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This document is the supplementary material of [10]. In section 1, we provide
a list of the notations used in the paper. In section 2, we provide the formal
definitions of the similarity measures and the stability measures discussed. In
section 3, we provide the proof of the table of properties (Table 1). In section 5,
we provide the proofs of the 3 theorems in the paper and of Equation 3.

1 Notations

We shortly remind the notations of the paper.

• M the number of bootstrap samples taken, also the number of feature sets.
• d the total number of features
• A = [s1, ..., sM ]T = (xi,f ) i∈{1,...,M}

f∈{1,...,d}
is a binary matrix where si is the ith

feature set in A and where xi,f = 1 if the f th feature has been selected in
the ith set, 0 otherwise.

• ∀i ∈ {1, ...,M}, ki = |si| is the cardinality of set si (i.e. the number of features
selected in si). When all feature sets in A are of identical cardinality, we will
simply denote it by k.

• ri,j = |si ∩ sj | the number of features that si and sj have in common.

• E∇[ri,j ] =
kikj

d is the expected size of the intersection of a procedure ran-
domly selecting two sets of cardinality ki and kj .

• φname stands for a similarity measure.
• Φ̂name = 1

M(M−1)
∑M

i=1

∑M
j=1
j 6=i

φName(si, sj) is the resulting stability measure

using similarity measure φName.
• p̂f = 1

d

∑M
i=1 xi,f is the observed frequency of occurrence of the fth feature

in A.

2 Measures

2.1 Similarity measures

The Jaccard index [4] (a modified version of the Taminoto distance) is defined
as:

φJaccard(si, sj) = 1− Tanimoto(si, sj) =
|si ∩ sj |
|si ∪ sj |

=
ri,j

ki + kj − ri,j
.
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A similarity measure based on the relative Hamming distance [2] is given as:

φHamming(si, sj) = 1− |si \ sj |+ |sj \ si|
d

= 1− ki + kj − 2ri,j
d

,

where |si \ sj | is the number of features selected in si and not selected in sj .

The Dice coefficient [13]:

φDice(si, sj) =
2|si ∩ sj |
|si|+ |sj |

=
2ri,j
ki + kj

.

We can point out that the Dice coefficient is also called the F1-score in the
binary classification literature, and is used to measure the degree of agreement
between the set of true labels s1 and the set of predicted labels s2.

The POG measure (Percentage of Overlapping Genes) [9]:

φPOG(si, sj) =
|si ∩ sj |
|si|

=
ri,j
ki
.

Kuncheva’s similarity measure [7] (also called the consistency index ) is defined
only for feature sets si and sj such that |si| = |sj | as follows:

φKuncheva(si, sj) =
ri,j − E∇[ri,j ]

max(ri,j)− E∇[ri,j ]
.

Lustgarten’s measure [8]:

φLust(si, sj) =
ri,j − E∇[ri,j ]

min(ki, kj)−max(0, ki + kj − d)
.

The nPOG measure (a normalized version of the POG measure) [9]:

φnPOG(si, sj) =
ri,j − E∇[ri,j ]

ki − E∇[ri,j ]

Wald’s measure [12]:

φWald(si, sj) =
ri,j − E∇[ri,j ]

min(ki, kj)− E∇[ri,j ]
.

2.2 Stability measures

For every similarity measure φName presented in the section above, the corre-
sponding stability measure is taken as the average pairwise similarities between
the sets in A as follows:

Φ̂name =
1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

φName(si, sj).
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Kŕızek [6] defines a stability measure for feature sets of identical cardinality as
follows:

γ(A) = −
C(d,k)∑
j=1

Gj logGj ,

where Gj is the frequency of occurrence of subset j in A over all the C(d, k)
possible combinations of k features taken amongst d features. Its minimum is 0
and its upper bound has been shown to depend on d and k. It is only defined
when A is made of feature sets of identical cardinality k. The use of such a
measure implies a relatively big number feature subsets in the sequence A, as
we need frequency estimates for every possible choice of k features taken out of
d features, which limits its use in practice. We also note that this measure is the
only one for which low values correspond to high stability.

