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1 Introduction

Local Constructive Set Theory (LCST) is intended to be a local version of con-
structive set theory (CST). Constructive Set Theory is an open-ended set theoretical
setting for constructive mathematics that is not committedto any particular brand
of constructive mathematics and, by avoiding any built-in choice principles, is also
acceptable in topos mathematics, the mathematics that can be carried out in an arbi-
trary topos with a natural numbers object. We refer the reader to [2] for any details,
not explained in this paper, concerningCST and the specificCST axiom systems
CZF andCZF+ ≡ CZF +REA.

CST provides a global set theoretical setting in the sense that there is a single
universe of all the mathematical objects that are in the range of the variables. By
contrast a local set theory avoids the use of any global universe but instead is formu-
lated in a many-sorted language that has various forms of sort including, for each
sortα a power-sortPα, the sort of all sets of elements of sortα. For each sortα
there is a binary infix relation∈α that takes two arguments, the first of sortα and
the second of sortPα. For each formulaφ and each variablex of sortα, there is a
comprehension term{x : α | φ} of sortPα for which the following scheme holds.

Comprehension: (∀y : α)[ y ∈α {x : α | φ} ↔ φ [y/x] ].

Here we use the notationφ [a/x] for the result of substituting a terma for free oc-
curences of the variablex in the formulaφ , relabelling bound variables in the stan-
dard way to avoid variable clashes.

Our use of the terminologylocal for a version of a set theory has its origin in the
use of that term by John Bell in his book [5]. His notion of alocal set theory is a

Peter Aczel
Schools of Computer Science and Mathematics, University ofManchester,e-mail: pe-
tera@cs.man.ac.uk

1



2 Peter Aczel

certain kind of syntactic version of the category theoreticnotion of a topos. Each
of his local set theories uses a local language that has type symbols built up from
ground type symbols. The type symbols have various forms including the form of
a power typePA, whereA is a type. There are terms of each type and the set-like
terms of the local language are the terms of some power type. So, in a local set
theory, there is no global universe of sets, but each set has to be understood as local
to some power type. Here we will keep to this general idea but will not be using
the precise details of the formulations in Bell’s book. In particular we prefer to use
the wordsort rather thantype. Our first example of a local set theory will be what
we will call Local Intuitionistic Zermelo (LIZ ). This is essentially a variant of what
Bell has called at the end of chapter 7 of [5], the free naturalised local set theory;
i.e. the local set theory for the free topos with a natural numbers object. It is also
natural to describe it as a version of intuitionistic higherorder arithmetic.

There are several reasons for our interest in the setting up of a local version of
CST. One reason is in connection with the formulation of predicative and gener-
alised predicative versions of the notion of an elementary topos. We expect that a
local (generalised) predicative axiom system forCST will have as its category theo-
retic models categories that are (generalised) predicative toposes, according to some
suitable weakening of the notion of an elementary topos. Some category theorists
dislike global set theories because they claim that the focus of global theories on
the structure of the binary membership relation on the universe of sets is irrelevent
to mainstream mathematics. So a local approach toCST may be more appealing to
a category theorist interested in constructive mathematics and the carrying over of
the beautiful, but fully impredicative apparatus, of topostheory to the generalised
predicative context.

Another reason for our interest in the development of a localversion ofCST is
to do with the dependent type theoretical setting for constructive mathematics ini-
tiated by Per Martin-Löf. That setting aims to provide a philosophically motivated
foundational framework for constructive mathematics thatmakes explicit the funda-
mental notions. It is the natural translation of theCST axiom systems such asCZF
andCZF+ into formulations of the type theoretic setting that have been used to
justify the claim that those axiom systems are constructively acceptable. Although
the translation is indeed natural it is technically somewhat complicated due to the
transfinitely iterative nature of the global universe. Someof that complication can be
avoided when directly interpreting the language of local set theory into type theory.
We consider this important in connection with our third reason for our interest in a
local version ofCST.

In recent years there has been a growing interest in the development of old and
new areas of constructive mathematics and there have been competing settings for
this such as the Bishop style approach and the type theoretical, set theoretical and
category theoretical approaches. Each has its advantages.The Bishop style approach
is informal and works directly with the intensional constructive notions. The type
theoretical approach is a more formal philosophically motivated approach. The set
theoretical approach is fully extensional and is close to the mainstream set theo-
retical approach to classical mathematics. The category theoretic approach is more
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conceptual with its focus on the algebraic structure of the fundamental mathemati-
cal notions. Definitions and results formulated in one approach should carry over to
the other approaches. But this is not always a straightforward matter.

For example let us focus on the relationship between type theoretical and set
theoretical constructive mathematics. In some presentations of work in constructive
mathematics definitions and results are given in an ambiguous style, intended to be
understood in both the type theoretical and the set theoretical setting. There is a
danger that such a style leads to a lack of rigour. So we advocate another approach.
Develop constructive mathematics so that it can be straightforwardly formalised in
suitable axiom systems for localCST. As localCST has a straightforward interpre-
tation in globalCST and a fairly straightforward direct type theoretic interpretation
we get a simple rigorous approach to having definitions and results simultaneously
in both settings.

The details of the direct type theoretic interpretation requires more type-theoretic
treatment than seems appropriate for this paper and so has been left for another
occasion. Suffice it to state here that each sortα is interpreted as a setoid[[α]]; i.e.
a type, with an equivalence relation=[[α ]] and each proposition(a1 =[[α ]] a2), for
a1,a2 : [[α]] is required to be small; i.e. a value in a type universeU . Also each set-
term of sortPα will be interpreted as an objectpair(A, f ) : (ΣX : U)(X → [[α]]).

