp 𝑔. We have

𝑔𝑛 = 𝑛2 and 𝑔(𝑛 + 1) = (𝑛 + 1)2.

Step case 𝑔.
𝑔(𝑛 + 2) = 2𝑔(𝑛 + 1) − 𝑔𝑛 + 2 def 𝑔

= 2(𝑛 + 1)2 − 𝑛2 + 2 ind hyp
= 2𝑛2 + 4𝑛 + 2 − 𝑛2 + 2 calcs in N
= 𝑛2 + 4𝑛 + 4 calcs in N
= (𝑛 + 2)2 calcs in N.
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CExercise 169. For the following recursive speci�cations, work out an altern-
ative non-recursive representation of the given function and prove by induction
that it satis�es the given speci�cation.

(a) Base case 𝑓 . 𝑓0 = 0.

Step case 𝑓 . 𝑓(𝑛 + 1) = 𝑓𝑛 + 2.

(b) Base case 𝑓 . 𝑓0 = 1.

Step case 𝑓 . 𝑓(𝑛 + 1) = (𝑛 + 1)𝑓𝑛.

(c) Base case 𝑓 . 𝑓0 = 2.

Step case 𝑓 . 𝑓(𝑛 + 1) = (𝑓𝑛)2.

(d) Base case 𝑓 :0. 𝑓0 = 0.

Base case 𝑓 :1. 𝑓1 = 3.

Step case 𝑓 . 𝑓(𝑛 + 2) = 2𝑓(𝑛 + 1) − 𝑓𝑛.

(e) Base case 𝑓 :0. 𝑓0 = 1.

Base case 𝑓 :1. 𝑓1 = 1.

Step case 𝑓 . 𝑓(𝑛 + 2) = 2𝑓(𝑛 + 1) − 𝑓𝑛.

(f) Base case 𝑓 :0. 𝑓0 = 1.

Base case 𝑓 :1. 𝑓1 = 2.

Step case 𝑓 . 𝑓(𝑛 + 2) = 𝑓(𝑛 + 1) + 2𝑓𝑛.

(g) Base case 𝑓 :0. 𝑓0 = 1.

Base case 𝑓 :1. 𝑓1 = 3.

Step case 𝑓 . 𝑓(𝑛 + 2) = 2𝑓(𝑛 + 1) + 3𝑓𝑛.

Note that the examples given in these notes have been carefully chosen so that it
is possible to guess a closed form for the underlying function. Not all recurrence
equations that appear in real-world programs are as easy as this. An example is
provided by the following optional exercise. Typically recursive speci�cations
arise when one wants to compute the complexity of a recursive program, and often
those occurring in practice are much harder to solve than our examples.

Optional Exercise 28. A popular exercise in writing recursive programs is to
compute the Fibonacci sequence.36 Consider the following recursive speci�ca-
tion for a function.

Base case 𝑓 :0. 𝑓0 = 0.

Base case 𝑓 :1. 𝑓1 = 1.

Step case 𝑓 . 𝑓(𝑛 + 2) = 𝑓(𝑛 + 1) + 𝑓𝑛.
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(a) Calculate the �rst few values of 𝑓 .

(b) Show that for

𝛼 =
1 +

√
5

2
and 𝛽 =

1−
√
5

2

we have

𝛼𝑛+2 = 𝛼𝑛+1 + 𝛼𝑛 and 𝛽𝑛+2 = 𝛽𝑛+1 + 𝛽𝑛,

so these numbers satisfy the equations de�ning 𝑓 .

(c) Show that the function

𝑓𝑛 =
𝛼𝑛 − 𝛽𝑛

𝛼− 𝛽

=

(︁
1+

√
5

2

)︁𝑛

−
(︁

1−
√
5

2

)︁𝑛

√
5

=
(1 +

√
5)𝑛 − (1−

√
5)𝑛

2𝑛
√
5

satis�es the original condition for 𝑓 .

Would you have guessed this de�nition for 𝑓?

Optional Exercise 29. Note that it is possible to have recurrence relations
with more than one variable. A typical example are the binomial coe�cient,
which can be thought of as given by the recurrence relation

Base case binom.
(︀
𝑛
0

)︀
= 1.

Step case binom.
(︀
𝑛+1
𝑖+1

)︀
=
(︀
𝑛
𝑖

)︀
+
(︀

𝑛
𝑖+1

)︀
.

Show that this gives the same de�nition as the more common(︂
𝑛

𝑖

)︂
=

𝑛!

𝑖!(𝑛− 𝑖)!
.

Note that the recursive de�nition does not require multiplication, just addition.
You may have seen this de�nition at work in Pascal’s triangle.

6.5 Further properties with inductive proofs

Many properties involving natural numbers can be shown by induction. The
following example and exercises gives a taste of those.

Example 6.49. Here is an inductive proof of a property of complex numbers,

36Check out https://en.m.wikipedia.org/wiki/Fibonacci_number to read up on where
this sequence originates and some of its interesting properties.
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but invoking natural numbers where it counts. We show that

|𝑧| = 1 implies for all 𝑛 ∈ N, |𝑧𝑛| = 1.

Base case N. We have |𝑧0| = |1| = 1.

Step case N. For this case we have

|𝑧𝑛+1| = |𝑧𝑛𝑧| def (−)𝑛+1

= |𝑧𝑛||𝑧| |𝑧𝑧′| = |𝑧||𝑧′|, Ex 16
= 1 · 1 ind hyp, assumptn
= 1 1 unit for mult

Exercise 170. Show the statements from Fact 8 on page 42.

EExercise 171. The following statements can be shown by induction but some
creativity is required to see how the proof might work.

(a) Show that every natural number greater than or equal to 12 is the sum
of multiples of the numbers 4 and 5. This means that if we have 4p and 5p
stamps then they can be combined to get any amount from 12p up. Hint: Work
out solutions for smaller numbers, up to 24 or so. A pattern should emerge. You
will require a number of case distinctions.

(b) Show that for all natural numbers 𝑛 ̸= 0 we have that 7𝑛 − 1 is divisible
by 6, as is 𝑛3 − 𝑛.

(c) Assume that 𝑛 ∈ N and 𝑛 ≥ 2. Show that a set of size 𝑛 has 𝑛(𝑛−1)/2 two-
element subsets. Hint: This is an exercise that wants to be solved by reasoning
in English, rather than manipulating some formula.

After all this you may wonder what ‘recursion theory’ is all about. It is the study
of those functions N𝑛 N which can be de�ned using recursion. This is more
involved than you may think—because one may use previously de�ned functions
to de�ne more sophisticated ones the functions that can arise in this way are
considerably more complicated than those that appear in this section.

6.6 More on induction

The examples given above are comparatively simple cases of proofs by induction.
We brie�y discuss situations where a proof becomes more complicated.

• The induction hypothesis in most of our examples is very straightforward in
the sense that for each step case, we merely require the statement for each
‘ingredient’. For example, in the case of a propositional formula, assuming
the statement holds for the formula 𝐴 and the formula 𝐵 we show that
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it holds for 𝐴 ∧ 𝐵. Sometimes one has to require the statement for ‘all
ingredients built so far’. In the above example this would mean assuming
the statement for 𝐴, 𝐵, and all their subformulae.

• In some cases it is not su�cient to assume the given claim for all entities
built so far’. Instead one �nds that when trying to prove the step case that
one needs a stronger statement than the one that is at issue. This often
gives some idea of an alternative, stronger statement that can be shown by
induction. This is sometimes called strengthening the induction hypothesis.
We have not seen any examples of this.

• It is perfectly possible to nest induction proofs, that is, inside a proof by
induction one requires another proof, also by induction, of an unrelated
statement. We have not seen examples of this.

• If one tries to show a statement which contains more than one variable one
of the following cases will apply if the statement is provable by induction at
all:

– We may prove the statement by induction over one of the variables,
treating the others as parameters. Examples of this are Examples 6.11
and 6.34.

– We may prove the statement by giving an induction proof for one of the
variables, which inside contains induction proofs for the other variables
(where one has to be careful to state the various induction hypotheses
carefully to ensure that they do not assume anything unwarranted). In
the case where there are two variables this is known as double induction.
We have not seen examples of this.
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Chapter 7

Relations

So far when trying to connect two sets we have only looked at functions. This
assumes that we have a mechanism for turning elements from the source set into
elements of the target set. However, there are other ways of making connections.

Example 7.1. In a database we typically want to think of tables, and indeed
people often talk about ‘relational databases’. These can be viewed as relations
of a general kind. For a simple example, think of a library which has a table
of members (uniquely determined by their membership numbers), a table of
books (uniquely determined by catalogue numbers), and a table which keeps
track of which book is currently on loan to which member. We can think of
this as connecting the set of all members 𝑀 (represented by the set of all valid
membership numbers) to the set of all books 𝐵 (represented by the set of all
current catalogue numbers).
This connection cannot be thought of as a function: A given member may
have no, or several, books on loan, so we cannot produce a unique output for
each input. Instead we can think of this table as a subset 𝐿 of the product
𝑀 ×𝐵 with the property that

(𝑚, 𝑏) ∈ 𝐿 if and only if
member 𝑚 currently has book 𝑏 on loan.

This is an example of a relation from 𝑀 to 𝐵.
In terms of a database one would describe this as a relation schema, and would
give a type for it along the following lines:

OnLoan(member:int,book:int),

assuming that membership and catalogue numbers are implemented as integers.
The entries in the database are exactly the members of the relation.

In these notes we largely restrict ourselves to relations connecting two sets, which
means relation schema with two entries. Databases often have relation schemas
with more entries, for example a database that keeps track of members of the
university might have a relation schema including

(title,name,building,office number,phone number).

The general ideas regarding relations that are introduced below apply to this kind
of situation as well.
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7.1 General relations

We use relations all the time, even though you may not have been aware of that.
It is often convenient to think of relations as generalizations of functions, and
sometimes a similar notation is used.
A relation 𝑅 from a set 𝑆 to a set 𝑇 is given by a subset of 𝑆×𝑇 . This is sometimes
written as

𝑅 : 𝑆 𝑇,

but this is not universal.
A function is a special kind of relation: Given a function 𝑓 : 𝑆 𝑇 we have its
graph

{(𝑠, 𝑓𝑠) ∈ 𝑆 × 𝑇 | 𝑠 ∈ 𝑆},

which is a subset of 𝑆 × 𝑇 . It is standard to identify 𝑓 with its graph to view it
as a relation. Proposition 2.1 tells us which relations are the graphs of functions,
namely those relations 𝑅 ⊆ 𝑆 × 𝑇 where for every 𝑠 ∈ 𝑆 there is a unique 𝑡 ∈ 𝑇
such that (𝑠, 𝑡) ∈ 𝑅.
Examples of relations are abundant.

Example 7.2. We give a few examples of relations from a number of areas.

(a) The relation from the set of students in the School to the set of academics
where a student is related to an academic if during the current academic year
the student is enrolled on a course unit on which the academic teaches.

(b) The relation from the set of students in the School to the set of COMP
course units o�ered which relates a student to all the course units he or she is
enrolled on.

(c) The relation from the set of real numbers to the set of real numbers where
𝑥 is related to 𝑦 if 𝑥 = 𝑦2.

(d) The relation between Java programs where one program is related to
another if they can be viewed as computing the same thing.1

(e) The relation of equality for a number of entities, for example, equality of
numbers, equality of fractions, and more generally the equality of ‘arithmetic
expressions’, that is, expressions written using numbers and operations such
as addition, multiplication and inverses with respect to these. We usually
consider two such expressions to be equivalent (or equal) if they evaluate to
the same number.

We can picture relations between small �nite sets in a picture, similar to how we
draw functions between such sets.

Example 7.3. We show how to picture a small relation between two di�erent
sets. For small relations on the same set see Section 7.2.2.

1De�ning this in general in a rigorous way is non-trivial, but it is fairly easy if one only looks at
Java programs which can be thought of as having a natural number as input and a natural number
as output.
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∙𝑎

∙𝑏

∙𝑐

∙ 4

∙ 1
∙ 2
∙ 3

This relation goes from the set {𝑎, 𝑏, 𝑐} to the set {1, 2, 3, 4}. It relates

• 𝑎 to 1, 3 and 4,

• 𝑏 to 3, and

• 𝑐 to no element.

We typically write this relation as the collection of pairs from the set

{𝑎, 𝑏, 𝑐} × {1, 2, 3, 4}

which it contains, which in the case of the example above is

{(𝑎, 1), (𝑎, 3), (𝑎, 4), (𝑏, 3)}.

7.1.1 Important notions

There are two common notations for relations. One is to rely on the idea that a
relation 𝑅 from 𝑆 to 𝑇 is a subset of 𝑆×𝑇 and so to denote the fact that 𝑅 relates
an element 𝑠 of 𝑆 to an element 𝑡 of 𝑇 by

(𝑠, 𝑡) ∈ 𝑅.

Sometimes in�x notation is preferred, and instead of (𝑠, 𝑡) ∈ 𝑅 one might write

𝑠 𝑅 𝑡.

Where in�x notation is used it is not unusual to see symbols, rather than letters,
to denote a relation; for example you may �nd a relation ∼ from 𝑆 to 𝑇 where the
same fact is written as

𝑠 ∼ 𝑡.

Example 7.4. An example of a relation that is typically written in this manner
this is equality of arithmetic expressions. To denote that the two expressions
2/4 and 1/2 denote the same number in Q or R we write

2/4 = 1/2;

the equal symbol = being written in in�x notation.

Example 7.5. Another example is the notion of semantic equivalence of pro-
positions from the material on logic, where the notation

𝐴 ≡ 𝐵
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is used to denote the fact that with respect to every valuation 𝐴 has the same
boolean interpretation as 𝐵.

Both notations are routinely used and you should become comfortable with both.
Each set has a special relation: Given a set 𝑆 the identity relation 𝐼𝑆 on 𝑆 is given
by

{(𝑠, 𝑠) ∈ 𝑆 × 𝑆 | 𝑠 ∈ 𝑆}.
In other words, every element is related to itself, and to nothing else. The identity
relation on 𝑆 is the graph of the identity function id𝑆 on 𝑆.
Given a relation 𝑅 from 𝑆 to 𝑇 there is an easy way of turning it into a relation
from 𝑇 to 𝑆: The opposite relation 𝑅op of 𝑅 is given by

𝑅op = {(𝑡, 𝑠) ∈ 𝑇 × 𝑆 | (𝑠, 𝑡) ∈ 𝑅}.

In other words we ‘turn the relation around’ by changing the order of the pairs,
and also switch the ‘source’ and ‘target’.

Example 7.6. For the relation given in Example 7.3 above the opposite relation
is given by the following picture.

∙ 𝑎

∙ 𝑏

∙ 𝑐

∙4

∙1
∙2
∙3

Example 7.7. Consider the relation ‘is a child of’ as a relation on the product
with itself of the set of all people, where

(𝑎, 𝑏)

being an element of the relation means that 𝑎 is a child of 𝑏. The opposite of
the ‘is a child of’ relation is the ‘is a parent of’ relation, where

(𝑎, 𝑏)

is in the relation if and only if 𝑎 is a parent of 𝑏.

Note that since relations are sets we can apply set operations to them. In particular,
given a relation 𝑅 from 𝑆 to 𝑇 there is its complement,

(𝑆 × 𝑇 ) ∖𝑅,

and given two relations 𝑅 and 𝑅′ from 𝑆 to 𝑇 we may form

their union 𝑅 ∪𝑅′ and their intersection 𝑅 ∩𝑅′.

Relations are a little like functions in that one can de�ne their composition.
Let 𝑅 be a relation from 𝑆 to 𝑆′, and let 𝑅′ be a relation from 𝑆′ to 𝑆′′. The
relational composite 𝑅 ; 𝑅′ is given by

𝑅 ; 𝑅′ = {(𝑠, 𝑠′′) ∈ 𝑆 × 𝑆′′ | ∃𝑠′ ∈ 𝑆′. ((𝑠, 𝑠′) ∈ 𝑅 and (𝑠′, 𝑠′′) ∈ 𝑅′)}.
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Example 7.8. Consider the two relations given by the following picture.

∙𝑎
∙𝑏

∙𝑐
∙ 4

∙ 1
∙ 2
∙ 3

∙4

∙1
∙2
∙3 ∙ 𝛼

∙ 𝛽

If we ‘overlay’ the two we can more easily see what the composite of the two
relations is.

∙𝑎
∙𝑏

∙𝑐
∙ 4

∙ 1
∙ 2
∙ 3 ∙ 𝛼

∙ 𝛽

The composite connects

• a node in the left-most set with

• a node in the right-most set if and only if

• they are connected by a line through the set in the middle (that is a red
line followed by a blue one).

∙𝑎
∙𝑏

∙𝑐 ∙ 𝛼
∙ 𝛽

Example 7.9. Consider the ‘is a child of’ relation from Example 7.7. We may
form the relational composite of this relation with itself, and the result is the
‘is a grandchild of’ relation.

Example 7.10. Assume we have two relation schema (compare Example 7.1)
in a database,

• one connecting members (given by their membership number) with
borrowed books (given by their catalogue number) and

• one connecting books (given by catalogue number) and their titles.

If one wants to create a new relation scheme that connects members (given by
their membership number) with the titles of the books they have on loan one
has to form the relational composite of the two underlying relations.
On the left we have a table describing the relations between members and the
catalogue numbers of the books they have on loan, and on the right a table
describing the title of the book corresponding to a catalogue number.
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Member 1 00002
Member 1 00003
Member 3 00005
Member 3 00007
Member 3 00011

00002 The Joys of Java
00003 Maths for Dummies
00005 Higher Category Theory
00007 Topoi and Theories
00011 Multiversal Algebra

The relational composite of the underlying relations, written again as a table,
is the following:

Member 1 The Joys of Java
Member 1 Maths for Dummies
Member 3 Higher Category Theory
Member 3 Topoi and Theories
Member 3 Multiversal Algebra

But note that this is a special example, which makes it look as if every entry
in the �rst table gives rise to an entry in the resulting table. This is the case
because our second table de�nes a very special relation, namely one that is
functional: For every catalogue number there exists exactly one book title
(namely the title of the corresponding book). Moreover, since every catalogue
number can be on loan to at most one person, the �rst relation is also special.

Example 7.11. Assume we have a di�erent database. We have a relation schema
connecting applicants to the school with their computer science interests, and
another relation schema which suggests related interests.

Wong AI
Wong HCI

Kim Maths
Anna AI
Anna Hardware

AI Machine Learning
AI Logic Programming
AI Knowledge Representation

Security Encryption
Maths Logic
Maths Probabilities

Hardware Circuits

The relational composite of the underlying relations, written again as a table,
is the following:

Wong Machine Learning
Wong Logic Programming
Wong Knowledge Representation

Kim Logic
Kim Probability Theory

Anna Machine Learning
Anna Logic Programming
Anna Knowledge Representation
Anna Circuits

It connects students with potential interests.
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Example 7.12. In COMP11212 the notion of a simulation between �nite state
automata is introduced. This is a relation that connects the states of the two
automata. Only relations with particular properties are valid simulations.
This is an example where relations speci�cally appear in a computer science
context.

Optional Exercise 30. Show that if you have a relation 𝑅 which is a simulation
from 𝐴 to 𝐴′, and if 𝑅′ is a simulation from 𝐴 to 𝐴′′ then their composite as
relations, 𝑅 ; 𝑅′, is a simulation from 𝐴 to 𝐴′′.

Exercise 172. Show the following for relational composition:

(a) Given a relation 𝑅 from 𝑆 to 𝑇 , show that for the identity relation 𝐼𝑆 on
𝑆 we have 𝐼𝑆 ; 𝑅 = 𝑅 and similarly that for the identity relation 𝐼𝑇 on 𝑇 we
have 𝑅 ; 𝐼𝑇 = 𝑅.

(b) Assume that 𝑅, 𝑅′ and 𝑅′′ are relations that can be composed. Show that
(𝑅 ; 𝑅′) ; 𝑅′′ = 𝑅 ; (𝑅′ ; 𝑅′′).

We begin by looking at a generalization of the notion of a function, and then move
to other cases of relations with particular properties.

7.2 Partial functions

Sometimes we would like to consider assignments that behave like functions, but
which are not de�ned on the whole source set.

Example 7.13. Division is such a function from

Q×Q Q.

It is de�ned everywhere with the exception of the subset

Q× {0} of Q×Q.

This gives us the choice of de�ning division

• as a function with source and target

Q× (Q ∖ {0}) Q

• or as a partial function

Q×Q Q ,

which is unde�ned for all those pairs whose second component is 0, that
is, pairs of the form (𝑞, 0).

In this example there is a choice regarding what to do, but it can be di�cult, or
even impossible, to calculate the domain where a particular partial function is
de�ned. Examples of this appear in COMP11212.
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Example 7.14. A more interesting example is that of subtraction for the natural
numbers. We may de�ne a partial function

N× N N

which maps

(𝑛,𝑚)

{︃
𝑛−𝑚 𝑛 ≥ 𝑚

unde�ned else.

Alternatively a total function would have be2

from {(𝑛,𝑚) ∈ N× N | 𝑛 ≥ 𝑚} to N.

Example 7.15. Nothing stops us from de�ning, for example, for natural num-
bers 𝑛,

𝑓𝑛 =

{︃
𝑛 the no of atoms in the universe is divisible by 𝑛

unde�ned else

Calculating where this function is de�ned is impossible (beyond repeating the
de�nition). If we use this function together with a recursive de�nition we can
de�ne

Base case 𝑔. 𝑔0 = 0.

Step case 𝑔.

𝑔(𝑛 + 1) =

⎧⎪⎨⎪⎩
𝑔𝑛 + 𝑓(𝑛 + 1) 𝑔𝑛, 𝑓(𝑛 + 1) both de�ned
𝑓𝑛 𝑓𝑛 de�ned, 𝑔𝑛 unde�ned
unde�ned else.

Here it is even harder to work out whether 𝑔 is de�ned for a given 𝑛, and there
is no simple predicate which tells us whether 𝑔𝑛 is de�ned for a given 𝑛.

Example 7.16. In COMP11212 you will study the idea of a partially decidable
partial function. This is a partial function for which we can �nd an algorithm
to tell us where it is de�ned, but we demand the termination of the algorithm
only in the case where the given partial function is de�ned at the given element.
Speci�cally, the question is whether there is a While program which, for input
𝑛, will terminate and give the answer 1 if the function is de�ned at 𝑛. Such a
program is known as a partial decision procedure.
In a computer science context a typical application of this idea is to have a
program 𝑃 that takes some input, for example a natural number, and produces

2Or we would have to turn it into a total function such as −̇ from the previous section.
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an output, say another natural number. We may then de�ne a partial function

𝑛

{︃
output of 𝑃 on input 𝑛 𝑃 produces output for input 𝑛
unde�ned else.

The reason why 𝑃 might not produce an output for the given input could be
that it attempts a division by 0, or that it runs into an in�nite loop on certain
inputs. You will study this idea in more detail in COMP11212.

We give a formal de�nition for the concept used in the examples above.

De�nition 55: partial function

Let 𝑆 and 𝑇 be sets. A partial function from 𝑆 to 𝑇 is an assignment where

for every 𝑠 ∈ 𝑆 there is at most one 𝑡 ∈ 𝑇 with 𝑠 𝑡.

We use a di�erent kind of arrow, one with only ‘half a tip’

𝑓 : 𝑆 𝑇

to indicate that the function described is partial.
When we have partial functions between small sets we can draw pictures of partial
functions, similar to those used for (total) functions in Section 0.3. Here for every
element of the source set we may have at most one element of the target set which
it is connected with.

∙𝑎

∙𝑏

∙𝑐

∙ 4

∙ 1
∙ 2
∙ 3

If 𝑓 is a partial function then when we write 𝑓𝑠 we cannot be sure whether this
de�nes an element of 𝑇 , or whether this is unde�ned. This can be awkward when
one tries to argue about partial functions. For this reason it is fairly customary to
use an extra symbol3 ⊥.
If 𝑓 : 𝑆 𝑇 is a partial function then we write

𝑓𝑠 = ⊥

in the case4 where 𝑓 is not de�ned at 𝑠.

Example 7.17. Every function from 𝑆 to 𝑇 is also a partial function from 𝑆
to 𝑇 .

When both, proper and partial functions are around people sometimes talk of total
functions to distinguish proper functions, which are de�ned everywhere, from
partial ones.

3This looks like the symbol we used in Chapter 3 for propositions whose boolean interpretation
relative to every valuation is 0, and that is no coincidence. People usually pronounce it ‘bottom’—see
De�nition 68 for the reason why.

4This only works if ⊥ is not an element of the target set 𝑇 .
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Example 7.18. Recall the notion of a list over a set 𝑆 from the previous chapter.
We may want to de�ne a function that returns the most recently added element
of the list (if it exists). This should be a partial function head from the set of
lists over 𝑆 to 𝑆. It is partial because it is unde�ned for the empty list. There
is a recursive de�nition which says

head(𝑠 : 𝑙) = 𝑠.

By not providing a de�nition for head at [ ] we are implicitly stating that this
function is not de�ned for the empty list, which means that it is partial.
There really is no sensible way of extending this function to the empty list—
how would we pick an element of 𝑆 to return?

It is for reasons such as the function in this example (and the fact that when
programming, illegal operations such as division by 0 cannot be prevented from
happening in some automated way) that computer scientists have to consider
partial functions.
Above we discussed the idea that we can make a partial function total by restricting
its source to include only those elements for which the function is de�ned. This
idea has a name.
The domain of de�nition of a partial function 𝑓 : 𝑆 𝑇 is de�ned as

dom 𝑓 = {𝑠 ∈ 𝑆 | 𝑓𝑠 is de�ned}.

Proposition 7.1
For every partial function 𝑓 : 𝑆 𝑇 there is a unique total function

𝑔 : dom 𝑓 𝑇

with the property that for all 𝑠 ∈ dom 𝑓 we have

𝑔𝑠 = 𝑓𝑠.

Proof. We can use the desired equality as a de�nition for 𝑔. This clearly gives
a total function with the required source and target and the condition ensures
that for every element of dom 𝑓 there is a unique element of 𝑇 to which to
map it.

This means it is possible to work with total functions if we prefer to do so. How-
ever in theoretical computer science there exist a number of concepts around
computability theory (and also in recursion theory in mathematics) which are
more easily explained using partial functions. Examples occur in COMP11212.
The previous result has a counterpart where we move from total to partial functions.

Proposition 7.2
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If 𝑓 : 𝑆 𝑇 is a (total) function from 𝑆 to 𝑇 and 𝑆′ is a superset of 𝑆 then
there is a unique partial function

𝑔 : 𝑆′ 𝑇

with the property that

dom 𝑔 = 𝑆 and ∀𝑠 ∈ dom 𝑔. 𝑔𝑠 = 𝑓𝑠.

Exercise 173. Prove Proposition 7.2.

Partial functions can be composed just is the case for total functions, but we have
to be careful about for which arguments the corresponding composite function is
de�ned.
The composite of partial functions 𝑓 : 𝑆 𝑇 and 𝑔 : 𝑇 𝑈 is de�ned as:

(𝑔 ∘ 𝑓)𝑠 =

{︃
𝑔(𝑓𝑠) 𝑓𝑠 and 𝑔(𝑓𝑠) are both de�ned
⊥ else.

Alternatively one may say that (𝑔 ∘ 𝑓)𝑠 is de�ned if and only if 𝑠 is in the domain
of de�nition of 𝑓 and 𝑓𝑠 is in the domain of de�nition of 𝑔.
Note that this subsumes the de�nition of the composition of functions (de�ned in
Section 0.3).

