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1 Introduction

The aim of this note is to state and prove a constructive version of the
following classical result.

The Lusin Separation Theorem: Disjoint analytic sets of Baire space
are Borel separable.

We recall the classical definitions. Baire space is the topological space
N = N

N of infinite sequences of natural numbers, which has the product
topology, N having the discrete topology. A subset of Baire space is analytic if
it is a projection of a closed subset of the product space N×N or equivalently
a continuous image of a closed subset of N . The Borel sets of Baire space
form the smallest σ-algebra on Baire space that includes the open sets. Here
a σ-algebra on a set is a class of subsets of the set that contains the empty set
and is closed under complements and countable unions. A pair of subsets of
Baire space is Borel separable if there is a Borel set that includes one subset
and is disjoint from the other.

The Lusin Separation Theorem has, as an immediate consequence, Suslin’s
fundamental classical theorem that if a subset of Baire space is both analytic
and coanalytic; i.e. the complement of an analytic set, then it is Borel. In
fact the converse is also classically true, so that the Borel sets are exactly the
sets that are both analytic and coanalytic. According to [9] Suslin’s Theorem
was anounced in [10] without any proof; the first published proof being in [6],
another being in [7]. It seems that the separation theorem was only estab-
lished in [4]. Moschovakis, in [9], gives two proofs of the separation theorem,
the first a highly non-constructive argument by contradiction, followed by
a second constructive proof using Bar Induction and Bar Recursion. Such
proofs were first given in [5]. The proof of the main lemma in this paper
has been based on this second proof. It is interesting to note that Brouwer,
in stating his bar theorem in [2] was probably inspired by the separation
theorem1.

Our aim is to prove a version of Lusin’s result in the constructive set the-
ory CZF. One of the standard classical proofs, see [9], using Bar Induction
and Bar Recursion would appear to be essentially constructive. But care
is needed in formulating and using the asumption that the analytic subsets
A1, A2 of Baire space, N , are disjoint. The straightforward formulation that
A1 ∩ A2 is empty, may be stated as follows.

¬(∃α1 ∈ A1)(∃α2 ∈ A2)[α1 = α2].

1See the discussion in the introduction to the translation of [2] in [3].
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The equality α1 = α2 may be written ¬(∃n ∈ N)[α1n 6= α2n] so that, using
constructively correct logical equivalences we may restate the disjointness of
A1, A2 as

(∀α1 ∈ A1)(∀α2 ∈ A2) ¬¬(∃n ∈ N)[α1n 6= α2n].

We get a stronger notion by removing the double negation from the above.
We then write that A1, A2 are positively disjoint. Wim Veldman,[12], consid-
ers that this is the natural constructive notion of disjointness. Note that the
two notions become equivalent when Markov’s Principle (MP) is assumed.
This is the following principle.

Markov’s Principle (MP): For each decidable subset R of N; i.e. (∀n ∈
N)[(n ∈ R) ∨ ¬(n ∈ R)],

¬¬(∃n ∈ N)(n ∈ R) ⇒ (∃n ∈ N)(n ∈ R).

But we do not consider MP to be constructively acceptable, although it is
accepted by the Russian school of recursive constructive mathematics.

Even the assumption that the analytic sets are positively disjoint does
not seem to be strong enough to deduce constructively, using the standard
constructive forms of Bar Induction2 and Bar Recursion, their Borel sepa-
ration. Wim Veldman has shown how to overcome this problem when the
analytic sets are strictly analytic, a restricted notion of analytic set intro-
duced by Veldman, [11, 12]. Here we overcome the problem in another way
by strengthening the disjointness assumption even further. We will formulate
a notion of barred disjointness for pairs of analytic sets. We will recapture a
version of Veldman’s result as a consequence of our main result.

While Bar Induction is an acceptable principle of Brouwer’s Intuitionistic
mathematics it is not an accepted principle of Bishop’s constructive mathe-
matics and is not provable in CZF. In order to avoid using Bar Induction we
will strengthen the premiss of Lusin’s Separation Theorem even further by
using a strong point-free formulation of the disjointness property for analytic
sets. This point-free notion of disjointness is equivalent to barred disjointness
when Bar Induction is assumed. To compensate for the strengthening of the
assumption we will also strengthen the conclusion. So we will define when
analytic sets A1, A2 are strongly disjoint and when they are strongly Borel
separable and prove the following result.

Theorem: 1 (Constructive Lusin Separation Theorem) Strongly dis-
joint analytic sets of Baire space are strongly Borel separable.

2In the literature this standard form of Bar Induction is often refered to as BID.
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In our point-free approach to the separation theorem we will use trees
to represent analytic sets and Borel codes to represent Borel sets. We will
define a relation ≤ between trees T and Borel codes b such that if T ≤ b then
the analytic set represented by the tree T will be a subset of the Borel set
represented by the code b. We will define a binary operation on trees that
assigns to trees T1, T2 a tree T1 ∧ T2 to represent the analytic set A1 ∩ A2,
where A1, A2 are the analytic sets represented by T1, T2 respectively. Also
we will define a unary operation on Borel codes that assigns to each Borel
code b a Borel code −b that represents a Borel set disjoint from the Borel set
represented by b. Using these notions we can define the key concepts used in
the statement of our constructive separation theorem.

Definition: 2

1. Analytic sets A1, A2 are strongly disjoint if there are trees T1, T2, rep-
resenting A1, A2 respectively, such that

T1 ∧ T2 ≤ 2,

where 2 is a Borel code for the empty Borel set.

2. Analytic sets A1, A2 are strongly Borel separable if there are trees
T1, T2, representing A1, A2 respectively, such that there is a Borel code
b such that

T1 ≤ b and T2 ≤ −b.

With this definition Theorem 1 is an immediate consequence of the main
lemma.

Main Lemma: If T1, T2 are trees such that T1 ∧ T2 ≤ 2 then there is a
Borel code b such that T1 ≤ b and T2 ≤ −b.

