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1 Introduction

Local Constructive Set Theory. CST) is intended to be a local version of con-
structive set theoryqST). Constructive Set Theory is an open-ended set theoretical
setting for constructive mathematics that is not committedny particular brand
of constructive mathematics and, by avoiding any builthinice principles, is also
acceptable in topos mathematics, the mathematics thatecearbied out in an arbi-
trary topos with a natural numbers object. We refer the nedR] for any details,
not explained in this paper, concerni@$ T and the specifi€ST axiom systems
CZF andCZF " = CZF + REA.

CST provides a global set theoretical setting in the sense Heaetis a single
universe of all the mathematical objects that are in the @afghe variables. By
contrast a local set theory avoids the use of any global uséMeaut instead is formu-
lated in a many-sorted language that has various forms ofrsduding, for each
sorta a power-sorta, the sort of all sets of elements of sort For each sortr
there is a binary infix relatior 4 that takes two arguments, the first of sarand
the second of sor?a. For each formul@ and each variable of sorta, there is a
comprehension terfx : o | ¢} of sort Za for which the following scheme holds.

Comprehension: (Vy: a)[ycq {X:a | @} < @ly/X].

Here we use the notatiap[a/X] for the result of substituting a terenfor free oc-
curences of the variablein the formulag, relabelling bound variables in the stan-
dard way to avoid variable clashes.

Our use of the terminologipcal for a version of a set theory has its origin in the
use of that term by John Bell in his book [5]. His notion ofogal set theory is a
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certain kind of syntactic version of the category theoratition of a topos. Each
of his local set theories uses a local language that has ypbas built up from
ground type symbols. The type symbols have various formsdireg the form of

a power typePA, whereA is a type. There are terms of each type and the set-like
terms of the local language are the terms of some power typeinSa local set
theory, there is no global universe of sets, but each sethas ainderstood as local
to some power type. Here we will keep to this general idea blitnat be using
the precise details of the formulations in Bell's book. Imtfaular we prefer to use
the wordsort rather thartype. Our first example of a local set theory will be what
we will call Local Intuitionistic Zermelol(IZ ). This is essentially a variant of what
Bell has called at the end of chapter 7 of [5], the free naiseéllocal set theory;
i.e. the local set theory for the free topos with a natural bers object. It is also
natural to describe it as a version of intuitionistic higbeder arithmetic.

There are several reasons for our interest in the setting adaral version of
CST. One reason is in connection with the formulation of pretifeaand gener-
alised predicative versions of the notion of an elementapps$. We expect that a
local (generalised) predicative axiom system@&T will have as its category theo-
retic models categories that are (generalised) predeaiposes, according to some
suitable weakening of the notion of an elementary topos.e&oategory theorists
dislike global set theories because they claim that thedadilglobal theories on
the structure of the binary membership relation on the us&ef sets is irrelevent
to mainstream mathematics. So a local approac®S® may be more appealing to
a category theorist interested in constructive mathematicl the carrying over of
the beautiful, but fully impredicative apparatus, of toplsory to the generalised
predicative context.

Another reason for our interest in the development of a lseasion of CST is
to do with the dependent type theoretical setting for cacsire mathematics ini-
tiated by Per Martin-Lof. That setting aims to provide alpsdphically motivated
foundational framework for constructive mathematics thakes explicit the funda-
mental notions. It is the natural translation of tB8T axiom systems such &ZF
andCZF™ into formulations of the type theoretic setting that haverbesed to
justify the claim that those axiom systems are construlgti@eceptable. Although
the translation is indeed natural it is technically somewdmanplicated due to the
transfinitely iterative nature of the global universe. Safat complication can be
avoided when directly interpreting the language of locatiseory into type theory.
We consider this important in connection with our third @agor our interest in a
local version ofCST.

In recent years there has been a growing interest in the af@welnt of old and
new areas of constructive mathematics and there have beapetiog settings for
this such as the Bishop style approach and the type theal;edit theoretical and
category theoretical approaches. Each has its advanfduyeBishop style approach
is informal and works directly with the intensional constive notions. The type
theoretical approach is a more formal philosophically naigd approach. The set
theoretical approach is fully extensional and is close ®rtiainstream set theo-
retical approach to classical mathematics. The categegrétic approach is more
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conceptual with its focus on the algebraic structure of thelbmental mathemati-
cal notions. Definitions and results formulated in one apphsshould carry over to
the other approaches. But this is not always a straightfiahweatter.

For example let us focus on the relationship between typer¢hieal and set
theoretical constructive mathematics. In some presemsdf work in constructive
mathematics definitions and results are given in an ambigstyle, intended to be
understood in both the type theoretical and the set theaietetting. There is a
danger that such a style leads to a lack of rigour. So we ativ@rether approach.
Develop constructive mathematics so that it can be strfaigkardly formalised in
suitable axiom systems for Ioc@IST. As localCST has a straightforward interpre-
tation in globalCST and a fairly straightforward direct type theoretic inteation
we get a simple rigorous approach to having definitions aadli®simultaneously
in both settings.