Example 7.19. We illustrate the notion of a composite of two partial functions
by using a small example which can be described using a picture.

∙𝑎
∙𝑏

∙𝑐
∙ 4

∙ 1
∙ 2
∙ 3

∙4

∙1
∙2
∙3 ∙ 𝛼

∙ 𝛽

If we ‘overlay’ the two pictures we can more easily see what the composite
has to look like.

∙𝑎
∙𝑏

∙𝑐
∙ 4

∙ 1
∙ 2
∙ 3 ∙ 𝛼

∙ 𝛽

The composite of the two partial functions can be drawn by the following
procedure:

• Pick an element of the left hand set. If there is an outgoing arrow, follow
that arrow. If there is an outgoing arrow from that element, follow that
arrow and connect the original element with the resulting element.

• If at any point in the above procedure there is no outgoing arrow for one
of the elements then the original element is not connected to anything.
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∙𝑎
∙𝑏

∙𝑐 ∙ 𝛼
∙ 𝛽

CExercise 174. Consider the following partial functions with source FBTrees𝑆 .

(a) Give a recursive de�nition of a (possibly partial) function that takes a full
binary tree and returns the label of the root of the tree. What is the domain of
de�nition of your function? Note that this is not a truly recursive function in
the sense that when you de�ne the step case you do not have to use the result of
the function for the left and right subtrees.

(b) Give a recursive de�nition of a (possibly partial) function that takes a full
binary tree and returns its left subtree. What is the domain of de�nition of
your function?

(c) What happens if you apply your second function, and then the �rst, to a
tree? Describe the domain of de�nition of this composite.

EExercise 175. Let 𝑓 : 𝑆 𝑇 and 𝑔 : 𝑇 𝑈 be partial functions.

(a) Show that the domain of de�nition of 𝑔 ∘ 𝑓 is a subset of the domain of
de�nition of 𝑓 , that is

dom(𝑔 ∘ 𝑓) ⊆ dom 𝑓.

(b) Give a description of the domain of de�nition of 𝑔 ∘𝑓 as a subset of dom 𝑓 ,
without mentioning 𝑔 ∘ 𝑓 , nor the expression 𝑔(𝑓𝑠) for some 𝑠 ∈ 𝑆. Hint: You
may use dom 𝑓 and dom 𝑔.

The graph of a partial function 𝑓 : 𝑆 𝑇 is very similar to that of a (total) function
(compare page 37). Its de�nition is

{(𝑠, 𝑓𝑠) ∈ 𝑆 × 𝑇 | 𝑓 is de�ned at 𝑠}.

We can characterize those subsets of 𝑆 × 𝑇 which appear as the graph of a partial
function (compare Proposition 2.1).

Proposition 7.3
A relation 𝑅 ⊆ 𝑆 × 𝑇 is the graph of a partial function from 𝑆 to 𝑇 if and
only if

for all 𝑠 ∈ 𝑆 there exists at most one 𝑡 ∈ 𝑇 with (𝑠, 𝑡) ∈ 𝑅.

Proof. It is possible to make minor changes to the proof of Proposition 2.1 to
obtain a proof of this result.

In the same way that we can view a function as a relation by considering its
graph we may view a partial function that way, and this proposition tells us which
relations are the graphs of partial functions.
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Exercise 176. Show that for partial functions

𝑓 : 𝑆 𝑇 and 𝑔 : 𝑇 𝑈

we have that
gr(𝑔 ∘ 𝑓) = gr 𝑓 ; gr 𝑔,

where ; is the relational composite de�ned on page 370, and gr applied to a
function gives its graph. Note that this means in particular that composition
of (total) functions is subsumed by relational composition.

7.2.1 Binary relations

For the remainder of this chapter we only consider relations from one set to itself.
Instead of saying that 𝑅 is a relation 𝑆 𝑆 one typically says that 𝑅 is a (binary)
relation on 𝑆. Often it is convenient to drop the ‘binary’ in this case.

Example 7.20. Typical examples of binary relations on a set are the following.

(a) Sharing some property, such as having the same size, the same colour, the
same nationality, speaking the same language, having the same digits after the
decimal point, having a common divisor, evaluating to the same number,

(b) Having the same value under some function (some of the examples from
above can also be viewed from this perspective, for example, one could map
people to their height, or a real number to its sequence of digits after the
decimal point, but one cannot do this for all these examples since a person
may have more than one nationality or speak more than one language),

(c) Other kinds of connections between two members of the same set, for
example one person having the contact details for another, or a number being
less than or equal to another, or two subsets of a given set being included in
each other.

(d) If we look at two objects of class List then we think of them as implement-
ing the same list if the method equal (see Example 6.13) returns true. This
de�nes a binary relation on objects of this class.
A di�erent way of thinking of the same relation is as follows: Every object
of class List can be thought of as implementing an element of ListsZ in the
obvious way. This de�nes a function

Objects of class List Lists𝑆 ,

and two such objects are in the relation if and only if this function maps them
to the same list.5

Note that for binary relations the ‘source’ and ‘target’ are identical, which means
we may always form the relational composite of a binary relation with itself.

5Compare Example 6.13.
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7.2.2 Picturing binary relations

If we have a binary relation on a small �nite set 𝑆 it is possible to draw6 it in the
form of a directed graph.

De�nition 56: directed graph

A directed graph on a set 𝑆 is given7 by a binary relation on 𝑆. In this context
the elements of 𝑆 are often called the nodes of the graph8 and the pairs in the
relation the edges.

Such graphs are often drawn as pictures when the set 𝑆 is small.

Example 7.21. Consider the following relation on the set {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}:

{(𝑎, 𝑏), (𝑏, 𝑎)(𝑏, 𝑐), (𝑐, 𝑐), (𝑐, 𝑑), (𝑑, 𝑒), (𝑒, 𝑎), (𝑏, 𝑑)}.

Its picture as a binary relation is as follows.

𝑎

𝑏

𝑐 𝑑

𝑒

In this picture the arrow with tips at both ends is a shortcut to having arrows
going each way.

𝑎

𝑏

𝑎

𝑏

Exercise 177. Draw the following binary relations.

(a) The powerset 𝒫{𝑎, 𝑏, 𝑐} with the relation which relates a subset 𝑆 of
{𝑎, 𝑏, 𝑐} to the subset 𝑆′ if and only if 𝑆 ⊆ 𝑆′.

(b) The set {0, 1, 2, 3, 4, 5, 6} with the relation which relates an element 𝑚 to
an element 𝑛 if and only if they both leave the same remainder when divided
by 3, that is, 𝑚 mod 3 = 𝑛 mod 3.

(c) The set {0, 1, 2, 3, 4, 5, 6}, with the relation which relates an element 𝑚
to an element 𝑛 if and only if 𝑚 ≤ 𝑛.

6Above we show how to generally draw relations from a small set 𝑆 to a small set 𝑇 , but this
method makes use of the fact that the relation goes from a set to the same set.

7Some de�nitions of directed graph exclude connections between an element of 𝑆 and itself. In
that case the graph is given by a collection of pairs of the form (𝑠, 𝑠′) where 𝑠 and 𝑠′ are distinct
elements of 𝑆. When that de�nition is used, our directed graphs become directed graphs with loops.

8Some people call the nodes of the graph the vertices.
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(d) The set {0, 1, 2, 3, 4, 5, 6} with the relation which relates an element 𝑚 to
an element 𝑛 if and only if 𝑚 divides 𝑛.

(e) The compulsory course units for a student on your programme of studies,
where one unit is related to another if it is a prerequisite for that unit (ignore
corequisites).

(f) The students in your tutorial group where one student is related to another
if they have the same gender.

The identity relation on a set can be pictured easily using these ideas. It is the
relation which connects every element of the set with itself, and nothing else.

Example 7.22. For the set {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} the identity relation is pictured as
follows.

𝑎

𝑏

𝑐 𝑑

𝑒

When we have a binary relation we picture its opposite slightly di�erently from
the way illustrated in Example 7.6.

Example 7.23. For the relation on the set {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} from Example 7.21,

{(𝑎, 𝑏), (𝑏, 𝑎)(𝑏, 𝑐), (𝑐, 𝑐), (𝑐, 𝑑), (𝑑, 𝑒), (𝑒, 𝑎), (𝑏, 𝑑)},

we show both, the given relation and its opposite.

Given relation

𝑎

𝑏

𝑐 𝑑

𝑒

Its opposite

𝑎

𝑏

𝑐 𝑑

𝑒

The opposite relation, described as a set of pairs, is

{(𝑏, 𝑎), (𝑎, 𝑏)(𝑐, 𝑏), (𝑐, 𝑐), (𝑑, 𝑐), (𝑒, 𝑑), (𝑎, 𝑒), (𝑑, 𝑏)},

We can see how the opposite relation arises from the original by turning
around all the arrows—which means that for loops, or for arrows with tips on
both ends, nothing changes.
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Further relations on a set

Very occasionally one may want to connect more than two elements of the same
set, in which case one may speak of a

• ternary relation on 𝑆 (a subset of 𝑆 × 𝑆 × 𝑆),

• a quarternary relation on 𝑆 (a subset of 𝑆 × 𝑆 × 𝑆 × 𝑆),

• or, more generally, an 𝑛-ary relation on 𝑆 (a subset of the 𝑛-fold product of
𝑆).

7.3 Equivalence relations

Sometimes when we look at all the elements of a set we don’t necessarily wish to
distinguish all the elements of the set. When you are building a speci�c structure
from building blocks, in order to complete the design you don’t have to consider
the colour of a given block, just its shape. So from the point of view of the design,
all blocks of the same shape are equivalent.9 In COMP11212 you have met the
notion of a bisimulation between two �nite state automata. You can think of a
bisimulation as a way of demonstrating that two given automata are equivalent,
as far as the language they de�ne is concerned.
More generally whenever we want to think of various entities as equivalent we
have to make sure we do this in a safe way. Relations that allow us to do this
are known as equivalence relations. These are relations satisfying a number of
properties, and we introduce these properties one at a time.

7.3.1 Re�exivity

De�nition 57: re�exive

A binary relation 𝑅 on a set 𝑆 is re�exive if and only if it is the case that we
have

for all 𝑠 in 𝑆 (𝑠, 𝑠) ∈ 𝑅.

If we want to express properties of binary relations using �rst order logic we can
express the relation as a two-placed predicate, where we take 𝑅(𝑥, 𝑦) to mean
that 𝑅 relates 𝑥 and 𝑦, which we usually write as (𝑥, 𝑦) ∈ 𝑅. Hence the �rst order
logic formula that describes re�exivity of 𝑅 is

∀𝑥.𝑅(𝑥, 𝑥).

We may express re�exivity in a very brief way by noting that it means that

𝐼𝑆 ⊆ 𝑅,

where 𝐼𝑆 is the identity relation on the underlying set 𝑆.
This means that if our relation is re�exive then every element of the underlying set
is related to itself. If we can draw a picture of the relation we can check whether
the relation is re�exive by checking that every element has a connection from
itself to itself, usually drawn as a little loop.
Typical examples are relations involving some kind of equality.

9But, of course, for aesthetic reasons, or to match an existing edi�ce, you may want to consider
the colour when building a structure.
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Example 7.24. We provide examples and non-examples for this concept.

(a) Consider the relation between �rst year students in the School where two
students are related if and only if they are in the same tutorial group. Since
every student is in the same tutorial group as him- or herself, this relation is
re�exive.

(b) Look at the relation between two members of the human population where
two people are related if and only if they have the same height in centimetres.
Since everybody has the same height as him- or herself, this relation is re�exive.

(c) The relation between two non-zero natural numbers where 𝑚 is related to
𝑛 if and only if 𝑚 divides 𝑛 is re�exive since every natural number other than
0 divides itself.

(d) We de�ne the relation between �rst year students in the School where
student 𝐴 is related to student 𝐵 if 𝐴’s student id number is below that of
student 𝐵. This relation is not re�exive since a number is not below itself.

(e) Consider the relation between members of the human population which
relates person 𝐴 to person 𝐵 if and only if they are siblings. This relation is
not re�exive since nobody is their own sibling. On the other hand, relating
two people if and only if they have a parent in common is a re�exive relation.

(f) Consider the relation between two natural numbers where 𝑚 is related to
𝑛 if 𝑛 = 2𝑚. Since, for example 1 ̸= 2 · 1 this relation is not re�exive.

(g) The relation between elements of Lists𝑆 which relates two lists if and only
if they have the same number of elements is re�exive.

(h) The relation which relates two objects of class List if the method equal
returns true (see Example 6.13) is re�exive.

(i) The relation of semantic equivalence for propositions is re�exive.

Exercise 178. Which of the following relations are re�exive? Justify your
answer.

(a) The relation where two �rst year students in the School are related if their
last name starts with the same letter.

(b) Two �rst year students in the School being related if there is a university
society they both belong to.

(c) The following relation on the set {𝑎, 𝑏, 𝑐, 𝑑}:

{(𝑎, 𝑎), (𝑏, 𝑐), (𝑐, 𝑏), (𝑏, 𝑏), (𝑐, 𝑑), (𝑑, 𝑐), (𝑑, 𝑑)}

(d) The relation on N where two numbers are related if and only if they have
a common divisor greater than 1.

It is easy to make a relation re�exive in a unique and minimal way. Given a binary
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relation 𝑅 on 𝑆 the re�exive closure of 𝑅 is given by

𝑅 ∪ 𝐼𝑆 = 𝑅 ∪ {(𝑠, 𝑠) | 𝑠 ∈ 𝑆}.

Since we add precisely those pairs to the relation which have to be present for it to
satisfy re�exivity this is clearly the smallest relation we can form which contains
𝑅 as a subset and which is re�exive. Optional Exercise 31 asks you to think about
how to prove this.
When we consider a binary relation on a small �nite set then checking whether
the relation is re�exive, and drawing the re�exive closure, is easy. All we have to
do is to make sure that every element has an arrow from itself to itself.

Example 7.25. If we go back to the relation from Example 7.21, we see that
the relation is not re�exive since, with the exception of 𝑐, no element has a
connection to itself.

𝑎

𝑏

𝑐 𝑑

𝑒

The re�exive closure of this relation is pictured below.10

𝑎

𝑏

𝑐 𝑑

𝑒

7.3.2 Symmetry

The next important property we consider for binary relations on a set is concerned
with directedness: If we can go from one element to another, can we always go
back?

De�nition 58: symmetric
A binary relation 𝑅 on a set 𝑆 is symmetric if and only if we have

for all 𝑠, 𝑠′ ∈ 𝑆 (𝑠, 𝑠′) ∈ 𝑅 implies (𝑠′, 𝑠) ∈ 𝑅.

The �rst order logic formula that describes this property for a binary predicate
symbol 𝑅 is

∀𝑥.∀𝑦. (𝑅(𝑥, 𝑦) →𝑅(𝑦, 𝑥)).

10The new edges are drawn in red.
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Relations built around the idea of equality of a property are usually symmetric,
but there are plenty of relations which are not symmetric.
If we have a picture of a relation we can check whether it is symmetric by checking
that every connection has an arrow at each end.

Example 7.26. We give some examples for relations which are symmetric, and
some which are not.

(a) Consider the relation between �rst year students in the School where
two students are related if and only if they are in the same tutorial group. If
student 𝐴 is in the same tutorial group as student 𝐵 then student 𝐵 is in the
same tutorial group as student 𝐴, and so this relation is symmetric.

(b) Look at the relation between two members of the human population where
two people are related if and only if they have the same height in centimetres.
Since 𝐴 having the same height as 𝐵 implies that 𝐵 has the same height as 𝐴
this relation is symmetric.

(c) The relation between two non-zero natural numbers where 𝑚 is related
to 𝑛 if and only if 𝑚 divides 𝑛 is not symmetric: 1 divides 2 but 2 does not
divide 1.

(d) The relation between �rst year students in the School where student 𝐴 is
related to student 𝐵 if 𝐴’s student id number is below that of student 𝐵 is not
symmetric:11 Indeed, if the id number for student 𝐴 is below that of student 𝐵
then that for student 𝐵 cannot be below that for student 𝐴.

(e) The relation that relates two people if and only if they are siblings is
symmetric, whereas the relation that relates two people if the �rst is the child
of the second is not.

(f) Consider the relation between two natural numbers where 𝑚 is related to
𝑛 if 𝑛 = 2𝑚. This relation is not symmetric since 2 is related to 4 but 4 is not
related to 2.

(g) The relation between elements of Lists𝑆 which relates two lists if and only
if they have the same number of elements is symmetric.

(h) The relation which relates two objects of class List if the method equal
returns true (see Example 6.13) is symmetric.

(i) The relation of semantic equivalence for propositions is symmetric.

Again we can make a relation symmetric in a unique and minimal way.
If 𝑅 is a binary relation on a set 𝑆 then the symmetric closure of 𝑅 is given by

𝑅 ∪𝑅op.

This is the smallest relation on 𝑆 that contains 𝑅 and is symmetric. Optional
Exercise 31 asks you to think about how to prove this.

11This example seems to be the opposite of symmetric—to make that idea precise look at the
notion of anti-symmetry de�ned in Section 7.4.1.
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Example 7.27. If we return to Example we can see that taking the union of
the given relation and its opposite we get a relation where every connection
has arrows pointing both ways.

Given relation 𝑅

𝑎

𝑏

𝑐 𝑑

𝑒

Its opposite 𝑅op

𝑎

𝑏

𝑐 𝑑

𝑒

Their union 𝑅 ∪𝑅op

𝑎

𝑏

𝑐 𝑑

𝑒

This gives us a concise way of saying what it means for a relation𝑅 to be symmetric,
namely

𝑅 = 𝑅 ∪𝑅op.

This can be simpli�ed further by the observation that the non-trivial part of this
equality is that

𝑅 ⊇ 𝑅 ∪𝑅op,

and since 𝑅 is always a superset of itself, symmetry is equivalent to demanding
that

𝑅 ⊇ 𝑅op.

Another way of expressing symmetry using these ideas is to demand that

𝑅 = 𝑅op.

Above there is an argument that symmetry is equivalent to 𝑅 ⊇ 𝑅op, and by
applying the (−)op operator on both sides this implies

𝑅op ⊇ (𝑅op)op = 𝑅,

so the two must be equal.
An alternative way of describing the symmetric closure of 𝑅 is given by

{(𝑠, 𝑠′) ∈ 𝑆 × 𝑆 | (𝑠, 𝑠′) ∈ 𝑅 or (𝑠′, 𝑠) ∈ 𝑅}.

In other words, we add exactly those pairs to the relation which have to be present
for the relation to become symmetric. If the relation is de�ned on a small �nite set
then we can once again look at the graph.
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Example 7.28. Looking once again at the relation from Example 7.21 we can
perform the check suggested above to see that it is not symmetric.

𝑎

𝑏

𝑐 𝑑

𝑒

For example, (𝑏, 𝑐) is in the relation but (𝑐, 𝑏) is not. We may think of its
symmetric closure as being constructed by adding all the arrow tips missing,
and picture it12 as follows. If we think of it this way we don’t have to draw the
opposite relation as in Example 7.27.

𝑎

𝑏

𝑐 𝑑

𝑒

Again if we can draw the corresponding graph it is easy to see whether the relation
is symmetric: We just have to check that every arrow that is not a loop has a tip at
both ends.

Exercise 179. Which of the following relations is symmetric? Justify your
answer.

(a) The relation where two �rst year students in the School are related if their
last name starts with the same letter.

(b) The relation on �rst year students in the School where 𝐴 is related to 𝐵 if
𝐴 can name student 𝐵 when shown a picture.

(c) The following relation on the set {𝑎, 𝑏, 𝑐, 𝑑}:

{(𝑎, 𝑎), (𝑏, 𝑐), (𝑐, 𝑏), (𝑏, 𝑏), (𝑐, 𝑑), (𝑑, 𝑐), (𝑑, 𝑑)}

(d) The relation on N ∖ {0} where 𝑚 is related to 𝑛 if and only if 𝑚 and 𝑛
have a common divisor other than 1.

(e) The relation on N ∖ {0, 1} where 𝑚 is related to 𝑛 if and only if 𝑚 divides
a power of 𝑛.

Whenever we know a relation to be re�exive and symmetric we can picture it
using an undirected graph. This is a graph where we only record which of the
elements are connected, without worrying about the direction of that connection.

12New arrow tips drawn in red.
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We do not record an element being connected with itself, we know they all are
and so there’s no reason to include that information in the picture.

Example 7.29. The symmetric closure of the re�exive closure of our example
relation is drawn on the left, and on the right we draw the corresponding
undirected graph where redundant information (for relations known to be
re�exive and symmetric) has been removed.

𝑎

𝑏

𝑐 𝑑

𝑒

𝑎

𝑏

𝑐 𝑑

𝑒

7.3.3 Transitivity

We require one additional property of relations to de�ne the concept we are aiming
for.
De�nition 59: transitive
A binary relation 𝑅 on a set 𝑆 is transitive if and only if we have that

for all 𝑠, 𝑠′, 𝑠′′ ∈ 𝑆

(𝑠, 𝑠′) ∈ 𝑅 and (𝑠′, 𝑠′′) ∈ 𝑅 implies (𝑠, 𝑠′′) ∈ 𝑅.

This de�nition means that whenever we have a situation in the picture below,
given the two black arrows we must have the red one.

𝑠

𝑠′

𝑠′′

The corresponding �rst order formula describing this property is

∀𝑥.∀𝑦.∀𝑧. ((𝑅(𝑥, 𝑦) ∧𝑅(𝑦, 𝑧)) →𝑅(𝑥, 𝑧)).

Again, relations based on equality of a property are often transitive, but not always.

Example 7.30. (a) Consider the relation between �rst year students in the
School where two students are related if and only if they are in the same
tutorial group. If student 𝐴 is in the same tutorial group as student 𝐵 and
student 𝐵 is in the same tutorial group as student 𝐶 then student 𝐴 is in the
same tutorial group as student 𝐶 , and so this relation is transitive.
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(b) Look at the relation between two members of the human population where
two people are related if and only if they have the same height in centimetres.
Since 𝐴 having the same height as 𝐵 and 𝐵 having the same height as 𝐶
implies that 𝐴 has the same height as 𝐶 this relation is transitive.

(c) The relation between �rst year students in the School where student 𝐴 is
related to student 𝐵 if 𝐴’s student id number is below that of student 𝐵 is
transitive: Indeed, if the id number for student 𝐴 is below that of student 𝐵
and that for student 𝐵 is below that for student 𝐶 then that for student 𝐴 is
below that for student 𝐶 .

(d) The relation on the set of all humans which relates person 𝐴 to person 𝐵
if and only if 𝐴 is a child of 𝐵 is not transitive, but the relation that relates 𝐴
to 𝐵 if and only if 𝐵 is an ancestor of 𝐴 is. (See also Example 7.32.)

(e) Consider the relation between two natural numbers where 𝑚 is related
to 𝑛 if 𝑛 = 2𝑚. This relation is not transitive since 2 is related to 4 and 4 is
related to 8 but 2 is not related to 8.

(f) Consider the relation between human beings where person 𝐴 is related to
person 𝐵 if there is a language they both speak. This relation is re�exive and
symmetric but not transitive: Person 𝐴 may speak English and Urdu, Person
𝐵 may speak English and Spanish, and Person 𝐶 may speak Spanish. The
relation is

{(𝐴,𝐵), (𝐵,𝐶)}.

So 𝐴 is related to 𝐵, and 𝐵 is related to 𝐶 , but 𝐴 is not related to 𝐶 .

(g) The relation between elements of Lists𝑆 which relates two lists if and only
if they have the same number of elements is transitive.

(h) The relation which relates two objects of class List if the method equal
returns true (see Example 6.13) is transitive.

(i) The semantic equivalence relation between propositions is transitive.

We may de�ne the transitive closure of a relation𝑅 on a set 𝑆 as adding all those
pairs

(𝑠1, 𝑠𝑛) to 𝑅

for which we can �nd a list of elements

𝑠1, 𝑠2, . . . , 𝑠𝑛 in 𝑆, with 𝑛 ≥ 2,

such that

for all 1 ≤ 𝑖 ≤ 𝑛− 1 we have (𝑠𝑖, 𝑠𝑖+1) ∈ 𝑅.

We may picture this situation as follows: Whenever we have the black arrows, we
must have the blue arrows, and that means we must have the red arrow. You may
understand the de�nition above as going straight from the black arrows to the red
one.
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𝑠1

𝑠2

𝑠3

𝑠4

. . .

𝑠𝑛−1

𝑠𝑛

If we look at a relation on a small �nite set then transitivity is more di�cult to
check than re�exivity and symmetry. What we need to check here is that for all 𝑠,
𝑠′ in 𝑆,

if there is a path from 𝑠 to 𝑠′ then there is an edge from 𝑠 to 𝑠′.

In the relation from Example 7.21 the transitive closure requires us to connect
every pair of elements since there is a path from every element to every element.
This is messy to draw, so we consider a di�erent example here.

Example 7.31. Assume we have the relation

𝑅 = {(𝑎, 𝑎), (𝑎, 𝑏), (𝑎, 𝑐), (𝑏, 𝑑), (𝑑, 𝑒)}.

The picture of this relation is as follows:

𝑎

𝑏 𝑐

𝑑

𝑒

The transitive closure of this relation is given by13
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𝑎

𝑏 𝑐

𝑑

𝑒

Example 7.32. If we look at the relation ‘is a parent of’ (see Example 7.7) then
its transitive closure gives us the ‘is an ancestor’ relation.

Instead of calculating the transitive closure of a relation in one go we can do it
stepwise. For this we need to de�ne the powers (with respect to composition of
relations) of a binary relation. Consider he de�nition of the relational composite ;
from page 370, and note that since a binary relation goes from a set to the same
set we may compose such a relation with itself.
We may therefore give the following recursive de�nition. Let 𝑅 be a binary relation
on a set 𝑆.

Base case ˆ. 𝑅0 = 𝐼𝑆 .

Step case ˆ. 𝑅𝑛+1 = 𝑅𝑛 ; 𝑅.

An intuitive explanation of 𝑅𝑛 is the following:

𝑠 and 𝑠′ in 𝑆 are related by 𝑅𝑛

if and only if
one can get from 𝑠 to 𝑠′ by following the relation 𝑅 exactly 𝑛 times.

The transitive closure of 𝑅 consists of all those pairs (𝑠, 𝑠′) for which it is possible
to get from 𝑠 to 𝑠′ by following 𝑅 any �nite number greater than 0 times. This
motivates a second recursive de�nition.

Base case 𝑅𝑛. 𝑅0 = ∅.

Step case 𝑅𝑛. 𝑅𝑛+1 = 𝑅𝑛 ∪𝑅𝑛+1.

𝑠 and 𝑠′ in 𝑆 are related by 𝑅𝑛

if and only if
one can get from 𝑠 to 𝑠′ by following the relation 𝑅 at most 𝑛 times.

Note that 𝑅0, the identity relation on 𝑆, is not involved in computing the transitive
closure of a relation.

13New edges drawn in red.
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Example 7.33. Assume the relation 𝑅 describes railway journeys, so that two
stations are in the relation if and only if one can travel from the �rst to the
second having to change trains. Then 𝑅2 gives us pairs of stations for which
it is possible to travel from the �rst to the second by changing exactly once,
𝑅3 gives us pairs of stations where one has to change exactly twice, whereas
𝑅3 gives those where one has to change at most twice.