Somol’s measure [11] is an improved version of two other measures (the Con-
sistency Measure C and the Weighted Consistency Measure CW [11]) that we
omitted for simplicity. This measure is constructed so that it is not subset-size
biased and is defined for any feature set size:

CWrel(A) =
d
[∑M

i=1 ki −D +
∑d

f=1Mp̂f (Mp̂f − 1)
]
−
(∑M

i=1 ki

)2
+D2

d
[
H2 +M

(∑M
i=1 ki −H

)
−D

]
−
(∑M

i=1 ki

)2
+D2

,

where D =
(∑M

i=1 ki

)
mod d and H =

(∑M
i=1 ki

)
mod M and p̂f is the fre-

quency of occurrence of the f th feature in the M feature sets.

3 Proof of Properties

3.1 Fully defined

This property directly follows from the definitions of the stability measures.

3.2 Bounds

The bounds of most similarity measures (and therefore stability measures) can
be easily found in the literature. Jaccard, Hamming, Dice, POG and CWrel are
all in the interval [0, 1] [1], [11]. Kuncheva and Pearson measures are in the in-
terval [−1, 1] ([3], [7]). Lustgarten’s similarity measure can also easily be shown
to be in [−1, 1].

Contrarily to some misconceptions in the literature, nPOG and Wald’s similarity
measures have a minimum of 1− n and a maximum of 1 therefore not verifying
the property of bounds. Kŕızek’s stability measure is shown to take values in the
interval [0, log(min(M,C(d, k)))] [5].
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4 Maximum

Deterministic Selection → Maximum Stability

Let us assume that all the feature sets in A are identical of cardinality k, there-
fore ri,j = k and by definition, we have that φJaccard = φHamming = φDice =
φPOG = φKuncheva = φWald = 1.

In that case, φLust =
k− k2

d

k−max(0,2k−d) , meaning that its maximum depends on the

values of k and n as shown by Figure 1 of the paper.

Maximum Stability → Deterministic Selection

Showing that Lustgarten and Wald’s stability measure do not have this property
can easily be done with a counter-example as done in the paper (c.f. Figure 2).

Let us show that the property is true for Kŕızek γ. The maximum stability for
that measure corresponds to a value of 0.

γ(A) = 0

⇒−
C(d,k)∑
j=1

Gj logGj = 0

⇒∀j ∈ {1, ..., C(d, k)}, Gj logGj = 0 since all elements of the sum are negative,

⇒∀j ∈ {1, ..., C(d, k)}, Gj = 0 or Gj = 1

⇒All feature sets in A are identical.

All other measures have a maximum of stability of 1. We therefore assume that
Φ̂(A) = max(Φ̂) = 1 and we want to show that this implies that all feature sets
in A are identical.

Φ̂(A) = 1

⇒ 1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

φ(si, sj) = 1

⇒
M∑
i=1

M∑
j=1
j 6=i

φ(si, sj) = M(M − 1)

⇒∀i ∈ {0, 1}d,∀j ∈ {0, 1}d, j 6= i, φ(si, sj) = 1.

Then using the constraint that ri,j is a natural number less or equal than
min(ki, kj) (maximal possible size of intersection between two sets of size ki
and kj), it can be shown for φJaccard, φDice, φPOG, φnPOG and φKuncheva that
this implies that ki = kj = ri,j which means that si = sj .
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4.1 Correction for Chance

Using the linearity of the expected value and the definitions given in section 2,
we get that: E∇[φKuncheva] = E∇[φLust] = E∇[φnPOG] = E∇[φWald] = 0 and
therefore the stability measures using these similarity measures also have an ex-
pected value of 0 and have the property of correction for chance. CWrel is by
construction subset-size unbiased and is shown empirically to hold the property
of correction for chance [11].

When the FS procedure is randomly selecting feature sets of cardinality k, the
expected value of the frequency of occurrence of a feature set is equal to 1

C(d,k) .

Therefore Krizek’s stability measure is not corrected by chance as its expected
value when the FS is random will depend on k and d.

Using the fact that E∇[ri,j ] =
kikj

d and the linearity of the expected value, we
can see that the other similarity measures will have an expected value depending
on ki, kj and d and therefore do not have the property of correction for chance.

5 Proofs of theorems

Theorem 1. For all (i, j) ∈ {1, ...,M}2, the sample Pearson’s coefficient can be
re-written:

φPearson(si, sj) =
ri,j − E∇[ri,j ]

d υiυj
=
ri,j − kikj

d

d υiυj
,

where ∀i ∈ {1, ...,M}, υi =
√

ki

d (1− ki

d ). Therefore it possesses the property of

correction for chance.

