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Why avoid countable/dependent choice?

• “Is it reasonable to do constructive mathematics without the axiom of
countable choice? Serious schools of constructive mathematics all
assume it one way or another, but the arguments for it are not
compelling.” - from “The fundamental theorem of algebra: a
constructive development without choice”, by Fred
Richman.
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countable choice? Serious schools of constructive mathematics all
assume it one way or another, but the arguments for it are not
compelling.” - from “The fundamental theorem of algebra: a
constructive development without choice”, by Fred
Richman.
• “The theory should be compatible with known theories such as
classical set theory and the theory of a generic topos, ... and hence it
should be minimal with respect to such more expressive existing
theories” - from “Toward a minimalist foundation for
constructive mathematics”, by Maria Emilia Maietti and
Giovanni Sambin.
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Why avoid countable/dependent choice?

• “Is it reasonable to do constructive mathematics without the axiom of
countable choice? Serious schools of constructive mathematics all
assume it one way or another, but the arguments for it are not
compelling.” - from “The fundamental theorem of algebra: a
constructive development without choice”, by Fred
Richman.
• “The theory should be compatible with known theories such as
classical set theory and the theory of a generic topos, ... and hence it
should be minimal with respect to such more expressive existing
theories” - from “Toward a minimalist foundation for
constructive mathematics”, by Maria Emilia Maietti and
Giovanni Sambin.
• I suggest: A good core (minimal?) theory for constructive set theory
should, at least, be preserved by the Heyting valued model construction.
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Three results of CZF + uREA + DC
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Three results of CZF + uREA + DC

1: Inductive and Coinductive definitions can be used to
generate set-presented, balanced formal topologies.
(A formal topology is balanced if it comes with a compatible
binary positivity predicate).
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Three results of CZF + uREA + DC

1: Inductive and Coinductive definitions can be used to
generate set-presented, balanced formal topologies.
(A formal topology is balanced if it comes with a compatible
binary positivity predicate).
2: The category of set-presented formal topologies and
continuous maps has coequalisers. (Erik Palmgren)
3: The dcpo of formal points of a set-presented formal
topology is set-generated.

For 1,2 uREA + DC can be weakened to ∗REA.

For 3 something that seems a bit stronger than ∗REA,

∗2REA, seems to be needed.
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Plan of talk
Review

Relation Reflection

Coinductive Definitions

If time: a slide on characterising the collection of
positivity relations
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Some axiom systems for Constructive Set Theory

These are formulated in the language of ZF, but use
intuitionistic logic.

CZF o ≡ Extensionality, Pairing, Union, Infinity axioms,
Restricted Separation scheme,
Set Induction and Strong Collection schemes.
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These are formulated in the language of ZF, but use
intuitionistic logic.

CZF o ≡ Extensionality, Pairing, Union, Infinity axioms,
Restricted Separation scheme,
Set Induction and Strong Collection schemes.

CZF ≡ CZF o+ Subset Collection Axiom.
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Some axiom systems for Constructive Set Theory

These are formulated in the language of ZF, but use
intuitionistic logic.

CZF o ≡ Extensionality, Pairing, Union, Infinity axioms,
Restricted Separation scheme,
Set Induction and Strong Collection schemes.

CZF ≡ CZF o+ Subset Collection Axiom.

CZF+ ≡ CZF o+ Regular Extension Axiom.
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Class notation and terminology
We use class notation in the standard way. Each class
X is defined by a formula with parameters a, . . .:

X = {x | φ(x, a, . . .)}
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Class notation and terminology
We use class notation in the standard way. Each class
X is defined by a formula with parameters a, . . .:

X = {x | φ(x, a, . . .)}

Set Induction: For each class X

∀x[x ⊆ X ⇒ x ∈ X] ⇒ ∀x[x ∈ X].
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We use class notation in the standard way. Each class
X is defined by a formula with parameters a, . . .:

X = {x | φ(x, a, . . .)}

Set Induction: For each class X

∀x[x ⊆ X ⇒ x ∈ X] ⇒ ∀x[x ∈ X].

Restricted Separation: For each restricted class X, if a
is a set the class a ∩ X is a set.
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Class notation and terminology
We use class notation in the standard way. Each class
X is defined by a formula with parameters a, . . .:

X = {x | φ(x, a, . . .)}

Set Induction: For each class X

∀x[x ⊆ X ⇒ x ∈ X] ⇒ ∀x[x ∈ X].