Our point-free approach to Borel sets was inspired by Per Martin-Löf’s
constructive recursive treatment in the book [8] and the constructive ap-
proach to point-free topology developed there and in the literature on formal
topology. The book formulates a point-free version of the subset relation
between Borel sets on Cantor space. Here we have chosen to focus on Baire
space. The book might easily have contained an extra chapter on analytic
sets and the separation theorem. In fact Martin-Löf had envisioned3 such a
chapter at the time of writing his book.

3Private Communication
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A key feature of point-free topology has been the aim to prove construc-
tive versions of classical results while avoiding any use of Bar Induction. Here
we also seek to avoid Bar Induction in proving a version of a classic result of
descriptive set theory.

The above theorem will be proved informally in the constructive set the-
ory CZF, which we consider to be entirely compatible with Brouwer’s In-
tuitionism. The reader is referred to [1] for an introduction to CZF. An
important feature of our proof is the extensive use of inductive definitions of
classes. One advantage of working in the set theory CZF is that the theory
allows a flexible application of such inductive definitions.

By assuming Bar Induction we get an intuitionist separation result that
assumes only that the analytic sets are barred-disjoint, a notion we introduce
in section 5. By assuming both Bar Induction and Markov’s Principle we get
a proof of the classical formulation of the separation theorem, and as ZF+DC
has all the theorems of CZF + BI + MP we recapture the classical result.
The formal system CZF does not have any form of choice principle, not even
countable choice, which is usually accepted in constructive mathematics. We
avoid needing countable choice by working with codes of Borel sets. We prefer
to avoid any form of choice whenever possible, thereby making our results
more compatible with the mathematics generally true in a topos. It should
be noted that when countable choice is not assumed then the standard proof
that all Borel sets are analytic no longers works.

In section 2 we present our constructive approach to the definition of the
Borel sets, which uses an inductive definition of a class of codes for Borel
sets, and is not essentially very different from the approaches that may be
found in [8, 11, 12]. Section 3 contains a review of the CZF approach to
inductive definitions and their application to the definition and properties of
Borel sets discussed in section 2. The notion of a tree plays an important role
in the theory of analytic sets and these are discussed in section 4. The well-
founded trees are defined inductively and well-founded tree induction and
well-founded tree recursion are shown to hold in CZF. These are variants of
Bar Induction and Bar Recursion for trees that can be proved in CZF because
the usual assumption that the tree is barred is replaced by the assumption
that the tree is well-founded. The analytic sets are defined in section 5, and
four notions of disjointness for pairs of analytic sets are considered, all being
equivalent if one assumes both Bar Induction and Markov’s Principle. The
strong inductive point-free form of Borel separation is introduced in section
6 and the main lemma concerning trees and Borel codes is stated and proved
in section 7. Theorem 1 is an easy consequence of this main lemma. Section
8 characterises when a pair of trees represent positively disjoint analytic sets.
The result is then used in section 9 to obtain Veldman’s result concerning
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positively disjoint strictly analytic sets as another consequence of the main
lemma.

In this paper attention has been limited to the constructive analysis of
Lusin’s separation Theorem for Baire space only. But modern classical De-
scriptive Set Theory is a theory concerning Polish spaces; i.e. separable com-
pletely metrizable spaces. It is very plausible that our constructive treatment
of Lusin’s theorem for Baire space should carry over in a fairly routine way
to Polish spaces. But we have not had time to examine this matter. Also,
Lusin’s Theorem is only one of a number of classical results in Descriptive
Set Theory that should be amenable to a constructive treatment. In fact it
should be worthwhile to develop a constructive descriptive set theory devel-
oping further the approach taken in this paper and relating it to Veldman’s
Intuitionistic approach. One potential application, pointed out to me by
Yiannis Moschovakis is the possibility to apply results proved constructively
to both the classical and recursive versions of descriptive set theory by using
suitable realisability models. This remains to be studied.

I am grateful to Yiannis Moschovakis for recently drawing my attention to
the Lusin Separation Theorem and its constructive character. I am grateful
to Wim Veldman for drawing my attention to his work on Intuitionistic
Descriptive Set Theory, [11, 12], and in particular to his separation result
for positively disjoint strictly analytic sets. The anonymous referee made
some useful suggestions which has helped to improve the presentation of this
paper.

2 Constructive Borel sets

From now on we restrict our attention to Baire space; i.e. the space N of
all infinite sequences of natural numbers, given the product topology where
N is given the discrete topology. So a natural basis of clopen sets for the
topology can be indexed by the set N

∗ =
⋃

n∈N
N

n of finite sequences of
natural numbers. With each index a ∈ N

∗ of length n is associated the clopen
set Ga = {α ∈ N | αn = a} where if α ∈ N then αn = (α0, . . . , α(n − 1)).
We may call these the elementary clopen sets. Note that the complement
of an elementary clopen set will not be elementary. Each open set of Baire
space is determined by a subset X of N

∗, and then the open set has the form

GX = {α ∈ N | (∃n ∈ N) αn ∈ X}.

The elementary clopen sets are not closed under taking complements.
So, for our purposes a nicer basis of clopen sets uses, as indices, pairs (n, X)
where n ∈ N and X is a decidable subset of N

n. Let S be the set of such
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pairs. With each index s = (n, X) ∈ S we can associate the clopen set Gs =
{α ∈ N | αn ∈ X} and its complement G−s, where −s = (n, Nn − X) ∈ S.
We will call such sets the simple clopen sets. These form a base for the
topology that is closed under taking complements, finite intersections and
finite unions.

Classically the Borel sets can be defined to be the closure of the simple
clopen sets under countable unions and intersections. Moreover every open
set can be represented as a countable union of simple clopen sets and so is
a Borel set. But in CZF we cannot expect every open set to be a countable
union of simple clopen sets. This is because, although the simple clopen
sets form a countable set and every open set is a union of a subset of that
countable set, the argument that every subset of a countable set is countable
is not constructively acceptable. Let us call an open set countably open if
it is a countable union

⋃

n∈N
An of an N-indexed family {An}n∈N of simple

clopen sets An. Similarily we may define the countably closed sets to be
the countable intersections

⋂

n∈N
An of N-indexed families {An}n∈N of simple

clopen sets An.
We can get a notion of Borel set by taking the Borel sets to be obtained

from the simple clopen sets by repeatedly taking countable intersections and
countable unions. Because we do not want to assume countable choice we
will not use that definition, but instead work with a more constructive notion
by first inductively generating indices for the Borel sets.

