COMP11212 Lecture notes Corrigenda

p 36 The first automaton given does not agree with the one that I continue with lower down on that page. So the automaton at the top of the page should look as follows:

p 54 The transition function of the product automaton (fourth bullet point) should be given as (note the indices in the first line):

Transition function: δ maps $\left(q_{1}, q_{2}\right)$ and x to $\left(\delta_{1}\left(q_{1}, x\right), \delta_{2}\left(q_{2}, x\right)\right)$. In other words, there is a transition

$$
\left(q_{1}, q_{2}\right) \xrightarrow{x}\left(q_{1}^{\prime}, q_{2}^{\prime}\right)
$$

if and only if there are transitions

$$
q_{1} \xrightarrow{x} q_{1}^{\prime} \quad \text { and } \quad q_{2} \xrightarrow{x} q_{2}^{\prime}
$$

p 117. The last sentence in the solution to Exercise 26 should be:
Hence a suitable pattern is $\boldsymbol{\epsilon} \mid(a \mid b) a^{*} b\left((b|a a| a b) a^{*} b\right)^{*}(\boldsymbol{\epsilon} \mid a)$.
p 117. There is a mistake (one missing transition from the second automaton) in the solution to Exercise 32 (c), and the automaton with fewer states as given is also slightly wrong. The corrected version is as follows.

Here's another automaton for the same language but with fewer states.

p 131 The automaton used for Exercise 46 (b) is incorrect. The correct solution is as follows.

$\Xi=\{S, B, C, D, E, F\}$.
$S \rightarrow 0 B|\epsilon, B \rightarrow 0 C| 1 D, C \rightarrow 1 E|\epsilon, D \rightarrow 0 F| \epsilon, E \rightarrow 1 E \mid \epsilon, F \rightarrow 1 D$.