The details of the direct type theoretic interpretatioruiegs more type-theoretic
treatment than seems appropriate for this paper and so leasldie for another
occasion. Suffice it to state here that each aoig interpreted as a setojg]]; i.e.

a type, with an equivalence relatien ) and each propositiofey =) a2), for
ap,ap : [[a]] is required to be small; i.e. a value in a type univeyséiiso each set-
term of sort%a will be interpreted as an objeptir(A, f) : (ZX:U)(X — [[a]]).

We will want our local version o€ST to have a straightforward interpretation
in global CST. But some care is needed in setting up the language. Classica
theory has the powerset axiom and the full separation sch®man interpretation
of a local set theory in classical set theory has eachesanterpreted as a séfir]]
with the sortZa interpreted as the powersedw([[a]]) and each comprehension
term{x: o | ¢} of sort Za interpreted as a subset[pé]].

But a key feature ofCST is that the powerset axiom and the full separation
scheme are not available, as these are too impredicativen§ead of interpret-
ing each sort as a set, the interpretation of our local verefoCST will inter-
pret each sort as a class, wifl¥?a]] interpreted as the powerclass[@f]]; i.e. the
classPow([[a]]) of all subsets of the clag$a]]. Also, each comprehension term
{x:a| ¢} of sortZa will now be interpreted as a subclass of the clgs§ which,
in general, may not be a setfini”a]).

Class terminology and notation provides a useful devicernwierking in clas-
sical axiomatic set theory. It proves to be even more usefidnworking inCST
when many comprehension terms that represent sets inaahsst theory can only
be taken to be classes@ST. To treat classes in a set theory in a flexible way, with-
out making them values in the range of bound variables, @iwenient to formulate
a set theory in a suitable free logic. In general, a free lagjaws the use of terms
which may not represent values in the range of the variables.

There are a variety of approaches to the setting up of a figie.lBor example
some approaches such as those of Beeson, [4], are intendeskfavith function
symbols that may be interpreted as partial functions, saé¢nas may be undefined
in an interpretation. In such an approach it is natural tairegequality and other
relation symbols to be strict in the sense that they are artgnded to hold for
arguments that are in the range of the bound variables. lafmunoach to free logic
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we will be more liberal. We do not want equality to be strict,eqjuality between
classes has a natural extensional treatment. Also the mehipeelation should
only be strict in its first argument.

A key axiom scheme o€ZF is the set induction scheme. It is a suitably con-
structive version of the classical foundation axiom thatresses that all sets are
well-founded. More specifically the scheme states that tiieeuse is inductively
generated as the smallest class such that every subsetdésiseis an element of
the class. By making essential use of the scheme we havesaraiastion metatheo-
rem forCZF. The metatheorem expresses that a general kind of induitsfugtion
can be used to inductively generate a class as the smakest atisfying closure
conditions specified by the inductive definition. Moreolsrmaking essential use
of the axiomREA of CZF, for certain inductive definitions the inductively gen-
erated class will be a set. In addition, usiR§A again, a useful set-compactness
result concerning set inductive definitions can be obtained

These inductive definition results can play an importardg mlthe development
of constructive mathematics @ST. See, for example [1], where it is shown using
set compactness that every inductively generated forrpaldgy is set-presentable.
So we would like to have these inductive definition resultgilable in our local
CST. Butthere is a problem with the proofs of these results iallG@ST. The results
can be formulated in local ST. But the proofs of the results use the set induction
scheme and the axioREA, a scheme and axiom that are global and do not have
direct local formulations. The other axioms and scheme€Z# andCZF* do
have local formulations. So we will introduce new axiom syssCZFI andCZF*
that have axioms and schemes that directly express thetinedefinition results of
CZF andCZF ™ respectively. They are both extensions of the axiom sySi&m~
obtained from a formulation oc€ZF by leaving out the set induction scheme. We
will see that bothCZFI andCZF* have local versions

We review theCST axiom systemsCZF, CZF™ and CZF~ in section 2. We
also discuss the inductive definition results that can begat@nd formulate the
axiom system&€ZFI andCZF*. In section 3 we introduce our free logic and the
free versions of th€ST axiom systems. We go on, in section 5, to formulate our
local versions of these axiom systems. But before that wednice the ideas of
local set theory by formulating a local version of intuitistic Zermelo set theory.
We give an application of inductive definitions to well-faled trees in section 6.
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2 Inductive Definitions in CST

In this section we review results concerning inductive diédins that have been
obtained in theCST axiom system€ZF andCZF ™.

2.1 Inductive Definitions inCZF

The axiom systen€ZF is formulated in the usual first order language of axiomatic
set theory with equality and membership as the two relationb®ls. It has the
axioms and rules of inference for intuitionistic predicéigic with equality and
uses the non-logical axioms and schemes of Extensioritying, Union, Infinity,
Restricted Separation, Strong Collection, Subset Cadle@nd Set Induction. See
[2] for the details of these axioms and schemes. Alterngtithee reader may get
a good enough idea by looking at the presentation of the asigstemCZF; in
the next section. Here we just consider the Infinity axiomichtstates that there
is an w-inductive set, where we define a cla&g¢o be w-inductive if 0 € A and
(Vxe A)[xU{x} € A].