Definition: 3 The class B of Borel codes is defined to be the smallest class
such that

1. (0, s) ∈ B for each index s ∈ S for a simple clopen set,

2. If f : N → B then (i, f) ∈ B for i = 1, 2.

With each Borel code b ∈ B we associate a set Bb ⊆ N by recursion following
the inductive definition so that

1. Bb = Gs if b = (0, s) where s ∈ S.

2. Bb =
⋃

n∈N
Bfn if b = (1, f) where f : N → B,

3. Bb =
⋂

n∈N
Bfn if b = (2, f) where f : N → B.

We define the constructive Borel sets to be the sets Bb for b ∈ B.

Note that every countably closed set is Borel.
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Definition: 4 The duality operation − : B → B on Borel codes is the unique
class function such that

1. −(0, s) = (0, (n, Nn − X)) for each index s = (n, X) ∈ S.

2. −(i, f) = (3 − i, (λn ∈ N)−(fn)) for i = 1, 2 and f : N → B.

Let 2 be the Borel code (0, (0, ∅)). Then B2 = ∅ and B−2 = N .

Proposition: 5 For all b ∈ B

1. −−b = b,

2. Bb ∩ B−b = ∅.

Definition: 6 The complementary Borel pairs are the pairs of Borel sets of
the form

Bb , B−b

for b ∈ B.

3 Inductive definitions in CZF

Our definition of the class B of Borel codes was an inductive definition.
We now state the result, which can be proved in CZF, which justifies that
inductive definition and the associated recursive definitions that assign to
each Borel code b the Borel set Bb and the dual Borel code −b.

In general we take an inductive definition in CZF to be given as a class Φ
of pairs (X, a). We call such pairs steps, X being the set of premisses of the
step and a being the conclusion of the step. Given an inductive definition Φ
we define a class Y to be Φ-closed if

X ⊆ Y ⇒ a ∈ Y

for every step (X, a). A proof of the following result may be found in [1].

Theorem: 7 (CZF) For each inductive definition Φ there is a (uniquely
determined) smallest Φ-closed class I(Φ), the class inductively defined by Φ.
More generally, for each class A there is a unique smallest Φ-closed class
that includes the class A. We will write I(Φ, A) for this class.
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Using this result we can take the class B of Borel codes to be the class
I(Φ, {0} × S) where Φ is the inductive definition whose steps are the pairs
({fn | n ∈ N}, (i, f)) for (i, f) ∈ Q where Q is the class of pairs (i, f) where
f a function with domain N and i = 1, 2. Also we can take the class function
assigning the Borel set Bb to each Borel code b ∈ B to be the class I(Φ′, A′)
where

A′ = {((0, s), Gs) | s ∈ S},

and

Φ′ = {({(fn, gn) | n ∈ N}, ((i, f), B)) |

(i, f) ∈ Q & g : N → Pow(N ) &

[(i = 1 & B =
⋃

n∈N
gn) ∨ (i = 2 & B =

⋂

n∈N
gn)]}.

Of course it is necessary to prove that I(Φ′, A′) is a class function B →
Pow(N ) and this can be done by induction on Φ.

Next, the (graph of the) duality operator − is the class I(Φ′′, A′′) where

A′′ = {((0, s), (0,−s) | s ∈ S}

and

Φ′′ = {({(fn, gn) | n ∈ N}, ((i, f), (3− i, g))) | (i, f), (3 − i, g) ∈ Q} .

Again it is necessary to prove that I(Φ′′, A′′) is a function B → B and this can
be done by induction on Φ. Also Proposition 5 can be proved by induction
on Φ.

4 Trees on N

Definition: 8

• If a = (x0, . . . , xn−1) ∈ N
n and b = (y0, . . . , ym−1) ∈ N

m then their con-
catenation is the sequence a_b = (x0, . . . , xn−1, y0, . . . , ym−1) ∈ N

n+m

• If a ∈ N
∗ then a prefix of a is a sequence b ∈ N

∗ such that a = b_c for
some c ∈ N

∗.

• By a tree we shall always mean a decidable prefix-closed subset of N
∗;

i.e. T ⊆ N
∗ is a tree if, for all a ∈ N

∗,
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– either a ∈ T or a 6∈ T , and

– if a ∈ T then every prefix of a is also in T .

• For each tree T let

[T ] = {α ∈ N | (∀n ∈ N) [αn ∈ T ]}.

Note that for each tree T the set [T ] is always a countably closed set.

Definition: 9 A tree T is barred if

(∀α ∈ N )(∃n ∈ N) [αn 6∈ T ]

and is weakly barred if

(∀α ∈ N )¬¬(∃n ∈ N) [αn 6∈ T ].

Note that a tree T is weakly barred iff [T ] = ∅.
We use an inductive definition to formulate a stronger point-free version

of the notion of a barred tree. Let Θ be the inductive definition whose steps
are the pairs ({a_(n) | n ∈ N}, a) for a ∈ N

∗.

Definition: 10 A tree T is well-founded (wf) if the empty sequence () is in
I(Θ, (N∗ − T )).

Proposition: 11 If T is a wf tree then N
∗ ⊆ I(Θ, (N∗ − T )).

Proof: Let T be a wf tree and let I = I(Θ, (N∗ − T )). Let Y be the class
{a ∈ N

∗ | (∀c ∈ N
∗)[a_c ∈ I}. Then Y ⊆ I and it suffices to show that

() ∈ Y . In fact, as () ∈ I, it is enough to show that I ⊆ Y , which we do by
showing that

1. (N∗ − T ) ⊆ Y ,

2. Y is Θ-closed.

For 1 observe that if a ∈ (N∗ − T ) then, as T is prefix-closed,

a_c ∈ (N∗ − T ) ⊆ I,

for any c ∈ N
∗, so that a ∈ Y .