We will want our local version ofCST to have a straightforward interpretation
in global CST. But some care is needed in setting up the language. Classical set
theory has the powerset axiom and the full separation scheme. So an interpretation
of a local set theory in classical set theory has each sortα interpreted as a set[[α]]
with the sortPα interpreted as the powersetPow([[α]]) and each comprehension
term{x : α | φ} of sortPα interpreted as a subset of[[α]].

But a key feature ofCST is that the powerset axiom and the full separation
scheme are not available, as these are too impredicative. So, instead of interpret-
ing each sort as a set, the interpretation of our local version of CST will inter-
pret each sort as a class, with[[Pα]] interpreted as the powerclass of[[α]]; i.e. the
classPow([[α]]) of all subsets of the class[[α]]. Also, each comprehension term
{x : α | φ} of sortPα will now be interpreted as a subclass of the class[[α]] which,
in general, may not be a set in[[Pα]].

Class terminology and notation provides a useful device when working in clas-
sical axiomatic set theory. It proves to be even more useful when working inCST
when many comprehension terms that represent sets in classical set theory can only
be taken to be classes inCST. To treat classes in a set theory in a flexible way, with-
out making them values in the range of bound variables, it is convenient to formulate
a set theory in a suitable free logic. In general, a free logicallows the use of terms
which may not represent values in the range of the variables.

There are a variety of approaches to the setting up of a free logic. For example
some approaches such as those of Beeson, [4], are intended for use with function
symbols that may be interpreted as partial functions, so that terms may be undefined
in an interpretation. In such an approach it is natural to require equality and other
relation symbols to be strict in the sense that they are only intended to hold for
arguments that are in the range of the bound variables. In ourapproach to free logic
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we will be more liberal. We do not want equality to be strict, as equality between
classes has a natural extensional treatment. Also the membership relation should
only be strict in its first argument.

A key axiom scheme ofCZF is the set induction scheme. It is a suitably con-
structive version of the classical foundation axiom that expresses that all sets are
well-founded. More specifically the scheme states that the universe is inductively
generated as the smallest class such that every subset of theclass is an element of
the class. By making essential use of the scheme we have a class induction metatheo-
rem forCZF. The metatheorem expresses that a general kind of inductivedefinition
can be used to inductively generate a class as the smallest class satisfying closure
conditions specified by the inductive definition. Moreover,by making essential use
of the axiomREA of CZF+, for certain inductive definitions the inductively gen-
erated class will be a set. In addition, usingREA again, a useful set-compactness
result concerning set inductive definitions can be obtained.

These inductive definition results can play an important role in the development
of constructive mathematics inCST. See, for example [1], where it is shown using
set compactness that every inductively generated formal topology is set-presentable.
So we would like to have these inductive definition results available in our local
CST. But there is a problem with the proofs of these results in localCST. The results
can be formulated in localCST. But the proofs of the results use the set induction
scheme and the axiomREA, a scheme and axiom that are global and do not have
direct local formulations. The other axioms and schemes ofCZF and CZF+ do
have local formulations. So we will introduce new axiom systemsCZFI andCZF∗

that have axioms and schemes that directly express the inductive definition results of
CZF andCZF+ respectively. They are both extensions of the axiom systemCZF−

obtained from a formulation ofCZF by leaving out the set induction scheme. We
will see that bothCZFI andCZF∗ have local versions

We review theCST axiom systemsCZF, CZF+ andCZF− in section 2. We
also discuss the inductive definition results that can be proved and formulate the
axiom systemsCZFI andCZF∗. In section 3 we introduce our free logic and the
free versions of theCST axiom systems. We go on, in section 5, to formulate our
local versions of these axiom systems. But before that we introduce the ideas of
local set theory by formulating a local version of intuitionistic Zermelo set theory.
We give an application of inductive definitions to well-founded trees in section 6.
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2 Inductive Definitions in CST

In this section we review results concerning inductive definitions that have been
obtained in theCST axiom systemsCZF andCZF+.

2.1 Inductive Definitions inCZF

The axiom systemCZF is formulated in the usual first order language of axiomatic
set theory with equality and membership as the two relation symbols. It has the
axioms and rules of inference for intuitionistic predicatelogic with equality and
uses the non-logical axioms and schemes of Extensionality,Pairing, Union, Infinity,
Restricted Separation, Strong Collection, Subset Collection and Set Induction. See
[2] for the details of these axioms and schemes. Alternatively the reader may get
a good enough idea by looking at the presentation of the axiomsystemCZFf in
the next section. Here we just consider the Infinity axiom, which states that there
is an ω-inductive set, where we define a classA to be ω-inductive if /0 ∈ A and
(∀x ∈ A)[ x∪{x} ∈ A ].

Let CZF− be obtained fromCZF first, by leaving out from the axioms and
schemes the set induction scheme, and second by strengthening the axiom of Infin-
ity to the axiom of Strong Infinity and adding the Mathematical Induction Scheme.
Strong Infinity states that there is a smallestω-inductive set, while Mathematical
Induction states that the smallestω-inductive set is a subset of eachω-inductive
class. Note that both Strong Infinity and Mathematical Induction can be derived in
CZF.

The axiom systemCZF− is fully predicative. It is the set induction scheme that
givesCZF its logical strength. That scheme expresses that the universe of sets is the
smallest class such that every subset of the class is an element of the class. Although
the scheme is not predicative in the traditional sense it is not fully impredicative
either, as it does not imply the powerset axiom or the full separation scheme. It is
natural to call it generalised predicative, as it is predicative relative to certain kinds
of inductive definition which may be infinitary rather than the finitary inductive
definitions which are acceptable in predicative mathematics.