Let CZF~ be obtained fronCZF first, by leaving out from the axioms and
schemes the set induction scheme, and second by strengghieaiaxiom of Infin-
ity to the axiom of Strong Infinity and adding the Mathemdtloaluction Scheme.
Strong Infinity states that there is a smallestnductive set, while Mathematical
Induction states that the smallestinductive set is a subset of eaalinductive
class. Note that both Strong Infinity and Mathematical Irisiuccan be derived in
CZF.

The axiom systen€ZF ™ is fully predicative. It is the set induction scheme that
givesCZF its logical strength. That scheme expresses that the weiwdisets is the
smallest class such that every subset of the class is anmefitbe class. Although
the scheme is not predicative in the traditional sense ipisfully impredicative
either, as it does not imply the powerset axiom or the fullesafjon scheme. It is
natural to call it generalised predicative, as it is pretiiearelative to certain kinds
of inductive definition which may be infinitary rather tharetfinitary inductive
definitions which are acceptable in predicative mathermsatic

It will not be difficult to formulate a local version &ZF ~. But the set induction
scheme is a global property of the universe of sets and tleemsto be no direct
way to formulate a local version of that scheme so as to olatdacal version of
the whole ofCZF. An important metatheorem aboGZF, which would seem to
express the logical strength GZF, states that class inductive definitions of classes
hold for CZF. We shall see, in section 5, that the metatheorem can be fateadu
and derived for an extension of the local versionGZF~ and we will take that
extension as our local version 6ZF. The additional axioms of the extension will
directly express that set inductive definitions of class#d.lBut in this section we
consider inductive definitions in the global context.
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We think of an inductive definition as an abstract axiom systeving (infer-
ence) stepX/a consisting of a (possibly infinite) s&t of premisses and a conclu-
siona. The theorems of the axiom system form the smallest clasedlander the
inference steps; i.e. for each stépy, if the premisses are in the class then so is the
conclusion. Any clasg can be viewed as a class inductive definition whose steps
X/aare the ordered paifX,a) in ®. A class is defined to b&-closed if, for each
stepX/aof @, if every element oK is in the class then so & The class inductively
defined by®, if it exists, is the smallesb-closed class.

Definition: 2.1 A set theoretical axiom system T has the class induction property
if, for each class @ of T thereisa smallest @-closed class|(®) of T; i.e. thereisa
class| such that the following are derivablein T.

1. I is ®¥-closed, and
2. iftheclassAis ®-closed then | C A.

The metatheorem may now be formulated as follows.

Theorem: 2.2 (Class Induction Metatheorem for CZF) The theory CZF hasthe
class induction property.

Note that the Set Induction Scheme may be restatad-ad (@), where® is the
class of all pairgX, X). The scheme is clearly a global property about the universe
V.

It will be straightforward to formulate a local version oftlpredicative system
CZF~. We now formulate an extensid®ZF| of CZF~ by adding a new binary
infix relation symbol- to the language satisfying the following axioms and scheme
where, for each clas®,

(@) = {X| @I x for some subsed, of ®}.
ind0: I is monotone in its first argument; i.e. for all sas@’,
PCP = (VW[ PHx = & x|
ind1: For all sets® the clasd (@) is ®-closed.

ind2:  For each clash, if @ is any set such thatis ®-closed then (@) C A.

Note that, because @fdO, | (®) = {x| @ |- x} for each setp. Also ind1 andind2
combine to state that for each sBt the clasd (@) is the smallest>-closed class.
The next result states that, f6ZFI, | (@) is the smalles®-closed class, even when
@ is a class that may not be a set.

Theorem: 2.3 (Class Induction Metatheorem for CZFI) Theaxiomsystem CZFI
has the class induction property.

Proof. Let @ be a class. We first show thii®) is @-closed. So leX/a be a step
of @ such thaX C |(®). We must show tha € | (®). By our assumption,

(Vx € X)(3Py € Pow(®)) P - x.
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So, by Strong Collection, there is a sub%ebf Pow(®) such that
(WxeX) (TP e ¥) Py X.

Now let @1 = {(X,a)} UU# and observe tha®; is a subset ofp having X/a
as a step, wittX C 1(@®y) so that, byindl, a € [(®1) C | (®) as the operator is
monotone.

It remains to show that(®) is a subclass of eactp-closed clasA. So let
acl(®);i.e.dy afor some subsedy of @. If Ais ®-closed then it ishy-closed
so that, byind2, a€ [ (@) C A, as desired. O

2.2 Inductive Definitions inCZF™

A useful strengthening ofZF is the axiom systen€ZF " = CZF + REA. Here
REA is the regular extension axiom, which states that everyssatsubset of a
regular set. Aregular set is an inhabited transitive Sef, such that for each € A,
if RC ax Asuch thaivx € a)(3y € A) (x,y) € Rthen there id € A such that both
(Vxea)(dy e b) (x,y) € Rand(Vy € b)(Ix € a) (x,y) € R The following results
about inductive definitions may be deriveddZF*, see [2, 3].