Restricted Separation: For each restricted class X, if a
is a set the class a ∩ X is a set.

A class is restricted if it is defined by a restricted
formula; i.e. a formula all of whose quantifiers have one
of the forms (∀x ∈ t)or (∃x ∈ t) where t is a variable or
parameter.
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The Collection Principles
Definition: For classes X,Y,R

R : X>−Y iff (∀x ∈ X)(∃y ∈ Y ) (x, y) ∈ R

R : X>−<Y iff [R : X>−Y ]& (∀y ∈ Y )(∃x ∈ X) (x, y) ∈ R
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R : X>−Y iff (∀x ∈ X)(∃y ∈ Y ) (x, y) ∈ R

R : X>−<Y iff [R : X>−Y ]& (∀y ∈ Y )(∃x ∈ X) (x, y) ∈ R

Strong Collection Scheme: For classes Y,R, if a is a
set such that R : a>−Y then there is a set b ⊆ Y such
that R : a>−<b.
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R : X>−Y iff (∀x ∈ X)(∃y ∈ Y ) (x, y) ∈ R

R : X>−<Y iff [R : X>−Y ]& (∀y ∈ Y )(∃x ∈ X) (x, y) ∈ R

Strong Collection Scheme: For classes Y,R, if a is a
set such that R : a>−Y then there is a set b ⊆ Y such
that R : a>−<b.

Subset Collection Axiom: For all sets a, b there is a set
c of subsets of b such that for every set r : a>−b there is
a set b′ ∈ c such that r : a>−<b′.
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The Collection Principles
Definition: For classes X,Y,R

R : X>−Y iff (∀x ∈ X)(∃y ∈ Y ) (x, y) ∈ R

R : X>−<Y iff [R : X>−Y ]& (∀y ∈ Y )(∃x ∈ X) (x, y) ∈ R

Strong Collection Scheme: For classes Y,R, if a is a
set such that R : a>−Y then there is a set b ⊆ Y such
that R : a>−<b.

Subset Collection Axiom: For all sets a, b there is a set
c of subsets of b such that for every set r : a>−b there is
a set b′ ∈ c such that r : a>−<b′.

or: For all sets a, b there is a set c of subsets of a × b
such that for every set r : a>−b there is a set r′ ∈ c such
that r ⊇ r′ : a>−b.
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The Regular Extension Axiom
A set A is transitive if ∀x ∈ A x ⊆ A.
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The Regular Extension Axiom
A set A is transitive if ∀x ∈ A x ⊆ A.

A transitive set A is regular if it satisfies the
second-order version of Strong Collection; i.e.
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The Regular Extension Axiom
A set A is transitive if ∀x ∈ A x ⊆ A.

A transitive set A is regular if it satisfies the
second-order version of Strong Collection; i.e.

for all sets Y,R such that Y ⊆ A and R ⊆ A × A, if
a ∈ A such that R : a>−Y then there is a set b ∈ A
such that b ⊆ Y and R : a>−<b.
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subset of a regular set.

On avoiding dependent choices in Formal Topology – p.8/20



The Regular Extension Axiom
A set A is transitive if ∀x ∈ A x ⊆ A.

A transitive set A is regular if it satisfies the
second-order version of Strong Collection; i.e.

for all sets Y,R such that Y ⊆ A and R ⊆ A × A, if
a ∈ A such that R : a>−Y then there is a set b ∈ A
such that b ⊆ Y and R : a>−<b.

The Regular Extension Axiom (REA): Every set is a
subset of a regular set.

A is union-closed if ∀x ∈ A ∪x ∈ A.

On avoiding dependent choices in Formal Topology – p.8/20



The Regular Extension Axiom
A set A is transitive if ∀x ∈ A x ⊆ A.

A transitive set A is regular if it satisfies the
second-order version of Strong Collection; i.e.

for all sets Y,R such that Y ⊆ A and R ⊆ A × A, if
a ∈ A such that R : a>−Y then there is a set b ∈ A
such that b ⊆ Y and R : a>−<b.

The Regular Extension Axiom (REA): Every set is a
subset of a regular set.