For 2 let (∀n ∈ N)[a_(n) ∈ Y ]. Then, as Y ⊆ I and I is Θ-closed,
a_() = a ∈ I. Also, for all n ∈ N and all c ∈ N

∗

a_(n)_c ∈ I.

So a_e ∈ I for every e ∈ N
∗, as every such e is either () or else has the form

(n)_c. Thus a ∈ Y , as desired.
�

We may restate this result as the following principle.
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Well-Founded Tree Induction Let T be a wf tree. Let Y ⊆ N
∗ be a class

such that

1. (N∗ − T ) ⊆ Y ,

2. Y is Θ-closed.

Then N
∗ ⊆ Y .

The following result provides an alternative characterisation of the wf trees.
If Tn is a tree for each n ∈ N then let Σn∈NTn be the tree

{()} ∪
⋃

n∈N

{(n)_a | a ∈ Tn}.

Proposition: 12 The class of wf trees is the smallest class W of trees such
that

1. ∅ ∈ W,

2. If Tn ∈ W for n ∈ N then Σn∈NTn ∈ W.

Proof: Let W
′ be the class of wf trees. We must show that W

′ = W. To
show that W ⊆ W

′ it suffices to observe that

1. ∅ is a wf tree,

2. If Tn is a wf tree for each n ∈ N then Σn∈NTn is a wf tree.

For 1, observe that

() ∈ (N∗ − ∅) ⊆ I(Θ, (N∗ − ∅)).

For 2 assume that, for each n ∈ N, Tn is a wf tree. Let T = Σn∈NTn and, for
each n ∈ N let

Yn = {a ∈ N
∗ | (n)_a ∈ I(Θ, (N∗ − T ))}.

Observe that each Yn is Θ-closed. Also each Yn includes (N∗ − Tn), as

a ∈ (N∗ − Tn) ⇒ (n)_a ∈ (N∗ − T ) ⇒ (n)_a ∈ I(Θ, (N∗ − T )) ⇒ a ∈ Yn.

So, for each n ∈ N, by Well-Founded Tree Induction on the wf tree Tn,
N

∗ ⊆ Yn. In particular, for each n ∈ N, () ∈ Yn; i.e. (n) ∈ I(Θ, (N∗ − T )).
So () ∈ I(Θ, (N∗ − T )); i.e. the tree T is wf as desired.

To show that W
′ ⊆ W, let T ∈ W

′. So, by Proposition 11,

N
∗ ⊆ I(Θ, (N∗ − T )).
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For a ∈ N
∗ let Ta = {c ∈ N

∗ | a_c ∈ T}. Clearly each Ta is a tree. As
T() = T it suffices to show that each Ta is in W; i.e. that N

∗ ⊆ Y , where
Y = {a ∈ N

∗ | Ta ∈ W}. Observe that (i) if a ∈ (N∗ − T ) then Ta = ∅ ∈ W

and (ii) if Ta_(n) ∈ W for all n ∈ N then Ta = Σn∈NTa_(n) ∈ W. It follows
that N

∗ ⊆ I(Θ, (N∗ − T )) ⊆ Y .
�

Proposition: 13 If T is a tree then

1. T is wf ⇒ T is barred.

2. T is barred ⇒ T is weakly barred.

Proof: For 1, by proposition 12, it suffices to observe that ∅ is a barred tree
and if Tn is a barred tree for all n ∈ N then the tree Σn∈NTn is barred. Part
2 is trivial.
�

We are ready to formulate the principle of (decidable) Bar Induction, which
is the converse of part 1 of the previous proposition.

Bar Induction: Every barred tree is wf.

The converse to part 2 of the previous proposition seems to be less construc-
tive. Nevertheless it is an immediate consequence of (MP).

Proposition: 14 (Assuming MP) Every weakly barred tree is barred.

In fact it is not hard to see that the statement that every weakly barred tree
is barred is equivalent to (MP).

The following result is a variant of Bar Recursion obtained by replacing
the assumption that a tree T is barred by the assumption that T is wf . Of
course Bar Recursion is an immediate consequence of the theorem using Bar
Induction.

Theorem: 15 (Well-Founded Tree Recursion) Let T be a wf tree. Let
Y be a class. If g : (N∗ − T ) → Y and Qa : NY → Y for each a ∈ T then
there is a unique F : N

∗ → Y such that, for a ∈ N
∗,

Fa =

{

ga if a 6∈ T
Qa((λn ∈ N)F (a_(n))) if a ∈ T.

In fact F = I(Ψ, g) where Ψ is the inductive definition with steps (f, (a, Qaf))
for a ∈ T and f : N → Y . It is necessary to prove that this is indeed a single
valued function defined on N

∗.

12



5 Analytic sets

We will use a fixed bijection π : N × N → N with associated projections
π1, π2 : N → N such that πi(π(x1, x2)) = xi for x1, x2 ∈ N and i = 1, 2. A
standard example is the bijection π with definition

π(x1, x2) = (x1 + x2)(x1 + x2 + 1)/2 + x2

for x1, x2 ∈ N.
We lift these functions to bijections N

n × N
n → N

n and associated pro-
jections as follows. If a1 = (x0, . . . , xn−1) ∈ N

n and a2 = (y0, . . . , yn−1) ∈ N
n

then let
π(a1, a2) = (π(x0, y0), . . . , π(xn−1, yn−1)) ∈ N

n.

Also, for i = 1, 2 if a = (x0, . . . , xn−1) ∈ N
n then let

πia = (πix0, . . . , πixn−1) ∈ N
n.

We also lift these functions to bijections N × N → N and associated pro-
jections as follows. If α1, α2 ∈ N then let π(α1, α2) ∈ N be given by

π(α1, α2)n = π(α1n, α2n)

for n ∈ N. Also, for i = 1, 2, if α ∈ N let πiα ∈ N be given by

(πiα)n = πi(αn)

for n ∈ N.