Proof.

We remind that the sample Pearson’s correlation coefficient between two feature
sets si and sj is by definition:

φPearson(si, sj) =
1
d

∑d
f=1(xi,f − x̄i,.)(xj,f − x̄j,.)√

1
d

∑d
f=1(xi,f − x̄i,.)2

√
1
d

∑d
f=1(xj,f − x̄j,.)2

, (1)

where ∀i ∈ {1, ...,M}, x̄i,. = 1
d

∑d
f=1 xi,f = ki

d since there are ki features selected
in si.
Let us calculate the denominator term:

1

d

d∑
f=1

(xi,f − x̄i,.)2 =
1

d

d∑
f=1

(x2i,f − 2x̄i,.xi,f + x̄2i,.)

=

1

d

d∑
f=1

x2i,f

− 2

d
x̄i,.

d∑
f=1

xi,f +
1

d
dx̄2i,..
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As xi,f is binary (equal to 0 or 1), we have that (xi,f )2 = xi,f . Therefore:

1

d

d∑
f=1

(xi,f − x̄i,f )2 =

1

d

d∑
f=1

xi,f

− 2

d
x̄i,.ki + x̄2i,.

= x̄i,. − 2x̄2i,. + x̄2i,.

= x̄i,.(1− x̄i,.)

=
ki
d

(
1− ki

d

)
= υ2i .

Similarly, υ2j = 1
d

∑d
f=1(xj,f − x̄j,.)2. Replacing in Equation 1, we get that:

φPearson(si, sj) =
1

dυiυj

d∑
f=1

(xi,f − x̄i,.)(xj,f − x̄j,.)

=
1

dυiυj

d∑
f=1

(xi,fxj,f − x̄j,.xi,f − x̄i,.xj,f + x̄i,.x̄j,.)

=

 1

dυiυj

d∑
f=1

xi,fxj,f

− x̄i,.x̄j,.
υiυj

− x̄i,.x̄j,.
υiυj

+
x̄i,.x̄j,.
υiυj

=

 1

dυiυj

d∑
f=1

xi,fxj,f

− x̄i,.x̄j,.
υiυj

.

As, xi,fxj,f will only be equal to 1 when both xi,f and xj,f are equal to 1,

we have that
∑d

f=1 xi,fxj,f = |si ∩ sj | = ri,j . Therefore:

φPearson(si, sj) =
ri,j
dυiυj

− x̄i,.x̄j,.
υiυj

=
ri,j − dx̄i,.x̄j,.

dυiυj
=
ri,j − kikj

d

dυiυj
=
ri,j − E∇[ri,j ]

dυiυj
.

Theorem 2. When k is constant, the stability using Pearson’s correlation is
equal to some other measures, that is:

Φ̂Pearson = Φ̂Kuncheva = Φ̂Wald = Φ̂nPOG.

Proof.
Straightforward using the definition of the measures given in section 2.1 and
Theorem 1 for ki = kj = k. Indeed the similarity measures of Kuncheva, Wald,

nPOG and Pearson will all be equal to
ri,j− k2

d

k− k2

d

. Therefore the stability measures

using these similarity measures are all equal.

Theorem 3. The stability estimate Φ̂Pearson is asymptotically in the interval
[0, 1] as M approaches infinity.
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Proof.
The upper bound is trivial: φPearson ≤ 1⇒ Φ̂Pearson ≤ 1.
We prove the lower bound by showing that :

Φ̂Pearson =
1

M(M − 1)

1

d2

∑
f<f ′

[
M∑
i=1

xi,f − xi,f ′

υi

]2
︸ ︷︷ ︸

≥0

− 1

M − 1︸ ︷︷ ︸
→

M→+∞
0

which gives us that lim
M→+∞

[Φ̂Pearson] ≥ 0. Indeed, we have:

1

M(M − 1)

1

d2

∑
f<f ′

[
M∑
i=1

xi,f − xi,f ′

υi

]2

=
1

M(M − 1)

1

d2

∑
f<f ′

[
M∑
i=1

xi,f
υi
−

M∑
i=1

xi,f ′

υi

]2

=
1

M(M − 1)