A setBis aset bound for a class® if, for each steY /zof @, there ish € Band
a surjectivef : b — Y. The class® is defined to bdoundedif it has a set bound
and for each sef the class{z| (Y,z) € @} is a set. Note that, I€ZF, each set is
bounded. For each séy let Io(®p) be the intersection of atby-closed sets; i.e. the
classN{Y | Y is a®y-closed sét. Also, for each clas® let

(@) = J{lo(®0) | o € Pow(®)}.

Bounded Induction Scheme (BIS)For each class @, theclass| (®) isa subclass
of each ®-closed class and hence is the smallest @-closed class. Moreover if @ is
bounded then | (@) isasetand so | (@) = lo(P).

Another useful result o€ZF " is the Set Compactness property for set inductive
definitions. See [2] for the original result and [3] for a pfo6the more recent im-
provementSSC

Strong Set Compactness Property (SSC)For every set @ there is a set B of
subsets of @ such that for every subset @' of @ every element of Io(@') isin lo(®p)
for some subset @y of @’ thatisin B.

Theorem: 2.4 (CZF") Each instance of BIS can be derived as can the statement
SSC

1i.e. a set that has an element and is such that it is a subsstpaferset.
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Let CZF* = CZF + BIS + SSC As each set is bounded we get the following con-
sequence oBIS.

Corollary: 2.5 (CZF*) For each set @ the class Io(®) is a set and so lo(®) =
| (@), the smallest ®-closed class.

For classes andAlet|(®,A) = 1(®Pa), where®s = @ U{(0,x) | x € A}). Note
thatl (@, A) is the smalles®-closed class that includes It immediately follows
from corollary 2.5 that if® is a set ther (@, A) is a set for each sét. We have the
following consequence @SC

Corollary: 2.6 (Set Compactness for CZF) For all sets @, A there is a set B of
subsets of A such that, for all sets A’ C A, each element of | (@, A’) is an element of
I(®,Ap) for some subset Ag of A’ that isin B.

3 The Free Version of CST

3.1 A Free Logic

We present our free version of intuitionistic predicatadogith equality. We assume
that formulae are generated from the atomic formulae in w@buway using the
logical constants. and T, the binary connectives, Vv and— and the quantifiers
(Vx) and(3x) for each variable. Abbreviations for- and < are defined as usual.

We first consider the following Hilbert style axiomatisatiof Intuitionistic logic
with equality and then present our free modification. A staddset of axioms to-
gether with the rule of modus ponens will do for intuitior@gbropositional logic.
We just focus on the axioms and rules for equality and the tGifiens. The equality
axioms are as follows, wheeeay, ap are terms and is a variable.

a=a (a1 = @) A plag /x| — @lag/X]

We consider the following standard quantifier rules andmsiovherecis a variable
not free in the formul® anda is any term.

60— ¢

T 09 (VX) — ¢la/X]
pla/ — (e (Ef)(’%ee

We usea| to abbreviaté3x)[a = x|, where the variablgis chosen not to occur free
in the terma. This expresses that the temnis in the range of the variables. For our
free logic we modify the two quantifier axioms as follows.

al A (VX)@ — la/x] al A gla/x] — (X
We also need the axiorng|, for each variablg.
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3.2 The Axiom Syster®ZF¢

The axiom systenCZF for constructive set theory has usually been axiomatised
in the first order language with equality and one binary inélation symbole.
Here we give an axiomatisation in our free logic, where wevalthe formation

of comprehension terrigx | @} for arbitrary formulaep and have the following
general non-logical axioms and schemes. Further axiomsarames will be given
after we have introduced some abbreviations. In the foligwd is any formula and
a,b are terms.

Comprehension: ac {x| ¢} < al A ¢gla/X.
Extensionality: (¥x)(x€a < xeb) —a=h.
Elements are Sets: (acb) — al.

Some Abbreviations

In these abbreviatiors a;,ay, b, c,r are terms; i.e. either variables or comprehen-
sion terms. There may be a standard constraint that a vaigbbt allowed to occur
free in a formula or term. For example in the abbreviation(foe a | ¢} the variable

x should not occur free in the teranand in the abbreviation fdE!x) ¢ the variable

y should not occur free ip.