Definition: 16 A set A ⊆ N is defined to be analytic if there is a tree T
such that

A = π1[T ] = {π1γ | γ ∈ [T ]}
= {α ∈ N | (∃β ∈ N )(∀n ∈ N) π(αn, βn) ∈ T}.

We then call T a tree representation of the analytic set A.

We will also need a bijection τ : N×̂N → N and associated projections
τ1, τ2 : N → N, where

N×̂N = {(n1, n2) ∈ N × N | π1n1 = π2n2}.

We first define τ ′ : N × N → N and let τ be the restriction of τ ′ to the set
N×̂N.
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• τ ′(n1, n2) = π(π1n1, π(π2n1, π2n2)), for (n1, n2) ∈ N × N,

• τin = π(π1n, πi(π2n)) for i = 1, 2 and n ∈ N.

As with π, π1, π2 these functions can be lifted to each N
n and to N .

Proposition: 17 τ : N×̂N → N is a bijection with projections τ1, τ2 : N →
N.

Proof: Routine computations using the definitions show that,
for n, n1, n2 ∈ N,

[(n1, n2) ∈ N×̂N & n = τ(n1, n2)] ⇔ [n1 = τ1n & n2 = τ2n].

�

Proposition: 18 Let T1, T2 be trees representing the analytic sets A1, A2.
Then

T1 ∧ T2 = {a ∈ N
∗ | τ1a ∈ T1 & τ2a ∈ T2}

is a tree that represents the analytic set A1 ∩ A2 = π1[T1 ∧ T2]. Moreover
A1, A2 are disjoint iff T1 ∧ T2 is weakly barred.

Proof: That T1 ∧ T2 is decidable and prefix-closed follows easily from the
corresponding properties of T1 and T2.

Next we must show that

γ ∈ π1[T1 ∧ T2] ⇔ γ ∈ π1[T1] ∩ π1[T2].

Assuming the left hand side, γ = π1α for some α ∈ [T1 ∧ T2] so that, if
αi = τiα then αi ∈ [Ti] and γ = π1α = π1αi ∈ π1[Ti] for i = 1, 2, giving us
the right hand side.

Assuming the right hand side, there are α1, α2 ∈ N such that γ = π1α1 =
π1α2 and for all n ∈ N,

α1n ∈ T1 and α2n ∈ T2.

We may define α = τ(α1, α2) and observe that γ = π1α and τiα = αi ∈ [Ti]
for i = 1, 2; i.e. the left hand side.

Finally,

A1, A2 are disjoint ⇔ π1[T1 ∧ T2] = ∅
⇔ [T1 ∧ T2] = ∅
⇔ (∀α ∈ N )¬¬(∃n ∈ N)[αn 6∈ T1 ∧ T2]
⇔ T1 ∧ T2 is weakly barred.

�
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Definition: 19 Analytic sets A1, A2 are defined to be strongly disjoint (barred-
disjoint) if trees T1, T2 representing them can be chosen such that T1 ∧ T2 is
wf (barred).

Proposition: 20 For analytic sets A1, A2 we have the implications

D1 ⇒ D2 ⇒ D3 ⇒ D4

where

D1: A1, A2 are strongly disjoint,

D2: A1, A2 are barred disjoint,

D3: A1, A2 are positively disjoint,

D4: A1, A2 are disjoint,

Moreover, assuming (BI), (D1) and (D2) are equivalent and, assuming
(MP), (D2), (D3) and (D4) are equivalent.

Proof:

D1⇒ D2 By part 1 of proposition 13.

D2⇒ D3 Let A1, A2 be barred-disjoint analytic sets. So there are trees
T1, T2 such that Ai = π1[Ti] for i = 1, 2 such that T1 ∧ T2 is barred;
i.e. for all α ∈ N there is n ∈ N such that αn 6∈ T1 ∧ T2. Now let
αi ∈ [Ti] for i = 1, 2 and let α = τ ′(α1, α2). So there is n ∈ N such that
αn 6∈ T1 ∧ T2; i.e.

[τ1(αn) 6∈ T1] or [τ2(αn) 6∈ T2].

Note that, if π1(α1n) = π1(α2n) then

αin = τi(αn) 6∈ Ti

for i = 1, 2. So

[π1(α1n) = π1(α2n)] ⇒ [α1n 6∈ T1 or α2n 6∈ T2]

and hence

[α1n ∈ T1 and α2n ∈ T2] ⇒ [π1(α1n) 6= π1(α2n)].

15



As αi ∈ [Ti] for i = 1, 2,

[α1n ∈ T1 and α2n ∈ T2]

so that [π1(α1n) 6= π1(α2n)].

We have shown that

(∀α1 ∈ [T1])(∀α2 ∈ [T2])(∃n ∈ N)[(π1(α1n) 6= π1(α2n)].

It follows that

(∀β1 ∈ A1)(∀β2 ∈ A2)(∃n ∈ N)[β1n 6= β2n];

i.e. A1, A2 are positively disjoint.

D3⇒ D4 Trivial.

The final assertion about the equivalences first assuming (BI) and then as-
suming (MP) follows because (BI) expresses that every barred tree is wf
and (MP) implies that every weakly barred tree is barred.
�

6 Strong Borel Separation

Recall that, classically, analytic sets A1, A2 are Borel separable if there is a
Borel set B such that A1 ⊆ B and A2 ⊆ N − B, where the complement
of B, N − B, is a Borel set. In our constructive context we do not know
that N − B is itself a Borel set. Instead we will use complementary pairs,
Bb, B−b of Borel sets determined by a Borel code b ∈ B. In fact we will
work with a strengthened notion of Borel Separation obtained by using an
inductively defined point-free relation, ‘T ≤ b’, between tree representations
T of analytic sets and Borel codes b ∈ B, instead of the relation ‘A ⊆ B’
between analytic sets A and Borel sets B.