It will not be difficult to formulate a local version ofCZF−. But the set induction
scheme is a global property of the universe of sets and there seems to be no direct
way to formulate a local version of that scheme so as to obtaina local version of
the whole ofCZF. An important metatheorem aboutCZF, which would seem to
express the logical strength ofCZF, states that class inductive definitions of classes
hold for CZF. We shall see, in section 5, that the metatheorem can be formulated
and derived for an extension of the local version ofCZF− and we will take that
extension as our local version ofCZF. The additional axioms of the extension will
directly express that set inductive definitions of classes hold. But in this section we
consider inductive definitions in the global context.
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We think of an inductive definition as an abstract axiom system having (infer-
ence) stepsX/a consisting of a (possibly infinite) setX of premisses and a conclu-
siona. The theorems of the axiom system form the smallest class closed under the
inference steps; i.e. for each stepX/y, if the premisses are in the class then so is the
conclusion. Any classΦ can be viewed as a class inductive definition whose steps
X/a are the ordered pairs(X ,a) in Φ. A class is defined to beΦ-closed if, for each
stepX/a of Φ, if every element ofX is in the class then so isa. The class inductively
defined byΦ, if it exists, is the smallestΦ-closed class.

Definition: 2.1 A set theoretical axiom system T has the class induction property
if, for each class Φ of T there is a smallest Φ-closed class I(Φ) of T ; i.e. there is a
class I such that the following are derivable in T .

1. I is Φ-closed, and
2. if the class A is Φ-closed then I ⊆ A.

The metatheorem may now be formulated as follows.

Theorem: 2.2 (Class Induction Metatheorem for CZF) The theory CZF has the
class induction property.

Note that the Set Induction Scheme may be restated asV = I(Φ), whereΦ is the
class of all pairs(X ,X). The scheme is clearly a global property about the universe
V .

It will be straightforward to formulate a local version of the predicative system
CZF−. We now formulate an extensionCZFI of CZF− by adding a new binary
infix relation symbol⊢ to the language satisfying the following axioms and scheme
where, for each classΦ,

I(Φ) = {x | Φ0 ⊢ x for some subsetΦ0 of Φ}.

ind0: ⊢ is monotone in its first argument; i.e. for all setsΦ,Φ ′,

Φ ⊆ Φ ′ ⇒ (∀x)[ Φ ⊢ x ⇒ Φ ′ ⊢ x ].

ind1: For all setsΦ the classI(Φ) is Φ-closed.
ind2: For each classA, if Φ is any set such thatA is Φ-closed thenI(Φ) ⊆ A.

Note that, because ofind0, I(Φ) = {x | Φ ⊢ x} for each setΦ. Also ind1 andind2
combine to state that for each setΦ, the classI(Φ) is the smallestΦ-closed class.
The next result states that, forCZFI , I(Φ) is the smallestΦ-closed class, even when
Φ is a class that may not be a set.

Theorem: 2.3 (Class Induction Metatheorem for CZFI) The axiom system CZFI
has the class induction property.

Proof. Let Φ be a class. We first show thatI(Φ) is Φ-closed. So letX/a be a step
of Φ such thatX ⊆ I(Φ). We must show thata ∈ I(Φ). By our assumption,

(∀x ∈ X)(∃Φ0 ∈ Pow(Φ)) Φ0 ⊢ x.
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So, by Strong Collection, there is a subsetY of Pow(Φ) such that

(∀x ∈ X)(∃Φ0 ∈ Y ) Φ0 ⊢ x.

Now let Φ1 = {(X ,a)}∪
⋃

Y and observe thatΦ1 is a subset ofΦ havingX/a
as a step, withX ⊆ I(Φ1) so that, byind1, a ∈ I(Φ1) ⊆ I(Φ) as the operatorI is
monotone.

It remains to show thatI(Φ) is a subclass of eachΦ-closed classA. So let
a ∈ I(Φ); i.e.Φ0 ⊢ a for some subsetΦ0 of Φ. If A is Φ-closed then it isΦ0-closed
so that, byind2, a ∈ I(Φ0) ⊆ A, as desired. ⊓⊔

2.2 Inductive Definitions inCZF+

A useful strengthening ofCZF is the axiom systemCZF+ ≡ CZF + REA. Here
REA is the regular extension axiom, which states that every set is a subset of a
regular set. Aregular set is an inhabited transitive set1 A, such that for eacha ∈ A,
if R ⊆ a×A such that(∀x ∈ a)(∃y ∈ A) (x,y) ∈ R then there isb ∈ A such that both
(∀x ∈ a)(∃y ∈ b) (x,y) ∈ R and(∀y ∈ b)(∃x ∈ a) (x,y) ∈ R. The following results
about inductive definitions may be derived inCZF+, see [2, 3].

A setB is aset bound for a classΦ if, for each stepY/z of Φ, there isb ∈ B and
a surjectivef : b → Y . The classΦ is defined to bebounded if it has a set bound
and for each setY the class{z | (Y,z) ∈ Φ} is a set. Note that, inCZF, each set is
bounded. For each setΦ0 let I0(Φ0) be the intersection of allΦ0-closed sets; i.e. the
class

⋂
{Y | Y is aΦ0-closed set}. Also, for each classΦ let

I(Φ) =
⋃
{I0(Φ0) | Φ0 ∈ Pow(Φ)}.

Bounded Induction Scheme (BIS):For each class Φ , the class I(Φ) is a subclass
of each Φ-closed class and hence is the smallest Φ-closed class. Moreover if Φ is
bounded then I(Φ) is a set and so I(Φ) = I0(Φ).

Another useful result ofCZF+ is the Set Compactness property for set inductive
definitions. See [2] for the original result and [3] for a proof of the more recent im-
provement,SSC.