We de�ne
𝑅∞ =

⋃︁
𝑛∈N

𝑅𝑛 =
⋃︁

𝑛∈N∖{0}

𝑅𝑛.

This is the relation which can be described as follows:

𝑠 and 𝑠′ in 𝑆 are related by 𝑅∞

if and only if
one can get from 𝑠 to 𝑠′

by following the relation 𝑅 a �nite number of times.

This gives us a way of stating that a relation 𝑅 is transitive, since this is the case if
and only if

∀𝑛 ∈ N ∖ {0} we have 𝑅𝑛 ⊆ 𝑅.

Example 7.34. If, for example, we have the set {0, 1, 2, 3, 4} with the relation

𝑅 = {(0, 1), (1, 2), (2, 3), (3, 4)}

then we have the following.

0

1

2

3

4

𝑅0 = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)}
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0

1

2

3

4

𝑅1 = 𝑅

0

1

2

3

4

𝑅2 = {(0, 2), (1, 3), (2, 4)}

0

1

2

3

4

𝑅3 = {(0, 3), (1, 4)}

0

1

2

3

4

𝑅4 = {(0, 4)}

All 𝑅𝑛, for 𝑛 ≥ 5, are empty.
We draw the relations 𝑅𝑛 for this example.

0

1

2

3

4

𝑅0 = ∅
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0

1

2

3

4

𝑅1 = 𝑅1 ∪𝑅0 = 𝑅

0

1

2

3

4

𝑅2 = 𝑅2 ∪𝑅1

0

1

2

3

4

𝑅3 = 𝑅3 ∪𝑅2.

0

1

2

3

4

𝑅4 = 𝑅4 ∪𝑅3

All remaining 𝑅𝑛, for 𝑛 ≥ 5, are equal to 𝑅5. For this reason the last picture,
showing 𝑅4, shows the transitive closure of 𝑅.

Exercise 180. Show that 𝑅∞ is the transitive closure of 𝑅.

CExercise 181. Which of the following relations are transitive? Justify your
answers. For those which are not transitive describe the transitive closure.

(a) The relation on the set of �rst year students within the School which
relates student 𝐴 to student 𝐵 if they have at least one course unit in common.

(b) The relation on the set of �rst year students within the School which
relates student 𝐴 to student 𝐵 if they have the same nationality.

(c) The relation on N where 𝑚 is related to 𝑛 if and only if 𝑚 divides 𝑛.

(d) The relation on N where 𝑚 is related to 𝑛 if and only if 𝑚 + 𝑛 is even.

(e) The relation on N where 𝑚 is related to 𝑛 if and only if 𝑚 and 𝑛 have a
common divisor greater than 1, or if 𝑚 = 𝑛 = 1.
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(f) The following relation on the set {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}:

{(𝑎, 𝑎), (𝑎, 𝑏), (𝑏, 𝑒), (𝑒, 𝑐)}

(g) The following relation on the set {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}:

{(𝑎, 𝑎), (𝑎, 𝑏), (𝑐, 𝑑), (𝑑, 𝑒)}

(h) The following relation on the set {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}:

{(𝑎, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐), (𝑒, 𝑒)}

If we want to create the transitive closure of the symmetric closure of the re�exive
closure of 𝑅 all we have to do to this procedure is to change what we do at the
start. We have to change the relation we use

�̃� = 𝐼𝑆 ∪𝑅 ∪𝑅op

This achieves two objectives:

• By adding all elements of the identity relation we add all pairs (𝑠, 𝑠). where
𝑠 ∈ 𝑆, we make sure the relation we produce is re�exive.

• By adding all elements of the relation 𝑅op we add all the pairs (𝑠′, 𝑠) for
which (𝑠, 𝑠′) ∈ 𝑅, which ensures that we produce a symmetric relation.

Proposition 7.4
The transitive closure of the symmetric closure of the re�exive closure of a
relation 𝑅 on a set 𝑆 is given by �̃�∞.

Proof. By Exercise 180 we know that given a relation 𝑅′ the relation 𝑅′
∞ is

transitive. We observe that forming 𝐼𝑆 ∪𝑅 is the re�exive closure of 𝑅, and
that the symmetric closure of the result is

(𝐼𝑆 ∪𝑅) ∪ (𝐼𝑆 ∪𝑅)op = (𝐼𝑆 ∪𝑅) ∪ (𝐼𝑆
op ∪𝑅op)

= 𝐼𝑆 ∪𝑅 ∪𝑅op 𝐼𝑆
op = 𝐼𝑆 .

The remainder follows from the following exercise.

Note that the procedure of forming the re�exive symmetric transitive closure is
important. If somebody tells you about particular instances they want you to
consider as equivalent then this allows you to generate an equivalence relation
which makes all the speci�ed entities equivalent, but does not identify anything
unnecessarily. This procedure is used in Section 7.3.4.

EExercise 182. The various closures of relations de�ned above work well
together.

(a) Show that the symmetric closure of a re�exive relation is re�exive.

(b) Show that the transitive closure of a re�exive relation is re�exive.

(c) Show that the transitive closure of a symmetric relation is symmetric.
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Conclude that the transitive closure of the symmetric closure of a re�exive
relation is re�exive, symmetric and transitive. It is usually referred to as the
re�exive symmetric transitive closure. Hint: You may want to use Exercise 180,
but you don’t have to.

This exercise shows that if we form the transitive closure of the symmetric closure
of the re�exive closure of a relation then the result will be re�exive, symmetric,
and transitive.

Optional Exercise 31. Above we talk about how to add a minimal number of
elements to a relation to make it re�exive, symmetric or transitive. In this
exercise we make these ideas precise.

(a) Show that if𝑅′ is a relation on a set 𝑆 which is re�exive and which contains
the relation 𝑅 as a subset then 𝑅′ contains the re�exive closure of 𝑅.

(b) Show that if 𝑅′ is a relation on a set 𝑆 which is symmetric and which
contains the relation 𝑅 as a subset then 𝑅′ contains the symmetric closure
of 𝑅.

(c) Show that if 𝑅′ is a relation on a set 𝑆 which is transitive and which
contains the relation 𝑅 as a subset then 𝑅′ contains the transitive closure of 𝑅.

(d) Conclude that the re�exive/symmetric/transitive closure of a relation 𝑅
is the smallest re�exive/symmetric/transitive relation which contains 𝑅 as a
subset.

Optional Exercise 32. There is another way of de�ning the three closure
operations for relations. Instead of adding elements to the give relation one
may think about starting with a large relation and then removing all those
pairs of elements which are not required.

(a) Show that the intersection of arbitrarily many re�exive relations is re�ex-
ive.

(b) Show that the intersection of arbitrarily many symmetric relations is
symmetric.

(c) Show that the intersection of arbitrarily many transitive relations is trans-
itive.

(d) Prove that the intersection of all re�exive/symmetric/transitive relations
containing a relation 𝑅 is the smallest re�exive/symmetric/transitive relation
containing 𝑅 and conclude (with the help of the previous optional exercise)
that this intersection is equal to the re�exive/symmetric/transitive closure
of 𝑅.
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7.3.4 Equivalence relations de�ned

De�nition 60: equivalence relation

A binary relation on a set is an equivalence relation if it is re�exive, symmetric
and transitive.

A number of examples are given above, but we put them together here:

Example 7.35. We give examples of equivalence relations.

(a) From every function we get an equivalence relation by relating those
elements of the source set which are mapped to the same element in the target
set, see Exercise 184.
A number of the relations mentioned above fall under this idea.

(i) Considering building blocks of the same shape equivalent has the under-
lying function which maps a block to its shape.

(ii) Mapping people to their height in centimetres leads to identifying those
that have the same height.

(iii) Mapping students to their tutorial group allows us to identify the mem-
bers of the same group.

(iv) Mapping people to their nationality14 allows us to talk about the nation-
alities represented in a particular group.

(v) Another example taken from programming is the following: Given a
speci�c algorithm there are many programs which implement that al-
gorithm in a particular programming language.15 Typically we don’t care
which particular program is used, only that it implements the chosen
algorithm correctly. The underlying function here maps each program
to the algorithm it implements.

(b) Relating elements of a set which have a particular property is usually a
special case of the previous example, because we can map the elements of the
set to the corresponding property (for example nationality, or tutorial group).
But one has to be careful here in cases where there is no underlying function:
Speaking a common language is not an equivalence relation since this need
not be a transitive relation, see above on page 389.

(c) One might want to identify all the sets which have the same size, which
leads to the notion of cardinal in mathematics.16

(d) When we consider which algorithm to use to solve a particular problem
we may be worried about its complexity only. In that case we typically don’t
worry about distinguishing between algorithms that are in the same complexity
class.17

(e) In COMP11212 and COMP26120 you will learn about the notion of ‘big O’.
There is an underlying equivalence relation on functions where 𝑓 and 𝑔 are
equivalent if and only if

• there exists 𝑚 ∈ N such that 𝑛𝑓 eventually dominates 𝑔 and
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• there exists 𝑛 ∈ N such that 𝑛𝑔 eventually dominates 𝑓 .

This is an equivalence relation.

(f) The notion of semantic equivalence from Chapter 3 de�nes an equivalence
relation on propositions, where we only care about the boolean interpretations
of a given proposition.

(g) The relation between elements of Lists𝑆 which relates two lists if and only
if they have the same number of elements is another example.

(h) The relation which relates two objects of class List if the method equal
returns true (see Example 6.13) is an equivalence relation.

CExercise 183. Which of the following relations are equivalence relations?
Justify your answers.

(a) The relation where two �rst year students in the School are related if their
last name starts with the same letter.

(b) Two �rst year students in the School being related if there is a university
society they both belong to.

(c) The ≡ relation on propositional formulae from Chapter 4.

(d) The relation on Java objects of the class java.lang.Object de�ned by ob-
ject A being related to object B if and only if the default instance method
A.equals(B) returns true.

(e) The relation on objects of the class BTree, where t1 is related to t2 if and
only if the following method (compare Code Example 6.8, when called as
equal(t1,t2), returns true:

public static boolean equal (BTree t1, BTree t2)
{
if (t1 == null)

return (t2 == null);
else {

if (t2 == null)
return false;

else
return ((t1.value == t2.value)
&& equal (t1.left, t2.left)
&& equal (t1.right, t2.right));

}

14This ignores the possibility of dual citizenship.
15Formally de�ning what this means is tricky, but you should get the general idea.
16Formally one has to be a bit careful since there is no such thing as the ‘set of all sets’, but the

idea remains.
17A formal de�nition of what that means is given in COMP11212.
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}

(f) The following relation on the set {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}:

{(𝑎, 𝑎), (𝑏, 𝑏), (𝑎, 𝑏), (𝑏, 𝑎), (𝑎, 𝑐), (𝑐, 𝑎), (𝑏, 𝑐), (𝑐, 𝑏), (𝑑, 𝑑), (𝑒, 𝑒)}

(g) The re�exive closure of the following relation on the set consisting of the
elements 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒:

{(𝑎, 𝑏), (𝑏, 𝑎), (𝑏, 𝑐), (𝑐, 𝑏)}

(h) The re�exive closure of the following relation on the set {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}:

{(𝑎, 𝑏), (𝑏, 𝑎)}

(i) The relation on N where 𝑚 is related to 𝑛 if and only if 𝑚 + 𝑛 is even.

(j) The relation on N where 𝑚 is related to 𝑛 if and only if 𝑚 and 𝑛 have a
common divisor greater than 1 or if 𝑚 = 𝑛 = 1.

(k) The relation on N ∖ {0} where 𝑚 is related to 𝑛 if and only if

𝑚 mod 𝑛 = 0.

Exercise 184. We look at the idea that functions generate equivalence relations.
Assume that 𝑓 : 𝑆 𝑇 is a function.

(a) Show that the following de�nes an equivalence relation on 𝑆:

𝑠 ∼𝑓 𝑠′ if and only if 𝑓𝑠 = 𝑓𝑠′.

(b) Show that 𝑓 is injective if and only if the corresponding equivalence
relation ∼𝑓 from (a) is given by the identity relation on 𝑆,

𝐼𝑆 = {(𝑠, 𝑠) | 𝑠 ∈ 𝑆}.

(c) Show that if 𝑔 : 𝑇 𝑈 is a function then

𝑠 ∼𝑔∘𝑓 𝑠′ if and only if 𝑠 ∼𝑓 𝑠′ or 𝑓𝑠 ∼𝑔 𝑓𝑠′.

Given a binary relation 𝑅 on a set the equivalence relation generated by a bin-
ary relation 𝑅 is the relation obtained by forming the transitive closure of the
symmetric closure of the re�exive closure of 𝑅. The resulting relation is re�exive,
symmetric and transitive by Exercise 182. On page 395 there is a description of how
to calculate that closure step-by-step. See Example 7.49 for a concrete example of
carrying out the procedure.
We use an equivalence relation wherever we wish not to distinguish between
certain elements of a set.
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Example 7.36. When we use fractions to refer to rational numbers we do this
with respect to the following equivalence relation: For 𝑚,𝑛,𝑚′, 𝑛′ in Z we set

𝑚

𝑛
∼ 𝑚′

𝑛′ if and only if 𝑚𝑛′ = 𝑚′𝑛.

One typically writes
𝑚

𝑛
=

𝑚′

𝑛′

in that situation. How to de�ne the rational numbers formally, and how that
connects with this idea of fractions, is explained in Section 7.3.7.

7.3.5 Equivalence classes—modular arithmetic

When we have an equivalence relation we often do not wish to distinguish between
elements which are equivalent. We look at one important example before we
consider the general case.
When we calculate ‘modulo’ a given number we are not really interested in the
numbers involved, just in the remainder they leave when dividing by the given
number.

Example 7.37. For the simplest example assume that we are concerned only
whether a number is odd or even. We know we have rules that allow us to
calculate with ‘even’ and ‘odd’:

+ even odd
even even odd
odd odd even

· even odd
even even even
odd even odd

We may make this idea formal by de�ning an equivalence relation on N, or on
Z, and then calculating with the equivalence classes.
For 𝑖 and 𝑗 in N (or in Z) we set

𝑖 ∼ 𝑗 if and only if 𝑖 mod 2 = 𝑗 mod 2.

It is easy to check that this is an equivalence relation. We have two equivalence
classes for this relation,

• the even numbers, all of which leave remainder 0 when divided by 2
and which all are in [0]

• the odd numbers, all of which leave remainder 1 when divided by 2 and
all of which are in [1].

So we have a new set where we distinguish between elements of N only up to
odd- and evenness. This is known as the quotient set, and the formal notation
is

N/∼ = {[0], [1]}.

This idea is formally introduced in De�nition 61 below.
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We can calculate with these equivalence classes by adding or multiplying them,
de�ning18

+ [0] [1]

[0] [0] [1]
[1] [1] [0]

· [0] [1]

[0] [0] [0]
[1] [0] [1]

These tables �t those given for even and odd numbers above.
But, in fact, these operations may be derived from the addition and multiplica-
tion operations that exist on the set we started with, N.
Note that if we have two pairs of numbers, say 𝑖, 𝑗, 𝑖′ and 𝑗′ in N with the
property that

𝑖 ∼ 𝑖′ and 𝑗 ∼ 𝑗′

then both,

𝑖 + 𝑗 ∼ 𝑖′ + 𝑗′ and 𝑖𝑗 ∼ 𝑖′𝑗′.

To show this we have to go through all the possible cases:

• If 𝑖 and 𝑗 are both even then so are 𝑖′ and 𝑗′, and the sum of 𝑖 and 𝑗 is
even, as is that of 𝑖′ and 𝑗′. In that case the product of 𝑖 and 𝑗 is also
even, as is that of 𝑖′ and 𝑗′.

• If 𝑖 is even and 𝑗 is odd, then 𝑖′ is also even, and 𝑗′ is also odd. The sum
of 𝑖 and 𝑗 is odd, as is that of 𝑖′ and 𝑗′, and the product of 𝑖 and 𝑗 is even,
as is that of 𝑖′ and 𝑗′.

• If 𝑖 is odd and 𝑗 is even then by commutativity of addition and multi-
plication on N the argument from the previous case applies.

• If 𝑖 and 𝑗 are both odd then so are 𝑖′ and 𝑗′, and the sum of 𝑖 and 𝑗 is
even, as is that of 𝑖′ and 𝑗′. The product of 𝑖 and 𝑗 is odd as is that of 𝑖′
and 𝑗′.

What this means is that in order to �nd the result of

[𝑖] + [𝑗]

all we have to do is pick any element of [𝑖], say 𝑖′, and any element of [𝑗], say
𝑗′, and calculate 𝑖′ + 𝑗′—the result [𝑖] + [𝑗] we are looking for is [𝑖′ + 𝑗′].
In other words, if we de�ne

[𝑖] + [𝑗] = [𝑖 + 𝑗],

then this de�nition works. This is a non-trivial observation for the following
reason:
What we have proved above is that, for example, we can pick any number in
[0], say 6, and any number in [1], say 17, we can add them to each other and
the result will tell us the result of [0] + [1]:

[0] + [1] = [6] + [17] = [6 + 17] = [23] = [1].
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We might say that our equivalence relation is well-behaved for our given
operations of addition and multiplication, and mathematicians might say that
it is a congruence relation with respect to both + and ·.
We refer to calculating ‘modulo 2’ when we think in this way. There is nothing
special about 2, and below we consider calculations modulo other numbers.

Exercise 185. Determine the properties of both, multiplication and addition,
for N/∼. Are they associative or commutative? Do they have a unit? Do
inverses exist for them? How does this compare with the properties of the
corresponding operations for N?

Mathematicians have a name for the set of equivalence classes from Example 7.37
with these operations, they call it the two-element �eld F2.
Calculating modulo 2, that is, with odd and even numbers, is just one of in�nitely
many such cases.

Example 7.38. We may look at calculating modulo 3, for 𝑖 and 𝑗 in N setting

𝑖 ∼ 𝑗 if and only if 𝑖 mod 3 = 𝑗 mod 3.

Like many relations based on an equality this is an equivalence relation as
well. There are now three equivalence classes, namely

• the numbers divisible by 3, all of which are in [0],

• the numbers which leave a remainder of 1 when divided by 3, all of
which are in [1] and

• the numbers which leave a remainder of 2 when divided by 3, all of
which are in [2].

Again we would like to add and multiply these equivalence classes, but it is a bit
tedious to show separately for each 𝑛 that calculating modulo 𝑛 is safe, so we do
it once and for all.
Proposition 7.5

Let 𝑛, 𝑘, 𝑙, 𝑘′ and 𝑙′ be natural numbers with the property that

𝑘 mod 𝑛 = 𝑘′ mod 𝑛 and 𝑙 mod 𝑛 = 𝑙′ mod 𝑛.

Then

(𝑘 + 𝑙) mod 𝑛 = (𝑘′ + 𝑙′) mod 𝑛

and 𝑘𝑙 mod 𝑛 = 𝑘′𝑙′ mod 𝑛.

Proof. We know from Fact 2 that there exist unique 𝑚, 𝑚′, 𝑖, 𝑖′, 𝑗 and 𝑗′ in N
with

0 ≤ 𝑚,𝑚′ ≤ 𝑛− 1

18Note that we are using the operations + and · in two di�erent senses, once for numbers and
once for equivalence classes.

402



and

𝑘 = 𝑖𝑛 + 𝑚 𝑘′ = 𝑖′𝑛 + 𝑚 𝑙 = 𝑗𝑛 + 𝑚′ 𝑙′ = 𝑗′𝑛 + 𝑚′.

We calculate

𝑘 + 𝑙 = 𝑖𝑛 + 𝑚 + 𝑗𝑛 + 𝑚′ = (𝑖 + 𝑗)𝑛 + 𝑚 + 𝑚′

and conclude19 that

(𝑘 + 𝑙) mod 𝑛 = (𝑚 + 𝑚′) mod 𝑛.

We further calculate

𝑘′ + 𝑙′ = 𝑖′𝑛 + 𝑚 + 𝑗′𝑛 + 𝑚′ = (𝑖′ + 𝑗′)𝑛 + 𝑚 + 𝑚′

and conclude that

(𝑘′ + 𝑙′) mod 𝑛 = (𝑚 + 𝑚′) mod 𝑛 = (𝑘 + 𝑙) mod 𝑛.

We next calculate

𝑘𝑙 = (𝑖𝑛 + 𝑚)(𝑗𝑛 + 𝑚′)

= 𝑖𝑗𝑛2 + 𝑖𝑚′𝑛 + 𝑗𝑚𝑛 + 𝑚𝑚′

= (𝑖𝑗𝑛 + 𝑖𝑚′ + 𝑗𝑚)𝑛 + 𝑚𝑚′,

and conclude that
𝑘𝑙 mod 𝑛 = 𝑚𝑚′ mod 𝑛.

Similarly we calculate

𝑘′𝑙′ = (𝑖′𝑛 + 𝑚)(𝑗′𝑛 + 𝑚′)

= 𝑖′𝑗′𝑛2 + 𝑖′𝑚′𝑛 + 𝑗′𝑚𝑛 + 𝑚𝑚′

= (𝑖′𝑗′𝑛 + 𝑖′𝑚′ + 𝑗′𝑚)𝑛 + 𝑚𝑚′,

and so
𝑘′𝑙′ mod 𝑛 = 𝑚𝑚′ mod 𝑛 = 𝑘𝑙 mod 𝑛

as required.

Hence for every number 𝑛 we may calculate with equivalence classes modulo 𝑛.
Moreover, the resulting operations are commutative and associative, and have a
unit. To see commutativity, note that for all 𝑖 and 𝑗 in N we have

[𝑖] + [𝑗] = [𝑖 + 𝑗] = [𝑗 + 𝑖] = [𝑗] + [𝑖].

The argument for associativity is similar. The unit for addition is [0] since for all 𝑖
in N we have

[𝑖] + [0] = [𝑖 + 0] = [𝑖] = [0 + 𝑖] = [0] + [𝑖].

The unit for multiplication is [1], and the proof is very similar.

19This uses that for all 𝑘, 𝑖 and 𝑛 in N we have 𝑘 mod 𝑛 = (𝑖𝑛+ 𝑘) mod 𝑛, see Exercise 25.
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Example 7.39. We continue Example 7.38 by giving the tables for calculating
modulo 3:

+ [0] [1] [2]

[0] [0] [1] [2]
[1] [1] [2] [0]
[2] [2] [0] [1]

· [0] [1] [2]

[0] [0] [0] [0]
[1] [0] [1] [2]
[2] [0] [2] [1]

CExercise 186. Carry out the following studies.

(a) Give tables for the addition and multiplication of equivalence classes when
calculating modulo 4. Identify units for addition and multiplication if they
exist. Determine whether you have inverses for addition and multiplication.

(b) Give tables for the addition and multiplication of equivalence classes when
calculating modulo 5. Identify units for addition and multiplication if they
exist. Determine whether you have inverses for addition and multiplication.

(c) Give tables for the addition and multiplication of equivalence classes when
calculating modulo 6. Identify units for addition and multiplication if they
exist. Determine whether you have inverses for addition and multiplication.

Hint: You may want to go back to Section 2.5 to remind yourself of the notion of
unit and inverse element for a binary operation.

Modular arithmetic is important in cryptography. It also appears as an important
example in COMP26120. For this reason we look at more of the properties it has.
From now on we use

𝑘 ∼𝑛 𝑙 to mean 𝑘 mod 𝑛 = 𝑙 mod 𝑛.

Proposition 7.6
The following hold for calculating modulo 𝑛.

(i) For all 𝑛 ∈ N∖{0, 1}, addition is commutative and associative for N/∼𝑛 ;
the additive unit is given by [0] and every element of the set N/∼𝑛 has
an additive inverse.

(ii) For all 𝑛 ∈ N ∖ {0, 1}, multiplication is commutative and associative
for N/∼𝑛 ; the multiplicative unit is given by [1], and the element 𝑚 of
N/∼𝑛 has a multiplicative inverse if and only if the greatest common
divisor of 𝑚 and 𝑛 is 1.

In particular, if 𝑛 is a prime number then every number has both, an additive
and a multiplicative inverse when calculating modulo 𝑛.

Proof. We show the two parts.

(i) Associativity and commutativity of addition follow immediately from
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Proposition 7.5 since, for example,

[𝑘] + [𝑙] = [𝑘 + 𝑙] def + on N/∼𝑛

= [𝑙 + 𝑘] addition commutative on N
= [𝑙] + [𝑘] def of + on N/∼𝑛 .

The fact that [0] is the additive unit also follows immediately from
Proposition 7.5. Let 𝑘 be an arbitrary element of N. By Fact 2 we know
that 𝑘 mod 𝑛 < 𝑛. Hence we can set 𝑙 = 𝑛 − 𝑘 ∈ N. Using the same
proposition we calculate that

[𝑘] + [𝑙] = [𝑘 mod 𝑛] + [𝑙] = [𝑘 + 𝑙] = [𝑛] = [0]

and
[𝑙 + 𝑘] = [𝑛] = [0].

(ii) Commutativity and associativity of multiplication follows in the same
way as for addition. The fact that [1] is the multiplicative unit also
follows from the Proposition 7.5. Regarding multiplicative inverses
below we give a method for calculating the multiplicative inverse by
giving employing Euclid’s algorithm (see Example 6.42) and from the
de�nition of the method it is clear that such an inverse is produced
whenever the two numbers we start with have 1 as their largest common
divisor.

This completes the proof.

For public key cryptography the concept of modular exponentiation is particularly
important. If we take the powers of a natural number then we eventually reach
numbers that are too large for whichever format we are using. This cannot happen
in modular arithmetic, because when calculating modulo 𝑛 we always get a number
which is below 𝑛.
When performing these kinds of calculation then using the square brackets for
equivalence classes becomes a bit tedious. What is typically done is to merely use
the numbers

0, 1, 2, . . . , 𝑛− 2, 𝑛− 1,

which represent their respective equivalence classes. Typical notation is then

2 + 3 = 5 == 0 (mod 5) or 2 · 4 = 8 = 3 (mod 5),

where previously we would have written

[2] + [3] = [0] or [2] · [4] = [3],

where we didn’t have a good way of specifying modulo which number we were
doing our calculations.
Note that when we are carrying out calculations in modular arithmetic we may, at
any point, move to a di�erent representative of the equivalence class.

Example 7.40. By moving to di�erent elements of some equivalence class we
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can make sure that we always calculate with the smallest numbers possible.

4 · 16 + 2 · 17 = 64 + 34 (mod 3)

= 1 + 1 (mod 3)

= 2 (mod 3).

Note that it is customary to ensure that the �nal result is the canonical repres-
entative of its equivalence class, that is, when calculating modulo 𝑛, a number
from 0 to 𝑛− 1.

Multiplicative inverses. Finding multiplicative inverses modulo some given
number is possible (where they exist), and we describe how this works.
Assume we have a number 𝑛 ∈ N∖{0, 1}, and we are looking for the multiplicative
inverse of 𝑚, modulo 𝑛, that is we want to determine

𝑚−1 (mod 𝑛).

This means we are asking for a number 𝑙, the multiplicative inverse, with the
property that

𝑚 · 𝑙 = 1 (mod 𝑛),

which is equivalent to there being a number 𝑖 such that

𝑚 · 𝑙 = 𝑖 · 𝑛 + 1.