A is union-closed if ∀x ∈ A ∪x ∈ A.

uREA: Every set is a subset of a union-closed regular
set.

On avoiding dependent choices in Formal Topology – p.8/20



The Regular Extension Axiom
A set A is transitive if ∀x ∈ A x ⊆ A.
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for all sets Y,R such that Y ⊆ A and R ⊆ A × A, if
a ∈ A such that R : a>−Y then there is a set b ∈ A
such that b ⊆ Y and R : a>−<b.

The Regular Extension Axiom (REA): Every set is a
subset of a regular set.

A is union-closed if ∀x ∈ A ∪x ∈ A.

uREA: Every set is a subset of a union-closed regular
set.

CZF+ ≡ CZF o + REA (≡ CZF + REA).
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The Regular Extension Axiom
A set A is transitive if ∀x ∈ A x ⊆ A.

A transitive set A is regular if it satisfies the
second-order version of Strong Collection; i.e.

for all sets Y,R such that Y ⊆ A and R ⊆ A × A, if
a ∈ A such that R : a>−Y then there is a set b ∈ A
such that b ⊆ Y and R : a>−<b.

The Regular Extension Axiom (REA): Every set is a
subset of a regular set.

A is union-closed if ∀x ∈ A ∪x ∈ A.

uREA: Every set is a subset of a union-closed regular
set.

CZF+ ≡ CZF o + REA (≡ CZF + REA).

CZF u ≡ CZF o + uREA (≡ CZF + uREA).
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Some Choice Principles
Countable Choice (CC): For all sets X,R, if R : N>−X then
there is a f : N → X such that

(∀n ∈ N) (n, f(n)) ∈ R.

On avoiding dependent choices in Formal Topology – p.9/20



Some Choice Principles
Countable Choice (CC): For all sets X,R, if R : N>−X then
there is a f : N → X such that

(∀n ∈ N) (n, f(n)) ∈ R.

Dependent Choices (DC): For all sets X,R,
if R : X>−X and a ∈ X then there is f : N → X such that
f(0) = a and

(∀n ∈ N) (f(n), f(n + 1)) ∈ R.
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Some Choice Principles
Countable Choice (CC): For all sets X,R, if R : N>−X then
there is a f : N → X such that

(∀n ∈ N) (n, f(n)) ∈ R.

Dependent Choices (DC): For all sets X,R,
if R : X>−X and a ∈ X then there is f : N → X such that
f(0) = a and

(∀n ∈ N) (f(n), f(n + 1)) ∈ R.

Relative Dependent Choices (RDC): For classes X,R,
if R : X>−X and a ∈ X then there is f : N → X such that
f(0) = a and

(∀n ∈ N) (f(n), f(n + 1)) ∈ R.
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Relation Reflection
Relation Reflection Scheme (RRS): For classes X,R
such that R : X>−X, if a is a subset of X then there is a
subset b of X such that a ⊆ b and R : b>−b.
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Relation Reflection
Relation Reflection Scheme (RRS): For classes X,R
such that R : X>−X, if a is a subset of X then there is a
subset b of X such that a ⊆ b and R : b>−b.

A transitive set A has the Relation Reflection Property
if, for all sets X,R if a is a subset of X such that a ∈ A
then there is a subset b of X such that b ∈ A, a ⊆ b and
R : b>−b.
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Relation Reflection
Relation Reflection Scheme (RRS): For classes X,R
such that R : X>−X, if a is a subset of X then there is a
subset b of X such that a ⊆ b and R : b>−b.

A transitive set A has the Relation Reflection Property
if, for all sets X,R if a is a subset of X such that a ∈ A
then there is a subset b of X such that b ∈ A, a ⊆ b and
R : b>−b.

A union-closed regular set is ∗-regular if it has the
Relation Reflection Property.
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Relation Reflection
Relation Reflection Scheme (RRS): For classes X,R
such that R : X>−X, if a is a subset of X then there is a
subset b of X such that a ⊆ b and R : b>−b.

A transitive set A has the Relation Reflection Property
if, for all sets X,R if a is a subset of X such that a ∈ A
then there is a subset b of X such that b ∈ A, a ⊆ b and
R : b>−b.

A union-closed regular set is ∗-regular if it has the
Relation Reflection Property.