Strong Set Compactness Property (SSC):For every set Φ there is a set B of
subsets of Φ such that for every subset Φ ′ of Φ every element of I0(Φ ′) is in I0(Φ0)
for some subset Φ0 of Φ ′ that is in B.

Theorem: 2.4 (CZF+) Each instance of BIS can be derived as can the statement
SSC.

1 i.e. a set that has an element and is such that it is a subset of its powerset.
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Let CZF∗ ≡ CZF +BIS +SSC. As each set is bounded we get the following con-
sequence ofBIS.

Corollary: 2.5 (CZF ∗) For each set Φ the class I0(Φ) is a set and so I0(Φ) =
I(Φ), the smallest Φ-closed class.

For classesΦ andA let I(Φ,A) = I(ΦA), whereΦA = Φ ∪{( /0,x) | x ∈ A}). Note
that I(Φ,A) is the smallestΦ-closed class that includesA. It immediately follows
from corollary 2.5 that ifΦ is a set thenI(Φ,A) is a set for each setA. We have the
following consequence ofSSC.

Corollary: 2.6 (Set Compactness for CZF∗) For all sets Φ,A there is a set B of
subsets of A such that, for all sets A′ ⊆ A, each element of I(Φ,A′) is an element of
I(Φ,A0) for some subset A0 of A′ that is in B.

3 The Free Version of CST

3.1 A Free Logic

We present our free version of intuitionistic predicate logic with equality. We assume
that formulae are generated from the atomic formulae in the usual way using the
logical constants⊥ and⊤, the binary connectives∧,∨ and→ and the quantifiers
(∀x) and(∃x) for each variablex. Abbreviations for¬ and ↔ are defined as usual.

We first consider the following Hilbert style axiomatisation of Intuitionistic logic
with equality and then present our free modification. A standard set of axioms to-
gether with the rule of modus ponens will do for intuitionistic propositional logic.
We just focus on the axioms and rules for equality and the quantifiers. The equality
axioms are as follows, wherea,a1,a2 are terms andx is a variable.

a = a (a1 = a2)∧φ [a1/x] → φ [a2/x]

We consider the following standard quantifier rules and axioms, wherex is a variable
not free in the formulaθ anda is any term.

θ → φ
θ → (∀x)φ (∀x)φ → φ [a/x]

φ [a/x] → (∃x)φ φ → θ
(∃x)φ → θ

We usea↓ to abbreviate(∃x)[a = x], where the variablex is chosen not to occur free
in the terma. This expresses that the terma is in the range of the variables. For our
free logic we modify the two quantifier axioms as follows.

a↓ ∧ (∀x)φ → φ [a/x] a↓ ∧ φ [a/x] → (∃x)φ

We also need the axiom,y↓, for each variabley.
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3.2 The Axiom SystemCZF f

The axiom systemCZF for constructive set theory has usually been axiomatised
in the first order language with equality and one binary infix relation symbol∈.
Here we give an axiomatisation in our free logic, where we allow the formation
of comprehension terms2 {x | φ} for arbitrary formulaeφ and have the following
general non-logical axioms and schemes. Further axioms andschemes will be given
after we have introduced some abbreviations. In the followingφ is any formula and
a,b are terms.

Comprehension: a ∈ {x | φ} ↔ a↓ ∧ φ [a/x].
Extensionality: (∀x)(x ∈ a ↔ x ∈ b) → a = b.
Elements are Sets: (a ∈ b) → a↓.

Some Abbreviations

In these abbreviationsa,a1,a2,b,c,r are terms; i.e. either variables or comprehen-
sion terms. There may be a standard constraint that a variable is not allowed to occur
free in a formula or term. For example in the abbreviation for{x∈ a | φ} the variable
x should not occur free in the terma and in the abbreviation for(∃!x)φ the variable
y should not occur free inφ .

(∀x ∈ a)φ ≡ (∀x)[x ∈ a → φ ]
(∃x ∈ a)φ ≡ (∃x)[x ∈ a∧φ ]
{x ∈ a | φ} ≡ {x | x ∈ a∧φ}
{b | x ∈ a} ≡ {y | (∃x ∈ a) y = b}

a1∩a2 ≡ {x | x ∈ a1∧ x ∈ a2}
a1∪a2 ≡ {x | x ∈ a1∨ x ∈ a2}

a1 ⊆ a2 ≡ (∀x ∈ a1) x ∈ a2⋂
c ≡ {x | (∀y ∈ c) x ∈ y}⋃
c ≡ {x | (∃y ∈ c) x ∈ y}

Pow(a) ≡ {y | y ⊆ a}
{a1,a2} ≡ {x | x = a1 ∨ x = a2}

{a} ≡ {a,a}
(a1,a2) ≡ {{a1},{a1,a2}}
(∃!x) φ ≡ (∃y)[ {x | φ} = {y} ]

a×b ≡ {z | (∃x ∈ a)(∃y ∈ b)[z = (x,y)]
V ≡ {x | ⊤}
/0 ≡ {x | ⊥}

2 Free occurrences ofx in φ become bound in{x | φ}.
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r : a >− ≡ (∀x ∈ a)(∃y)[(x,y) ∈ r]
r : a >− b ≡ (∀x ∈ a)(∃y ∈ b)[(x,y) ∈ r]

r : a >−< b ≡ r : a >− b∧ (∀y ∈ b)(∃x ∈ a)[(x,y) ∈ r]
r : a → b ≡ r ∈ Pow(a×b)∧ (∀x ∈ a)(∃ !y) (x,y) ∈ r
r : a ։ b ≡ r : a → b∧ (∀y ∈ b)(∃x ∈ a) (x,y) ∈ r
mv(a,b) ≡ {z ∈ Pow(a×b) | z : a >− b}
exp(a,b) ≡ {z ∈ Pow(a×b) | z : a → b}

For our set theoretic representation of the natural numberswe use the following
abbreviations.