Assume we know that the greatest common divisor of 𝑚 and 𝑛 is 1. If we apply
Euclid’s algorithm to 𝑛 and 𝑚, see Example 6.42, we can see that, for

𝑟0 = 𝑛 and 𝑟1 = 𝑚

we get equalities

𝑟0 = 𝑘1 · 𝑟1 + 𝑟2

𝑟1 = 𝑘2 · 𝑟2 + 𝑟3

· · ·
𝑟𝑛−2 = 𝑘𝑛−1𝑟𝑛−1 + 1

𝑟𝑛−1 = 𝑘𝑛 · 1 + 0

that is at some point we have

𝑟𝑛 = 1 𝑟𝑛+1 = 0,

since the 𝑟𝑖 that appears before one obtains 0 is the greatest common divisor of
𝑟0 = 𝑛 and 𝑟1 = 𝑚.
We take the equalities and isolate the 𝑟𝑖 with the highest index appearing in each
we obtain the following.

𝑟2 = 𝑟0 − 𝑘1 · 𝑟1
𝑟3 = 𝑟1 − 𝑘2 · 𝑟2
· · ·
𝑟𝑛 = 1 = 𝑟𝑛−2 − 𝑘𝑛−1 · 𝑟𝑛−1

We can now recursively substitute each 𝑟𝑖 in the �nal equality according to the
previous ones, which gives us an equality that expresses

1 in terms of 𝑟0 = 𝑛 and 𝑟1 = 𝑚.

This gives the desired solution for the original problem.
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Example 7.41. We would like to calculate the multiplicative inverse for 5
modulo 7. Following Euclid’s algorithm we calculate as follows

7 = 1 · 5 + 2

5 = 2 · 2 + 1

We reorganize the two equalities as instructed above to obtain

2 = 7 − 1 · 5

1 = 5 − 2 · 2.

We insert the right hand side of the �rst equality for the right hand 2 in the
second equality and get

1 = 5 − 2 · (7 − 1 · 5) = 3 · 5 − 2 · 7,

and so
3 · 5 = 2 · 7 + 1.

Hence the multiplicative inverse of 5 modulo 7 is 3. And indeed,

3 · 5 = 15 = 2 · 7 + 1 = 1 (mod 7).

Example 7.42. We carry out another example calculation. The multiplicative
inverse of 4 modulo 11 can be found as follows.

11 = 2 · 4 + 3

4 = 1 · 3 + 1

Rearranging gives

3 = 11 − 2 · 4

1 = 4 − 1 · 3

Inserting the �rst into the second shows that

1 = 4 − (11 − 2 · 4) = 3 · 4 − 11.

Hence the multiplicative inverse for 4 is 3, and indeed,

4 · 3 = 12 = 1 (mod 11).

Example 7.43. In cases where the multiplicative inverse does not exist the
algorithm proceeds as follows. Note that Euclid’s algorithm calculates the
greatest common divisor of the two given numbers, Compare Example 6.42.
If the greatest common divisor of the two given numbers is a number other
than 1 we cannot use this idea, and indeed in that case there is no multiplicative
inverse for the chosen modular arithmetic. We wish to �nd a multiplicative
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inverse for 4 modulo 6.

6 = 1 · 4 + 2

4 = 2 · 2 + 0.

In other words we reach 0 as the remainder without having reached 1 �rst.

Example 7.44. We give one �nal example. We wish to calculate the multiplic-
ative inverse for 11 modulo 17.

17 = 1 · 11 + 6

11 = 1 · 6 + 5

6 = 1 · 5 + 1

Rearranging give

6 = 17 − 1 · 11

5 = 11 − 1 · 6

1 = 6 − 1 · 5.

Inserting the �rst two into the �nal equality tells us that

1 = 6 − 1 · 5 given
= 6 − (11 − 1 · 6) snd equality into third
= 2 · 6 − 11 simpli�cation
= 2 · (17 − 1 · 11) − 11 fst equality into result so far
= 2 · 17 − 3 · 11 simpli�cation.

So the multiplicative inverse of 11 modulo 17

−3 = 14 (mod 17).

Again we can verify that

14 · 11 = 154 = 9 · 17 + 1 = 1 (mod 17).

Make sure that the answers you give are indeed numbers from
0 to 𝑛 − 1 when calculating modulo 𝑛 in this notation. If in
the previous example you give −3 as an answer you will lose
marks since this number is not an element of the set we are
considering.

Note that 0 cannot have a multiplicative inverse as is shown in the following.

Proposition 7.7
Let 𝑁 be a set with two associative binary operations, multiplication and
addition, in such a way that there is a unit 0 for addition and 1 for multiplication,
with 0 ̸= 1, and such that every element has an additive inverse. Finally we
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assume the following distributivity law for all 𝑘, 𝑚 and 𝑛 in 𝑁 :

𝑘 · (𝑚 + 𝑛) = 𝑘 ·𝑚 + 𝑘 · 𝑛.

Then we have for all 𝑛 ∈ 𝑁 that

0 · 𝑛 = 0 = 𝑛 · 0,

and in particular 0 cannot have a multiplicative inverse.

Proof. Let 𝑛 be an element of 𝑁 .

0 · 𝑛 = (0 + 0) · 𝑛 0 unit for +

= (0 · 𝑛) + (0 · 𝑛) distributivity law

If we add the additive inverse of 0 · 𝑛 on both sides of this equality we get

0 = 0 · 𝑛.

Similarly we can show 𝑛 · 0 = 0 in this situation.
Hence in this situation 0 cannot have a multiplicative inverse unless 0 is both,
the additive and multiplicative unit, so 0 = 1, and that requires that 𝑆 = {0}
and that + and · are the same operation.

Exponentiation. The modular operation of most interest in cryptography is that
of exponentiation, and we look at the basics here.
If we look at the powers of 2 (mod 5) we �nd that they are

𝑛 0 1 2 3 4 5 6 7 8 9 . . .
2𝑛 (mod 5) 1 2 4 3 1 2 4 3 1 2 . . .

Of course the numbers used in cryptography are considerably larger than 5. For
RSA, for example, two large primes are selected, and then exponentiation modulo
their product is performed. For this and other applications it becomes important
to be able to carry out exponentiation e�ciently.
We look at the question of how to calculate

𝑎𝑏 (mod 𝑛).

Code Example 7.1. The really naive method is to calculate 𝑎 to the power of 𝑏
as integers, and then calculate the remainder when dividing by 𝑛, that is20

public static int modpower (int a, int b, int n)
{

if (b==0)
return 1;

else {
int power = 1;
for (int count=1, count <= b, count++)
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power = (power * a);
return power % n;

}
}

Using this code quickly runs out of memory21 despite the fact that we know
that the result is a number from 0 to 𝑛− 1. We look at a sample calculation of

135 (mod 197).

The table gives the value of power as the loop progresses.

count 1 2 3 4 5
power 13 169 2197 28561 371293

We then take the �nal result and calculate

371293 mod 197 = 145.

Code Example 7.2. The slightly less naive algorithm is to just keep multiplying
by the base and calculating the remainder when dividing by 𝑛 at each step.

public static int modpower (int a, int b, int n)
{

if (b==0)
return 1;

else {
int power = 1;
for (int count=1, count <= b, count++)

power = (power * a) % n;
return power;

}
}

This works better but still is not very e�cient. It performs 𝑏 many multiplic-
ations and remainder operations. Again, here is a sample calculation of the
same number as before.

count 1 2 3 4 5
power 13 169 30 193 145

This program does not run out of memory as the �rst one inevitably does.

Note that this works because of Proposition 7.5: We want to calculate

𝑎𝑏 (mod 𝑛),

20Note that one could improve e�ciency by checking whether 𝑎 is equal to 0 or 1, but this would
not improve matters much and we are looking for a short program.

21even if you pick one of the large integer classes in Java instead of int.
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but we know that

𝑖 · 𝑗 (mod 𝑛) has the same result as (𝑖 mod 𝑛) * (𝑗 mod 𝑛),

and so taking the remainder when dividing by 𝑛 at each step of the exponentiation
process is the same as taking it at the end:

𝑎𝑏 mod 𝑛 = (𝑎 · 𝑎𝑏−1) mod 𝑛

= (𝑎 · (𝑎𝑏−1 mod 𝑛)) mod 𝑛 Prop 7.5.

Indeed, one way of paraphrasing that proposition is to say that when adding or
multiplying (mod 𝑛) one may form the remainder when dividing by 𝑛 at any
time!22

Code Example 7.3. In COMP26120 you will look at a third method for per-
forming this calculation.

public static int modpower (int a, int b, int n)
{

if (b==0)
return 1;

else {
int power = 1;
while (b != 0) {

if (b % 2 == 1)
power = (power * a) % n;

a = (a*a) % n;
b = b/2;

}
return power;

}
}

Again we perform a sample calculation, but this time we have to track not just
of the value held in the variable power, but also of what is held in the variables
a and b, the latter of which controls the while loop. If that variable is even
then nothing happens in the while loop, which we denote in the table by an
empty cell for power. We repeat the above calculation, so at the start we have
𝑎 = 13, 𝑏 = 5 and 𝑛 = 197. The method sets the variable power to 1, so we
use that as our �rst value for that variable.

b 5 2 1 0
power 1 13 145

a 13 169 193 16

Because this is a short calculation it looks as if we have just as many steps
to perform as before, since we now have to calculate changing values for a
as well. But you can see that when 𝑏 is large the fact that the while loop is
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carried out only log 𝑏 many times becomes more important than the fact that
each time we have between one and two multiplications to carry out.

The idea behind this algorithm is quite simple: Instead of multiplying with 𝑎 the
required number of times the number of multiplications is brought down by the
squaring operation. To do this one may think of 𝑏 in base 2.

Example 7.45. We illustrate how this works in an example: For 𝑏 = 5, which
is 101 in binary, we have

𝑎5 = 𝑎4 · 𝑎1 = (𝑎2)2 · 𝑎1 = 𝑎1·2
2 · 𝑎0·21 · 𝑎1·20 ,

that is, we have one count of an iterated square of 𝑎 for each position where 𝑏
in binary has 1. A larger example is 𝑏 = 21, where we have

4 3 2 1 0
𝑏 1 0 1 0 1

powers (((𝑎2)2)2)2 (𝑎2)2 𝑎

and so
𝑎21 = 𝑎1·2

4 · 𝑎0·23 · 𝑎1·22 · 𝑎0·21 · 𝑎1·20 .

The algorithm ensures that what is multiplied is the appropriate selection of
iterated squares.

Example 7.46. We carry out one more example that illustrates how the two
algorithms work with numbers where it’s a bit easier to follow the calculation.
We calculate

77 (mod 11).

We follow the second algorithm.

𝑛 1 2 3 4 5 6 7
7𝑛 (mod 11) 7 5 2 3 10 4 6

For the third algorithm at the start we have 𝑎 = 7, 𝑏 = 7, 𝑛 = 11.

b 7 7 3 1 0
power 1 7 2 6

a 7 5 3 9

EExercise 187. Carry out the following tasks.

(a) Find the multiplicative inverses, where they exist, for

7 (mod 11), 15 (mod 17), 8 (mod 12), 5 (mod 9).

Hint: See Examples 7.41 to 7.44.

(b) Calculate the following using the two algorithms from Code Examples 7.2

22In COMP11212 you will learn about loop invariants and then you can make a rigorous step-by-step
argument that the two programs compute the same number.
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and 7.3.

45 (mod 13), 74 (mod 9), 65 (mod 11), 86 (mod 16).

(c) Depending on 𝑏, how many times is the loop in the algorithm from Code
Example 7.2 carried out? What about the other algorithm?

(d) For which of the following can you �nd an exponent di�erent from 0 so
that the given number is equal to 1 in the relevant modular arithmetic? Give
the smallest such exponent if possible, argue why there is none otherwise.

7 (mod 11), 15 (mod 17), 8 (mod 12), 5 (mod 9).

Hint: There is no algorithm that determines the required number for all cases.

7.3.6 General equivalence classes

In the previous section we looked at a particular situation where we want to treat
equivalent elements at the same. In general we may want to do this when we have
an equivalence relation. In this situation we construct another set where there
is only one representative for each class of equivalent elements, just as in N/∼2

there are only two elements, [0] and [1].
Given a set𝑆 with an equivalence relation𝑅 and an element 𝑠 of𝑆 the equivalence
class with respect to 𝑅 generated by 𝑠, [𝑠], is the subset of 𝑆 consisting of all
elements of 𝑆 which are related to 𝑠 by 𝑅, that is

[𝑠] = {𝑠′ ∈ 𝑆 | (𝑠, 𝑠′) ∈ 𝑅}.

Note that since an equivalence relation is symmetric this is the same as

{𝑠′ ∈ 𝑆 | (𝑠′, 𝑠) ∈ 𝑅}.

If the equivalence relation in question is not clear from the context, the equivalence
class generated by 𝑠 for a relation𝑅 is written as [𝑠]𝑅. Usually equivalence relations
are written in in�x notation and for the remainder of this section that is the notation
we use.

Example 7.47. We go through the examples given in Example 7.35.

(a) For the relations given by functions we have the following equivalence
classes:

(i) building blocks of the same shape,
(ii) groups of people of the same height (up to the nearest centimetre),

(iii) tutorial groups,
(iv) all people of the same nationality,
(v) implementations of the same algorithm.

(b) This example is too general to give the equivalence classes.

(c) All sets which have the same size as a given form an equivalence class (for
example, all sets with 5 elements, or all countably in�nite sets).
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(d) Algorithms which belong to the same complexity class form an equivalence
class.

(e) All propositions with the same boolean interpretation (with respect to
every valuation) form an equivalence class.

(f) Functions are in the same equivalence class if they eventually dominate
each other, up to a factor.

(g) Objects of class List are in the same equivalence class for equal if and only
if the underlying elements of ListsZ have the same elements in the same order.
Alternatively we can describe equivalence classes for this relation as follows.
Two objects l1 and l2 of the class List are in the same equivalence class if and
only if

• their instance variables l1.value and l2.value give the same integer value
and

• their instance variables l1.next and l2.next are references to lists which
are in the relation.

Example 7.48. The last example deserves another look, in particular if we look
at the second description. This suggests that there is a recursive procedure for
deciding whether two objects are in this relation, and indeed there is. We use
the idea of de�ning a set recursively, see Section 6.4.3.

Base case 𝐸List. (null,null) ∈ 𝐸List.

Step case 𝐸List. (l1, l2) ∈ 𝐸List and m==n for m:int and n:int implies

(new List (m,l1),new List (n,l2)) ∈ 𝐸List.

The base case tells us that two List objects that are a null reference are con-
sidered equivalent, and using the step case repeatedly we can build up to
longer and longer lists being considered equal.

Equivalence classes split the given set into disjoint blocks of equivalent elements
and we say that they partition the set. In other words, they give us a new set where
we no longer distinguish between equivalent elements.

De�nition 61: quotient set

Given a set 𝑆 witn an equivalence relation ∼, the quotient set of 𝑆 with
respect to ∼ consists of the equivalence classes of 𝑆 with respect to ∼. This
is written as 𝑆/∼.

Example 7.49. We begin our study of formal examples with a relation on a
small �nite set {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}, namely

{(𝑎, 𝑎), (𝑎, 𝑏), (𝑎, 𝑒), (𝑐, 𝑑), (𝑑, 𝑐)}.

As before we picture the relation using a directed graph.
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𝑎

𝑏 𝑒 𝑑

𝑐

𝑓

The re�exive closure of this relation adds connections to itself for each element:

𝑎

𝑏 𝑒 𝑑

𝑐

𝑓

The symmetric closure of the relation turns all edges between di�erent ele-
ments into double-tipped ones:

𝑎

𝑏 𝑒

𝑐

𝑑

𝑓

If we draw the result as an undirected graph we lose some of the now redundant
information:

𝑎

𝑏 𝑒

𝑐

𝑑

𝑓
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The transitive closure of this relation, both as a directed and as an undirected
graph:

𝑎

𝑏 𝑒

𝑐

𝑑

𝑓

𝑎

𝑏 𝑒

𝑐

𝑑

𝑓

We draw the equivalence classes in both graphs:

𝑎

𝑏 𝑒 𝑑

𝑐

𝑓

𝑎

𝑏 𝑒 𝑑

𝑐

𝑓

We have three equivalence classes:

[𝑎] = [𝑏] = [𝑒] = {𝑎, 𝑏, 𝑒}, [𝑐] = [𝑑] = {𝑐, 𝑑}, [𝑓 ] = {𝑓}.

Note the following: If we pick any pair of nodes in an equivalence class then
there is a connection between them (and this is a two-sided connection in
the case of a directed graph). This is true for all equivalence classes in all
equivalence relations.

Example 7.50. We look at another example. In Chapter 3, an algorithm is
described which, given a propositional formula, arrives at a conjunctive nor-
mal form for that formula. We may think of this as de�ning a relation on
propositional formulae.
If we also allow the rules for simplifying formulae, and take the re�exive
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symmetric transitive closure of the resulting relation, we obtain an equivalence
relation for propositional formulae.
Two formulae are equivalent for that relation if and only if, starting with both
given formulae, we can apply the rules in such a way that we arrive at the
same CNF.
This is the same equivalence relation as that which considers two formulae
equivalent if and only if for every valuation they give the same truth table.
The equivalence class of a formula, say 𝑃 , is then the set of all formulae that
have the simpli�ed CNF 𝑃 , such as 𝑃 ∧ 𝑃 or 𝑃 ∨ 𝑃 ∨ ⊥.

Example 7.51. If you are writing a programme where queues are implemented,
and there is one central resource that all existing queues need to access (for
example processing time) then you might want to implement a procedure
which allocates the resource to the longest queue. From the point of view
of that program, it is only important how long the queues are, and not what
elements they have. We use this idea, but for our previously de�ned type of
list.
We de�ne a binary relation on Lists𝑆 where

𝑙 ∼ 𝑙′ if and only if len 𝑙 = len 𝑙′,

using the len function from Exercise 141.
Two elements of Lists𝑆 are in the relation ∼ if and only if they have the same
number of elements. This means that there are in�nitely many equivalence
classes, one for each natural number. The empty list is the only element of its
equivalence class, but as long as 𝑆 has more than one element there is more
than one element in all the other equivalence classes. For example, for the list
[𝑠] the equivalence class consists of all the [𝑠′] for which 𝑠′ ∈ 𝑆.
One can de�ne a corresponding relation on objects of class List where

l1 is related to l2

if and only if the following method, called as

length(l1)==length(l2),

where length is the method from Section 6.1.3 de�ned in detail in Exercise 141.

Note that whenever a set is partitioned, that is, split into disjoint subsets, there is
an equivalence relation at the heart: Given a set 𝑆, all we have to do is to de�ne

𝑠 ∼ 𝑠′ if and only if 𝑠 and 𝑠′ are in the same partition.

In this case the equivalence classes are exactly the partitions. This means that
partitioning a set is exactly the same thing as forming the equivalence classes for
an equivalence relation.

CExercise 188. For the following relations, calculate the equivalence relation
they generate, try to23 describe the resulting equivalence classes, and count
their number.

(a) The re�exive symmetric transitive closure of the following relation on the
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set consisting of the elements 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 and 𝑓 :

{(𝑎, 𝑏), (𝑏, 𝑎), (𝑏, 𝑐), (𝑑, 𝑒), (𝑒, 𝑓)}.

(b) The re�exive symmetric transitive closure of the following relation on the
same set as in the previous part:

{(𝑎, 𝑎), (𝑏, 𝑐)}.

(c) The re�exive symmetric transitive closure of the following relation on the
same set as in the previous part:

{(𝑎, 𝑎), (𝑏, 𝑐), (𝑐, 𝑑), (𝑑, 𝑒)}.

(d) On the set N the relation 𝑚 ∼ 𝑛 if and only if 𝑚 mod 4 = 𝑛 mod 4. What
is [1] in this example? Can you describe N/∼?

(e) Consider the set 𝐷 of decimal numbers. We assume here that such a
number consists of a �nite number of digits from 0-9, followed by a decimal
point, followed by an in�nite number of digits 0–9. (Note that this is not how
we usually write decimal numbers—we drop all (or most) of the in�nitely many
0s that appear.) Take the re�exive symmetric closure ∼ of the relation where
two numbers are related if and only if:

• the �rst number ends with in�nitely many 0s,
• the second number ends with in�nitely many 9s and
• the (�nitely many) digits to the left of these are equal, with the exception

of the right-most such digit, which is one less for the second number.

What is [1] in this example? Can you describe 𝐷/∼?

(f) On the natural numbers N the relation where 𝑚 ∼ 𝑛 if 𝑚 + 𝑛 is even
(compare Exercise 183). Can you describe N/∼?

(g) On the complex numbers the relation where 𝑎 + 𝑏𝑖 is related to 𝑎′ + 𝑏′𝑖 if
and only if 𝑎 = 𝑎′.

(h) On the complex numbers the relation where 𝑧 is related to 𝑧′ if and only
if 𝑧𝑧 = 𝑧′𝑧′.

Example 7.52. We recursively de�ne a binary relation on the set Lists𝑆 of lists
over the set 𝑆 as follows.

Base case ∼. [ ] ∼ [ ]

Step case ∼. For 𝑙 ∼ 𝑙′ and 𝑠, 𝑠′ ∈ 𝑆 we have

𝑠 : 𝑙 ∼ 𝑠′ : 𝑙′.

23For the �nite examples you should list all equivalence classes.
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The remainder of this example is concerned with understanding what this
relation does. We show �rst of all that it is a re�exive relation, that is, that
each list is related to itself. This is a proof by induction.

Base case ∼. We note that

[ ] ∼ [ ] base case [ ].

Ind hyp. We assume the statement holds for the list 𝑙, that is 𝑙 ∼ 𝑙.

Step case ∼. We see that given 𝑠 ∈ 𝑆 we have that

𝑠 : 𝑙 ∼ 𝑠 : 𝑙 by step case ∼ .

We can also show by induction that this relation is also symmetric and transit-
ive. We add a proof for the former.

Base case ∼. We note that

[ ] ∼ [ ] base case [ ],

and so the only instance of using the base case of the de�nition
of ∼ results in a symmetric relation.

Ind hyp. We assume the statement holds for the lists 𝑙 and 𝑙′, that is
𝑙 ∼ 𝑙′ implies that 𝑙′ ∼ 𝑙.

Step case ∼. We see that the only way of building further instances of the
relation ∼ is to take note that, for 𝑙 ∼ 𝑙′, as well as 𝑠 and 𝑠′ in
𝑆 we get

𝑠 : 𝑙 ∼ 𝑠′ : 𝑙′ by step case ∼,

but we also get, from the induction hypothesis, that 𝑙′ ∼ 𝑙, and
so

𝑠′ : 𝑙′ ∼ 𝑠 : 𝑙 by step case ∼,

and so the relation remains symmetric as we add additional
instances.

So what does this relation do? One possibility is to look at some examples,
and let’s assume that the underlying set 𝑆 is N. We know that we start with

[ ] ∼ [ ].

The step case tells us that we can now add any one element to ∅ and all the
resulting lists are related, so

[0] ∼ [1] ∼ [2], . . .
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and all lists of length one are related. We can take any two of these, and add
an element to each, and get two more related lists, which means that all lists
of length 2 are related.
This gives rise to the conjecture that for all lists 𝑙 and 𝑙′ we have

𝑙 ∼ 𝑙′ if and only if len 𝑙 = len 𝑙′.

We give a formal proof of this. This is an ‘if and only if’ statement and we
show it by proving each part separately.
We �rst show that if 𝑙 ∼ 𝑙′ then 𝑙 and 𝑙′ have the same length.

Base case ∼. We have the base case of the relation,

[ ] ∼ [ ],

and we can see that both sides are equal, so applying the length
function gives the same result.

Ind hyp. For the lists 𝑙 and 𝑙′ we have that 𝑙 ∼ 𝑙′ implies len 𝑙 = len 𝑙′.

Step case ∼. If we have lists 𝑙 and 𝑙′ with 𝑙 ∼ 𝑙′ and for 𝑠 and 𝑠′ in 𝑆 we use
the step case of ∼ to derive that

𝑠 : 𝑙 ∼ 𝑠′ : 𝑙′

we may conclude that

len(𝑠 : 𝑙) = 1 + len 𝑙 step case len

= 1 + len 𝑙′ ind hyp
= len(𝑠′ : 𝑙′) step case len

In the other direction we want to show that if for two lists 𝑙 and 𝑙′ we know
that len 𝑙 = len 𝑙′ then we have 𝑙 ∼ 𝑙′. How do we know that the two lengths
are equal? This can only happen by another inductive process: The length of
a list can only be 0 if the list is empty, which gives the base case. If we have
two lists 𝑙 and 𝑙′ of equal lengths, then for 𝑠 and 𝑠′ in 𝑆 we have

len(𝑠 : 𝑙) = 1 + len 𝑙 step case len

= 1 + len 𝑙′ assumption
= len(𝑠′ : 𝑙′).

Base case ∼. We have the base case of equal length

len [ ] = len [ ],

and we can see that
[ ] ∼ [ ]

by the base case of ∼.
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Step case. If we have lists 𝑙 and 𝑙′ of equal length, which allows us, for 𝑠 and
𝑠′ in 𝑆, to conclude that

len(𝑠 : 𝑙) = len(𝑠′ : 𝑙′),

then we get that 𝑙 ∼ 𝑙′ from the induction hypothesis and we may
conclude that

𝑠 : 𝑙 ∼ 𝑠′ : 𝑙′

by the step case of ∼.

Hence the equivalence relation de�ned in this example is the same as that
from Example 7.51.

Understanding recursive de�nitions is not easy, and typically one wants to �nd an
alternative description that is easier to grasp.

CExercise 189. Consider the following relation on FBTrees𝑆 .

Base case ∼. For all 𝑠, 𝑠′ ∈ 𝑆 we have

tree 𝑠 ∼ tree 𝑠′.

Step case ∼. For 𝑡 ∼ 𝑡′, 𝑡′′ ∼ 𝑡′′′ and 𝑠, 𝑠′ ∈ 𝑆 we have

tree𝑠(𝑡, 𝑡
′′) ∼ tree𝑠′(𝑡

′, 𝑡′′′).

(a) Which of the following trees are ∼-related?

(i) tree2(tree 1, tree 3)

(ii) tree3(tree 2, tree3(tree 2, tree 1))

(iii) tree3(tree2(tree 1, tree 1), tree2(tree 3, tree 2)).
(iv) tree3(tree2(tree 1, tree 3), tree2(tree 3, tree 1)).
(v) tree3(tree2(tree 1, tree 3), tree 1)).

(vi) tree3(tree2(tree 1, tree 1), tree2(tree 3, tree 2)).
(vii) tree3(tree 2, tree 3)

Hint: You may want to draw them and then think about which trees are related.
Begin with trees related by the base case, and then apply the step case once or
twice to see how it all works

(b) Prove by induction that the relation is re�exive. In fact, it is an equivalence
relation and you may use this to answer the following part.

(c) Informally describe the equivalence classes of this relation. How would
you describe all the trees that are equivalent to a given one?

(d) How would you implement a corresponding relation for objects of class
BTree? You are trying to write a method with the following �rst line:
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public static boolean similar (BTree t1, BTree t2)

The method should return true exactly when the two input trees are related
by ∼.

Exercise 190. Show the following for an arbitrary equivalence relation ∼ on
a set 𝑆.

(a) For all 𝑠 ∈ 𝑆 we have 𝑠 ∈ [𝑠].

(b) For all 𝑠, 𝑠′, 𝑠′′ in 𝑆 we have

𝑠′, 𝑠′′ ∈ [𝑠] implies 𝑠′ ∼ 𝑠′′.