Given a tree T let

GT = {(a, b) ∈ N
∗ × B | Aa ⊆ Bb}

where Aa = π1([T ]∩Ga). Note that A() = π1[T ] is the analytic set with tree
representation T and, in general, for a ∈ N

∗, Aa = π1[Ta] is the analytic set
with tree representation

Ta = {a′ ∈ T | a′ ≤ a ∨ a ≤ a′}.
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So (a, b) ∈ GT iff the analytic set Aa is a subset of the Borel set Bb. Our aim
now is to give an inductive definition

FT = I(Φ, YT ),

of a subclass FT of the set GT so that we can then define the desired relation
between tree-codes T and Borel codes b as follows.

T ≤ b ⇔ ((), b) ∈ FT .

We first define the base set YT of the inductive definition and show that
YT ⊆ GT .

Definition: 21 For each tree T let

YT = {(a, (0, (n, X))) | a ∈ N
∗, (n, X) ∈ S and [a 6∈ T ∨ a ∈ X̂]},

where, for each (n, X) ∈ S,

X̂ = {a ∈ N
∗ | ∃a′ ≤ a π1a

′ ∈ X}.

Proposition: 22 YT ⊆ GT .

Proof: Let (a, (0, (n, X))) ∈ YT . So a ∈ N
∗, (n, X) ∈ S and either (i) a 6∈ T

or (ii) a ∈ X̂.
If (i) then [T ] ∩ Ga = ∅ so that Aa = π1∅ = ∅ ⊆ Bb.
If (ii) then a ≥ a′ for some a′ ∈ N

∗ such that π1a
′ ∈ X. So, as Bb =

⋃

a∈X Ga,

β ∈ [T ] ∩ Ga ⇒ β ∈ Ga′

⇒ π1β ∈ Gπ1a′ ⊆ Bb.

It follows that

α ∈ Aa ⇒ α = π1β for some β ∈ [T ] ∩ Ga

⇒ α ∈ Bb.

In either case (a, b) ∈ GT .
�

We now turn to the definition of the class Φ of steps of the inductive
definition of FT and the proof that GT is Φ-closed. Given a ∈ N

∗ and b ∈ B
let

X0
b (a) = {(a_(m), b) | m ∈ N}.

Also, if f : N → B let

X1
f,n(a) = {(a, f(n))} for each n ∈ N

and
X2

f (a) = {(a, f(m)) | m ∈ N}.

17



Definition: 23 Let Φ be the class of all pairs (X, (a, b)) such that (a, b) ∈
N

∗ × B and either X = X0
b (a) or b = (i, f), with i ∈ {1, 2} and f : N → B,

and if i = 1 then X = X1
f,n(a) for some n ∈ N and if i = 2 then X = X2

f (a).

Proposition: 24 GT is Φ-closed.

Proof: Let (X, (a, b)) ∈ Φ such that X ⊆ GT . Then (a, b) ∈ N
∗ × B and we

must show that (a, b) ∈ GT . There are three cases.

X = X0
b (a): By assumption, (a_(m), b) ∈ GT for all m ∈ N; i.e.

Aa_(m) ⊆ Bb for all m ∈ N.

Observe that
Aa =

⋃

m∈N

Aa_(m).

It follows that Aa ⊆ Bb.

X = X1
f,n(a), with n ∈ N, b = (1, f) and f : N → B:

In this case, as (a, f(n)) ∈ GT ,

Aa ⊆ Bf(n) ⊆
⋃

m∈N

Bf(m) = Bb.

X = X2
f (a), with b = (2, f) and f : N → B:

As (a, f(m)) ∈ GT for all m ∈ N,

Aa ⊆
⋂

m∈N

Bf(m) = Bb.

In all three cases we have shown that (a, b) ∈ GT .
�

By Propositions 22 and 24 we get the following result.

Proposition: 25 FT ⊆ GT .

Recall the definition T ≤ b ⇔ ((), b) ∈ FT . We get the following corollary,
using Definition 10 for part 2.

Corollary: 26 Let T be a tree.

1. If b ∈ B such that T ≤ b then π1[T ] ⊆ Bb.
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2. The tree T is wf iff T ≤ 2.

Definition: 27 Analytic sets A1, A2 are strongly Borel separable if trees
T1, T2 representing them and b ∈ B can be chosen such that T1 ≤ b and
T2 ≤ −b.

For each b ∈ B let

FT (b) = {a ∈ N
∗ | (a, b) ∈ FT}.

The following proposition is just a reformulation of the fact that, for any tree
T , the class FT is Φ-closed.

Proposition: 28 For all a ∈ N
∗, b ∈ B and f : N → B,

F0 (∀m ∈ N)[a_(m) ∈ FT (b)] ⇒ a ∈ FT (b),

F1 (∃n ∈ N)[a ∈ FT (f(n))] ⇒ a ∈ FT ((1, f)),

F2 (∀n ∈ N)[a ∈ FT (f(n))] ⇒ a ∈ FT ((2, f)).

The next result expresses the crucial idea behind the constructive proof of
the Lusin theorem.

Proposition: 29 Given trees T1, T2, if a1, a2 ∈ N
∗ and h : N × N → B such

that

(∗) a1
_(n1) ∈ FT1

(h(n1, n2)) & a2
_(n2) ∈ FT2

(−h(n1, n2))

for all n1, n2 ∈ N then

a1 ∈ FT1
(b) & a2 ∈ FT2

(−b)

where
b = (1, (λn1 ∈ N)(2, (λn2 ∈ N)h(n1, n2))).

Proof: Let f = (λk ∈ N)(2, hk) where hk = (λm ∈ N)h(k, m). Then
b = (1, f).

By (*), F2) and F1), for all n1 ∈ N,

a1
_(n1) ∈

⋂

m∈N

FT1
(hn1

(m)) ⊆ FT1
((2, hn1

)) = FT1
(f(n1)) ⊆ FT1

(b),

So by F0), a1 ∈ FT1
(b).

Let f− = (λk ∈ N)(1, h−

k ) where h−

k = (λm ∈ N) − h(k, m). Then
b = (2, f−).
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By (*) and F1), for all n1, n2 ∈ N,

a2
_(n2) ∈ FT2

(h−

n1
(n2)) ⊆ FT2

((1, h−

n1
)) = FT2

(f−(n1)).