(Vxea)p=(VX)[xea— ¢
(Ixea)p=(Ix)[xean g
{xeal @} ={x|xcane}
{blxea} ={y| (3xca)y=b}
apNag = {X|xcaAXe ay}
apUay = {X|xeaq VXeap}
a Capy=(Wea)xea
Nc={x|(Wyec)xey}
Uc={x|(Byec)xey}
Pow(a) = {y|y C a}
{al,az} = {x|x:a1 \/Xzaz}
{a} ={aa}
(a1,82) = {{aa},{a1,82}}
(%) @ = (AY)[{x| o} = {y}]
axb={z| (Ixea)(Fyeb)z=(xy)]
V={x|T}
0={x|L}

2 Free occurrences afin ¢ become bound ifix | @}.
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r:a>— =(¥xea)(3y)xy) er]
r:a>—b=(vxea)(3yeb)(xy)er]
r:a><b=r:a>-bA(Yyeb)(Ixea)(xy) er]
r:a—b=rcPow(axb)A(vxea)(3ly) (xy) er
rra»b=r:a—bA(VWyeb)(Ixea) (xy er
mv(a,b) = {ze Pow(axb)|z:a>—b}
exp(a,b) = {ze Pow(axb)|z:a— b}

For our set theoretic representation of the natural numbersise the following
abbreviations.
0=0
at =au{al
INDy(a) =0ecan (VWea)y" €a]
N =N {x|INDw(x)}

Set Induction Scheme: For each terna,
Pow(a)Ca — V Ca.
Mathematical Induction Scheme: For each terna,

INDg(a) — NCa.

The Set Existence Axioms and Schemes

Pairing:  (Vxq,X%2) {X1,%2}!.

Union: (vz) Uz|.

Restricted Separation Scheme: (vy) {xey| 6}|,
for each restricted formul@; i.e. formula8 in which each quantifier occurs in
one of the formgYu € v) or (Ju € v).

Strong Infinity: N |.

Strong Collection Scheme: (VX)[r:x>— — (3y)r:x>-<y],
for each ternr.

Fullness:  (vx)(Yy)(3z € Pow(mv(x,y)))(¥Yu € mv(x,y))(3up € z)[up C u].

Remarks

1. Using the Strong Collection Scheme both the Mathemalinhiction Scheme
and the Strong Infinity axiom can be derived using the foltayéaxiom.

Infinity:  (3x) IND(X).

2. The original formulation oCZF used a certain scheme, the Subset Collection
Scheme, instead of the Fullness axiom. That scheme and tine$3iaxiom are
equivalent, given the other axioms and schemes.
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3. Easy consequences of the Strong Collection Scheme afdiliness axiom are
the following scheme and axiom, respectively.

Replacement Scheme:a| A(vxe a)(3ly)p — {y| (Ixe€ a)@}|, for each term
a
Exponentiation: a| A b — exp(a,b)|, for arbitrary termsa, b.

We call this free formulation o€ ZF, CZF;.

Theorem: 3.1 CZF isa conservative extension of CZF.

Proof. We only sketch the idea for the straightforward proof. We define a trans-
lation of the language d€ZF+ into that of CZF by systematically eliminating com-
prehension terms. This can be done by repeatedly replaeicty equality(a = b)
by (¥X)[x € a «» x € b], each formulga € b), wherea is a comprehension term
by (3x)[(Vy)(y € a < y € x) Ax € b] and each formuldx € {y| ¢}) by @[x/y].
Eventually all comprehension terms will be eliminated frarformulag giving a
formula ¢* such thatp «— ¢ is provable inCZF; and if ¢ is provable inCZF;
theng” is provable inCZF. If ¢ already is in the language GIZF theng” = @ so
that if it is provable inCZF; then it is provable irCZF. O

3.3 The Axiom Syster@ZF«l

By leaving out the Set Induction Scheme fr@#F; we get the free versioBZF;~

of CZF~. We can also get the free versi@ZF¢l of CZFI by adding the binary
relation symbol- to the language of£ZF;~and adding the following axioms and
scheme where, for ternasb,

Closed(c b) = (
I(c) = {x

ind0:  (VzZ)[zCZ — (VX)(zFx—Z FX) ],
indl: VzClosed(zI(2)),
ind2:  vz[Closed(zb) — 1(z) C b], for each ternb.

vy € Pow(b))(vVx)[(y;x) € c — x € b,
| (3z € Pow(c)) z- x}.

3.4 The Axiom SystenTZF¢*

We formulate the free version @ZF*. For each ternc let

lo(c) = N{y|Closed(c,y)}
I(c) = U{lo(2) | z€ Pow(c)}

Note thaiClosed(l (c),c) is a theorem o€ZF; .
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Let
Bounded(c) = Vy {x| (%.X) € c}| A (32)(vy € dom(c))(3v e 2)(3w) w:v .
wheredom(c) = {y| 3x (y,X) € c}.
Bounded Induction Scheme (BIS): For termsc, a,
[Closed(c,a) — 1(c) C a] A [Bounded(c) — 1(c)|]

Strong Set Compactness (SSC):

(V2)(3y € Pow(Pow(2)))(vZ € Pow(2))[ l0(Z) = Uflo(20) | 20 € Pow(Z) Ny} |

Finally we letCZF¢* = CZF¢~ +BIS + SSC

4 Local Intuitionistic Zermelo Set Theory

We outline a formal systeilZ which is a local version of Intuitionistic Zermelo set
theory in which there is a one element shran infinite ground soifl, product sorts
o x 3 and power sorts”a. The sorts have a natural interpretation in a set theory
such adZ, Intuitionistic Zermelo Set Theory, each sarbeing interpreted as a set
[[a]], with [[1]] = {0}, [[N]] any set with @= [[N]] that is closed under — nuU {n},
and[[a x B]] = [[a]] x [[B]], using the standard defintion of the cartesian product
of two sets, and[Za]] = Pow([[a]], wherePow is the powerset operation on sets.
With obvious interpretations of the constant® and function symbol§ )™, ( , ),
used below in forming terms, the axiomsld¥ , given below, are easily seen to be
theorems ofZ .