(c) For all 𝑠 and 𝑠′ in 𝑆 we have that

𝑠 ∼ 𝑠′ implies [𝑠] = [𝑠′].

(d) For all 𝑠 and 𝑠′ in 𝑆 we have

[𝑠] ∩ [𝑠′] is either empty or equal to [𝑠].

(e) For every element of 𝑆 there is an equivalence class it belongs to.

(f) The equivalence classes for the relation split 𝑆 into a pairwise disjoint
collection of sets.

Hence the equivalence classes of 𝑆 partition the whole set into disjoint subsets.

While it may be useful to determine a new set which has only one representative
for each equivalence class, this construction becomes signi�cantly more useful
when we have sets with operations on them. The following sub-section cover
relevant examples.

7.3.7 Important examples

The integers

The point of this and the following account of the rationals is to show you how to
formally de�ne these numbers with their operations. The material is not examin-
able as such, but does provide more examples for using equivalence relations and
understanding it may be helpful for answering other exam questions.
Consider the following set:

N× N = {(𝑚,𝑛) | 𝑚,𝑛 ∈ N}.

On this set we de�ne a relation, namely

(𝑚,𝑛) ∼ (𝑚′, 𝑛′) if and only if 𝑚 + 𝑛′ = 𝑚′ + 𝑛.

It is easy to see that this is an equivalence relation: Since for all 𝑚 and 𝑛 in N
we have that 𝑚 + 𝑛 = 𝑚 + 𝑛 it is re�exive, and symmetry is obvious from the
de�nition. Transitivity is obtained as follows:

(𝑚,𝑛) ∼ (𝑚′, 𝑛′) and (𝑚′, 𝑛′) ∼ (𝑚′′, 𝑛′′),
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imply

𝑚 + 𝑛′ = 𝑚′ + 𝑛 and 𝑚′ + 𝑛′′ = 𝑚′′ + 𝑛′

respectively, and together these imply that

𝑚 + 𝑛′ + 𝑚′ + 𝑛′′ = +𝑚′ + 𝑛 + 𝑚′′ + 𝑛′

which by commutativity and assoiativity of addition is equivalent to

(𝑚 + 𝑛′′) + (𝑛′ + 𝑚′) = (𝑚′′ + 𝑛) + (𝑚′ + 𝑛′)

which by the �nal statement of Fact 1 implies that

𝑚 + 𝑛′′ = 𝑚′′ + 𝑛.

which means that we have

(𝑚,𝑛) ∼ (𝑚′′, 𝑛′′).

We de�ne an operation we call ‘addition’ on this set, by setting

(𝑚,𝑛) ⊕ (𝑚′, 𝑛′) = (𝑚 + 𝑚′, 𝑛 + 𝑛′).

We next show that

(𝑘, 𝑙) ∼ (𝑚,𝑛) and (𝑘′, 𝑙′) ∼ (𝑚′, 𝑛′)

implies (𝑘, 𝑙) ⊕ (𝑘′, 𝑙′) ∼ (𝑚,𝑛) ⊕ (𝑚′, 𝑛′),

by calculating

(𝑘, 𝑙)⊕(𝑘′, 𝑙′) = (𝑘+𝑘′, 𝑙+ 𝑙′) and (𝑚,𝑛)+(𝑚′, 𝑛′) = (𝑚+𝑚′, 𝑛+𝑛′)

and

𝑘 + 𝑘′ + 𝑛 + 𝑛′ = (𝑘 + 𝑛) ⊕ (𝑘′ + 𝑛′) comm, ass +

= (𝑚 + 𝑙) ⊕ (𝑚′ + 𝑙′) (𝑘, 𝑙) ∼ (𝑚,𝑛), (𝑘′, 𝑙′) ∼ (𝑚′, 𝑛′)

= 𝑚 + 𝑚′ + 𝑙 + 𝑙′ comm, ass + .

This allows us to de�ne an addition operation on the set of equivalence classes with
respect to ∼, (N× N)/∼.
Given two arbitrary equivalence classes for our set, if we pick two respective
elements, say (𝑘, 𝑙) and (𝑚,𝑛) we may set

[(𝑘, 𝑙)] + [(𝑚,𝑛)] = [(𝑘, 𝑙) ⊕ (𝑚,𝑛)]

since our previous calculation assures us that no matter which elements of each
equivalence class we pick, the result of adding the two always determines the
same equivalence class.
It is fairly easy to show that addition is commutative and associative for our original
set, N×N, and the same is then true for the derived operation on (N×N)/∼. We
can also check that there is a unit, namely the equivalence class of (0, 0): Given
(𝑚,𝑛) ∈ N× N we have

[(𝑚,𝑛)] ⊕ [(0, 0)] = [(𝑚 + 0, 𝑛 + 0)] = [(𝑚,𝑛)] = [(0, 0)] ⊕ [(𝑚,𝑛)].
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This raises the question of whether we have inverses with respect to this operation.
In other words, given (𝑚,𝑛) ∈ N× N, can we �nd an element whose equivalence
class we can add to [(𝑚,𝑛)] such that the result is [(0, 0)]? To �nd the answer to
this question it is a good idea to �rst think about what the elements of [(0, 0)] are.
An element (𝑚,𝑛) of our set is equivalent to (0, 0) if and only if

𝑚 + 0 = 0 + 𝑛,

that is, if 𝑚 = 𝑛.
Given (𝑚,𝑛) ∈ N× N we note that

[(𝑚,𝑛) ⊕ [(𝑛,𝑚)] = [(𝑚 + 𝑛, 𝑛 + 𝑚)] = [(0, 0)],

and so we do indeed have an inverse element, namely [(𝑛,𝑚)] for [(𝑚,𝑛)]. In
other words, (N + N)/∼ is a commutative group with respect to addition. Indeed,
this is nothing but an alternative description for a group you are all familiar with.
As a preliminary calculation we note that for (𝑚,𝑛) ∈ N× N with 𝑚 ≥ 𝑛 we
have

[(𝑚,𝑛)] = [(𝑚− 𝑛, 0)],

since
𝑚 + 0 = 𝑚 = 𝑚− 𝑛 + 𝑛

and so
(𝑚,𝑛) ∼ (𝑚− 𝑛, 0).

Consider the following function from N× N to Z:

(𝑚,𝑛) 𝑚− 𝑛.

This function is constant on equivalence classes, since if we have

(𝑚,𝑛) ∼ (𝑚′, 𝑛′)

then we have

𝑚− 𝑛 = 𝑚 + 𝑛′ − 𝑛′ − 𝑛 = 𝑚′ + 𝑛− 𝑛′ − 𝑛 = 𝑚′ − 𝑛′.

Hence we may de�ne a function 𝑓 from (N× N)/∼ to Z by setting

𝑓 : [(𝑚,𝑛)] 𝑚− 𝑛,

without worrying which element of [(𝑚,𝑛)] we may be referring to. We further
de�ne a function 𝑔 from Z to (N× N)/∼ by setting

𝑔 : 𝑖

{︃
[(𝑖, 0)] 𝑖 ≥ 0

[(0,−𝑖)] else.

We claim that this de�nes a bijection between the two sets: Given 𝑖 ∈ Z we
calculate

• if 𝑖 ≥ 0 we have 𝑓(𝑔𝑖) = 𝑓 [(𝑖, 0)] = 𝑖− 0 = 𝑖, and

• if 𝑖 < 0 we have 𝑓(𝑔𝑖) = 𝑓 [(0,−𝑖)] = 0 − (−𝑖) = 𝑖.
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Given (𝑚,𝑛) ∈ N× N we have that 𝑓 [(𝑚,𝑛)] = 𝑚− 𝑛, and

• if 𝑚− 𝑛 ≥ 0 we have that

𝑔(𝑓 [(𝑚,𝑛)]) = 𝑔(𝑚− 𝑛) = [(𝑚− 𝑛, 0)] = [(𝑚,𝑛)],

• if 𝑚− 𝑛 < 0 we have that

𝑔(𝑓 [(𝑚,𝑛)]) = 𝑔(𝑚−𝑛) = [(0,−(𝑚− 𝑛))] = [(0,−𝑚 + 𝑛))] = [(𝑚,𝑛)].

This shows that the two functions are mutual inverses. But much more is true:
These two functions preserve the addition operation, that is, we have, for (𝑘, 𝑙) and
(𝑚,𝑛) in N× N that

𝑓 [(𝑘, 𝑙)] + 𝑓 [(𝑚,𝑛)] = (𝑘 − 𝑙) + (𝑚− 𝑛) def 𝑓
= (𝑘 + 𝑚) − (𝑙 + 𝑛) ass, comm +, Ex 34
= 𝑓 [(𝑘 + 𝑚, 𝑙 + 𝑛)] def 𝑓
= 𝑓([(𝑘, 𝑙)] + [(𝑚,𝑛)]) def addition,

and for 𝑖 and 𝑗 in Z we have

𝑔𝑖 + 𝑔𝑗 = [(𝑖, 0)] + [(𝑗, 0)] = [(𝑖 + 𝑗, 0)] = 𝑔(𝑖 + 𝑗).

This tells us that our set (N + N)/∼ really is describing the set Z with its addition
operation by simply giving a di�erent name to all the elements.
Indeed, the formal de�nition of the set of integers, Z, is (N× N)/∼, where we use
the integer 𝑚− 𝑛 as a name for the equivalence class of (𝑚,𝑛).
We can also de�ne multiplication on our ‘formal integers’, (N× N)/∼ by setting

[(𝑚,𝑛)] · [(𝑚′, 𝑛′)] = [(𝑚𝑚′ + 𝑛𝑛′,𝑚𝑛′ + 𝑚′𝑛)].

Exercise 191. This exercise is concerned with checking that this de�nition of
multiplication makes sense and �ts with the usual one on Z.

(a) Show that for (𝑘, 𝑙), (𝑘′, 𝑙′), (𝑚,𝑛) and (𝑚′, 𝑛′) in N × N we have that
(𝑘, 𝑙) ∼ (𝑘′, 𝑙′) and (𝑚,𝑛) ∼ (𝑚′, 𝑛′) implies

(𝑘, 𝑙) · (𝑚,𝑛) ∼ (𝑘′, 𝑙′) · (𝑚′, 𝑛′).

This means that our de�nition of multiplication works properly on equivalence
classes with respect to ∼.

(b) Show that [(1, 0)] is the unit for this multiplication.

(c) Show that for 𝑖, 𝑗 ∈ Z we have (𝑔𝑖) · (𝑔𝑗) = 𝑔(𝑖𝑗).

(d) Show that for (𝑘, 𝑙), (𝑚,𝑛) ∈ N× N we have

𝑓 [(𝑘, 𝑙)]𝑓 [(𝑚,𝑛)] = 𝑓([(𝑘, 𝑙)] · [(𝑚,𝑛)]).

Hence our formal integers can play the role of Z for all the usually considered
operations, namely addition (which gives subtraction thanks to the existence of
inverses) and multiplication. Mathematicians say that the two are isomorphic as
rings.
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Optional Exercise 33. In the formal de�nition of Z we use a number of prop-
erties that hold on a very general level. This exercise is about understanding
those properties better. Assume you have an equivalence relation ∼ on a
set 𝑆.

(a) De�ne a function 𝑞 from 𝑆 to 𝑆/∼ which maps each element to its equi-
valence relation. This is known as the quotient map.

(b) Assume you have a function 𝑓 from 𝑆 to a set 𝑇 with the property that,
for 𝑠, 𝑠′ ∈ 𝑆 we have 𝑠 ∼ 𝑠′ implies 𝑓𝑠 = 𝑓𝑠′. De�ne a function 𝑓∼ from 𝑆/∼
to 𝑇 with the property that 𝑓∼ ∘ 𝑞 = 𝑓 . Can you argue that 𝑓∼ is uniquely
determined by these properties?

(c) Assume you have a binary operation ~ on 𝑆 such that for 𝑠, 𝑠′, 𝑡, 𝑡′ ∈ 𝑆 we
have 𝑠 ∼ 𝑡 and 𝑠′ ∼ 𝑡′ implies 𝑠~ 𝑠′ ∼ 𝑡~ 𝑡′ (we may think of this as saying
that the operation is well-behaved with respect to the equivalence relation)24.
De�ne a binary operation ~ on 𝑆 with the property that for all 𝑠, 𝑠′ ∈ 𝑆 you
have

𝑞𝑠~ 𝑞𝑠′ = 𝑞(𝑠~ 𝑠′).

Can you show that this operation is uniquely determined by these properties?

(d) Assume that we have the same situation as in the previous part. Show that
if the given operation is commutative or associative, then the newly de�ned
operation has the same property. Further show that if 𝑒 is a unit for the
operation ~ then [𝑒] is a unit for the operation ~. Lastly prove that if 𝑠′ is an
inverse for 𝑠 with respect to ~ then [𝑠′] is an inverse for [𝑠] with respect to ~.

(e) Check that the addition and multiplication operations for (N×N)/∼ given
in the text above are special cases of such binary operations.

De�nition 62: integers

The commutative ring Z of integers is (formally) de�ned as the quotient of
N×N with respect to the equivalence relation given above, and with addition
and multiplication operations also given above.

The rationals

We can use a similar construction to obtain a formal de�nition of the rational
numbers. As a basis we use the set

Z× (Z ∖ {0}) = {(𝑖,𝑚) | 𝑖, 𝑚 ∈ Z, 𝑚 ̸= 0}.

We use the following equivalence relation on this set:

(𝑖,𝑚) ∼ (𝑗, 𝑛) if and only if 𝑖𝑛 = 𝑗𝑚.

24If we think of the operation as the more fundamental item we say that the relation is a congruence
relation for the given operation.
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Exercise 192. Show that the relation de�ned above is an equivalence relation.

We may then form the set (Z× (Z−∖{0}))/∼ of ∼-equivalence classes. As before
we are concerned with de�ning operations on this new set. This time we begin
with multiplication. For 𝑖, 𝑗 in Z and 𝑚, 𝑛 in Z ∖ {0} we set25

[(𝑖,𝑚)] · [(𝑗, 𝑛)] = [(𝑖𝑗,𝑚𝑛)].

This de�nes a commutative and associative operation with unit [(1, 1)]. We have
inverses for this operation: Assume we have 𝑖,𝑚 ∈ Z with 𝑚 ̸= 0. We claim that
the inverse for [(𝑖,𝑚)] is [(𝑚, 𝑖)] and verify this by calculating

[(𝑖,𝑚)] · [(𝑚, 𝑖)] = [(𝑖𝑚,𝑚𝑖)] = [(1, 1)],

and
[(𝑚, 𝑖)] · [(𝑖,𝑚)] = [(𝑚𝑖, 𝑖𝑚)] = [(1, 1)].

We still owe the connection between our set of equivalence classes and the set of
rational numbers Q. This is a bit trickier to describe cleanly than the case of the
integers above because e�ectively the rational numbers have been treated as a
quotient all along: Given a rational number we know that we may �nd integers 𝑚
and 𝑛, with 𝑛 ̸= 0 such that our number is equal to the fraction 𝑚/𝑛. But 𝑚 and
𝑛 are not de�ned uniquely, and so we e�ectively use an equivalence relation on
fractions, where

𝑚

𝑛
≈ 𝑚′

𝑛′ if and only if 𝑚𝑛′ = 𝑚′𝑛.

This suggests that the proper translation between our set

(Z× (Z ∖ {0}))/∼ and Q

is as follows. We de�ne a function 𝑓 from (Z× (Z ∖ {0}))/∼ to Q by setting

[(𝑚,𝑛)]
𝑚

𝑛
,

and a function 𝑔 in the opposite direction by setting
𝑚

𝑛
[(𝑚,𝑛)].

Exercise 193. This exercise is concerned with checking that the claims made
above are true.

(a) Show that for (𝑖,𝑚), (𝑖′,𝑚′), (𝑗, 𝑛) and (𝑗′, 𝑛′) inZ×(Z∖{0}) we have that
(𝑖,𝑚) ∼ (𝑖′,𝑚′) and (𝑗, 𝑛) ∼ (𝑗′, 𝑛′) implies (𝑖𝑗,𝑚𝑛) ∼ (𝑖′𝑗′,𝑚′𝑛′). This
means that our de�nition of multiplication works properly on equivalence
classes with respect to ∼.

(b) Show that [(1, 1)] is the unit for this multiplication.

(c) Observe that for 𝑖, 𝑗, 𝑚, 𝑛 from Z with 𝑚,𝑛 ̸= 0 we have

(𝑖,𝑚) ∼ (𝑗, 𝑛) if and only if 𝑖

𝑚
≈ 𝑗

𝑛

and conclude that ≈ is an equivalence relation. Further note that this implies

25Again one has to check that this makes sense—see the exercise below.
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that the de�nition of 𝑔 makes sense by mapping equivalent fractions to the
same equivalence class for ∼ in (Z× (Z ∖ {0})).

(d) Show that for 𝑖, 𝑗,𝑚, 𝑛 ∈ Z with 𝑚,𝑛 ̸= 0 we have 𝑔(
𝑖

𝑚
)·𝑔(

𝑗

𝑛
) = 𝑔(

𝑖

𝑚

𝑗

𝑛
).

(e) Show that for (𝑖,𝑚), (𝑗, 𝑛) ∈ Z× (Z ∖ {0}) we have

𝑓 [(𝑖,𝑚)]𝑓 [(𝑗, 𝑛)] = 𝑓([(𝑖,𝑚)] · [(𝑗, 𝑛)]).

This means that our (Z×(Z∖{0}))/∼ really is a way of talking about the rationals
cleanly, that is, we know exactly what this set looks like, where before we did not
have a clean way of referring to its elements. But so far we have only considered
multiplication and still owe the addition operation.
We set, for 𝑖, 𝑗, 𝑚 and 𝑛 in Z, with 𝑚,𝑛 ̸= 0,

[(𝑖,𝑚)] + [(𝑗, 𝑛)] = [(𝑖𝑛 + 𝑗𝑚,𝑚𝑛)].

This de�nes a commutative associative operation with unit [(0, 1)], and with
inverses where the additive inverse of [(𝑖,𝑚)] is given by [(−𝑖,𝑚)].

Exercise 194. This exercise is concerned with checking that this de�nition of
addition makes sense and �ts with the usual one from Q.

(a) Show that for (𝑖,𝑚), (𝑖′,𝑚′), (𝑗, 𝑛) and (𝑗′, 𝑛′) in Z× (Z ∖ {0}) we have
that (𝑖,𝑚) ∼ (𝑖′,𝑚′) and (𝑗, 𝑛) ∼ (𝑗′, 𝑛′) implies

(𝑖,𝑚) + (𝑗, 𝑛) ∼ (𝑖′,𝑚′) + (𝑗′, 𝑛′).

This means that our de�nition of addition works properly on equivalence
classes with respect to ∼.

(b) Show that [(0, 1)] is the unit for this addition.

(c) Show that for 𝑖, 𝑗,𝑚, 𝑛 ∈ Z with 𝑚,𝑛 ̸= 0 we have

𝑔(
𝑖

𝑚
) + 𝑔(

𝑗

𝑛
) = 𝑔(

𝑖

𝑚
+

𝑗

𝑛
).

(d) Show that for (𝑖,𝑚), (𝑗, 𝑛) ∈ Z× (Z ∖ {0}) we have

𝑓 [(𝑖,𝑚)] + 𝑓 [(𝑗, 𝑛)] = 𝑓([(𝑖,𝑚)] + [(𝑗, 𝑛)]).

Hence we may use (Z×(Z∖{0}))/∼ as a formal de�nition of the rational numbers
(with addition and multiplication)26, and that is what mathematicians do:. Instead
of assuming that 𝑚/𝑛 has a prede�ned meaning, they use (𝑚,𝑛) to express the
same number, being aware of the fact that an equivalence relation is required since
there is more than one way of representing a given number. A mathematician
would say that what we have de�ned above is a �eld.

Optional Exercise 34. Carry out the last part of Optional Exercise 33 for

26Since subtraction and division are de�ned via inverses for addition and multiplication, respect-
ively, these are also included.
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multiplication and addition on (Z× (Z ∖ {0}))/∼ as de�ned in this section.

De�nition 63: rationals

The �eld Q of rational numbers is (formally) de�ned as the quotient of Z×(Z∖
{0} with respect to the equivalence relation given above, and with addition
and multiplication operations also given above.

Further examples

Polynomial functions (see also Section 0.3.5) often come up as describing the
complexity of various algorithms or programs. These functions exist over all our
sets of numbers. Assume we have �xed a set of numbers 𝑁 .
The formal de�nition of a polynomial is that of a function27from 𝑁 to 𝑁 for which
we can �nd 𝑛 ∈ N and 𝑎0, 𝑎1, . . . , 𝑎𝑛 in 𝑁 such that the function is given by

𝑛∑︁
𝑖=0

𝑎𝑖𝑥
𝑖 = 𝑎𝑛𝑥

𝑛 + 𝑎𝑛−1𝑥
𝑛−1 + · · · + 𝑎1𝑥 + 𝑎0.

For our purposes we exclude the polynomial all of whose coe�cients are 0. It is
possible to extend the ideas that follow below to this polynomial, but it creates
quite a lot of exceptions which make this account more complicated, and which
distract from the ideas presented below.
The 𝑎𝑖 are the coe�cients. We de�ne the degree of the polynomial to be the
largest 𝑛 for which 𝑎𝑛 ̸= 0, and write

deg

(︃
𝑛∑︁

𝑖=0

𝑎𝑖𝑥
𝑖

)︃

for this number. The corresponding coe�cient 𝑎𝑛 is called the leading coe�cient
of the polynomial in question.

Example 7.53. We calculate some degrees.

deg
(︀
3𝑥4 + 2𝑥2 − 5

)︀
= 4

deg
(︀
0𝑥5 + 3𝑥3 − 2𝑥1

)︀
= 3

deg
(︀
0𝑥5 + 0𝑥2 − 4

)︀
= 0.

The leading coe�cients of these polynomials are 3, 3, and −4 respectively.

When a coe�cient is 0 it is customary not to write the corresponding part of the
term, that is, we omit expressions of the form 0𝑥𝑖.
We can add such polynomial functions, and we can multiply them, in an obvious
way. We �rst look at an example for each, and then give a general de�nition.

27A more formal mathematical de�nition of polynomials works without considering them as
functions, but merely as formal expressions involving coe�cients and powers of some variable,
say 𝑥. The de�nitions of the addition and multiplication operations for polynomials given below
still work in that case.
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Example 7.54. We look at how to add polynomial to another. In the example
below we have a polynomial of degree 3 which we want to add to one of degree
2, for example,

𝑥3+ 2𝑥+ 1

+ 3𝑥2+ 5𝑥+ 10

= 𝑥3+ 3𝑥2+ 7𝑥+ 11.

In general we would like to write

𝑚∑︁
𝑖=0

𝑎𝑖𝑥
𝑖 +

𝑛∑︁
𝑖=0

𝑏𝑖𝑥
𝑖 =

max{𝑚,𝑛}∑︁
𝑖=0

(𝑎𝑖 + 𝑏𝑖)𝑥
𝑖,

but it may be the case that some of the coe�cients are not de�ned. If we go back
to the concrete example above we have

𝑎3 = 1 𝑎2 = 0 𝑎1 = 2 𝑎0 = 1 and
𝑏2 = 3 𝑏1 = 5 𝑏0 = 10.

Here the coe�cient 𝑏3 is not de�ned, so the convention is to assume that such
coe�cients are equal to 0 to make the formal de�nition work.
Multiplication is slightly more complicated.

Example 7.55. Again we start with an example.

(𝑥3 + 2𝑥 + 1)(3𝑥2 + 5𝑥 + 10)

= (1 · 3)𝑥5 + (1 · 5)𝑥4 + (1 · 10 + 2 · 3)𝑥3 + (2 · 5 + 1 · 3)𝑥2

+ (2 · 10 + 1 · 5)𝑥 + 1 · 10

= 3𝑥5 + 5𝑥4 + 16𝑥3 + 13𝑥2 + 25𝑥 + 10.

In general, the de�nition is(︃
𝑚∑︁
𝑖=0

𝑎𝑖𝑥
𝑖

)︃(︃
𝑛∑︁

𝑖=0

𝑏𝑖𝑥
𝑖

)︃
=

𝑚+𝑛∑︁
𝑖=0

(︃
𝑖∑︁

𝑗=0

𝑎𝑖−𝑗𝑏𝑗

)︃
𝑥𝑖,

which multiplied out looks something like

𝑎0𝑏0 + (𝑎0𝑏1 + 𝑎1𝑏0)𝑥 + (𝑎2𝑏0 + 𝑎1𝑏1 + 𝑎0𝑏2)𝑥
2

+ · · · + (𝑎𝑚−1𝑏𝑛 + 𝑎𝑚𝑏𝑛−1)𝑥
𝑚+𝑛−1 + 𝑎𝑚𝑏𝑛𝑥

𝑚+𝑛.

These operations on polynomials are associative and commutative. The unit for
addition is the constant 0 polynomial, all of whose coe�cients are 0, while the
unit for multiplication is the constant 1 polynomial, where 𝑎0 = 1 and all other
coe�cients are 0.
When we consider the complexity of an algorithm we often are only interested
in the degree of the polynomial, that is, the highest power of 𝑥 that occurs in the
term.
We de�ne an equivalence relation on polynomial functions, whereby

𝑚∑︁
𝑖=0

𝑎𝑖𝑥
𝑖 ∼

𝑛∑︁
𝑖=0

𝑏𝑖𝑥
𝑖 if and only if deg

(︃
𝑚∑︁
𝑖=0

𝑎𝑖𝑥
𝑖

)︃
= deg

(︃
𝑛∑︁

𝑖=0

𝑏𝑖𝑥
𝑖

)︃
.
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In other words we consider two polynomial functions equivalent if and only if
they have the same degree, that is if the largest 𝑛 for which 𝑥𝑛 has a non-zero
coe�cient, is the same for both. This means that two polynomials are in the same
equivalence class if and only if they de�ne the same ‘big O’ class of functions,
compare Example 7.35. You are asked to think about some aspects of this idea in
Exercise 197.
Now when we want to determine the complexity of an algorithm or program, and
we know this is a polynomial function, we can concentrate on determining the
degree. For this we need to be able to calculate with this equivalence relation, and
the following exercise invites you to work out how this works. You will study
these ideas in more generality in COMP11212 and COMP26120.

Exercise 195. For the following polynomials, give the degrees and leading
coe�cients, and calculate their sum and product.

• 2𝑥5 + 𝑥3 − 1 and

• 𝑥 + 1.

What are the degrees and coe�cients of the two resulting polynomials? How
do they arise from the degrees and leading coe�cients of the two polynomials
you started with?

EExercise 196. Assume you are trying to implement polynomials with coef-
�cients from N in Java by using the List class from Section 6.1, see Code
Example 6.1. You want to think of the list as giving you the coe�cient of the
polynomial, so that

[3, 5, 2]

encodes the polynomial
3 + 5𝑥 + 2𝑥2.

The empty list (or null reference) does not correspond to a polynomial via
this encoding. We are going to use it as another name for the polynomial of
degree 0 whose (only) coe�cient is 0, that is, it encodes the same polynomial
as the list [0].
Give de�nitions for the following operations, either by recursive de�nition for
elements of ListsZ or by giving a recursive Java method for the class List. You
have to stick to one of these for all the parts.

(a) Addition of polynomials.