So, by F0),
a2 ∈ FT2

(f−(n1)) for all n1 ∈ N,

so that, by F2),
a2 ∈ FT2

((2, f−)) = FT2
(−b).

7 The Main Lemma

Theorem 1 is an easy consequence of the following point-free result.

Lemma: 30 (Main Lemma) If T1, T2 are trees such that T1∧T2 ≤ 2 then
T1 ≤ b and T2 ≤ −b for some b ∈ B.

Note: The converse result, that if T1 ≤ b and T2 ≤ −b then T1 ∧ T2 ≤ 2,
is plausible, but has not been proved yet.

We now start the proof of the Main Lemma. We will need functions
ha : N × N → B for a ∈ N

∗, given by

ha(n1, n2) =

{

qan1 if π1n1 6= π1n2

f(τ(n1, n2)) if π1n1 = π1n2

for n1, n2 ∈ N where, if a ∈ N
m then qa : N → B is given by

qan = (0, (m + 1, Xn))

for n ∈ N, where Xn = {c_(π1n) | c ∈ N
m}.

Lemma: 31 For each tree T , if a ∈ N
∗ and n, n′ ∈ N such that π1n 6= π1n

′

then
a_(n) ∈ FT (qan) ⊆ FT (−qan′).

Proof: Let a ∈ N
m. As π1a ∈ N

m,

π1(a
_(n)) = π1a

_(π1n) ∈ Xn

so that a_(n) ∈ X̂n ⊆ FT (qan).
Now let n, n′ ∈ N such that π1n 6= π1n

′. It remains to show that
FT (qan) ⊆ FT (−qan′). Observe that

FT (qan) = (N∗ − T ) ∪ X̂n,

FT (−qan′) = (N∗ − T ) ∪ Ŷn′,
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where Yn′ = (Nm+1 − Xn′). So it suffices to show that

(∗) X̂n ⊆ Ŷn′.

Observe that

a ∈ X̂n ⇔ (∃c ∈ N
m)(∃n0 ∈ N)(∃d ∈ N

∗)[a = c_(n0)
_d and π1n0 = π1n],

a ∈ Ŷn′ ⇔ (∃c ∈ N
m)(∃n′

0 ∈ N)(∃d ∈ N
∗)[a = c_(n′

0)
_d and π1n

′

0 6= π1n
′].

As π1n 6= π1n
′ we get (∗) using n′

0 = n0.
�

Let T1, T2 be trees such that T = T1 ∧ T2 ≤ so that T is wf. We define
F : N

∗ → B by Well-Founded Tree Recursion, Theorem 15, on T so that for
a ∈ N

∗

Fa =

{

ga if a 6∈ T
Qa((λn ∈ N)F (a_(n))) if a ∈ T

where, if a 6∈ T then

ga =

{

2 if τ1a 6∈ T1

−2 if τ1a ∈ T1

and, if a ∈ T and f : N → B then

Qaf = (1, (λn ∈ N)(2, (λm ∈ N)ha(n, m)))

To complete the proof of the main lemma it is enough to apply the fol-
lowing lemma with a = () and put b = F ().

Lemma: 32 For all a ∈ N
∗

(∗) τ1a ∈ FT1
(Fa) and τ2a ∈ FT2

(−Fa).

Proof: Let Y be the class of a ∈ N
∗ such that (∗). By Well-Founded Tree

Induction on the wf tree T it suffices to show that

1. (N∗ − T ) ⊆ Y ,

2. Y is Θ-closed

For 1: Let a ∈ (N∗ − T ) so that a 6∈ T and hence Fa = ga and either
τ1a 6∈ T1 or τ2a 6∈ T2.

Case 1 τ1a 6∈ T1: As τ1a ∈ N
∗ − T1 we have Fa = ga = 2 so

that τ1a ∈ (N∗−T1) ⊆ FT1
(Fa). Observe that, as ˆ{()} = N

∗,

FT2
(−Fa) = FT2

(−2) = (N∗ − T2) ∪ ˆ{()} = N
∗.

It follows that τ2a ∈ FT2
(−Fa).
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Case 2 τ1a ∈ T1 & τ2a 6∈ T2: In this case −ga = 2 and we can
argue as in case 1 interchanging the roles of the subscripts
1,2.

For 2: Let a ∈ N
∗ such that a_(n) ∈ Y for all n ∈ N. We want to show

that a ∈ Y . By 1 we may assume that a ∈ T so that Fa = Qaf where
f = (λn ∈ N) F (a_(n)). Let a1 = τ1a, a2 = τ2a. By our initial assumption
that a_(n) ∈ Y for all n ∈ N we get that if n1, n2 ∈ N such that π1n1 = π1n2

then

a1
_(n1) ∈ FT1

(f(τ(n1, n2))) & a2
_(n2) ∈ FT2

(−f(τ(n1, n2))).

Also observe that, if n1, n2 ∈ N such that π1n1 6= π1n2 then, by Lemma 31
below,

a1
_(n1) ∈ FT1

(qan1) & a2
_(n2) ∈ FT2

(−qan1).

It follows that for all n1, n2 ∈ N

a1
_(n1) ∈ FT1

(ha(n1, n2)) & a2
_(n2) ∈ FT2

(−ha(n1, n2))

so that, by Proposition 29, a ∈ Y .
�

8 Positive Disjointness

If T1, T2 are trees representing the analytic sets A1, A2 then we may charac-
terise that A1, A2 are positively disjoint, as defined in Section 1, in terms of
a relative notion of barred tree as follows. When MP is assumed then the
relative notion of barred subtree is equivalent to the unrelativised notion of
barred tree.

Definition: 33 If T is a tree then a subtree T ′ is a barred subtree of T if

(∀α ∈ [T ])(∃n ∈ N) αn 6∈ T ′.