0 ≡ /0
a+ ≡ a∪{a}

INDω(a) ≡ 0∈ a ∧ (∀y ∈ a)[ y+ ∈ a ]
N ≡

⋂
{x | INDω(x)}

Set Induction Scheme:For each terma,

Pow(a)⊆ a → V ⊆ a.

Mathematical Induction Scheme: For each terma,

INDω (a) → N ⊆ a.

The Set Existence Axioms and Schemes

Pairing: (∀x1,x2) {x1,x2}↓.
Union: (∀z)

⋃
z ↓.

Restricted Separation Scheme: (∀y) {x ∈ y | θ}↓,
for each restricted formulaθ ; i.e. formulaθ in which each quantifier occurs in
one of the forms(∀u ∈ v) or (∃u ∈ v).

Strong Infinity: N ↓.
Strong Collection Scheme: (∀x)[ r : x >− → (∃y) r : x >−< y ],

for each termr.
Fullness: (∀x)(∀y)(∃z ∈ Pow(mv(x,y)))(∀u ∈ mv(x,y))(∃u0 ∈ z)[u0 ⊆ u].

Remarks

1. Using the Strong Collection Scheme both the MathematicalInduction Scheme
and the Strong Infinity axiom can be derived using the following axiom.

Infinity: (∃x) INDω(x).

2. The original formulation ofCZF used a certain scheme, the Subset Collection
Scheme, instead of the Fullness axiom. That scheme and the Fullness axiom are
equivalent, given the other axioms and schemes.
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3. Easy consequences of the Strong Collection Scheme and theFullness axiom are
the following scheme and axiom, respectively.

Replacement Scheme:a↓∧(∀x ∈ a)(∃ !y)φ → {y | (∃x ∈ a)φ}↓, for each term
a.

Exponentiation: a↓ ∧ b↓→ exp(a,b)↓, for arbitrary termsa,b.

We call this free formulation ofCZF, CZFf .

Theorem: 3.1 CZFf is a conservative extension of CZF.

Proof. We only sketch the idea for the straightforward proof. We candefine a trans-
lation of the language ofCZFf into that ofCZF by systematically eliminating com-
prehension terms. This can be done by repeatedly replacing each equality(a = b)
by (∀x)[ x ∈ a ↔ x ∈ b ], each formula(a ∈ b), wherea is a comprehension term
by (∃x)[(∀y)(y ∈ a ↔ y ∈ x)∧ x ∈ b] and each formula(x ∈ {y | φ}) by φ [x/y].
Eventually all comprehension terms will be eliminated froma formulaφ giving a
formula φ# such thatφ ↔ φ# is provable inCZFf and if φ is provable inCZFf
thenφ# is provable inCZF. If φ already is in the language ofCZF thenφ# ≡ φ so
that if it is provable inCZFf then it is provable inCZF. ⊓⊔

3.3 The Axiom SystemCZFf I

By leaving out the Set Induction Scheme fromCZFf we get the free versionCZFf
−

of CZF−. We can also get the free versionCZFf I of CZFI by adding the binary
relation symbol⊢ to the language ofCZFf

−and adding the following axioms and
scheme where, for termsc,b,

Closed(c,b) ≡ (∀y ∈ Pow(b))(∀x)[(y,x) ∈ c → x ∈ b],
I(c) ≡ {x | (∃z ∈ Pow(c)) z ⊢ x}.

ind0: (∀z,z′)[ z ⊆ z′ → (∀x)(z ⊢ x → z′ ⊢ x) ],
ind1: ∀z Closed(z, I(z)),
ind2: ∀z [Closed(z,b) → I(z) ⊆ b], for each termb.

3.4 The Axiom SystemCZF f
∗

We formulate the free version ofCZF∗. For each termc let

I0(c) ≡
⋂
{y |Closed(c,y)}

I(c) ≡
⋃
{I0(z) | z ∈ Pow(c)}

Note thatClosed(I(c),c) is a theorem ofCZFf
−.
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Let

Bounded(c) ≡ ∀y {x | (y,x) ∈ c}↓ ∧ (∃z)(∀y ∈ dom(c))(∃v ∈ z)(∃w) w : v ։ y,

wheredom(c) ≡ {y | ∃x (y,x) ∈ c}.

Bounded Induction Scheme (BIS):For termsc,a,

[Closed(c,a) → I(c) ⊆ a]∧ [Bounded(c)→ I(c)↓]

Strong Set Compactness (SSC):

(∀z)(∃y ∈ Pow(Pow(z)))(∀z′ ∈ Pow(z))[ I0(z′) =
⋃
{I0(z0) | z0 ∈ Pow(z′)∩ y} ]

Finally we letCZFf
∗ ≡ CZFf

− +BIS+SSC.

4 Local Intuitionistic Zermelo Set Theory

We outline a formal systemLIZ which is a local version of Intuitionistic Zermelo set
theory in which there is a one element sort1, an infinite ground sortN, product sorts
α ×β and power sortsPα. The sorts have a natural interpretation in a set theory
such asIZ , Intuitionistic Zermelo Set Theory, each sortα being interpreted as a set
[[α]], with [[1]] = { /0}, [[N]] any set with /0∈ [[N]] that is closed undern 7→ n∪{n},
and [[α ×β ]] = [[α]]× [[β ]], using the standard defintion of the cartesian product
of two sets, and[[Pα]] = Pow([[α]], wherePow is the powerset operation on sets.
With obvious interpretations of the constants∗,0 and function symbols( )+,( , ),
used below in forming terms, the axioms ofLIZ , given below, are easily seen to be
theorems ofIZ .

