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I: Inexplicitness of AC over ZF?

All the set existence axioms and schemes of ZF are
explicit; e.g.

Pairing: The class {a, b} = {x | x = a ∨ x = b} is a set,
for all sets a, b.

Replacement: For all sets a, . . .,

∀x ∈ a ∃!y φ(x, y, . . .) ⇒ {y | ∃x ∈ a φ(x, y, . . .)} is a set.

AC seems to be essentially inexplicit over ZF; i.e. every
explicit theorem of ZFC seems to be ‘equivalent’ to an
explicit theorem of ZF.

Can this idea be made precise?

ZFC ` ‘{x | ¬AC} is a set’, but if ZF is consistent
ZF 6` ‘{x | ¬AC} is a set’.
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II: Core Mathematics

Some brands of mathematics

Classical, with AC

Classical, without any choice

Topos

Constructive, Brouwer style - Intuitionism

Constructive, Markov style - Recursive

Constructive, Bishop style

Constructive, Richman style (= Bishop without any
choice)
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II: Core Mathematics

All these, and others, are brands of mathematics.

They are open conceptual frameworks.

A lot of constructive mathematics can be derived in all
these brands.

Some mathematical principles are brand-essential.
Choice principles: AC, CC, DC, RDC, PA, ... etc
Logical: EM, REM, LPO, LLPO, MP, ... etc
Impredicative: Powerset, Full Separation, ...
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Some criteria for Core Mathematics

Extensional

Adequate

Compatible

Local

Explicit

Some problems with CZF for a core system:
Strong Collection is inexplicit.
Subset Collection (Fullness) is inexplicit.
Set Induction is not local.

Problems with CZF
−

R,E :
Cannot show that Rd is a set.
Do not have apparatus to define the class of
hereditarily countable sets, etc.
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III: The Fullness Axiom, 1

The Fullness axiom is an inexplicit set existence axiom
that can be used instead of the Subset Collection
Scheme in axiomatizing CZF.

In CZF the axiom has been used to prove Myhill’s
Exponentiation axiom and also to prove that the class of
Dedekind reals, Rd, is a set and several other results.

Some notation, for classes A,B,R:
R : A >−− B if ∀x ∈ A ∃y ∈ B (x, y) ∈ R.

R : A >−−< B if R : A >−− B & R−1 : B >−− A.
mv(A,B) = {r ∈ Pow(A × B) | r : A >−− B}.

BA = {f ∈ mv(A,B) | f is single valued}.
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The Fullness Axiom, 2

Exponentiation Axiom: Exp(A,B) for all sets A,B,
where

Exp(A,B) ≡ BA is a set.

Fullness Axiom: Full(A,B) for all sets A,B, where

Full(A,B) ≡ mv(A,B) has a full subset,

where, for a class C ⊆ X,

C is a full subclass of X if ∀r ∈ X ∃s ∈ C s ⊆ r.

Strong Collection Scheme: For each class R and every
set A, if R : A >−− V then R : A >−−< B for some set B.

AC(A,B): BA is a full subclass of mv(A,B).
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Fullness and Exponentiation

The axiom system BCST has Extensionality, Pairing,
Union, ∆0-Separation and Replacement.

Theorem: In BCST,
1. Full(A,B) ⇒ Exp(A,B),
2. AC(A,B) + Exp(A,B) ⇒ Full(A,B).
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IV: The Dedekind Reals,1: Weak cuts

X ⊆ Q is a weak left cut if
1-l: ∃r(r ∈ X) & ∃s(s 6∈ X),
2-l: r ∈ X ⇔ ∃s r < s ∈ X.

Y ⊆ Q is a weak right cut if
1-r: ∃r(r ∈ Y ) & ∃s(s 6∈ Y ),
2-r: r ∈ Y ⇔ ∃s r > s ∈ Y .

(X,Y ) is a weak cut if
X is a weak left cut and Y is a weak right cut,
X ∩ Y = ∅,
r < s ⇒ (r 6∈ X ⇒ s ∈ Y ) & (s 6∈ Y ⇒ r ∈ X).

(X,Y ) is located if r < s ⇒ (r ∈ X ∨ s ∈ Y ).

X is located if r < s ⇒ (r ∈ X ∨ s 6∈ X).
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The Dedekind Reals,2

A (left) cut is a located weak (left) cut.

Note: Classically every weak (left) cut is located.

Proposition: The following are equivalent:
X is a left cut,
(X,Y ) is a cut for some Y ,
(X,Y ) is a cut, where Y = {s ∈ Q | ∃r < s r 6∈ X}.

Definition: The class Rd of Dedekind reals is the class
of all left cuts. Note: Rd is a ∆0-class.

Prop: A weak left cut X is located (and so in Rd) iff

∀ε > 0 ∃r ∈ X r + ε 6∈ X; i.e. RX ∈ mv(Q>0, Q),

where RX = {(ε, r) ∈ Q>0 × X | r + ε 6∈ X}.
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The Dedekind Reals,3

Theorem: Assuming Full(N, N), the class of Dedekind
reals is a set.