If T1, T2 are trees then let T1 × T2 be the tree

{a ∈ N
∗ | π1a ∈ T1 & π2a ∈ T2}

and let T1×̂T2 be the subtree

{a ∈ T1 × T2 | π1(π1a) = π1(π2a)}.
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Proposition: 34 If T1, T2 are trees representing the analytic sets A1, A2 then
A1, A2 are positively disjoint analytic sets iff T1×̂T2 is a barred subtree of the
tree T1 × T2.

Proof: Let Ai = π1[Ti] where Ti is a tree, for i = 1, 2. Note that

γ ∈ [T1 × T2] ⇔ (∀n ∈ N)[π1(γn) ∈ T1 & π2(γn) ∈ T2]
⇔ π1γ ∈ [T1] & π2γ ∈ [T2].

So, A1, A2 are positively disjoint

⇔ (∀α1 ∈ A1)(∀α2 ∈ A2)(∃n ∈ N)[α1n 6= α2n]
⇔ (∀γ1 ∈ [T1])(∀γ2 ∈ [T2])(∃n ∈ N)[π1(γ1n) 6= π1(γ2n)]
⇔ (∀γ ∈ [T1 × T2])(∃n ∈ N)[π1(π1(γn)) 6= π1(π2(γn))]
⇔ (∀γ ∈ [T1 × T2])(∃n ∈ N)[π1(π1(γn)) 6= π1(π2(γn))]
⇔ (∀γ ∈ [T1 × T2])(∃n ∈ N)[γn 6∈ T1×̂T2]
⇔ T1×̂T2 is a barred subtree of T1 × T2.

�

Proposition: 35 (Assuming MP) If T ′ is a subtree of a tree T then T ′ is
a barred subtree of T iff T ′ is a barred tree.

Proof: The implication from right to left is trivial. For the other direction
let T ′ be a barred subtree of T ; i.e. T ′ ⊆ T such that, for all α ∈ N ,

(∗) (∀n ∈ N)[αn ∈ T ] ⇒ (∃n ∈ N)[αn 6∈ T ′].

Given α ∈ N we must show that (∃n ∈ N)[α 6∈ T ′]. We have

¬(∃n ∈ N)[αn 6∈ T ′] ⇒ (∀n ∈ N)[αn ∈ T ′], as T ′ is a decidable subset of N
∗,

⇒ (∀n ∈ N)[αn ∈ T ], as T ′ ⊆ T ,
⇒ (∃n ∈ N)[αn 6∈ T ′], by (∗).

Hence ¬¬(∃n ∈ N)[αn 6∈ T ′]. So, by MP, (∃n ∈ N)[αn 6∈ T ′].
�

Corollary: 36 (Assuming MP) If T1, T2 are tree representations of the
analytic sets A1, A2 respectively then A1, A2 are positively disjoint iff the tree
T1×̂T2 is (weakly) barred.
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9 Strictly analytic sets

Using Bar Induction we get the following point-set Corollary of Theorem 1.

Theorem: 37 (Assuming BI) Barred-disjoint analytic sets are strongly Borel
separable and hence Borel separable.

If we also assume Markov’s Principle then we regain (a slight strengthening
of) the classical result.

Theorem: 38 (Assuming both BI and MP) Disjoint analytic sets are
strongly Borel separable.

Note that every theorem of CZF + BI + MP is a theorem of ZF + DC.
We apply Theorem 37 to get a version, in our setting, of a result of Wim

Veldman, see Theorem 9.2 of [12].

Definition: 39 A tree T is a spread tree if () ∈ T and

(∀a ∈ T )(∃n ∈ N) a_(n) ∈ T.

An analytic set is strictly analytic if it can be represented by a spread tree.

Note that an analytic set need not be strictly analytic, as the empty set
is analytic but any strictly analytic set is a continuous image of the whole
of Baire space and so is always an inhabited set. A construction for the
continuous function is given in the proof of part (1) of Lemma 42 below.

Theorem: 40 (Assuming BI) Positively disjoint strictly analytic sets are
strongly Borel separable.

It is a consequence of Theorem 37 and the following result.

Theorem: 41 Positively disjoint strictly analytic sets are barred disjoint.

Proof: By Proposition 34 this is a consequence of the following lemma.

Lemma: 42

1. If T is a spread tree then

(∀α ∈ N )(∃β ∈ N )(∀n ∈ N) [βn ∈ T & (αn ∈ T ⇒ αn = βn)].

2. If T1, T2 are spread trees such that T1×̂T2 is a barred subtree of T1 × T2

then T1×̂T2 is a barred tree.
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3. For all trees T1, T2, the tree T1 ∧ T2 is barred iff T1×̂T2 is barred.

Proof:

1. Given α ∈ N , define β ∈ [T ] by primitive recursion as follows. For
each n ∈ N let βn = αn if α(n + 1) ∈ T . If α(n + 1) 6∈ T then let βn
be the least j ∈ N such that βn_(j) ∈ T . Such a j will always exist as
βn ∈ T and T is a spread tree.

2. Let T1, T2 be spread trees such that T1×̂T2 is a barred subtree of T1×T2.

Given α1, α2 ∈ N choose β1, β2 ∈ N by part (1), such that for all
n ∈ N, β1n ∈ T1, β2n ∈ T2, and

(α1n ∈ T1 ⇒ α1n = β1n) and (α2n ∈ T1 ⇒ α2n = β2n)

As β1 ∈ [T1] and β2 ∈ T2, π(β1, β2) ∈ [T1 × T2] so that there is n ∈ N

such that π(β1n, β2n) 6∈ T1×̂T2 and hence π1(β1n) 6= π1(β2n). It follows
that if α1n ∈ T1 and α2n ∈ T2 then α1n = β1n and α2n = βn so that
π1(α1n) 6= π1(α2n). Thus π(α1, α2)n 6∈ T1×̂T2.

We have shown that T1×̂T2 is a barred tree.

3. Observe that if a1, a2 ∈ N
∗ have the same length then

π(a1, a2) ∈ T1×̂T2 ⇔ τ(a1, a2) ∈ T1 ∧ T2 & (π1a1 = π1a2).

The result easily follows.
�
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