There is an unlimited supply of variables of each sort. Thegeof each sort
and the formulae are simultaneously inductively generatiede are the rules for
generating terms.

. Every variable of sontr is a term of sortr.

. % is a term of sort.

. Ois aterm of som.

. If ais a term of sorlN thena™ is also a term of soill.

. If a,b are terms of sorte, 3 respectively theria, b) is a term of sortr x 3.

. If @ is a formula and is a variable of sortr then{x: a | ¢} is a term of sort
24a.

n We call terms of the forrdx: a | ¢} a-classes and writea: a whenais ana-
term; i.e. aterm of sour. The atomic formulae have one of the fortag =4 az) for
a-termsay, ap or (a €4 b) whenais ana-term andbis aZ2a-term. We will usually
supress the subscript

DU WN P
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Formulae are generated from the atomic formulae in the usaglusing the
logical constants. and T, the binary connectives, Vv and— and the quantifiers
(vx: a)and(3x: a) for each variable of sorta. Abbreviations for- and < are
defined as usual.

We use the following axiomatisation of Intuitionistic masgrted logic with
equality. Any set of axioms and rules of inference for intuitstic propositional
logic will do. We just focus on the axioms and rules for egyadind the quantifiers.
The equality axioms are as follows, whexe,,a, area terms andx is a variable
of sorta.

a=a (a1 =az) A glar /X — @laz/x]

We use the following quantifier rules and axioms, whei®a variable of sortr not
free in the formulad andais ana-term.

% (Vx:a)p— ¢la/X
gla/x — (Ix:a)e %

We assume the following non-logical axioms and scheme, evhgiay, a are
a-terms,by, by areB-terms,cis aa x B-term andd;, d, are Za-terms.

(al, bl) = (az, bz) — (al = az) A\ (bl = bz)

(Ix:a)(Fy: B)le= (xy)]

(Vz:1)[z= ]

(Vx:a)(xed; « xedy) — dp=dy
(Wy:a)ye{x:a|@} < @ly/X], for each formulap.
(Vx:N) =(x" =0)

(Vx1 %2 N)[(x] =%3) — (1 =2x)]

NouhswbdpE

Some Abbreviations

It is convenient to introduce the following abbreviationkexea, a;,a, are Za-
terms,bis aB-term andcis a & Za-term.
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(Wxea)p=(Vx:a)xea — ¢
(Ixea)p=(3x:a)xeca A ¢
{xealp} ={x:a|xcan ¢}
{blxea} ={y:B|(Fxca)y=h}
aNa ={X:a|xeaq A XEay}
ayUay ={X:a|xeaq V Xe€ay}
a Cay=(Wxea) xea
Nc={x:a|(¥yec)xey}
Uc={x:a|(3yec)xey}
Pow(a) = {y: Za|yCal
(@x:a) o= (EGy: a)[ {x]| @} = {y}]
axb={z:axp|(@Fxea)@Byeb)z=(xy)]

As in the previous section we use the following abbreviatiamere nowa is a
Za-term,bis aZB-term andr is aZ(a x 3)-term.

r:a>— =(v¥xea)3y)xy) er]
r:a>—b=(vxea)(3yeb)(xy)er]
r:a><b=r:a>-bA(Yyeb)(Ixea)(xy) er]
r:a—b=rcPow(axb)A(vxea)(3ly) (xy) er
rra»b=r:a—bA(VWyeb)(Ixea) (xy er
mv(a,b) = {ze Pow(axb)|z:a>—b}
exp(a,b) = {ze Pow(axb)|z:a— b}

The Natural Numbers

The natural numbers are here represented using the foljoabibreviations where

cis aZN-term.
INDy(c) =0€ec A (Vxec)xt ec

N={z: N |INDy(2)}

We have not included any mathematical induction schem&fas we can show
that (N,0,( )*) satisfies the Dedekind-Peano axioms, including the mattiemha

induction axiom:
(Vze Pow(N))[INDy(z) — NCz].