(b) Multiplication of polynomials.
This is quite complicated. You may either develop your own way of doing this,
or you may work according to the following idea.
When we multiply a given polynomial, say

2 + 𝑥 + 3𝑥2
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with another polynomial, say 𝑝, we have

(2 + 𝑥 + 3𝑥2) · 𝑝 = 2 · 𝑝 (7.1)
+𝑥 · 𝑝 (7.2)

+3𝑥2 · 𝑝.

Hence in order to de�ne multiplication of polynomials it is su�cient to use ad-
dition provided we also de�ne a method that takes a polynomial and multiplies
it by a polynomial of the form

𝑚𝑥𝑛,

where 𝑚 and 𝑛 are elements of N.

• For multiplying a given polynomial by a polynomial of the form 𝑥𝑛 you
may �nd it convenient to have an operation that takes as input an integer
𝑛 and returns a list which consists of 𝑛 many 0s.

• It is useful to have an operation that takes a polynomial and multiplies is
by a natural number (by multiplying all the coe�cients by that natural
number).

• Using the previous two parts one may de�ne an operation that multiplies
a given polynomial by a polynomial of the form

𝑚𝑥𝑛,

where 𝑚,𝑛 ∈ N.
• Using the previous part and the addition operation for polynomials you

should now be able to de�ne multiplication of polynomials.

You may use previously de�ned operations for lists at any point.

EExercise 197. Let 𝑃N be the set of polynomials with coe�cients in N.

(a) Above there is the de�nition of an equivalence relation ∼ on the set of
polynomials which relates two polynomials if they have the same degree. Find
a way of representing these so that you can describe the set 𝑃N/∼. Which
polynomials are in [𝑥2]?

(b) De�ne an addition operation ⊕ on 𝑃N/∼. Ensure that for polynomials 𝑝
and 𝑞 you have [𝑝] ⊕ [𝑞] = [𝑝 + 𝑞]—in other words, the equivalence class we
obtain when adding the class of 𝑝 to the class of 𝑞 is the class of 𝑝 + 𝑞.

(c) De�ne a multiplication ~ operation on 𝑃N/∼. Ensure that for polynomial
functions 𝑝 and 𝑞 you have [𝑝] ~ [𝑞] = [𝑝𝑞].

Hint: In Exercise 186 you are asked to de�ne addition andmultiplication operations
on equivalence classes when calculating modulo some number. You can think of
this exercise as asking you to de�ne addition and multiplication operations on
equivalence classes of polynomials given by their degrees.
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If you are struggling with this then start by carrying out Exercise 195. To get the
marks for preparing the exercise that’s a requirement if you cannot do anything
else.

Finite state automata have an interesting equivalence relation on them, given by
bisimulations.

Exercise 198. Argue that the following relation is an equivalence relation: The
relation on �nite state automata, where

𝐴 ∼ 𝐴′

if and only if there is a bisimulation between them. There’s no need to give a
formal proof, just explain in English why you think the given relation has the
required properties.

When programming we sometimes want to have a notion that two objects are
equivalent for some equivalence relation. For example in Java the standard class
java.lang.Object contains an instance method equals() which is designed
to model the notion that two objects may be equivalent. See Java: Just in Time
for more details in Section 20.4. This can only work properly if the relation in
question is an equivalence relation.

7.4 Partial orders

Many structures we consider carry an order on them which allows us to compare
their elements. There is a standard way of axiomatizing those properties that make
a relation into an order in a way that agrees with our intuitions.

7.4.1 Posets

When comparing two elements 𝑠 and 𝑠′ we write

𝑠 ≤ 𝑠′

to state that 𝑠 is less than, or equal to, 𝑠′, and

𝑠′ ≥ 𝑠

to state that 𝑠′ is greater than or equal to 𝑠. We consider the two equivalent. We
further write

𝑠 < 𝑠′

if and only if
𝑠 ≤ 𝑠′ and 𝑠 ̸= 𝑠′.

We are using ≤ to give the in�x notation for a binary relation on a set 𝑆. In this
section we study the properties a binary relation needs to have in order to be
something that behaves as we expect a comparison to behave.
First of all we expect each element 𝑠 of 𝑆 to be less than or equal to itself, so we
expect

𝑠 ≤ 𝑠

to hold for all 𝑠 ∈ 𝑆. This means that we expect ≤ to be a re�exive relation.
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Secondly we expect to be able to combine comparisons, that is if

𝑠 ≤ 𝑠′ and 𝑠′ ≤ 𝑠′′

for elements 𝑠, 𝑠′, 𝑠′′ from 𝑆 then we expect to be able to conclude that

𝑠 ≤ 𝑠′′.

In other words, we expect ≤ to be transitive.
These two properties together are su�cient to ensure that ≤ has most of the prop-
erties we expect from a comparison (see Optional Exercise 35), but it is customary
to demand more.
When we know that

𝑠 ≤ 𝑠′ and 𝑠′ ≤ 𝑠

hold for elements 𝑠 and 𝑠′ of 𝑆 we want to be able to conclude that

𝑠 = 𝑠′.

De�nition 64: antisymmetric

A binary relation 𝑅 on a set 𝑆 is anti-symmetric if for all elements 𝑠 and 𝑠′

from 𝑆 we have that

(𝑠, 𝑠′) ∈ 𝑅 and (𝑠′, 𝑠) ∈ 𝑅 implies 𝑠 = 𝑠′.

We cannot describe this property without having a binary equality predicate, say
𝐸. If we use that then the �rst order formula expressing anti-symmetry is

∀𝑥.∀𝑦. ((𝑅(𝑥, 𝑦) ∧𝑅(𝑦, 𝑥)) → 𝐸(𝑥, 𝑦)).

We may describe this property by noting that it says that

𝑅 ∩𝑅op ⊆ 𝐼𝑆 .

Anti-symmetry means that two elements cannot be less than or equal to each other
unless they are equal. This property is the opposite of demanding symmetry of a
relation, see Exercise 199, which explains the name.
In other words the only way we could have a two-sided arrow in the picture of an
anti-symmetric relation is for that arrow to be a loop.28

Exercise 199. Show that a symmetric re�exive relation on a set 𝑆 is anti-
symmetric if and only if it is the identity on 𝑆.

Note that unlike for the other properties of binary relations studied in these notes,
there is no such thing as an ‘anti-symmetric closure’ of a relation. For the other
properties it is possible to add elements to the relation to obtain the desired
property. But to make a relation anti-symmetric we would have to remove one of
(𝑠, 𝑠′) or (𝑠′, 𝑠) if both are elements of the relation, and there’s no sensible way to
decide which one to take away. One could remove both, but then one constructs
something that is a long way removed from the starting relation.

28But we don’t draw loops with arrows at both ends!
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Exercise 200. Show that the transitive closure of the re�exive closure of an
anti-symmetric relation is not necessarily anti-symmetric. Hence we cannot
generate partial orders from relations in the way we can do with equivalence
relations. Hint: The smallest counterexample is a binary relation on a set with
three elements.

Now we have all the properties required to de�ne a partial order.

De�nition 65: partial order

A partial order on a set𝑆 is a binary relation which is re�exive, anti-symmetric
and transitive. A set together with a partial order is known as a partially
ordered set, or in short, a poset.

We often write (𝑆,≤) for the poset consisting of the set 𝑆 with the partial order ≤.

Example 7.56. The standard de�nition for ≤ on sets of numbers between N
and R are all partial orders.29

All these orders on sets of numbers satisfy an extra condition,
see De�nition 66, and you may �nd that you are assuming
properties because you are guided by the examples you already
know. Nonetheless we use the symbol ≤ for all partial orders
in this section, so be careful not to make assumptions about
such relations you make.

In order to check that a given relation on a small �nite set is a partial order we may
draw it as a directed graph, and then check re�exivity and transitivity as before.
To check anti-symmetry we just have to make sure that there’s no connection
with arrow tips on both ends. To put it di�erently, we make use of the transitivity
of the relation when interpreting the diagram.
It is customary, however, to draw a partial order on a small �nite set as an undirec-
ted graph that is oriented on the page. Since a partial order is always re�exive one
usually does not draw this part of the relation. Since a partial order is typically
not symmetric (indeed, it has a property which is in a way the opposite, see Exer-
cise 199), you might think that one should draw a directed graph, but instead the
convention is to use the orientation of the paper to provide direction: Whenever
two elements are connected by a line then the one that sits lower on the page is
considered to be less than or equal to the other.30 Furthermore, in order to avoid
drawing super�uous lines, the assumption is that if 𝑎 is connected to 𝑏 which is
higher up on the page, and 𝑏 is connected to 𝑐, which is higher up again on the
page, then the relation connects 𝑎 and 𝑐 even if no connection is drawn between
the two.
The resulting graph is known as the Hasse diagram of the given partial order.

29Moreover, the operations on these sets of numbers, namely multiplication and addition, have
speci�c properties which mean they are compatible with that order.

30It should go without saying that this means that we have to draw our Hasse diagrams in such a
way that two elements on the same level are never connected.
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Example 7.57. Consider the partial order on {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} which is the trans-
itive re�exive closure of

{(𝑎, 𝑏), (𝑏, 𝑐), (𝑎, 𝑒), (𝑒, 𝑓)}

Previously we would have drawn this relation as follows.

𝑎

𝑏

𝑐

𝑒

𝑓

𝑑

But for relations known to be partial orders we draw the corresponding Hasse
diagram as explained in the preceding paragraph, which for the given poset
looks like this:

𝑎

𝑏

𝑐

𝑒

𝑓

𝑑

The picture tells us (because of the orientation on the page) that 𝑎 is less than
or equal to 𝑏 which in turn is less than or equal to 𝑐, and that 𝑎 is also less
than or equal to 𝑒, which in turn is less than or equal to 𝑓 . The element 𝑑 is
not comparable with any element other than itself.

Example 7.58. If we go back to the example from page 395, and form the
transitive closure of the re�exive closure of

{(0, 1), (1, 2), (2, 3), (3, 4)}

then the Hasse diagram of this partial order is simply

0

1

2

3

4
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Note that this is a total order (see De�nition 66). In the Hasse diagram of a
totally ordered set all the elements are lined up.

Example 7.59. One particular partial order should be familiar.

On the natural numbers N we have the ‘usual order’ we
consider most of the time. We picture this as on the right,
but because we are considering an in�nite set we can only
draw the Hasse diagram of a small part of the whole. The
expression 𝑚 ≤ 𝑛 is one that you will have seen before,
with this meaning. Note that this is a total order. 0

1

2

3

. . .

Example 7.60. Consider the following partial order on the natural numbers
without 0, N ∖ {0}. We set

𝑚 ≤ 𝑛 if and only if 𝑚 divides 𝑛.

We show that this is a partial order by checking the properties required.31

• Clearly the relation de�ned above is re�exive since every natural number
other than 0 divides itself.

• The relation is anti-symmetric since, given two natural non-zero num-
bers 𝑚 and 𝑛,

𝑚 divides 𝑛 and 𝑛 divides 𝑚

imply 𝑚 = 𝑛.

• The relation is transitive—you can �nd a proof in Exercise 23 (c).

Drawing a picture of (part of) this partial order, for the numbers from 1 to 10,
gives a bit of an idea of what it looks like.

1

2 3

4

5

6

7

8

9 10

. . .

. . .

. . .

31Note that these properties are established above in examples or exercises but we repeat some of
the arguments here for completeness’ sake.
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Note that in the preceding Examples, 7.59 and 7.60, we use the
same symbol, ≤, for two distinct partial orders. Which partial
order is intended in any given situation has to be clear from
the context. If you �nd it confusing to use ≤ for an order other
than the ‘usual’ one, you may instead use symbols such as ⊑
or 4 to make a visible distinction.

Example 7.61. Classes in Java are given a partial order by inheritance. You
can de�ne that one class is less than or equal to another if and only if it is a
subclass.

Example 7.62. Many rankings come close to being partial orders. But typically
it is possible for two entities to be considered equal in ranking, and so they often
are not anti-symmetric. For example, ranking tennis, golf or chess players by
the points they have accumulated has this property, as does ranking students
by their overall averages. In the case where such a relation is anti-symmetric
it is a total order, compare De�nition 66. See Optional Exercise 35 for a look at
relations that only lack anti-symmetry to be partial orders.

Example 7.63. We can de�ne something that is almost a partial order on �nite
state machines by setting

𝐴 ≤ 𝐴′ i� there is a simulation from 𝐴 to 𝐴′.

This is re�exive since the identity relation is always a simulation. It is transitive
since the relational composite of two simulations is a simulation (see Optional
Exercise 30. It is not anti-symmetric since it is possible for two automata
to have simulations going each way without the automata being identical.
Optional Exercise 35 encourages you to think about relations that have these
properties.

Example 7.64. Scheduling is typically performed based on information that
Task 𝐴 has to be performed before Task 𝐵. This information has to be

• anti-symmetric, since otherwise it is impossible to schedule all tasks;

• transitive since if Task 𝐴 has to come before Task 𝐵, which in turn has
to happen before Task 𝐶 can be performed, then Task 𝐴 has to happen
before Task 𝐶 .

Hence the re�exive closure of such a relation is a partial order. If we have to
schedule tasks in a linear fashion, maybe because there is only one person (or
robot or machine) to carry out all the tasks, then a valid schedule is one where

Task 𝐴
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can only be scheduled when

all tasks 𝐵 with 𝐵 < 𝐴 have been scheduled.
We identify a special property shared by the partial orders on sets of numbers, see
Example 7.56. Note that the following notion is de�ned in Section 20.3 of Java: Just
in Time.
De�nition 66: total order

A total order on a set 𝑆 is a partial order ≤ with the property that for all 𝑠
and 𝑠′ in 𝑆 we have

𝑠 ≤ 𝑠′ or 𝑠′ ≤ 𝑠.

In this situation we say that the poset (𝑆,≤) is totally ordered.

Again we give the �rst order proposition for this condition, where we assume a
binary predicate symbol 𝑅 for the partial order.

∀𝑥.∀𝑦. (𝑅(𝑥, 𝑦) ∨𝑅(𝑦, 𝑥))

In a total order every two elements are comparable, so we may think of them all
as being lined up, the way we usually think of N or R. When we do not have this
extra property then you may �nd that (partial) orders don’t quite behave in the
way you expect.

Example 7.65. Examples of totally ordered sets are N, Z, Q and R with the
usual order.

Example 7.66. The partially ordered set from Example 7.58 shows a total order.

CExercise 201. Which of the following relations are partial orders? Try to
sketch a Hasse diagram for each32, and determine whether it is total. Justify
your answers.

(a) The relation on complex numbers where 𝑎 + 𝑏𝑖 is less than or equal to
𝑎′ + 𝑏𝑖′ if and only if 𝑎 ≤ 𝑎′ and 𝑏 ≤ 𝑏′.

(b) The relation on complex numbers where 𝑎 + 𝑏𝑖 is less than or equal to
𝑎′ + 𝑏′𝑖 if and only if 𝑎 ≤ 𝑎′.

(c) The relation on N×N where (𝑚,𝑛) is less than or equal to (𝑚′, 𝑛′) if and
only if 𝑚 + 𝑛 ≤ 𝑚′ + 𝑛′.

(d) The relation on N×N where (𝑚,𝑛) is less than or equal to (𝑚′, 𝑛′) if and
only if

𝑚 < 𝑚′ or 𝑚 = 𝑚′ and 𝑛 ≤ 𝑛′.

(e) The relation on functions from N to N where 𝑓 is less than or equal to 𝑔 if
and only if (compare Section 5.1)

𝑔 dominates 𝑓,

that is
for all 𝑛 ∈ N we have 𝑓𝑛 ≤ 𝑔𝑛.
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This is known as the pointwise order on Fun(N,N) since we look at each input
point.

(f) The subset relation on the powerset of a set 𝑋 .

(g) The relation on strings over a set 𝑆 where string 𝑙 is less then or equal to
string 𝑙′ if and only if 𝑙 is a pre�x of 𝑙′—in other words, if the beginning of 𝑙′ is
𝑙.

(h) Assume we have a poset (𝑆,≤). Then we obtain an order on the set of
strings over the set 𝑆, known as the lexicographic order by setting33

𝑠1𝑠2 · · · 𝑠𝑚 4 𝑠′1𝑠
′
𝑠 . . . 𝑠

′
𝑛 if and only if

for 𝑖 smallest number in N with 𝑠𝑖 ̸= 𝑠′𝑖

we have 𝑠𝑖 < 𝑠′𝑖 or 𝑠𝑖 not de�ned.

Show that the relation de�ned in this way is indeed re�exive, anti-symmetric
and transitive.

(i) The relation on the set of �rst year students in the School where student 𝐴
is related to student 𝐵 if and only if student 𝐵 is taller than student 𝐴.

(j) The relation on the set of �rst year students in the School where student 𝐴
is related to student 𝐵 if and only if the registration number of student 𝐴 is
less than or equal to that of student 𝐵.

(k) The relation on all valid Java programs where programme 𝑃 is less than
or equal to program 𝑄 if and only if as a string, in the lexicographic order
(also known as the ‘dictionary order’) program 𝑃 comes before program 𝑄.

(l) The following relation on the set {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}:

{(𝑎, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐), (𝑑, 𝑑), (𝑒, 𝑒)}.

(m) The re�exive closure of the following relation on {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}:

{(𝑎, 𝑏), (𝑐, 𝑑)}.

(n) The re�exive transitive closure of the following relation on the same set.

{(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑑), (𝑑, 𝑒)}.

(o) The re�exive transitive closure of the following relation on the same set.

{(𝑎, 𝑏), (𝑏, 𝑎), (𝑏, 𝑐)}.

(p) The subset relation on the powerset of the set {0, 1, 2}.

In parts (a) to (e) you have an existing relation ≤ on a set of numbers (N or R),
and a new relation is de�ned based on that. You may �nd it less confusing to use
a new symbol for the new relation, maybe ⊑ or 4 as I do in part (h).
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Example 7.67. We show how to de�ne a partial order on FBTrees𝑆 , where 𝑆
is an arbitrary set. We would like to de�ne34

Base cases ≤. For all 𝑠 ∈ 𝑆, we have tree 𝑠 ≤ tree 𝑠.
For all 𝑠 ∈ 𝑆, 𝑡, 𝑡′ ∈ FBTrees𝑆 , tree 𝑠 ≤ tree𝑠(𝑡, 𝑡

′).

Step case ≤. If 𝑡 ≤ 𝑡′′ and 𝑡′ ≤ 𝑡′′′ then tree𝑠(𝑡, 𝑡
′) ≤ tree𝑠(𝑡

′′, 𝑡′′).

This relates two trees if and only if the second arises from the �rst by repeatedly
extending the tree, that is

• pick a leaf with label 𝑠 (that is a subtree of the form tree 𝑠) and

• replace that leaf by a tree whose root label is 𝑠, that is, a tree of the form
tree𝑠(𝑡, 𝑡

′).

So, for example, we have that the tree on the left is less than or equal to the
one on the right.

3

2 3

2 1

3

2

3 1

3

2 1

Alternatively we can think of the relation ≤ as relating a tree 𝑡 to a tree 𝑡′

if and only if we can obtain the �rst tree from the second tree by cutting o�
some of the branches.
We can show that this is a partial order. For re�exivity we have an inductive
proof.

Base cases ≤. For 𝑠 ∈ 𝑆 we know that tree 𝑠 ≤ tree 𝑠 by the �rst base case
of ≤.

Ind hyp. We know that 𝑡 ≤ 𝑡 and 𝑡′ ≤ 𝑡′ for some full binary trees 𝑡 and
𝑡′ over 𝑆.

Step case ≤. From the induction hypothesis we may use the step case of ≤
to deduce that for every 𝑠 ∈ 𝑆 we have

tree𝑠(𝑡, 𝑡
′) ≤ tree𝑠(𝑡, 𝑡

′).

We can show anti-symmetry by a second induction proof.

32For in�nite or large sets just try to get a general idea what such a diagram might look like and
draw a part of it.

33Any dictionary gives you the words in this order. Also, the Linux list function presents the
contents of some directory in this order.
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Base cases ≤. For 𝑡, 𝑡′ ∈ FBTrees𝑆 if 𝑡 ≤ 𝑡′ by one of the base cases of the
de�nition then it must be the case that we can �nd 𝑠 ∈ 𝑆 such
that 𝑡 = tree 𝑠.
In order for 𝑡′ ≤ 𝑡 to also hold it must be the case, since we
know that 𝑡 = tree 𝑠, that this also occurs by the �rst base case
of the de�nition of ≤, and so we must have that there is 𝑠′ ∈ 𝑆
with 𝑡′ = tree 𝑠′, but But if they are related by the base case of
the de�nition of ≤ then it must also be the case that 𝑠 = 𝑠′, and
so

𝑡 = tree 𝑠 = tree 𝑠′ = 𝑡′.

Ind hyp. If 𝑡 ≤ 𝑡′ and 𝑡′ ≤ 𝑡 then 𝑡 = 𝑡′, and if 𝑡′′ ≤ 𝑡′′′ and 𝑡′′′ ≤ 𝑡′ then
𝑡′′ = 𝑡′′′.

Step case ≤. The only remaining case is that

tree𝑠(𝑡, 𝑡
′) ≤ tree𝑠(𝑡

′′, 𝑡′′′) and tree𝑠(𝑡
′′, 𝑡′′′) ≤ tree𝑠(𝑡, 𝑡

′)

both by the step case, and so

𝑡 ≤ 𝑡′′ and 𝑡′ ≤ 𝑡′′′ and 𝑡′′ ≤ 𝑡 and 𝑡′′′ ≤ 𝑡′

and by the induction hypothesis

𝑡 = 𝑡′′ and 𝑡′ = 𝑡′′′.

Note that this is a more complicated induction proof than others contained in
these notes. This is required to ensure that all possible cases are covered.
The proof of transitivity is a similar induction proof, see the following exercise.

Exercise 202. This exercise studies in more detail the partial order on trees
described in the preceding example.

(a) Rewrite the recursive de�nition of this partial order to de�ne a set

𝑅≤ ⊆ FBTrees𝑆 × FBTrees𝑆 .

(b) Show by induction that for

(𝑡, 𝑡′) ∈ 𝑅≤

we have that the roots of the two trees have the same label.

(c) Show that we have for 𝑡, 𝑡′ ∈ FBTrees𝑆 and the partial order ≤ from
Example 7.67 that

𝑡 ≤ 𝑡′ if and only if (𝑡, 𝑡′) ∈ 𝑅≤.

(d) Show that ≤ as de�ned in Example 7.67 is transitive.

34Note that there are many base cases here, one for each tree!
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(e) Write a program that takes two objects of class BTree and returns true if
and only if the �rst is less than or equal to the second in this order.

Example 7.68. We can de�ne a partial order on the set Lists𝑆 of lists over a
set 𝑆, where one list is less than or equal to another if and only if the second list
is an extension of the �rst list, that is, it arises from the �rst list by adding more
elements (from the left as usual). Note that while this has many similarities to
the previous example there are subtle di�erences.
So, for example, if 𝑆 = N we have

[4, 3, 2, 1] ≤ [7, 9, 3, 4, 4, 3, 2, 1],

because we have that
[7, 9, 3, 4, 4, 3, 2, 1]

may be obtained from
[4, 3, 2, 1]

by adding the elements
4, 3, 9, and 7

in that order. On the other hand, the list

[4, 3, 2]

is not less than or equal to
[4, 3, 2, 1]

because the two lists don’t start out in the same way.
We can begin to sketch a Hasse diagram for this poset.

[ ]

[1]

[1, 1]

. . .

[2, 1]

. . .

[3, 1]

. . .

[2]

[1, 2]

. . .

[2, 2]

. . .

[3, 2]

. . .

[3]

[1, 3]

. . .

[2, 3]

. . .

[3, 3]

. . .

. . .

. . .

We can give a recursive de�nition for the set of all pairs that belong to this
relation 𝑅≤ on Lists𝑆 . In other words, we recursively de�ne

𝑅≤ ⊆ Lists𝑆 × Lists𝑆

similar to the way we de�ned the subset of N that consists of all even numbers
(Example 6.43), or of all powers of 2 (Example 6.44).

Base cases 𝑅≤. 𝑙 ∈ Lists𝑆 implies (𝑙, 𝑙) ∈ 𝑅≤.

Step case 𝑅≤. (𝑙, 𝑙′) ∈ 𝑅≤, 𝑠 ∈ 𝑆 implies (𝑙, 𝑠 : 𝑙′) ∈ 𝑅≤.

If we are allowed to apply the re�exive transitive closure operation afterwards
we can get away with a simpler de�nition of a relation, say �̂�:

• For 𝑙 ∈ Lists𝑆 and 𝑠 ∈ 𝑆 we have (𝑙, 𝑠 : 𝑙) ∈ �̂�.
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The relation 𝑅 is the re�exive transitive closure of the relation �̂�.
Alternatively we can write a method which takes as input two objects of class
List and returns true if and only if the �rst list is less than or equal to the
second list. (You may want to compare this to Example 163.) Here we use the
reverse method from Code Example 6.6.

public static boolean lessthan (List l1, List l2)
{

if (l1 == null)
return true;

else {
if (l2 == null)

return false;
else {

List r1 = reverse (l1);
List r2 = reverse (l2);
if (r1.value == r2.value)

return lessthan (l1.next, l2.next);
else

return false;
}

}
}

If you wonder why we reverse the two lists before comparing them, have a go
at trying to write a method which does not require this step.
In some ways it is easier to recursively de�ne the relation than to de�ne a
method to check whether it holds. In other words, de�ning an algorithm that
checks whether two lists are in the relation is harder than de�ning the relation.
Indeed, �nding decision procedures (which you encounter in COMP11212) can
be di�cult even for properties that can be described in a simple manner. 35

Exercise 203. Show the following for the relation 𝑅≤ de�ned in the preceding
example:

(a) The relation 𝑅≤ is re�exive.

(b) If (𝑙, 𝑙′) ∈ 𝑅≤ then len 𝑙 ≤ len 𝑙′.

(c) If (𝑙, 𝑙′) ∈ 𝑅≤ and len 𝑙 = len 𝑙′ then 𝑙 = 𝑙′.

(d) The given relation is anti-symmetric.

(e) Show that if we have 𝑙 and 𝑙′ in Lists𝑆 , and 𝑛 ∈ N, and 𝑠1, 𝑠2, . . .𝑠𝑛 in 𝑆,

35However, one can take that recursive de�nition of the relation and turn it into the decision
procedure given following a speci�c set of rules! This idea takes us beyond the scope of this course
unit.
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with
𝑙′ = 𝑠𝑛 : (𝑠𝑛−1 : (. . . (𝑠1 : 𝑙)))

then
(𝑙, 𝑙′) ∈ 𝑅≤.

(f) Show the converse of the previous part, that is, given (𝑙, 𝑙′) ∈ 𝑅≤ then we
can �nd elements in 𝑆 to satisfy the given condition.

(g) Show that the given relation is transitive.

For any given part you may need to use a previous part to give the desired proof.

Note that when programming, we sometimes come across ways of comparing
elements which are not partial orders. For example, the CompareTo method for
many classes in Java typically implements a comparison that is not anti-symmetric.
It is an instance of a formal notion explored in the following (optional) exercise.

Optional Exercise 35. A pre-order ⪯ is a binary relation on a set 𝑆 which is
re�exive and transitive. For such a pre-order it makes sense to de�ne a relation
≈ by, for 𝑠 and 𝑠′ in 𝑆,

𝑠 ≈ 𝑠′ if and only if 𝑠 ⪯ 𝑠′ and 𝑠′ ⪯ 𝑠.