∗REA: Every set is a subset of a ∗-regular set.
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Relation Reflection
Relation Reflection Scheme (RRS): For classes X,R
such that R : X>−X, if a is a subset of X then there is a
subset b of X such that a ⊆ b and R : b>−b.

A transitive set A has the Relation Reflection Property
if, for all sets X,R if a is a subset of X such that a ∈ A
then there is a subset b of X such that b ∈ A, a ⊆ b and
R : b>−b.

A union-closed regular set is ∗-regular if it has the
Relation Reflection Property.

∗REA: Every set is a subset of a ∗-regular set.

CZF ∗ ≡ CZF o + ∗REA.
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Some Results
CZF o + RDC ` DC
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Some Results
CZF o + RDC ` DC

CZF o + DC ` CC

CZF o + RDC ` RRS

CZF o + DC + RRS ` RDC
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Some Results
CZF o + RDC ` DC

CZF o + DC ` CC

CZF o + RDC ` RRS

CZF o + DC + RRS ` RDC

CZF o ` RDC ≡ [DC + RRS]
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Some Results
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CZF o + DC ` CC

CZF o + RDC ` RRS

CZF o + DC + RRS ` RDC

CZF o ` RDC ≡ [DC + RRS]

ZF ` RRS, but ZF 6` DC
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Some Results
CZF o + RDC ` DC

CZF o + DC ` CC

CZF o + RDC ` RRS

CZF o + DC + RRS ` RDC

CZF o ` RDC ≡ [DC + RRS]

ZF ` RRS, but ZF 6` DC

CZF o + RRS ` “[V Ω |= CZF o + RRS] for each
set-presented cHa Ω”.
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Some Results
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CZF o + RDC ` RRS

CZF o + DC + RRS ` RDC

CZF o ` RDC ≡ [DC + RRS]

ZF ` RRS, but ZF 6` DC

CZF o + RRS ` “[V Ω |= CZF o + RRS] for each
set-presented cHa Ω”.

CZF o + DC ` “If A is a union-closed regular set such
that N ∈ A then A has the relation reflection property”
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Some Results
CZF o + RDC ` DC

CZF o + DC ` CC

CZF o + RDC ` RRS

CZF o + DC + RRS ` RDC

CZF o ` RDC ≡ [DC + RRS]

ZF ` RRS, but ZF 6` DC

CZF o + RRS ` “[V Ω |= CZF o + RRS] for each
set-presented cHa Ω”.

CZF o + DC ` “If A is a union-closed regular set such
that N ∈ A then A has the relation reflection property”

CZF o + uREA + DC ` ∗REA.

On avoiding dependent choices in Formal Topology – p.11/20



Three results of CZF + uREA + DC
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Three results of CZF + uREA + DC

1: Inductive and Coinductive definitions can be used to
generate set-presented, balanced formal topologies.
(A formal topology is balanced if it comes with a compatible
binary positivity predicate).
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Three results of CZF + uREA + DC

1: Inductive and Coinductive definitions can be used to
generate set-presented, balanced formal topologies.
(A formal topology is balanced if it comes with a compatible
binary positivity predicate).
2: The category of set-presented formal topologies and
continuous maps has coequalisers.
3: The dcpo of formal points of a set-presented formal
topology is set-generated.

For 1,2 uREA + DC can be weakened to ∗REA.

For 3 something that seems a bit stronger than ∗REA,

∗2REA, seems to be needed.
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Inductive Definitions
Let C be a covering system on a class S; i.e. an
operation C : S → Pow(Pow(S)).

X/a is a C-step if a ∈ S and X ∈ C(a).

A class U ⊆ S is C-closed if, for every C-step X/a,

X ⊆ U ⇒ a ∈ U.
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Inductive Definitions
Let C be a covering system on a class S; i.e. an
operation C : S → Pow(Pow(S)).

X/a is a C-step if a ∈ S and X ∈ C(a).

A class U ⊆ S is C-closed if, for every C-step X/a,

X ⊆ U ⇒ a ∈ U.

Theorem (CZF o): For each class U ⊆ S there is a smallest
C-closed class AU that includes U . AU is the class
inductively defined by C,U .
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Inductive Definitions
Let C be a covering system on a class S; i.e. an
operation C : S → Pow(Pow(S)).