1

d

d∑
f=1

(
M∑
i=1

xi,f
υi

)2

−

1

d

d∑
f=1

M∑
i=1

xi,f
υi

2


=
1

M(M − 1)

1

d

d∑
f=1

M∑
i=1

M∑
j=1

xi,fxj,f
υiυj

− 1

M(M − 1)

1

d

M∑
i=1

1

υi

 d∑
f=1

xi,f

2

=
1

M(M − 1)

1

d

M∑
i=1

M∑
j=1

∑d
f=1 xi,fxj,f

υiυj
− 1

M(M − 1)

(
1

d

M∑
i=1

ki
υi

)2

=
1

M(M − 1)

1

d

M∑
i=1

M∑
j=1

ri,j
υiυj

− 1

M(M − 1)

1

d2

M∑
i=1

M∑
j=1

kikj
υiυj

=
1

M(M − 1)

 M∑
i=1

M∑
j=1
j 6=i

ri,j − kikj

d

dυiυj

+
1

M(M − 1)

M∑
i=1

ri,i
dυ2i
− 1

M(M − 1)

1

d2

M∑
i=1

k2i
υ2i

=
1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

(
ri,j − kikj

d

dυiυj

)
+

1

M(M − 1)

M∑
i=1

1

υ2i

ki
d
− 1

M(M − 1)

M∑
i=1

1

υ2i

k2i
d2

=
1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

φPearson +
1

M(M − 1)

M∑
i=1

1

υ2i

ki
d
− 1

M(M − 1)

M∑
i=1

1

υ2i

k2i
d2

=Φ̂Pearson +
1

M(M − 1)

M∑
i=1

1

υ2i

(
ki
d
− k2i
d2

)
=Φ̂Pearson +

1

M − 1
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Proof of Equation (3).

Let V̂ ar(Xf ) = M
M−1 p̂f (1− p̂f ) be the unbiased sample variance of the variable

Xf . We want to show that when the cardinality of the feature sets is constant
and equal to k, we have that:

Φ̂Pearson = 1− S

Smax
,

where S = 1
d

∑d
f=1 V̂ ar(Xf ) and where Smax = k

d

(
1− k

d

)
the maximal value of

S given that the FS procedure is selecting k features per feature set. Indeed, we
have that:

1− S

Smax
= 1−

M
M−1

1
d

∑d
f=1 p̂f (1− p̂f )

Smax

= 1− 1

Smax

M

M − 1

1

d

 d∑
f=1

p̂f −
d∑

f=1

(p̂f )2


= 1− 1

Smax

M

M − 1

1

d

k − d∑
f=1

(
1

M

M∑
i=1

xi,f

)2


= 1− 1

Smax

M

M − 1

1

d

k − 1

M2

d∑
f=1

M∑
i=1

M∑
j=1

xi,fxj,f



= 1− 1

Smax

M

M − 1

1

d

k −
1

M2

M∑
i=1

M∑
j=1

 d∑
f=1

xi,fxj,f


︸ ︷︷ ︸

ri,j


= 1− 1

Smax

M

M − 1

1

d

k − 1

M2

M∑
i=1

M∑
j=1

ri,j


= 1− 1

Smax

M

M − 1

1

d

k − 1

M2

M∑
i=1

M∑
j=1
j 6=i

ri,j −
1

M2

M∑
i=1

ri,i


= 1− 1

Smax

M

M − 1

1

d

k − 1

M2

M∑
i=1

M∑
j=1
j 6=i

ri,j −
1

M2

M∑
i=1

k


= 1− 1

Smax

M

M − 1

1

d

k − 1

M2

M∑
i=1

M∑
j=1
j 6=i

ri,j −
k

M


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= 1 +
1

Smax

1

M(M − 1)

1

d

M∑
i=1

M∑
j=1
j 6=i

ri,j +
1

Smax

M

M − 1

1

d

[
k

M
− k
]

= 1 +
1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

φPearson +
1

Smax

1

M(M − 1)

1

d

M∑
i=1

M∑
j=1
j 6=i

k2

d
− 1

Smax

k

d

= 1 + Φ̂Pearson +
1

Smax

k2

d2
− 1

Smax

k

d

= 1 + Φ̂Pearson −
k
d

(
1− k

d

)
Smax

= Φ̂Pearson
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