(a) Can you think of an example of a pre-order? Having an example at hand
my help you with the following parts.

(b) Show that ≈ is an equivalence relation.

(c) Use⪯ to de�ne a partial order on𝑆/≈ and show that your relation is indeed
a partial order. Conclude that for every pre-order there is a corresponding
partial order on a related set.

(d) The CompareTo() method in Java for many classes is concerned with a
pre-order, rather than a partial one. If you want to think more about pre-orders
you could verify this claim, and think about why the method was designed in
this way.

(e) Another pre-order is given by the relation between sets where 𝑆 is related
to 𝑇 if and only if the size of 𝑆 is at most as bit as that of 𝑇 . Why is this not a
partial order?

Exercise 204. Show that the set of all functions

Fun(𝑋,𝑁),

where

• 𝑋 is any set, and

• 𝑁 is a set of numbers between N and R
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carries a partial order given by the ‘is dominated by’ relation from Section 5.1,
which is known as the pointwise order (compare Exercise 201 (e)).

Exercise 205. Show that if (𝑃,≤) is a poset then we obtain another partial
order by the following means.

(a) By setting

𝑝 ⊑ 𝑝′ if and only if 𝑝′ ≤ 𝑝.

This is known as the opposite (partial) order of the poset, since ⊑ is ≤op. It
means turning the poset upside-down.

(b) By taking a subset 𝑄 of 𝑃 and de�ning, for 𝑞 and 𝑞′ in 𝑄,

𝑞 ⊑ 𝑞′ if and only if 𝑞 ≤ 𝑞′ as elements of 𝑃.

This is known as the subset (partial) order on 𝑄.

Optional Exercise 36. The total orders on N, Z, Q and R you are used to are
very well behaved. For example, for numbers 𝑚, 𝑛, 𝑚′ and 𝑛′ we have

𝑚 ≤ 𝑚′ and 𝑛 ≤ 𝑛′ implies 𝑚 + 𝑛 ≤ 𝑚′ + 𝑛′.

(a) Prove this property for N using induction, and the recursive de�nitions of
≤ and +.

(b) Prove this property for Z and Q using their formal de�nitions from the
previous section.

(c) Can you think of a similar property that holds for multiplication? Hint:
Have a look at Fact 7/

(d) There is no standard partial order on the complex numbers C. While it is
possible to de�ne a number of partial orders on this set (compare Exercise 201)
most of these are not total,36 nor will the operations be well-behaved with
respect to these partial orders. Conduct some experiments by de�ning orders
on C and exploring their properties.

7.4.2 Maximal, minimal, greatest, least

Having a partial order on a set allows us to �nd elements with distinctive properties.

De�nition 67: maximal/minimal

An element 𝑝 of a poset (𝑃,≤) is a maximal element of 𝑃 if and only if for
all 𝑝′ ∈ 𝑃 ,

if 𝑝 ≤ 𝑝′ then 𝑝 = 𝑝′.

An element 𝑝 of a poset (𝑃,≤) is a minimal element of 𝑃 if and only if for

36What would a total order on the set C look like?
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all 𝑝′ ∈ 𝑃 we have

if 𝑝′ ≤ 𝑝 then 𝑝′ = 𝑝.

The propositional formula in the predicate calculus that expresses this property
requires a constant 𝑝 to be a maximal element for a partial order, a binary predicate
symbol 𝑅 for the partial order, and a binary relation 𝐸 for equality. It looks as
follows.

∀𝑥. (𝑅(𝑝, 𝑥) → 𝐸(𝑝, 𝑥))

The way to understand this de�nition is to note that for a maximal element 𝑝 of a
poset there cannot be another element above it (because any element above has
to be equal to 𝑝). Analogously, a minimal element cannot have another element
below it.
Note that a poset can have more than one maximal or minimal element, see the
following example.

Example 7.69. If we go back to our running example from above,

𝑎

𝑏

𝑐

𝑒

𝑓

𝑑

we can see that the maximal elements are 𝑐, 𝑓 and 𝑑, and that there are two
minimal elements, namely 𝑎 and 𝑑.

𝑎

𝑏

𝑐

𝑒

𝑓

𝑑

maximal elements

minimal elements

This example illustrates that a maximal element does not have to be above all
the other elements (for example, 𝑓 is maximal but not above 𝑐, 𝑏 or 𝑑, and 𝑑 is
maximal but not above anything other than itself).

Example 7.70. By Exercise 205 we may turn our given poset upside-down to
obtain another poset:

447



𝑎

𝑏

𝑐

𝑒

𝑓

𝑑

In this poset there are three minimal elements, 𝑐 and 𝑓 and 𝑑, and two maximal
elements, 𝑎 and 𝑑.

𝑎

𝑏

𝑐

𝑒

𝑓

𝑑

minimal elements

maximal elements

It is immediately clear from the de�nition that when we turn a poset upside-down
then maximal elements become minimal, and vice versa.
We look at another concept which is more restricted than being minimal or max-
imal.

De�nition 68: greatest/least

An element 𝑝 is the37 greatest element of a poset (𝑃,≤) if and only if it is the
case that

for all 𝑝′ ∈ 𝑃 we have 𝑝′ ≤ 𝑝.

The greatest element is usually called38 ⊤.
An element 𝑝 is the37least element of a poset (𝑃,≤) if and only if it is the
case that

for all 𝑝′ ∈ 𝑃 we have 𝑝 ≤ 𝑝′.

The least element is usually called39 ⊥.

Using the same convention as before the proposition corresponding to a parameter
𝑝 describing a largest element for a partial order given by a binary predicate symbol
𝑅 is

∀𝑥.𝑅(𝑥, 𝑝).

Example 7.71. Our original example poset has no greatest or least element. If
we remove the element 𝑑 from the set we obtain the following.

37The use of the de�nite article here is justi�ed by the following exercise.
38Yet another usage of this symbol! It is shaped like a 𝑡, short for ‘top’, and that is the name of the

symbol.
39Yet another usage of this symbol! It is shaped like the opposite of ⊤. It is known as ‘bottom’.
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𝑎

𝑏

𝑐

𝑒

𝑓

least element

This poset has no greatest element; a least element exists, namely 𝑎. Note that
this is also a minimal element, and that there is only one minimal element. See
the following exercises for this and other important properties of least and
greatest elements.

Example 7.72. Consider the set N ∖ {0} where

𝑚 ≤ 𝑛 if and only if 𝑚 divides 𝑛,

compare Example 7.60.
Since 1 divides every number it is the least element. This means that it is the
only minimal element.
Since no number is divided by all natural numbers there is no largest element.
But there are no maximal elements either: For every element 𝑛 ∈ N ∖ {0} we
have that 𝑛 divides 2𝑛, and so for any given 𝑛 ∈ N ∖ {0} we can always �nd a
larger element.

Example 7.73. We take the previous example but restrict to the set N ∖ {0, 1}
where we again de�ne

𝑚 ≤ 𝑛 if and only if 𝑚 divides 𝑛,

compare Example 7.60. Compared to that example we have removed the
number 1 from consideration.

2 3

4

5

6

7 11

8 12

9 10

. . .

. . .

. . .

minimal elements

There is no number in N ∖ {0, 1} that divides all numbers, so there is no least
element. There are a lot of minimal elements however: In order for an element
𝑛 to be minimal we must have that 𝑚 ≤ 𝑛 implies 𝑚 = 𝑛; in other words, we
are are looking for numbers 𝑛 with the property that for all 𝑚 ∈ N ∖ {0, 1},

𝑚 divides 𝑛 implies 𝑚 = 𝑛.
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This is the case exactly when 𝑛 is a prime number, and so all prime numbers
are minimal.
Since no number is divided by all natural numbers there is no largest element.
But there are no maximal elements either: As in the previous example we have
that for every element 𝑛 ∈ N ∖ {0} we have that 𝑛 divides 2𝑛, and so we can
always �nd a larger element.

Example 7.74. For the partial order on Lists𝑆 from Example 7.68 we have
a least element, namely the empty list [ ]. There are no maximal elements
since given an arbitrary list we can always make it bigger by adding another
element.

CExercise 206. For the following posets, try to draw a Hasse diagram and
determine any maximal, minimal, least and greatest elements.

(a) The real numbers with the usual order.

(b) The natural numbers with the usual order.

(c) The negative integers with the usual order.

(d) For the partial order on FBTrees𝑆 from Example 7.67.

(e) The powerset of a set 𝑋 with subset inclusion as the order.

(f) The set Fun(N,N) of functions from N to N with the pointwise order, given
by:

𝑓 ≤ 𝑔 if and only if for all 𝑛 ∈ N we have 𝑓𝑛 ≤ 𝑔𝑛.

(g) The following relation on {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}.

{(𝑎, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐), (𝑑, 𝑑), (𝑒, 𝑒)}.

(h) The re�exive closure of the following relation on {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}:

{(𝑎, 𝑏), (𝑐, 𝑑)}.

(i) The re�exive transitive closure of the following relation on that set.

{(𝑎, 𝑏), (𝑎, 𝑐), (𝑏, 𝑑), (𝑏, 𝑒), (𝑐, 𝑑), (𝑐, 𝑒)

(j) The re�exive transitive closure of the following relation on that set.

{(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑑), (𝑑, 𝑒)}.

(k) For your programme of study, and the set of compulsory COMP units on
that programme (through years 1 to 3), the partial order which is the transitive
re�exive closure of the ‘is a prerequisite of’ relation (ignoring corequisites).
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(l) For Chapter 6, take all operations de�ned in that chapter (including ex-
ercises) for N and for lists, and use the transitive re�exive closure of the ‘is
required to de�ne’ relation (for example, the addition operation is required to
de�ne multiplication of natural numbers).

EExercise 207. Greatest and least elements have special properties.

(a) Show that there is at most one greatest, and at most one least, element in
each poset.

(b) Show that if 𝑝 is the greatest element of a poset then it is maximal. Similarly,
show that if 𝑝 is the least element of a poset then it is minimal.

(c) Show that if a poset has a greatest element then it has exactly one maximal
element. Similarly show that if a poset has a least element then it has exactly
one minimal element.

(d) Show that if (𝑃,≤) is a totally ordered poset then every maximal element
is a greatest element, and every minimal element is a least element. Conclude
that a totally ordered set can have at most one maximal, and one minimal,
element.

7.4.3 Upper and lower bounds

When looking at posets we often care about whether a collection of elements
can be safely ‘overestimated’ (or ‘underestimated’) by using a single element. For
example, when we are looking at the complexity of a problem we may be interested
in the fact that it is ‘as most as complicated as some function 𝑓 ’—that means that
there is an algorithm with complexity function less than or equal to 𝑓 . Or maybe
we have a group of algorithms or programs we would like to discuss in one go,
and we can state that the complexity function for each of these lies below some
‘upper bound’ given by some function 𝑓 .

De�nition 69: upper/lower bound

Let 𝑆 be a subset of a poset (𝑃,≤). We say that an element 𝑝 of40 𝑃 is an
upper bound for 𝑆 if and only if it is the case that

for all 𝑝′ ∈ 𝑆 we have 𝑝′ ≤ 𝑝.

We say that an element 𝑝 of41 𝑃 is a lower bound for 𝑆 if and only if

for all 𝑝′ ∈ 𝑆 we have 𝑝 ≤ 𝑝′.

Again we give a �rst order proposition to describe this de�nition. Assume we have

• a binary predicate symbol 𝑅 for the partial order,

• a unary predicate 𝑆 that describes the elements of the set 𝑆, so 𝑆(𝑥) is
interpreted as 1 if and only if 𝑥 is in 𝑆,

40Note that 𝑝 need not be an element of 𝑆.
41Again note that 𝑝 need not be an element of 𝑆.
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then the proposition establishing 𝑝 as an upper bound of 𝑆 is

∀𝑦. (𝑆(𝑦) →𝑅(𝑦, 𝑝)).

The example poset we have been using so far is too simple to contain many
interesting upper or lower bounds. For the version of the example poset that
appears in Example 7.71, the only interesting observation is that 𝑎 is the only lower
bound for the sets {𝑐, 𝑓}, {𝑏, 𝑓}, {𝑐, 𝑒} and {𝑏, 𝑒}.

Example 7.75. Consider the poset drawn below.

𝑎

𝑏

𝑐

𝑒

𝑓

𝑔

What are the upper bounds for the set {𝑏, 𝑒}? They are the elements which
are above both, 𝑏 and 𝑒.

𝑎

𝑏

𝑐

𝑒

𝑓

𝑔 upper bounds of {𝑏, 𝑒}

𝑎

𝑏

𝑐

𝑒

𝑓

𝑔

We can see that the upper bounds are 𝑐 and 𝑔.
What are the upper bounds of {𝑐, 𝑓}?

𝑎

𝑏

𝑐

𝑒

𝑓

𝑔 upper bounds of {𝑐, 𝑓}
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The element 𝑔 is the only upper bound of the sets {𝑐, 𝑓} (and also of {𝑏, 𝑓}).

Example 7.76. In Java we can order classes by the subclass relation. For this
partial order two classes have a common upper bound if and only if there is a
class which is a superclass for both.

Exercise 208. For the poset from Example 7.75, �nd all lower bounds for the
sets {𝑏, 𝑒}, {𝑔, 𝑏}, {𝑔, 𝑒}, {𝑐, 𝑓}, {𝑏, 𝑓}.

Sometimes we can �nd a ‘best’ upper bound for a subset of a poset, that is, amongst
all the upper bounds there may be a least one.

De�nition 70: least upper/greatest lower bound

Let 𝑆 be a subset of the poset (𝑃,≤). We say that an element 𝑝 of 𝑃 is the42

least upper bound (or supremum) for 𝑆 if and only if

• 𝑝 is an upper bound for 𝑆 and

• if 𝑝′ is an upper bound for 𝑆 then 𝑝 ≤ 𝑝′.

The least upper bound of two elements 𝑝 and 𝑝′ is often written as 𝑝 ∨ 𝑝′.
We say that an element 𝑝 of 𝑃 is the42greatest lower bound (or in�mum) for
𝑆 if and only if

• 𝑝 is a lower bound for 𝑆 and

• if 𝑝′ is a lower bound for 𝑆 then 𝑝′ ≤ 𝑝.

The greatest lower bound of two elements 𝑝 and 𝑝′ is often written as 𝑝 ∧ 𝑝′.

This statement is fairly complicated if we look at the number of quanti�ers involved
when we unravel the statements from above. In an appropriate formal system43

for 𝑝 to be the least upper bound of 𝑆 we need

∀𝑦. (𝑆(𝑦)→𝑅(𝑦, 𝑝))

∧ ∀𝑦. ((∀𝑧.𝑆(𝑧) →𝑅(𝑧, 𝑦)) →𝑅(𝑝, 𝑦)).

You can see that by building up the de�nitions slowly we have a �nal de�ni-
tion which looks simpler. But taking it apart reveals that the concept is quite
complicated, as can be seen from looking at the corresponding proposition above.

Example 7.77. Going back to the example from above: The set {𝑏, 𝑒} has two
upper bounds, namely 𝑐 and 𝑔. This set has a least element, namely 𝑐, and so 𝑐
is the least upper bound of {𝑏, 𝑒}.

42The de�nite article is justi�ed by Exercise 210.
43We need a one-placed predicate symbol for ‘is an element of 𝑆’ and a binary predicate symbol

𝑅 for the partial order.
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𝑎

𝑏

𝑐

𝑒

𝑓

𝑔

upper bounds of {𝑏, 𝑒}

least upper bound of {𝑏, 𝑒}

An alternative way of looking at least upper bonds is the following: We can form
a new set from 𝑆, namely

{𝑝′ ∈ 𝑃 | 𝑝′ upper bound for 𝑆},

and then
𝑝 is a least upper bound for 𝑆

if and only

𝑝 is the least element of {𝑝′ ∈ 𝑃 | 𝑝′ upper bound for 𝑆}.

In particular,
{𝑝′ ∈ 𝑃 | 𝑝′ upper bound for 𝑆}

must have a least element for 𝑆 to have a least upper bound.

Example 7.78. If, on the other hand, we change our underlying poset slightly
to

𝑎

𝑏

𝑐

𝑒

𝑓

𝑔upper bounds of {𝑏, 𝑒}

then 𝑐, 𝑓 and 𝑔 are all upper bounds of {𝑏, 𝑒}, but none of them is the least
upper bound since the set

{𝑐, 𝑓, 𝑔}

has no least element.
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Note that the least upper bound of a set may be an element of
that set. In the preceding Example 7.78 the least upper bound
of {𝑐, 𝑓, 𝑔} is 𝑔. In the natural numbers with the usual order,
the least upper bound of {2, 4, 8, 16} is 16. Similar remarks
apply to the greatest lower bound.

Exercise 209. Let (𝑃,≤) be a partial order, and let 𝑆 be a subset of 𝑃 . Show
that if 𝑆 has a greatest element then it is the least upper bound of 𝑆.

Example 7.79. We return to another of our running examples. Consider once
again the set N ∖ {0} with the partial order given by

𝑚 ≤ 𝑛 if and only if 𝑚 divides 𝑛,

compare Examples 7.60 and 7.72. We repeat the Hasse diagram.

1

2 3

4

5

6

7 11

8 12

9 10

. . .

. . .

. . .

If we have two numbers 𝑚 and 𝑛 then their lower bounds are the numbers
which are below both of them, that is, all those numbers which divide both, 𝑚
and 𝑛. For example, for

12 and 18

these numbers are
{1, 2, 3, 6}.

The set of common divisors of two numbers 𝑚 and 𝑛 always has a largest
element for the order under consideration (and this is also the largest element
when we consider the usual order on N, namely the greatest common divisor
of 𝑚 and 𝑛, compare Example 6.42. Hence for every two elements there is a
greatest lower bound, given by their greatest common divisor.
Similarly, given two numbers 𝑚 and 𝑛, their upper bounds are those numbers
which have both of them as divisors, that is, all the common multiples of the
two. For example, for

6 and 4
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these are all the numbers that are multiples of both,44 4 and 3.

{12, 24, 36, . . .}

which means they are all the multiples of 12,

{12𝑛 ∈ N | 𝑛 ∈ N}.

This set always has a smallest element, in this case 12. In general, the least
upper bound of two numbers 𝑚 and 𝑛 is their smallest common multiple.

Example 7.80. If we return to the partial order on the set Lists𝑆 of lists over a
set 𝑆 given in Exercise 7.68 we note the following:
Given any two lists, their greatest lower bound is the longest list they both
have in common, so for

[4, 3, 2, 1] and [5, 4, 2, 1],

the greatest lower bound is
[2, 1].

Once those two elements have been added to the list the paths of getting to
the two lists diverge. Note that there is always such a largest list (it might be
the empty list), so for every pair of element a greatest lower bound exists. If
you look at the Hasse diagram for this poset, which is drawn in Example 7.68
you can see that this looks like a tree. To �nd the greatest lower bound for
two lists, you go down the branches of the tree which contain them until these
branches come together.
On the other hand if we look at least upper bounds for two lists we �nd that
they almost never exist. This is because two lists which are not related by the
order do not have any upper bounds. For example, an upper bound for both

[2, 1] and [3, 1]

would have to be obtainable by adding elements to both these lists, and clearly
this cannot happen. Hence the only case in which any upper bounds exist is
in the case where

𝑙 ≤ 𝑙′,

in which case 𝑙′ is the least upper bound for the two.

Exercise 210. Show that every subset of a poset 𝑃 has at most one least upper,
or greatest lower, bound in 𝑃 .

So least upper (greatest lower) bounds of sets exist, or don’t, but where they exist
they are unique.

44You may want to convince yourself that all numbers that are multiples of both, 4 and 3, are also
multiples of both, 6 and 4.
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CExercise 211. This exercise is concerned with calculating greatest lower and
least upper bounds. Note that all the settings described here also appear in
Exercise 201 and that you may want to solve the corresponding part of that
exercise �rst.

(a) For the natural numbers with the usual order, how would you describe the
greatest lower, and least upper, bounds for sets of the form {𝑚,𝑛}? Can you
extend this to all �nite subsets of N? Do you need �niteness? Try to extend
your result to all subsets of N as far as possible.

(b) For the powerset of the set {0, 1, 2} how does one calculate the greatest
lower, and least upper, bound of a subset? Hint: You may want to draw the Hasse
diagram. What are the greatest lower and least upper bounds of {{0, 1}, {1, 2}}

(c) Consider the powerset 𝒫𝑋 of a set 𝑋 , with subset inclusion providing a
partial order. Show that for every subset 𝒮 of 𝒫𝑋 we have

• The least upper bound of 𝒮 exists and is given by⋃︁
𝒮 =

⋃︁
{𝑆 ⊆ 𝑋 | 𝑆 ∈ 𝒮} = {𝑥 ∈ 𝑋 | ∃𝑆 ∈ 𝒮. 𝑥 ∈ 𝑆}.

• The greatest lower bound 𝒮 exists and is given by⋂︁
𝒮 =

⋂︁
{𝑆 ⊆ 𝑋 | 𝑆 ∈ 𝒮} = {𝑥 ∈ 𝑋 | ∀𝑆 ∈ 𝒮. 𝑥 ∈ 𝑆}.

(d) Consider the set of strings made from symbols from a set 𝑆. Consider the
partial order where a string is less than or equal to another if it is a pre�x
of the latter. What are the greatest lower, and least upper, bounds of sets of
strings (where they exist)? Hint: You have already seen a partial Hasse diagram
for this set. Start from there by looking at the two-element subsets.

(e) Consider the set FBTrees𝑆 of full binary trees over a set 𝑆 with the partial
order from Example 7.67. When do the least upper, and greatest lower, bounds
of two trees exist and what are they? For this part it is su�cient to describe
your answer in English and to give an example.

Exercise 212. Consider the following relation for the set FBTreesN of full
binary trees over the set of labels N. Recall the function 𝑘1 from Exercise 149
which maps a natural number to the number 1. Also recall the map function
from the same exercise, which has the property that

(map 𝑘1)𝑡

replaces every label in the tree 𝑡 by the number 1. Finally recall the partial
order ≤ on FBTrees𝑆 described in Example 7.67. We use this to de�ne a new
partial order on the same set.
For two trees 𝑡 and 𝑡′ we set

𝑡 ⊑ 𝑡′

if and only if
(map 𝑘1)𝑡 ≤ (map 𝑘1)𝑡

′.
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(a) Try to describe in English under which circumstances we have that 𝑡 ⊑ 𝑡′.

(b) Modify the code for the lessthan method from Example 7.67 in such a way
that it implements this new relation.

(c) Is this relation a partial order?

(d) For the set 𝑆 = {1}, consider the partial order ≤ on FBTrees𝑆 used above.
Describe the greatest lower bound of two elements of this set in English.

(e) For the same poset as in the previous part describe the least upper bound
of two elements in English.

EExercise 213. Consider the following relation on the set of partial functions
from a set 𝑆 to a set 𝑇 :

𝑓 4 𝑔 if and only if
dom 𝑓 ⊆ dom 𝑔 and 𝑠 ∈ dom 𝑓 implies 𝑓𝑠 = 𝑔𝑠

(a) Show that this relation is a partial order.

(b) What are the minimal elements of this poset? Is there a least element?

(c) What are the maximal elements of this poset? Is there a greatest element?

(d) Given two partial functions 𝑓 and 𝑔 from our set, under which circum-
stances is their greatest lower bound 𝑓 ∧ 𝑔 de�ned? Can you describe this
partial function?

(e) Given two partial functions 𝑓 and 𝑔 from our set, under which circum-
stances is their least upper bound 𝑓 ∨ 𝑔 de�ned? Can you describe this partial
function?

The mathematical discipline of order theory is concerned with studying partially
ordered sets and their properties.
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Chapter 8

Applications to Computer Science

The eventual aim of this chapter is to collect examples and exercises from computer
science where mathematical techniques are routinely employed, but without stat-
ing explicitly which areas of mathematics might be involved. Currently a number
of suitable exercises are located in various chapters. While they serve there to
motivate some concepts and techniques, from a didactic point of view it would be
good if students gained some experience in solving such problems without too
many hints regarding what techniques to employ.
Examples are:

• The use of precise language, and the predicate calculus, in particular �rst or-
der logic, to describe speci�cations for a computer program (some examples
appear below).

• To verify the correctness of programs and protocols using techniques from
logic, see for example COMP31111.

• Programming with logical formulae in the language Prolog which is taught
in COMP24412.

• Solving optimization problems with tools from logic in COMP21111.

• The use of the expected value of a random variable to calculate the complex-
ity of a given algorithm.

• The use of probabilities and expected values to evaluate risks.

• The notion of one function growing at most as fast as another to talk about
complexity classes of problems or algorithms—this material is covered in
COMP11212, COMP26120 and COMP36111.

• The use of the notion of the size of a set to answer questions from computer
science, for example: Are there functions from N to N which cannot be
implemented using a computer?

• The use of recursion to solve particular problems. Various aspects of this
idea are covered in COMP16212, COMP26120 and COMP36111.

• The use of recursively de�ned function to work out the complexity of a
particular algorithm using recurrence relations.

• The use of induction as a technique to prove properties of many entities
that appear in various course units.
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• Using relations to express properties of programming constructs, or of
elements of some other domain of discourse.

• The use of vectors and matrices in particular in the context of graphics,
which appears in COMP27112.

For the moment only a small number of exercises appear in this chapter. They
are all concerned with analysing a particular problem with a view to creating a
precise speci�cation for the desired solution.
Various exercises that appear in other chapters in these notes could be included in
this chapter, but I did not want to postpone your tackling them until the end of
term.

• Chapter 2. Various questions are concerned with the properties of Java
operations, and with the properties of functions that assign user names.

• Chapter 4. Bayesian updating is a technique from Machine Learning and is
covered in Exercises 103 to 105. Using expected values to calculate average
complexities for algorithms is also a computer science topic, which is the
topic of Exercise 122. We look a little bit at the reliability of hardware in
Exercise 114.

• Chapter 6. All the exercises asking you to produce code are applications of
the mathematical idea of recursion to programming. Proofs by induction
that a given recursively de�ned function has certain properties can be trans-
planted to recursive programs, and are required if you want to show that
your code behaves as expected/speci�ed.

• Chapter 7. We look at algorithms that calculate the powers of some number
in modular arithmetic in Exercise 187. There are also exercises asking you
to produce code for some problems in this chapter.

Much of the time programmers do not make the e�ort to precisely de�ne what
they want their code to do, but under some circumstances this is a very useful tool,
for example

• when code already written shows unexpected behaviour or

• when one is trying to de�ne the behaviour of a compiler of a programming
language1 or

• for safety-critical applications, such as the control of a space or aircraft,
when one would ideally have veri�cation that the code implemented has
particular properties.2

CExercise 214. Imagine you are a programmer tasked with writing a program
that takes as its input an array of natural numbers, and returns a sorted version
of that array. The aim of this exercise is to specify what exactly this means.
For example, you would expect for the input array 𝑎

1You may be surprised by this, but a number of programming languages do not have precise
de�nitions of their behaviour and di�erent compilers (or interpreters) can behave di�erently for
some programs.

2A unit that looks at this issue is COMP31111, Veri�ed Development.
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0 1 2 3 4 5 6 7
9 35 0 5 58 7 1 42

to produce the following output array, say 𝑏:

0 1 2 3 4 5 6 7
0 1 5 7 9 35 42 58

For the conditions (a) and (b) below, do the following:

• Write out as precise a description as possible using the English language.