There is an unlimited supply of variables of each sort. The terms of each sort
and the formulae are simultaneously inductively generated. Here are the rules for
generating terms.

1. Every variable of sortα is a term of sortα.
2. ∗ is a term of sort1.
3. 0 is a term of sortN.
4. If a is a term of sortN thena+ is also a term of sortN.
5. If a,b are terms of sortsα,β respectively then(a,b) is a term of sortα ×β .
6. If φ is a formula andx is a variable of sortα then{x : α | φ} is a term of sort

Pα.

n We call terms of the form{x : α | φ} α-classes and writea : α whena is anα-
term; i.e. a term of sortα. The atomic formulae have one of the forms(a1 =α a2) for
α-termsa1,a2 or (a∈α b) whena is anα-term andb is aPα-term. We will usually
supress the subscriptα.
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Formulae are generated from the atomic formulae in the usualway using the
logical constants⊥ and⊤, the binary connectives∧,∨ and→ and the quantifiers
(∀x : α) and(∃x : α) for each variablex of sortα. Abbreviations for¬ and ↔ are
defined as usual.

We use the following axiomatisation of Intuitionistic manysorted logic with
equality. Any set of axioms and rules of inference for intuitionistic propositional
logic will do. We just focus on the axioms and rules for equality and the quantifiers.
The equality axioms are as follows, wherea,a1,a2 areα terms andx is a variable
of sortα.

a = a (a1 = a2)∧φ [a1/x] → φ [a2/x]

We use the following quantifier rules and axioms, wherex is a variable of sortα not
free in the formulaθ anda is anα-term.

θ → φ
θ → (∀x : α)φ (∀x : α)φ → φ [a/x]

φ [a/x] → (∃x : α)φ φ → θ
(∃x : α)φ → θ

We assume the following non-logical axioms and scheme, where a1,a2,a are
α-terms,b1,b2 areβ -terms,c is aα ×β -term andd1,d2 arePα-terms.

1. (a1,b1) = (a2,b2) → (a1 = a2)∧ (b1 = b2)
2. (∃x : α)(∃y : β )[c = (x,y)]
3. (∀z : 1)[z = ∗]
4. (∀x : α)(x ∈ d1 ↔ x ∈ d2) → d1 = d2

5. (∀y : α)[ y ∈ {x : α | φ} ↔ φ [y/x] ], for each formulaφ .
6. (∀x : N) ¬(x+ = 0)
7. (∀x1,x2 : N)[ (x+

1 = x+
2 ) → (x1 = x2) ]

Some Abbreviations

It is convenient to introduce the following abbreviations wherea,a1,a2 arePα-
terms,b is aβ -term andc is aPPα-term.
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(∀x ∈ a)φ ≡ (∀x : α)[x ∈ a → φ ]
(∃x ∈ a)φ ≡ (∃x : α)[x ∈ a ∧ φ ]
{x ∈ a | φ} ≡ {x : α | x ∈ a ∧ φ}
{b | x ∈ a} ≡ {y : β | (∃x ∈ a) y = b}

a1∩a2 ≡ {x : α | x ∈ a1 ∧ x ∈ a2}
a1∪a2 ≡ {x : α | x ∈ a1 ∨ x ∈ a2}

a1 ⊆ a2 ≡ (∀x ∈ a1) x ∈ a2⋂
c ≡ {x : α | (∀y ∈ c) x ∈ y}⋃
c ≡ {x : α | (∃y ∈ c) x ∈ y}

Pow(a) ≡ {y : Pα | y ⊆ a}
(∃!x : α) φ ≡ (∃y : α)[ {x | φ} = {y} ]

a×b ≡ {z : α ×β | (∃x ∈ a)(∃y ∈ b)[z = (x,y)]

As in the previous section we use the following abbreviations where nowa is a
Pα-term,b is aPβ -term andr is aP(α ×β )-term.

r : a >− ≡ (∀x ∈ a)(∃y)[(x,y) ∈ r]
r : a >− b ≡ (∀x ∈ a)(∃y ∈ b)[(x,y) ∈ r]

r : a >−< b ≡ r : a >− b∧ (∀y ∈ b)(∃x ∈ a)[(x,y) ∈ r]
r : a → b ≡ r ∈ Pow(a×b)∧ (∀x ∈ a)(∃ !y) (x,y) ∈ r
r : a ։ b ≡ r : a → b∧ (∀y ∈ b)(∃x ∈ a) (x,y) ∈ r
mv(a,b) ≡ {z ∈ Pow(a×b) | z : a >− b}
exp(a,b) ≡ {z ∈ Pow(a×b) | z : a → b}

The Natural Numbers

The natural numbers are here represented using the following abbreviations where
c is aPN-term.

INDω (c) ≡ 0∈ c ∧ (∀x ∈ c) x+ ∈ c
N ≡

⋂
{z : PN | INDω (z)}

We have not included any mathematical induction scheme forN, as we can show
that (N,0,( )+) satisfies the Dedekind-Peano axioms, including the mathematical
induction axiom:

(∀z ∈ Pow(N))[ INDω (z) → N ⊆ z ].

4.1 Inductive Definitions inLIZ

By anα-inductive definition we simply mean a termc : P(Pα ×α) for some sort
α. If b : Pα let I0(c) ≡

⋂
{y : Pα |Closed(c,y)}, where

Closed(c,b) ≡ (∀y ∈ Pow(b))(∀x : α)[(y,x) ∈ c → x ∈ b].
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Because of the full impredicativity ofLIZ the setI0(c) is provably the smallest
c-closed set; i.e. the following sentences can be derived inLIZ for each termc of
sortP(Pα ×α).

ind01 : (∀z : P(Pα ×α)) Closed(z, I0(z)),
ind02 : (∀z : P(Pα ×α)) (∀y : Pα)[Closed(z,y) → I0(z) ⊆ y],

5 Some Axiom Systems for Local CST

The formal systemLIZ is a thoroughly impredicative axiom system, each set having
its powerset. We wish to have a predicative version of it, which will be a local
version,LCZF f

−, of CZFf
−, to which we can add the forms of inductive definition

of sets and classes that are available in constructive set theory, thereby giving us a
generalised predicative formal system for local constructive set theory.