4.1 Inductive Definitions inLIZ

By ana-inductive definition we simply mean a teren &2(%?a x a) for some sort
a.1fb: Zaletlp(c) =N{y: Za |Closed(c,y)}, where

Closed(c,b) = (Vy € Pow(b))(¥x: a)[(y,X) €c — X € b].
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Because of the full impredicativity dflZ the setlp(c) is provably the smallest
c-closed set; i.e. the following sentences can be derivadanfor each ternc of
sorntZ(Zaxa).

indol: (Vz: Z2(Za x a))Closed(z1p(2)),
indp2: (Vz: Z(Zaxa)) (Vy: Za)[Closed(zy) — lo(2) T,

5 Some Axiom Systems for Local CST

The formal systenhIZ is a thoroughly impredicative axiom system, each set having
its powerset. We wish to have a predicative version of it,clhill be a local
version LCZF;~, of CZF;~, to which we can add the forms of inductive definition
of sets and classes that are available in constructive setyththereby giving us a
generalised predicative formal system for local consivactet theory.

We keep the same terms and formulad&.iaf , but use a free version of the logic
where the sorts are intended to be interpreted as classemsifractive set theory
which are generally not accepted as sets. In particularaiteZa is intended to
be interpreted as the class of all subsets of the class ietérg the sortr. So the
comprehension terms of soffa can represent classes of values of somvhile
not necessarily representing values in the range of thablas of sort#?a, such
variables only ranging over the sets of values of sort

We modify the axiom systeinlZ in the following way. For eackr-termaleta]
abbreviate the formulédx : a)(x = a), where the variablg is chosen not to be free
in the terma. The quantifier axioms are modified as follows.

alA(a)g—ola  alAglaX— (Gx:a)g

In order to use these we need additional axioms that will kenab derivea] for
suitable terms. In particular we need the axiom

yl

for each variablg. Also we need the following axioms for the sottdN anda x 3,
wherea, b, c are terms of sorta, 3,N respectively.

) al Abl < (ab)]
0] cl & ¢t

We also need, for each saat, the axioms(a € b) — a/, for termsa,b of sorts
o, Za respectively.
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5.1 The Axiom SysterhCZF ¢~

Mathematical Induction Scheme: [INDy(a) — (N C a), for eachN-classa.

Set Existence Axioms

It remains to consider when we waaf for Za-termsa= {x: a | ¢}. For this we
have set existence axioms based on thos€x¥t.

Pairing:  (¥x1,X2: a) {X1,%2}].

Union: (Vz: £2Z2a) Uz].

Restricted Separation Scheme: (Vy: Za) {xey| 6}],
for each restricted formul@; i.e. formula8 in which each quantifier occurs in
one of the formgVYu € v) or (3u € v), wherev is a variable.

Strong Infinity:  NJ|.

Strong Collection Scheme: (Vx: Za)[r:x>— — (3y: ZP)r: x>-<y],
for each(a x B)-classr.

Fullness:

(Wx: Za)(Vy: ZB)(Fze Pow(mv(x,y)))(Yu e mv(x,y))(3uo € z)[up C U].

We have now described our local versitiGZF ¢, of CZF;~.

5.2 The Axiom SysterhCZF ¢l

In order to have class inductive definitions WCST we formulate a local ver-
sion,LCZFl, of CZF;l by adding to the language @CZF ;™ a binary infix re-
lation symbolt-, for each sortr. This relation symbol takes a first argument of
sort Z(Za x a) and a second argument of sort We use the abbreviation for
Closed(c,b) as in the previous section. We add the following axioms ameise,
where for each term: Z(Za x a),

lo(c) = {x:a|ctx},
I(c) =U{lo(2) | z€ Pow(c)}.
ind0:  (Vz,Z: Za)[zCZ — (W:a)(zbgXx—Z g X) ],

indl: (Vz: 2(Za xa))Closed(z1(2)),
ind2: (Vz: Z(Za x a)) [Closed(z,b) — |(z) C b], for each ternb.
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5.3 The Axiom SysterhCZF ¢*

For eachternt: &(Za x a), let

Bounded(c) = (Vy: Za){x:a|(y,x) ec}|
A(Fz: 22B)(Vyedom(c))(Ivez) (Fw: Z(Bxa))w:v—y,

wheredom(c) = {y: B | (3x: a) (V.x) € c}.

Bounded Induction Scheme (BIS): For termsc: &(Za x a) anda: £a,
[Closed(c) — 1(c) C a] A [Bounded(c) — 1(c)|]

Strong Set Compactness (SSC):

(Vz: 2(Za x a))(y € Pow(Pow(z)))
(VZ € Pow(2))[ lo(Z) = U{lo(20) | 0 € Pow(Z) Ny} ]

We letLCZF* = LCZF;~ + BIS+ SSC

6 Well-founded Trees in Local CST

In constructive mathematics the inductive definitions useagenerate well-founded
trees are particularly important. In the context of Maltiof's constructive type the-
ory Martin-Lof introduced the inductively definédl-types(Wx : A)B(x), of well-
founded trees, whei is a family of types indexed by a typ® The set theoretic
version ofW-types is naturally given as follows.