X/a is a C-step if a ∈ S and X ∈ C(a).

A class U ⊆ S is C-closed if, for every C-step X/a,

X ⊆ U ⇒ a ∈ U.

Theorem (CZF o): For each class U ⊆ S there is a smallest
C-closed class AU that includes U . AU is the class
inductively defined by C,U .
Theorem (CZF o + REA): If S is a set, for each set U ⊆ S
the class AU is a set. Moreover there is a covering system
D on S such that such that, for all U ∈ Pow(S), if a ∈ S then

a ∈ AU ⇔ (∃V ∈ D(a))[V ⊆ U ].
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Coinductive Definitions
Let C be a covering system on a class S. A class U ⊆ S is
C-progressive if, for all C-steps X/a,

a ∈ U ⇒ X)(U,

where X)(U if X ∩ U is inhabited.
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Coinductive Definitions
Let C be a covering system on a class S. A class U ⊆ S is
C-progressive if, for all C-steps X/a,

a ∈ U ⇒ X)(U,

where X)(U if X ∩ U is inhabited.
Theorem (CZF o + RDC): For each class U ⊆ S there is a
largest C-progressive class JU included in U . JU is the
class coinductively defined by C,U .

RDC can be replaced by RRS.
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Coinductive Definitions
Let C be a covering system on a class S. A class U ⊆ S is
C-progressive if, for all C-steps X/a,

a ∈ U ⇒ X)(U,

where X)(U if X ∩ U is inhabited.
Theorem (CZF o + RDC): For each class U ⊆ S there is a
largest C-progressive class JU included in U . JU is the
class coinductively defined by C,U .

RDC can be replaced by RRS.

Theorem (CZF o + uREA + DC): If S is a set then, for each
set U ⊆ S, the class JU exists and is a set.

uREA + DC can be replaced by ∗REA.
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An example avoiding Dependent Choices, 1

Theorem [CZF o+?]: Let C be a covering system on a class
S and let

J =
⋃

{V ∈ Pow(S) | V is C-progressive}.

Then J is the largest C-progressive class; i.e. (i) J is
C-progressive, (ii) If B is a C-progressive class then B ⊆ J .
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An example avoiding Dependent Choices, 1

Theorem [CZF o+?]: Let C be a covering system on a class
S and let

J =
⋃

{V ∈ Pow(S) | V is C-progressive}.

Then J is the largest C-progressive class; i.e. (i) J is
C-progressive, (ii) If B is a C-progressive class then B ⊆ J .
Proof: (i) is easy. For (ii), for classes B1, B2 let

B1 7→ B2 ≡ ∀a∈B1 ∀X∈C(a) X)(B2.

Let B be C-progressive; i.e. B 7→ B.
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An example avoiding Dependent Choices, 1

Theorem [CZF o+?]: Let C be a covering system on a class
S and let

J =
⋃

{V ∈ Pow(S) | V is C-progressive}.

Then J is the largest C-progressive class; i.e. (i) J is
C-progressive, (ii) If B is a C-progressive class then B ⊆ J .
Proof: (i) is easy. For (ii), for classes B1, B2 let

B1 7→ B2 ≡ ∀a∈B1 ∀X∈C(a) X)(B2.

Let B be C-progressive; i.e. B 7→ B.
So ∀a∈B ∀X∈C(a) ∃y∈B y ∈ X,
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An example avoiding Dependent Choices, 1

Theorem [CZF o+?]: Let C be a covering system on a class
S and let

J =
⋃

{V ∈ Pow(S) | V is C-progressive}.

Then J is the largest C-progressive class; i.e. (i) J is
C-progressive, (ii) If B is a C-progressive class then B ⊆ J .
Proof: (i) is easy. For (ii), for classes B1, B2 let

B1 7→ B2 ≡ ∀a∈B1 ∀X∈C(a) X)(B2.

Let B be C-progressive; i.e. B 7→ B.
So ∀a∈B ∀X∈C(a) ∃y∈B y ∈ X, and so, by Strong
Collection,

(∗) ∀a∈B ∃Y∈Pow(B) ∀X∈C(a) ∃y∈Y y ∈ X.
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An example avoiding Dependent Choices, 1

Theorem [CZF o+?]: Let C be a covering system on a class
S and let

J =
⋃

{V ∈ Pow(S) | V is C-progressive}.