• Write a formula in �rst order logic that captures the required property.
You may assume the following:

– The domain of interpretation is the set of natural numbers N.
– You have (unary) function symbols 𝑎 and 𝑏 to describe the input

and output arrays respectively.
– You have a parameter 𝑛 that describes the �nal index of the input

array (so the size of the input array is 𝑛 + 1, with indices from 0
to 𝑛).

– You have a binary ‘less than or equal’ predicate 𝐿 so that the
interpretation of 𝐿(𝑥, 𝑦) is 𝐼𝑥 ≤ 𝐼𝑦, where 𝐼 is the interpretation
function.

– You have a binary equality predicate 𝐸 so that the interpretation of
𝐸(𝑥, 𝑦) is 𝐼𝑥 = 𝐼𝑦, where again 𝐼 is the interpretation function.

(a) The output array 𝑏 is sorted.

(b) The array 𝑏 contains exactly the numbers from array 𝑎. You may assume
that all the entries in 𝑎 are di�erent. Hint: Split the property into two parts.

(c) Does your statement from part b) still work if 𝑎 may contain duplicate
entries? Check whether you can construct an example of arrays 𝑎 and 𝑏 which
satisfy your condition, but where 𝑏 has fewer elements than 𝑎.

(d) Can you see how to improve your previous so that it also works for arrays
with duplicate entries? Can you transfer your condition to �rst order predicate
logic? If not, could this be dealt with by expanding the system?

Exercise 215. Assume you are given an array of natural numbers. You are
tasked with writing a program that �nds the median of all these numbers, that
is the number you would �nd at the halfway point of the array if it were sorted.
You may think of this as the ‘middle number’ of all those present.3

(a) Write down the properties required to ensure that the number your pro-
gram �nds is indeed the desired median. You may assume that all the numbers
in your array are di�erent. Hint: You may want to use the function | · | that
maps a �nite set to the number of elements of that set.

(b) Now amend your properties so that it can also cope with the case where
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the same number may appear more than once in the array. Hint: Consider the
set you used in the previous part. Can you think of changing that to a di�erent
set that will give you the desired property?

Exercise 216. Assume you are tasked with writing a program that constructs
an individual timetable for each student (better than the one on the Student
System) and which therefore needs to know about all the undergraduate stu-
dents within the School. This means you will require some way of representing
each student in your program.

(a) You have to de�ne a function whose source is the set of all undergraduate
students in the school, and whose target is something that your programme
knows about. What would a suitable target for such a function be?

(b) Which properties should your function have?

(c) De�ne the function that you would use.

(d) Justify your choice of function by arguing that it satis�es the properties
stipulated in Part (b).

When when we have a recursively de�ned procedure we can create a recurrence
relation (compare Examples 6.47, 6.48 and Exercise 169) that describes its behaviour.

Example 8.1. Consider the function that sums all the elements from a list of
numbers, given in Example 6.11.

Base case sum. sum [ ] = 0.4

Step case sum. sum(𝑠 : 𝑙) = 𝑠 + sum 𝑙.

We want to count the number of additions the function has to carry out for a
list with 𝑛 elements, which de�nes a function

𝑓 : N N.

We can read o� that
𝑓0 = 0,

since in the base case, where the list has 0 elements, no additions are required.
The step case shows us that

𝑓(𝑛 + 1) = 1 + 𝑓𝑛.

Hence we have found a recurrence relation as studied in Section 6.4.5. Using
the methods from that chapter we can show that the function we have de�ned
is the assignment

𝑛 𝑛,

that is, our function is the identity function on N.

3The median income of all the employees of a company, for example, is the one with the property
that half the employees earn as most as much, and half the employees earn at least as much.
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Exercise 217. For the following algorithms, create recursive function de�ni-
tions similar to those from Examples 6.47, 6.48 and Exercise 169. Is it possible
to solve them in the same way as those examples? If not, why not?

(a) The function that calculates the factorial of a number from Example 6.41.
Count the number of multiplications the function has to carry out for a given
input.

(b) The function that reverses a list from Example 6.12. For 𝑛 use the number
of elements in the list and count the number of calls the function makes to
itself.

(c) The binary search algorithm from Example 4.98. Set 𝑛 to be the size of the
array and count the number of array look-ups required.

4If you were wondering how to deal with the empty list then note that adding no elements at all
is usually taken to describe the number 0. More generally, for an operation with unit 𝑒, applying the
operation to 0 many elements should return 𝑒.
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Produce another glossary for total. comment in/out as needed
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Glossary5

𝜎-algebra 149
The set of events of a probability space. Contains the whole set of out-
comes and is closed under the complement operation and forming unions of
countable collections of sets.

absolute, |·| 18, 63, 66
De�ned for various sets of numbers, here extended to complex numbers.
Given a complex number 𝑎 + 𝑖𝑏 we have |𝑎 + 𝑖𝑏| =

√
𝑎2 + 𝑏2.

and 76
Connects two properties or statements, both of which are expected to hold.

anti-symmetric 407
A binary relation 𝑅 on a set 𝑆 is anti-symmetric if (𝑠, 𝑠′) and (𝑠′, 𝑠) both
being in the relation implies 𝑠 = 𝑠′.

argument 66
The argument of a complex number is the angle it encloses with the positive
branch of the real axis.

associative 93
A binary operation is associative if and only if it gives the same result when
applied two three inputs, no matter whether it is �rst applied to the �rst
two, or �rst applied to the last two of these.

Bayes’s Theorem 174
The equality which says that, given events 𝐴 and 𝐵, the probability that 𝐵
given 𝐴 is the probability that 𝐴 given 𝐵, multiplied by the probability of
𝐵 and divided by that of 𝐴.

bijective 117
A function is bijective if and only if it is both, injective and surjective. A
bijective function is called a bijection.

binary operation 42, 92
A function of the type 𝑆 × 𝑆 𝑆, which takes two elements of a set 𝑆 as
input and produces another element of 𝑆.

5Note that page numbers for Chapters 1–4 will not match the printed notes for these chapters.
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binary relation 57
A connection between a source set 𝑆 and a target set 𝑇 which is not neces-
sarily a function. It is speci�ed by the collection of all pairs of the form (𝑠, 𝑡)
in 𝑆 × 𝑇 that belong to it.

binary tree with labels from a set 𝑆 307
This is a tree where each node has a label from 𝑆 and where each node has
either 0, 1 or 2 children. Formally this is another recursively de�ned notion.

C 61
The complex numbers as a set with a number of operations.

coe�cient 402
The coe�cients of a polynomial are the numbers that appear as factors in
front of a power of the variable.

commutative 96
A binary operation is commutative if and only if it gives the same result
when its two inputs are swapped.

complement 32
The complement of a set 𝑆 is always taken with respect to an underlying set,
and it consists of those elements of the underlying set which do not belong
to 𝑆.

composite of functions 45
The composite of two functions is de�ned provided the target of the �rst is
the source of the second. It is the function resulting from taking an element
of the source of the �rst function, applying the �rst function, and then
applying the second to the result.

composite of partial functions 350
Similar to the composite of two functions, but the result is unde�ned if either
of the two functions is not de�ned where required.

conditional probability 171
Given two events𝐴 and𝐵, where𝐵 has non-zero probability, the conditional
probability of 𝐴 given 𝐵 is the probability of 𝐴∩𝐵 divided by the probability
of 𝐵.

conjugate, · 70
The conjugate 𝑧 of a complex number number 𝑧 = 𝑎 + 𝑖𝑏 is 𝑎− 𝑖𝑏.

continuous 198
A random variable is continuous if and only if it is not discrete.

countable 265
A set is countable if and only if there is an injective function from it to N.

countably in�nite 265
A set is countably in�nite if it is both, countable and in�nite.
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cumulative distribution function (cdf) 211
The cdf of a random variable maps each element 𝑟 of R to the probability
that the random variable has a value less than or equal to 𝑟.

de�nition by cases 54
A way by piecing together functions to give a new function.

degree of a polynomial 402
The degree of a polynomial is the largest index whose coe�cient is unequal
to 0.

directed graph 353
A set (of nodes) connected by edges; can be described using a binary relation
on the set.

discrete 198
A random variable is discrete if and only if its range is countable.

disjoint 32
Two sets are disjoint if they have no elements in common.

div 19
The (integer) quotient of two numbers when using integer division.

divides 17, 20
A number 𝑚 divides a number 𝑛 in some set of numbers if there exists a
number 𝑘 with the property that 𝑛 = 𝑘𝑚.

divisible 17, 20
We say for natural numbers (or integers) that 𝑛 is divisible by 𝑚 if and only
if 𝑛 leaves remainder 0 when divided by 𝑚 using integer division.

domain of de�nition 349
For a partial function it is the set consisting of all those elements of the
source set for which the partial function is de�ned.

dominate 253
A function 𝑓 from a set 𝑋 to N, Z, Q or R dominates another 𝑔 with the
same source and target if and only if the graph of 𝑓 lies entirely above the
graph of 𝑔 (graphs touching is allowed).

empty set, ∅ 29
A set which has no elements.

equivalence class with respect to 𝑅 generated by 𝑠, [𝑠] 386
The set of all elements which are related to 𝑠 by the equivalence relation 𝑅.

equivalence relation 370
A binary relation on a set is an equivalence relation if it is re�exive, sym-
metric and transitive.
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equivalence relation generated by a binary relation 𝑅 372
The transitive closure of the symmetric closure of the re�exive closure of 𝑅.

even 17, 20
An integer (or natural number) is even if and only if it is divisible by 2.

eventually dominate 255
A function 𝑓 from N to N eventually dominates another 𝑔 with the same
source and target if and only if there is some number beyond which the
graph of 𝑓 lies above that of 𝑔 (graphs touching is allowed). The analogous
de�nition works for functions with source and target Z, Q or R.

expected value 224
The expected value of a random variable can be thought of as the average
value it takes. It is given by the integral of the product of a number which
the probability that it is the value of the random variable. If the random
variable is discrete then this is given by a sum.

for all 82
Expresses a statement or property that holds for all the entities speci�ed.

full binary tree with labels from a set 𝑆 298
This is a tree where each node has a label from 𝑆 and where each node has
either 0 or 2 children. Formally this is another recursively de�ned notion.

function 44
A function has a source and a target, and contains instructions to turn an
element of the source set into an element of the target set. Where partial
functions are discussed sometimes known as total function.

graph of a function 48
The graph of a function 𝑓 with source 𝑆 and target 𝑇 consists of all those
pairs in 𝑆 × 𝑇 which are of the form (𝑠, 𝑓𝑠).

greatest element, ⊤ 421
An element which is greater than or equal to every element of the given
poset.

greatest lower bound, in�mum 426
An element of a poset (𝑃,≤) is a greatest lower bound of a given subset
of that poset if it is both, a lower bound and greater than or equal to every
lower bound of the given set.

group 103
A set with an associative binary operation which has a unit and in which
every element has an inverse.

identity function 45
The identity function on a set is a function from that set to itself which
returns its input as the output.
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identity relation 343
The identity relation on a set 𝑆 relates every element of 𝑠 to itself, and to
nothing else.

if and only if 80
Connects two properties or statement, and it is expected that one holds
precisely when the other holds.

image of a set, 𝑓 [·] 46
The image of a set consists of the images of all its elements, and one writes
𝑓 [𝑆] for the image of the set 𝑆 under the function 𝑓 .

image of an element 46
The image of an element under a function is the output of that function for
the given element as the input.

imaginary part 61
Every complex number 𝑎 + 𝑏𝑖 has an imaginary part 𝑏.

implies 79
Connects two properties or statements, and if the �rst of these holds then
the second is expected to also hold.

independent 167, 220
Two events are independent if and only if the probability of their intersection
is the product of their probabilities. Two random variables are independent
if and only if for every two events it is the case that the probability that the
two variables take values in the product of those events is the product of the
probabilities that each random variable takes its value in the corresponding
event..

in�nite 261
A set is in�nite if and only if there is an injection from it to a proper subset.

injective 105
A function is injective if and only if the same output can only arise from
having the same input. An injective function is called an injection.

integer 18
A whole number that may be positive or negative.

integer division 16, 19
Integer division is an operation on integers; given two integers 𝑛 and 𝑚
where 𝑚 ̸= 0, we get an integer quotient 𝑛 div𝑚 and a remainder 𝑛 mod 𝑚.

intersection, ∩ 31
The intersection of two sets 𝑆 and 𝑇 is written as 𝑆 ∩ 𝑇 , and it consists
of all the elements of the underlying set that belong to both, 𝑆 and 𝑇 , The
symbol

⋂︀
is used for the intersection of a collection number of sets.
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inverse 101
One element is the inverse for another with respect to a binary operation if
and only if when using the two elements as inputs (in either order) to the
operation the output is the unit.

inverse function 118
A function is the inverse of another if and only if the compose (either way
round) to give an identity function.

law of total probability 177
A rule that allows us to express the probability of an event from probabilities
that split the event up into disjoint parts.

least element, ⊥ 421
An element which is less than or equal to every element of the given poset.

least upper bound, supremum 426
An element of a poset (𝑃,≤) is a least upper bound of a given subset of
that poset if it is both, a upper bound and less than or equal to every upper
bound of the given set.

list over a set 𝑆 279
A list over a set 𝑆 is a recursively de�ned concept consisting of an ordered
tuple of elements of the given set.

lower bound 424
An element of a poset (𝑃,≤) is a lower bound for a given subset of 𝑃 if it is
less than or equal to every element of that set.

maximal element 419
An element which does not have any elements above it.

measurable 194
A function from the sample set of a probability space to the real numbers is
measurable if and only if for every interval it is the case that the set of all
outcomes mapped to that interval is an event.

minimal element 419
An element which does not have any elements below it.

mod 19
The remainder when using integer division.

monoid 101
A set with an associative binary operation which has a unit.

multiplication law 174
The equality which says that given events 𝐴 and 𝐵, the probability of the
intersection of 𝐴 and 𝐵 is that of 𝐴 given 𝐵 multiplied with that of 𝐵.
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N 14, 319
The natural numbers as a set with a number of operations. This set and its
operations are formally de�ned in Section 6.4.

natural number 14
One of the ‘counting numbers’, 0, 1, 2, 3,. . . .

odd 17, 20
An integer (or natural number) number is odd if it is not even or, equivalently,
if it leaves a remainder of 1 when divided by 2.

opposite relation of 𝑅, 𝑅op 343
The relation consisting of those pairs (𝑡, 𝑠) for which (𝑠, 𝑡) is in 𝑅.

or 78
Connects two properties or statements, at least one of which is expected to
hold.

ordered binary tree with labels from a set 𝑆 308
Such a tree is ordered if the set 𝑆 is ordered, and if for every node, all the
nodes in the left subtree have a label below that of the current node, while
all the nodes in the right subtree have a label above.

pairwise disjoint 150
A collection of sets has this property if any two of them have an empty
intersection.

partial function 348
An assignment where every element of the source set is assigned at most
one element of the target set; one may think of this as a function which is
unde�ned for some of its inputs.

partial order 408
A binary relation on a set is a partial order provided it is re�exive, anti-
symmetric and transitive.

polar coordinates 66
A description for complex numbers based on the absolute and an angle
known as the argument..

polynomial equation 26
An equation of the form

∑︀𝑛
𝑖=0 𝑎𝑖𝑥

𝑖.

polynomial function 50
A function from numbers to numbers whose instruction is of the form
𝑥 is mapped to

∑︀𝑛
1𝑖=1 𝑎𝑖𝑥

𝑖 (where the 𝑎𝑖 are from the appropriate set of
numbers).

poset 408
A set with a partial order, also known as a partially ordered set.
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powerset, 𝒫 43
The powerset of a set 𝑆 is the set of of all subsets of 𝑆.

prime 89
A natural number or an integer is prime if its dividing a product implies its
dividing one of the factors.

probability density function 159
A function from some real interval to R+ with the property that its integral
over the interval is 1 and whose integral over subintervals always exists.

probability distribution 150
A function from the set of events that has the property that the probability
of a countable family of pairwise disjoint sets is the sum of the probabilities
of its elements.

probability mass function (pmf) 210
The pmf of a discrete random variable maps each element of the range of
that random variable to the probability that it occurs.

probability space 150
A sample set together with a set of events and a probability distribution.

product of two sets 41
A way of forming a new set by taking all the ordered pairs whose �rst
element is from the �rst set, and whose second element is from the second
set.

proper subset 30
A set 𝑆 is a proper subset of the set 𝑇 if and only if 𝑆 is a subset of 𝑇 and
there is at least one element of 𝑇 which is not in 𝑆.

Q 22, 402
The set of all rational numbers together with a variety of operations, formally
de�ned in De�nition 0.1.3.

R+ 25
The set of all real numbers greater than or equal to 0.

R 24
The set of all real numbers.

random variable 194
A random variable is a measurable function from the set of outcomes of
some probability space to the real numbers.

range of a function 46
The range of a function is the set of all elements which appear as the output
for at least one of the inputs, that is, it is the collection of the images of all
the possible inputs.
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rational number 22
A number is rational if it can be written as the fraction of two integers. A
formal de�nition is given on page 428 (and the preceding pages).

real number 24
We do not give a formal de�nition of the real numbers in this text.

real part 61
Every complex number 𝑎 + 𝑏𝑖 has a real part 𝑎.

re�exive 355
A binary relation on a set is re�exive if it relates each element of the set to
itself.

re�exive closure 357
The re�exive closure of a binary relation on a set 𝑆 is formed by adding all
pairs of the form (𝑠, 𝑠) to the relation.

relational composite 343
A generalization of composition for (partial) functions.

remainder for integer division, mod 16
The integer 𝑛 mod 𝑛 is de�ned to be the remainder left when dividing 𝑛 by
𝑚 in the integers.

set di�erence, ∖ 33
The set di�erence 𝑆 ∖ 𝑇 consists of all those elements of 𝑆 which are not
in 𝑇 .

size of a set 258, 260
A set is smaller than another if there exists an injective function from the
�rst to the second. They have the same size if they are both smaller than
the other.

standard deviation 237
The standard deviation of a random variable is given by the square root of
its variance.

string over a set 𝑆 310
A formal word constructed by putting together symbols from 𝑆.

surjective 111
A function is surjective if and only if every element of the target appears
as the output for at least one element of the input. This means that the
image of the function is the whole target set. A surjective function is called
a surjection.

symmetric closure 358
The symmetric closure of a binary relation on a set is formed by taking the
union of the relation with its opposite.

474



there exists 84
Expresses the fact that a statement or property holds for at least one of the
entities speci�ed.

total order 412
A total order is a partial order in which every two elements are comparable.

transitive 361
A binary relation on a set 𝑆 is transitive provided that (𝑠, 𝑠′) and (𝑠′, 𝑠′′)
being in the relation implies that (𝑠, 𝑠′′) is in the relation.

transitive closure 362
The transitive closure of a binary relation on a set is formed by adding all
pairs of elements (𝑠1, 𝑠𝑛) for which there is a list of elements 𝑠1, 𝑠2 to 𝑠𝑛 in
𝑆 such that (𝑠𝑖, 𝑠𝑖+1) is in the relation.

union, ∪ 31
The union of two sets 𝑆 and 𝑇 is written as 𝑆 ∪𝑇 . It consists of all elements
of the underlying set that belong to at least one of 𝑆 and 𝑇 . The symbol

⋃︀
is used for the union of a collection of sets.

uncountable 265
A set is uncountable if it is not countable.

unique existence 85
A more complicated statement requiring the existence of an entity, and the
fact that this entities is unique with the properties speci�ed.

unit 98
An element of a set is a unit for a binary operation on that set if and only if
applying the operation to that, plus any of the other elements, returns that
other element.

upper bound 424
An element of a poset (𝑃,≤) is an upper bound for a given subset of 𝑃 if it
is greater than or equal to every element of that set.

variance 237
The variance of a random variable with expected value 𝑒 is given by the
expected value of the random variable constructed by squaring the result of
subtracting 𝑒 from the original random variable.

Z 18, 398, 399
The integers with various operations, see De�nition 0.1.2 for a formal ac-
count.
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COMP11120, Semester 2

Exercise Sheet 11

For examples classes in Week 2

Core Exercises for this week

Exercise 136 on page 292. Do any part.

Exercise 141 on page 319.

Exercise 140 on page 318.

Extensional Exercises for this week

Exercise 132 on page 287. Do any one part.

Exercise 143 on page 320. Do any three parts.

Remember that

• if you are stuck on an exercise move on to the next one after ten minutes,
but write down why you got stuck so that the GTA can see what you were
trying to do, and consider coming back to that exercise again later;

• you may only use concepts which are de�ned in these notes (Chapter 0
establishes concepts for numbers), and for every concept you do use you
should �nd the de�nition in the notes and work with that;

• you should justify each step in your proofs;

• the GTA will assign a rough score—in the examples classes you will �nd out
more about constructing better solutions;

• in the examples classes you have an opportunity to ask the GTA questions,
and you should think of those in advance;

• the GTA may ask you to explain some of your solution.

You should now be ready to do all the exercises in Chapter 5 and Section 6.1.
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COMP11120, Semester 2

Exercise Sheet 12

For examples classes in Week 3

Core Exercises for this week

Exercise 146 on page 324. Do any two parts.

Exercise 147 on page 332.

Exercise 149 on page 333. Do (a) and (b) and any of the remaining parts.

Extensional Exercises for this week

Exercise 150 on page 334.

Exercise 154 on page 336.

Remember that

• if you are stuck on an exercise move on to the next one after ten minutes,
but write down why you got stuck so that the GTA can see what you were
trying to do, and consider coming back to that exercise again later;

• you may only use concepts which are de�ned in these notes (Chapter 0
establishes concepts for numbers), and for every concept you do use you
should �nd the de�nition in the notes and work with that;

• you should justify each step in your proofs;

• the GTA will assign a rough score—in the examples classes you will �nd out
more about constructing better solutions;

• in the examples classes you have an opportunity to ask the GTA questions,
and you should think of those in advance;

• the GTA may ask you to explain some of your solution.

You should be able to do all exercises in Section 6.2.
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COMP11120, Semester 2

Exercise Sheet 13

For examples classes in Week 4

Core Exercises for this week

Exercise 156 on page 338.

Exercise 159 on page 350.

Exercise 161 on page 351. Do part (a) and one of (c) or (d).

Extensional Exercises for this week

Exercise 157 on page 338.

Exercise 164 on page 354. Do one part from (a)–(c) and one from (d)–(f)

Remember that

• if you are stuck on an exercise move on to the next one after ten minutes,
but write down why you got stuck so that the GTA can see what you were
trying to do, and consider coming back to that exercise again later;

• you may only use concepts which are de�ned in these notes (Chapter 0
establishes concepts for numbers), and for every concept you do use you
should �nd the de�nition in the notes and work with that;

• you should justify each step in your proofs;

• the GTA will assign a rough score—in the examples classes you will �nd out
more about constructing better solutions;

• in the examples classes you have an opportunity to ask the GTA questions,
and you should think of those in advance;

• the GTA may ask you to explain some of your solution.

You should be able to do all exercises up to and inluding Section 6.4.2 now.
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COMP11120, Semester 2

Exercise Sheet 14

For examples classes in Week 5

Core Exercises for this week

Exercise 167 on page 360. Do any two parts.

Exercise 169 on page 363. Do one part from (a)–(c) and one from (d)–(g).

Exercise 174 on page 378.

Extensional Exercises for this week

Exercise 171 on page 365. Do any part.

Exercise 175 on page 378.

Remember that

• if you are stuck on an exercise move on to the next one after ten minutes,
but write down why you got stuck so that the GTA can see what you were
trying to do, and consider coming back to that exercise again later;

• you may only use concepts which are de�ned in these notes (Chapter 0
establishes concepts for numbers), and for every concept you do use you
should �nd the de�nition in the notes and work with that;

• you should justify each step in your proofs;

• the GTA will assign a rough score—in the examples classes you will �nd out
more about constructing better solutions;

• in the examples classes you have an opportunity to ask the GTA questions,
and you should think of those in advance;

• the GTA may ask you to explain some of your solution.

You should now be able to do Exercises up to Section 7.2.
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COMP11120, Semester 2

Exercise Sheet 18

For examples classes in Week 9

Core Exercises for this week

Exercise 181 on page 394. Do one part from (a)–(b), one from (c)–(e) and one from
(f)–(h).

Exercise 183 on page 398. Do one part from (a)–(b), one from (c)–(e), one from
(f)–(h) and one from (i)–(k).

Exercise 186 on page 404. Do any one part.

Extensional Exercises for this week

Exercise 182 on page 395.

Exercise 187 on page 412. Do all parts; it is su�cient to carry out two calculations
each time instead of all four.

Remember that

• if you are stuck on an exercise move on to the next one after ten minutes,
but write down why you got stuck so that the GTA can see what you were
trying to do, and consider coming back to that exercise again later;

• you may only use concepts which are de�ned in these notes (Chapter 0
establishes concepts for numbers), and for every concept you do use you
should �nd the de�nition in the notes and work with that;

• you should justify each step in your proofs;

• the GTA will assign a rough score—in the examples classes you will �nd out
more about constructing better solutions;

• in the examples classes you have an opportunity to ask the GTA questions,
and you should think of those in advance;

• the GTA may ask you to explain some of your solution.

You should now be ready to do all exercises up to and including Section 7.3.6.
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Exercise Sheet 19

For examples classes in Week 10

Core Exercises for this week

Exercise 188 on page 417. Do one from (a)–(c),one from (d)–(f) and one from
(g)–(h).

Exercise 189 on page 421.

Exercise 201 on page 439. Do one part from (a)–(d),one from (e)–(h), one from
(i)–(k) and one from (l)–(o).

Extensional Exercises for this week

Exercise 197 on page 432.

Exercise 196 on page 431.

Remember that

• if you are stuck on an exercise move on to the next one after ten minutes,
but write down why you got stuck so that the GTA can see what you were
trying to do, and consider coming back to that exercise again later;

• you may only use concepts which are de�ned in these notes (Chapter 0
establishes concepts for numbers), and for every concept you do use you
should �nd the de�nition in the notes and work with that;

• you should justify each step in your proofs;

• the GTA will assign a rough score—in the examples classes you will �nd out
more about constructing better solutions;

• in the examples classes you have an opportunity to ask the GTA questions,
and you should think of those in advance;

• the GTA may ask you to explain some of your solution.

You should now be ready to do all exercises up to and including Section 7.4.1.
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Exercise Sheet 20

For examples classes in Week 11

Core Exercises for this week

Exercise 206 on page 450. Do one part from (a)–(c), one from (d)–(f), one from
(g)–(j) and one from (k)–(l).

Exercise 211 on page 457. Do one part from (a)–(c) and one from (d)–(e).
Exercise 214 on page 460.

Extensional Exercises for this week

Exercise 207 on page 451. Do all parts, but in each part you only have to do one of
the statements (for greatest/least, or maximal/minimal).

Exercise 213 on page 458.

Remember that

• if you are stuck on an exercise move on to the next one after ten minutes,
but write down why you got stuck so that the GTA can see what you were
trying to do, and consider coming back to that exercise again later;

• you may only use concepts which are de�ned in these notes (Chapter 0
establishes concepts for numbers), and for every concept you do use you
should �nd the de�nition in the notes and work with that;

• you should justify each step in your proofs;

• the GTA will assign a rough score—in the examples classes you will �nd out
more about constructing better solutions;

• in the examples classes you have an opportunity to ask the GTA questions,
and you should think of those in advance;

• the GTA may ask you to explain some of your solution.

You should now be ready to do all exercises in the notes.
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