We keep the same terms and formulae ofLIZ , but use a free version of the logic
where the sorts are intended to be interpreted as classes of constructive set theory
which are generally not accepted as sets. In particular the sort Pα is intended to
be interpreted as the class of all subsets of the class interpreting the sortα. So the
comprehension terms of sortPα can represent classes of values of sortα while
not necessarily representing values in the range of the variables of sortPα, such
variables only ranging over the sets of values of sortα.

We modify the axiom systemLIZ in the following way. For eachα-terma let a↓
abbreviate the formula(∃x : α)(x = a), where the variablex is chosen not to be free
in the terma. The quantifier axioms are modified as follows.

a↓ ∧ (∀x : α)φ → φ [a/x] a↓ ∧ φ [a/x] → (∃x : α)φ

In order to use these we need additional axioms that will enable us derivea↓ for
suitable termsa. In particular we need the axiom

y↓

for each variabley. Also we need the following axioms for the sorts1,N andα ×β ,
wherea,b,c are terms of sortsα,β ,N respectively.

∗↓ a↓ ∧ b↓ ↔ (a,b)↓

0↓ c↓ ↔ c+↓

We also need, for each sortα, the axioms(a ∈ b) → a↓, for termsa,b of sorts
α,Pα respectively.
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5.1 The Axiom SystemLCZF f
−

Mathematical Induction Scheme: INDω (a) → (N ⊆ a), for eachN-classa.

Set Existence Axioms

It remains to consider when we wanta↓ for Pα-termsa ≡ {x : α | φ}. For this we
have set existence axioms based on those forCZF.

Pairing: (∀x1,x2 : α) {x1,x2}↓.
Union: (∀z : PPα)

⋃
z↓.

Restricted Separation Scheme: (∀y : Pα) {x ∈ y | θ}↓,
for each restricted formulaθ ; i.e. formulaθ in which each quantifier occurs in
one of the forms(∀u ∈ v) or (∃u ∈ v), wherev is a variable.

Strong Infinity: N↓.
Strong Collection Scheme: (∀x : Pα)[ r : x >− → (∃y : Pβ )r : x >−< y ],

for each(α ×β )-classr.
Fullness:

(∀x : Pα)(∀y : Pβ )(∃z ∈ Pow(mv(x,y)))(∀u ∈ mv(x,y))(∃u0 ∈ z)[u0 ⊆ u].

We have now described our local version,LCZF f
−, of CZFf

−.

5.2 The Axiom SystemLCZF fI

In order to have class inductive definitions inLCST we formulate a local ver-
sion,LCZF f I , of CZF f I by adding to the language ofLCZF f

− a binary infix re-
lation symbol⊢α , for each sortα. This relation symbol takes a first argument of
sort P(Pα ×α) and a second argument of sortα. We use the abbreviation for
Closed(c,b) as in the previous section. We add the following axioms and scheme,
where for each termc : P(Pα ×α),

Io(c) ≡ {x : α | c ⊢ x},
I(c) ≡

⋃
{I0(z) | z ∈ Pow(c)}.

ind0 : (∀z,z′ : Pα)[ z ⊆ z′ → (∀x : α)(z ⊢α x → z′ ⊢α x) ],
ind1 : (∀z : P(Pα ×α)) Closed(z, I(z)),
ind2 : (∀z : P(Pα ×α)) [Closed(z,b) → I(z) ⊆ b], for each termb.
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5.3 The Axiom SystemLCZF f
∗

For each termc : P(Pα ×α), let

Bounded(c) ≡ (∀y : Pα) {x : α | (y,x) ∈ c}↓
∧ (∃z : PPβ )(∀y ∈ dom(c))(∃v ∈ z) (∃w : P(β ×α)) w : v ։ y,

wheredom(c) ≡ {y : β | (∃x : α) (y,x) ∈ c}.

Bounded Induction Scheme (BIS):For termsc : P(Pα ×α) anda : Pα,

[Closed(c) → I(c) ⊆ a]∧ [Bounded(c)→ I(c)↓]

Strong Set Compactness (SSC):

(∀z : P(Pα ×α))(∃y ∈ Pow(Pow(z)))
(∀z′ ∈ Pow(z))[ I0(z′) =

⋃
{I0(z0) | z0 ∈ Pow(z′)∩ y} ]

We letLCZF f
∗ ≡ LCZF f

− +BIS+SSC.

6 Well-founded Trees in Local CST

In constructive mathematics the inductive definitions usedto generate well-founded
trees are particularly important. In the context of Martin-Löf’s constructive type the-
ory Martin-Löf introduced the inductively definedW -types(Wx : A)B(x), of well-
founded trees, whereB is a family of types indexed by a typeA. The set theoretic
version ofW -types is naturally given as follows.

If A,B are classes such thatB(x) = {y | (x,y) ∈ B} is a set for eachx ∈ A then we
inductively define a class of well-founded trees, where at each node, the branching
of the tree is indexed by one of the setsB(a), for a ∈ A. So if a ∈ A and p(y) is a
tree in the class for eachy ∈ B(a) then a treesup(a, p) should be in the class having,
as immediate subtrees, the treesp(y), for y ∈ B(a). In global set theory it is natural
to representsup(a, p) as simply the ordered pair(a, p). This leads to the inductive
definition ofWx∈AB(x) as the smallest classW such thatΓW ⊆ W where, for each
classX ,

Γ X = ∑
x∈A

XB(x) = {(x, p) | x ∈ A & p : B(x) → X}.