Then J is the largest C-progressive class; i.e. (i) J is
C-progressive, (ii) If B is a C-progressive class then B ⊆ J .
Proof: (i) is easy. For (ii), for classes B1, B2 let

B1 7→ B2 ≡ ∀a∈B1 ∀X∈C(a) X)(B2.

Let B be C-progressive; i.e. B 7→ B.
So ∀a∈B ∀X∈C(a) ∃y∈B y ∈ X, and so, by Strong
Collection,

(∗) ∀a∈B ∃Y∈Pow(B) ∀X∈C(a) ∃y∈Y y ∈ X.

We must show that ∀a∈B ∃V∈Pow(S)[a ∈ V 7→ V ].
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An example avoiding Dependent Choices, 2

Lemma: ∀U∈Pow(B) ∃V∈Pow(B) U 7→ V .
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An example avoiding Dependent Choices, 2

Lemma: ∀U∈Pow(B) ∃V∈Pow(B) U 7→ V .
To prove: ∀a ∈ B ∃V ∈Pow(S)[a ∈ V 7→ V ].
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An example avoiding Dependent Choices, 2

Lemma: ∀U∈Pow(B) ∃V∈Pow(B) U 7→ V .
To prove: ∀a ∈ B ∃V ∈Pow(S)[a ∈ V 7→ V ]. Let a ∈ B.
Then {a} ∈ Pow(B) so that, by the lemma and RDC there is
f : N → Pow(B) such that f(0) = {a} and, for n ∈ N,

f(n) 7→ f(n + 1).
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An example avoiding Dependent Choices, 2

Lemma: ∀U∈Pow(B) ∃V∈Pow(B) U 7→ V .
To prove: ∀a ∈ B ∃V ∈Pow(S)[a ∈ V 7→ V ]. Let a ∈ B.
Then {a} ∈ Pow(B) so that, by the lemma and RDC there is
f : N → Pow(B) such that f(0) = {a} and, for n ∈ N,

f(n) 7→ f(n + 1).

Let V =
⋃

n∈N
f(n) ∈ Pow(S). Then a ∈ V . Also V 7→ V as

b ∈ V ⇒ b ∈ f(n) for some n ∈ N

⇒ ∀X∈C(b) X)(f(n + 1)

⇒ ∀X∈C(b) X)(V,
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An example avoiding Dependent Choices, 2

Lemma: ∀U∈Pow(B) ∃V∈Pow(B) U 7→ V .
To prove: ∀a ∈ B ∃V ∈Pow(S)[a ∈ V 7→ V ]. Let a ∈ B.
Then {a} ∈ Pow(B) so that, by the lemma and RDC there is
f : N → Pow(B) such that f(0) = {a} and, for n ∈ N,

f(n) 7→ f(n + 1).

Let V =
⋃

n∈N
f(n) ∈ Pow(S). Then a ∈ V . Also V 7→ V as

b ∈ V ⇒ b ∈ f(n) for some n ∈ N

⇒ ∀X∈C(b) X)(f(n + 1)

⇒ ∀X∈C(b) X)(V,

Using RRS instead of RDC: there is a set X ⊆ Pow(B) such
that {a} ∈ X and ∀U∈X ∃V∈X U 7→ V . Let
V = ∪X ∈ Pow(S). Then a ∈ V 7→ V .
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An example avoiding Dependent Choices, 3

Proof of Lemma: ∀U∈Pow(B) ∃V∈Pow(B) U 7→ V .

Recall that

(∗) ∀a∈B ∃Y∈Pow(B) ∀X∈C(a) Y )(X.
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An example avoiding Dependent Choices, 3

Proof of Lemma: ∀U∈Pow(B) ∃V∈Pow(B) U 7→ V .

Recall that

(∗) ∀a∈B ∃Y∈Pow(B) ∀X∈C(a) Y )(X.

Let U ∈ Pow(B). Then

∀a∈U ∃Y∈Pow(B) ∀X∈C(a) Y )(X.

On avoiding dependent choices in Formal Topology – p.17/20



An example avoiding Dependent Choices, 3

Proof of Lemma: ∀U∈Pow(B) ∃V∈Pow(B) U 7→ V .