Proof: Assuming Full(N, N), as Q>0 ∼ N and Q ∼ N,
we also have Full(Q>0, Q).

So we may choose a full subset C of mv(Q>0, Q)

For R ∈ mv(Q>0) let

XR = {r ∈ Q | r < s for some (ε, s) ∈ R},

Now let CX = {R ∈ C | XR ∈ Rd} and

R′ = {XR | R ∈ C & XR ∈ Rd} = {XR | R ∈ CX .}

Then, by ∆0-Separation and Replacement R′ is a set.
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The Dedekind Reals,4

If R ∈ C, XR = {r ∈ Q | r < s for some (ε, s) ∈ R}.

R′ = {XR | R ∈ C & XR ∈ Rd} is a set.

It suffices to show that Rd = R′.

Rd ⊇ R′ trivially.

If X ∈ Rd,
RX = {(ε, r) ∈ Q>0 × X | r + ε 6∈ X} ∈ mv(Q>0, Q).

For Rd ⊆ R′ it suffices to prove

Lemma (ECST) : Let X ∈ Rd and R ∈ C. Then
R ⊆ RX ⇒ X = XR.

X ∈ Rd ⇒ RX ∈ mv(Q>0, Q), as X is located
⇒ R ⊆ RX for some R ∈ C, as C is a full subset
⇒ X = XR, by the lemma .

Explicit Set Existence – p.13/17



V: Explicit Fullness; the scheme

For classes F,X,A such that F : X → V and A ⊆ X,
F is A-powerful if, for all r ∈ A there is r′ ∈ A such that

(∗) ∀s ∈ X[s ⊆ r′ ⇒ s ∈ A & Fs = Fr].

The Explicit Fullness Scheme (EFS): If
F : mv(B,C) → V is A-powerful, where B,C are sets
and A is a ∆0-subclass of mv(B,C) then
FA = {Fr | r ∈ A} is a set.

Note that EFS is an explicit set existence scheme.

Theorem: In BCST, Fullness implies each instance of
EFS. In fact Full(B,C) implies the above instances,
EFull(B,C), of EFS.

Lemma: If F : X → V is A-powerful, A is a ∆0-subclass
of X and X has a full subset D then FA is a set.
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V: Explicit Fullness; applications

Theorem(BCST+EFS): Exponentiation
Proof: Given sets B,C, to show that CB is a set, apply
EFS with A = CB and Fr = r for r ∈ mv(B,C).

Theorem(BCST+EFS): Let Q,A be sets such that
A ⊆ Q × Q. Then R is a set, where R is the class of
subsets X of Q such that

X is open; i.e. ∀x ∈ X∃y ∈ X(x, y) ∈ A, and
X is located; i.e. ∀(x, y) ∈ A[x ∈ X ∨ y 6∈ X].

Note: The proof only uses EFS(A,2).
Corollary(ECST+EFS(N, 2)): Re

d and Rd are sets.

Here Re
d is the class of open, located subsets of Q,

where A = {(r, s) ∈ Q × Q | r < s}.

Note that Rd ⊆ Re
d.
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VI: Deterministic Inductive Definitions, 1

Let Φ be a class. A Φ-step, X/y, is a pair (X, y) ∈ Φ. A
class A is Φ-closed if

X ⊆ A ⇒ y ∈ A, for all Φ-steps X/y.

Theorem (CZF-Subset Collection): For each class Φ
there is a smallest Φ-closed class I(Φ).

The proof makes essential use of Strong Collection and
Set Induction.

Φ is deterministic if

If X1/y and X2/y are Φ-steps then X1 = X2.

ECST is BCST+Strong Infinity.
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Deterministic Inductive Definitions, 2

Theorem(ECST+Set Induction): The smallest class
I(Φ) exists for each deterministic class Φ.
Examples:
1. For each class A, H(A) = I(ΦA), where ΦA is the

class of steps y/y such that y is an image of a set in
A. So H(ω) is the class of hereditarily finite sets and
H(ω ∪ {ω}) is the class of hereditarily countable sets;
i.e hereditarily finite or an image of ω. Here ω is the
smallest inductive set, given by Strong Infinity.

2. If A,R are classes, with R ⊆ A × A such that
Ry = {x ∈ A | (x, y) ∈ R} is a set for each y ∈ A, the
class WF (A,R) = I({Ry/y | y ∈ A}) is the
well-founded part of R in A.

3. Also the W-classes are given by deterministic
inductive definitions.
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CONCLUSION

A possible useful axiom system for my core
mathematics might be ECST+EFS+DIDS, where DIDS
is a scheme in an extension of the language so as to
obtain a class I(Φ) from a class Φ.

The scheme should express that if Φ is deterministic
then I(Φ) is the smallest Φ-closed class.

The Replacement scheme and EFS need to be
extended to the extended language.

I conjecture that it has the same logical strength as CZF.
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