If A Bare classes such thatx) = {y | (x,y) € B} is a set for eack € Athen we
inductively define a class of well-founded trees, where ahe®de, the branching
of the tree is indexed by one of the s&&), forac A. So ifac Aandp(y) is a
tree in the class for eaghe B(a) then a tresup(a, p) should be in the class having,
as immediate subtrees, the trg¥yg), fory € B(a). In global set theory it is natural
to represensup(a, p) as simply the ordered palg, p). This leads to the inductive
definition of WcaB(X) as the smallest cla®¥ such that™ W C W where, for each
classX,

X = EAXB(X) ={(x,p) | xe A& p:B(x) — X}.
Xe

SoWeaB(X) = 1 (@) where® is the inductive definition having the steps

ran(p)/(a, p)
for (a,p) e I'V.
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This approach to representidg-types inCST is global. We would like to have
a local version. We first need a suitable way to represenefggtjuences in local
CST. The following lemma gives us what we need.

Lemma: 6.1 For each class X tAhereisacIass)A(, an element <>¢ X and aninjec-
tivefunction —: —: X x X — (X —{<>}).

Proof. Itis enough to leX = Pow(N x X), <>= 0 and, fora e X ando € X,
a:o = {(0.@}u{(n",x) | (nx) € o}.

O
Note that a finite sequen@®,ay,...,a,—1 of elements ofX is represented as the
element oiX

ag:(ar: (---(ap—1:<>) )

which is just the sef(0,ap), (1,a1),...,(N—1,8,-1) }.

We will get a local version to the above global approach teesgntingV-types
when we assume that each Béx) is a subset of some claBg and uses: 'C — C
given by the following result of localST to represent theup operation.

Theorem: 6.2 (LCZF¢l) There is a class C and an injective class function S:
rc—-_cC.

Proof. We defineC = Pow(D) whereD = A x By x A. Ford = (a,0)cDandbe By
let
bxd = ((b,a):0) €ByxA.

For(a,p) e FClet

Sap) = {a} x({<>}u |J p'(b)) €C

beB(a)
where, forb € B(a),
p*(b) = {b+d|d e p(b)} € Pow(By x A).

To show thaS: I'C — Cis injective, let(as, p1), (az, p2) € ' C such thaS(a, p1) =
S(ap, p2). Then, fori = 1,2 andx € A,

X=g <= (x,<>)e€Ya,p)
so thata; = ap. Leta=a; = ap andb € B(a).

Claim: pz(b) = p2(b).

Proof. By symmetry it suffices to show that every elementpgf) is an element op,(b).
So letd; = (aj,01) € pi(b). Then((b,a}) : 01) =b*d; € p;(b) so that(a, ((b,a}) : 01)) €
S(a,01) = S(a,02) and hence
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(a ((b,ay) : 01)) = (a bz dp)
for someb, € B(a) and somel, = (&), 02) € p2(bz). So
((b,ay): 01) = bpxdz = ((b2,83) : 02)
so thatb = by, a] = &, andoy = 0, and hence
di = (ah, 01) = (5, 02) = d € pz(b2) = pa(b);

ie.d;ep(b). O
By the claim pi(b) = po(b) for all b € B(a) so that p = p, and hence
(a1, p1) = (ap, p2), proving the theorem. O

Using S let W,_,B(x) = I (®’) where @’ is the inductive definition having the

steps
ran(p)/S(a, p)

for (a, p) € I C. In order to show that this definition gives an adequate seprtion
of W-types we need to show that the set theoretic version of timéreltion rule for
W-types can be proved; i.e. we need the following result, eié= W,_,B(x).

Theorem: 6.3 (LCZF¢l) If C' isaclassand S : FC' — C’ then thereis a unique
classfunction K : W — C’ such that, for (a, p) € 'W,

K(S(a,p) =S(aKop).

Proof. We inductively defin& to be the smallest class such thaféfp) € C and
(a,q) € 'C’ such that

{(p(b).q(b)) | be B(a)} CK

then(S(a, p),S(a,q)) € K. The theorem is a consequence of the following claims.

Claim1: If (w,z) € KthenweW.

Claim2: If we W then there is a uniquee C' such that(w,z) € K. By the
previous claim¥ : W — C'.

Claim 3: If (a,p) € T'W thenK(S(a, p)) = S(a,Ko p).

Claim4: If K':W — C' such thaK’(S(a, p)) = S(a,K’o p) for all (a,p) € T'W
thenkK’ =K.

Claim 1 is proved by induction following the inductive defion of K while Claims
2 and 4 are proved by induction following the inductive deiom of W. O

Theorem: 6.4 (LCZF*) If AisasetthensoisW.

Proof. Assume thaf is a set and observe that the inductive definitidnof W is
bounded with set bounfB(a) | a€ A}. This is because, for each sétif X/S(a, p)
is a step of@’ then p mapsB(a) onto X, and the class of alf(a, p) such that
X/S(a, p) is a step of®’ is the class

U {Sap)|p:B(a) — X},

beB(a)
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which is a set using Exponentiation, Replacement and USionusing the Bounded
Induction Scheme we see thaftis a set. O
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