Recall that

(∗) ∀a∈B ∃Y∈Pow(B) ∀X∈C(a) Y )(X.

Let U ∈ Pow(B). Then

∀a∈U ∃Y∈Pow(B) ∀X∈C(a) Y )(X.

By Strong Collection there is a set Z ⊆ Pow(B) such that

∀a∈U ∃Y∈Z ∀X∈C(a) Y )(X.

Let V = ∪Z. Then U 7→ V .
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Conclusion
Recall:

CZF+ ≡ CZF o + REA

CZF u ≡ CZF o + uREA

CZF ∗ ≡ CZF o + ∗REA

CZF ∗2 ≡ CZF o + ∗2REA

CZF ∗ and CZF ∗2 can be used to prove certain results
that had been previously proved in CZF u + DC.
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Conclusion
Recall:

CZF+ ≡ CZF o + REA

CZF u ≡ CZF o + uREA

CZF ∗ ≡ CZF o + ∗REA

CZF ∗2 ≡ CZF o + ∗2REA

CZF ∗ and CZF ∗2 can be used to prove certain results
that had been previously proved in CZF u + DC.

Conjecture: CZF ∗ (and CZF ∗2) are preserved in
Heyting valued models over set-presented cHa’s.
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Conclusion
Recall:

CZF+ ≡ CZF o + REA

CZF u ≡ CZF o + uREA

CZF ∗ ≡ CZF o + ∗REA

CZF ∗2 ≡ CZF o + ∗2REA

CZF ∗ and CZF ∗2 can be used to prove certain results
that had been previously proved in CZF u + DC.

Conjecture: CZF ∗ (and CZF ∗2) are preserved in
Heyting valued models over set-presented cHa’s.

But DC does not generally hold in Heyting valued
models.
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A characterisation of the positivity relations .< on (S, /)

Let S = (S, /) be a fixed formal topology. I prefer to work
with the positivity operators J : Pow(S) → Pow(S) where,
for all a, U , a ∈ JU ≡ a .< U .

Call F ⊆ S completely prime if, whenever a / U ,
a ∈ F ⇒ U)(F .
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A characterisation of the positivity relations .< on (S, /)

Let S = (S, /) be a fixed formal topology. I prefer to work
with the positivity operators J : Pow(S) → Pow(S) where,
for all a, U , a ∈ JU ≡ a .< U .

Call F ⊆ S completely prime if, whenever a / U ,
a ∈ F ⇒ U)(F .

Let I be a class of completely prime sets. For all U let
JIU = ∪{F ∈ I | F ⊆ U},

and call I standard if
(∀I ′∈Pow(I)) ∪I ′ ∈ I and (∀U ∈ Pow(S)) JIU is a set.
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A characterisation of the positivity relations .< on (S, /)

Let S = (S, /) be a fixed formal topology. I prefer to work
with the positivity operators J : Pow(S) → Pow(S) where,
for all a, U , a ∈ JU ≡ a .< U .

Call F ⊆ S completely prime if, whenever a / U ,
a ∈ F ⇒ U)(F .

Let I be a class of completely prime sets. For all U let
JIU = ∪{F ∈ I | F ⊆ U},

and call I standard if
(∀I ′∈Pow(I)) ∪I ′ ∈ I and (∀U ∈ Pow(S)) JIU is a set.

Proposition: The assignments J 7→ {F | JF = F} and
I 7→ JI are inverse one-one correspondences between the
standard classes of completely prime sets and the positivity
operators.
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A characterisation of the positivity relations .< on (S, /)

Let S = (S, /) be a fixed formal topology. I prefer to work
with the positivity operators J : Pow(S) → Pow(S) where,
for all a, U , a ∈ JU ≡ a .< U .

Call F ⊆ S completely prime if, whenever a / U ,
a ∈ F ⇒ U)(F .

Let I be a class of completely prime sets. For all U let
JIU = ∪{F ∈ I | F ⊆ U},

and call I standard if
(∀I ′∈Pow(I)) ∪I ′ ∈ I and (∀U ∈ Pow(S)) JIU is a set.

Proposition: The assignments J 7→ {F | JF = F} and
I 7→ JI are inverse one-one correspondences between the
standard classes of completely prime sets and the positivity
operators.
Note: JI is a set-presented positivity operator for any set I
of completely prime sets.
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