SoWx∈AB(x) = I(Φ) whereΦ is the inductive definition having the steps

ran(p)/(a, p)

for (a, p) ∈ ΓV .
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This approach to representingW -types inCST is global. We would like to have
a local version. We first need a suitable way to represent finite sequences in local
CST. The following lemma gives us what we need.

Lemma: 6.1 For each class X there is a class X̂, an element <>∈ X̂ and an injec-
tive function − : − : X × X̂ → (X̂ −{<>}).

Proof. It is enough to let̂X = Pow(N×X), <>= /0 and, fora ∈ X andσ ∈ X̂ ,

a : σ = {(0,a)}∪{(n+,x) | (n,x) ∈ σ}.

⊓⊔
Note that a finite sequencea0,a1, . . . ,an−1 of elements ofX is represented as the
element ofX̂

a0 : (a1 : (· · · (an−1 :<>) · · ·))

which is just the set{(0,a0),(1,a1), . . . ,(n−1,an−1)}.
We will get a local version to the above global approach to representingW -types

when we assume that each setB(x) is a subset of some classB0 and useS : ΓC →C
given by the following result of localCST to represent thesup operation.

Theorem: 6.2 (LCZFf I) There is a class C and an injective class function S :
ΓC →C.

Proof. We defineC = Pow(D) whereD = A× B̂0×A. Ford = (a,σ)∈D andb∈B0

let
b ∗ d = ((b,a) : σ) ∈ B̂0×A.

For (a, p) ∈ ΓC let

S(a, p) = {a}× ({<>}∪
⋃

b∈B(a)

p∗(b)) ∈C

where, forb ∈ B(a),

p∗(b) = {b ∗ d | d ∈ p(b)} ∈ Pow(B̂0×A).

To show thatS : ΓC →C is injective, let(a1, p1),(a2, p2)∈ΓC such thatS(a1, p1) =
S(a2, p2). Then, fori = 1,2 andx ∈ A,

x = ai ⇐⇒ (x,<>) ∈ S(ai, pi)

so thata1 = a2. Let a = a1 = a2 andb ∈ B(a).

Claim: p1(b) = p2(b).

Proof. By symmetry it suffices to show that every elementn ofp1(b) is an element ofp2(b).
So letd1 = (a′1,σ1) ∈ p1(b). Then((b,a′1) : σ1) = b∗d1 ∈ p∗1(b) so that(a, ((b,a′1) : σ1)) ∈
S(a,σ1) = S(a,σ2) and hence
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(a, ((b,a′1) : σ1)) = (a,b2 ∗d2)

for someb2 ∈ B(a) and somed2 = (a′2,σ2) ∈ p2(b2). So

((b,a′1) : σ1) = b2 ∗d2 = ((b2,a′2) : σ2)

so thatb = b2,a′1 = a′2 andσ1 = σ2 and hence

d1 = (a′1,σ1) = (a′2,σ2) = d2 ∈ p2(b2) = p2(b);

i.e. d1 ∈ p2(b). ⊓⊔

By the claim p1(b) = p2(b) for all b ∈ B(a) so that p1 = p2 and hence
(a1, p1) = (a2, p2), proving the theorem. ⊓⊔

Using S let W ′
x∈AB(x) = I(Φ ′) whereΦ ′ is the inductive definition having the

steps
ran(p)/S(a, p)

for (a, p)∈ΓC. In order to show that this definition gives an adequate representation
of W -types we need to show that the set theoretic version of the elimination rule for
W -types can be proved; i.e. we need the following result, whereW = W ′

x∈AB(x).

Theorem: 6.3 (LCZFf I) If C′ is a class and S′ : ΓC′ → C′ then there is a unique
class function K : W →C′ such that, for (a, p) ∈ ΓW,

K(S(a, p)) = S′(a,K ◦ p).

Proof. We inductively defineK to be the smallest class such that if(a, p) ∈ ΓC and
(a,q) ∈ ΓC′ such that

{(p(b),q(b)) | b ∈ B(a)} ⊆ K

then(S(a, p),S′(a,q)) ∈ K. The theorem is a consequence of the following claims.

Claim 1: If (w,z) ∈ K thenw ∈W .
Claim 2: If w ∈ W then there is a uniquez ∈ C′ such that(w,z) ∈ K. By the

previous claimsK : W →C′.
Claim 3: If (a, p) ∈ ΓW thenK(S(a, p)) = S′(a,K ◦ p).
Claim 4: If K′ : W →C′ such thatK′(S(a, p)) = S′(a,K′ ◦ p) for all (a, p) ∈ ΓW

thenK′ = K.

Claim 1 is proved by induction following the inductive definition of K while Claims
2 and 4 are proved by induction following the inductive definition of W . ⊓⊔

Theorem: 6.4 (LCZFf
∗) If A is a set then so is W.

Proof. Assume thatA is a set and observe that the inductive definitionΦ ′ of W is
bounded with set bound{B(a) | a ∈ A}. This is because, for each setX , if X/S(a, p)
is a step ofΦ ′ then p mapsB(a) onto X , and the class of allS(a, p) such that
X/S(a, p) is a step ofΦ ′ is the class

⋃

b∈B(a)

{S(a, p) | p : B(a) → X},



20 Peter Aczel

which is a set using Exponentiation, Replacement and Union.So, using the Bounded
Induction Scheme we see thatW is a set. ⊓⊔
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