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This document is the supplementary material of [1]. We first remind the nota-
tions used in the paper in section 1 to facilitate the reading of this material. We
then provide the proofs of all theorems and corollaries of the paper in section 2.

1 Notations

We shortly remind the notations of the paper.

e M is the number of bootstrap samples taken, also the number of rankings

in R.

d is the total number of features.

R is a matrix of size M x d where the i'" row represents the i‘h ranking r;.

747 is the rank of the f' feature in the i'h ranking.

r; = (ri1,...,7i.q) is the i'" ranking. A ranking is a permutation of the

integers from 1 to d (we assume to tied ranks).

o V.= %

° (13(72) is the average pairwise Spearman’s rho between each pair of distinct
rankings. In other words, it is the average value of p(r;,r;) for all M (M —1)
pairs of ranks where ¢ # j.

o ¢ (R) is the average value of p(r;,r;) for all M? pairs of ranks.

e Xy is the ransom variable corresponding to the rank of the f feature.

° aj% is the maximum likelihood estimator of the variance of Xj.

e s7 is the unbiased sample variance of X (s7 = 774707

2 Proof of Theorems and Corollaries

2.1 Theorem 1

Theorem 1. The stability & using Spearman’s p can be re-written as follows:
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where V, = % s a constant only depending on d.
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We calculate the stability QB(R) using the average pairwise Spearman’s p
between the rankings in R:
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2.2 Proof of Corollary 1

Corollary 1. $(R) is an unbiased and consistent estimator of:
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We start by showing that & is an unbiased estimator of @, i.e. E(Q%) = .

1yd 1 d
Zf_10)2‘> —1_ EZf:1E(U§) — 5 (4)

E@) =E|[1-4

since by definition sfc is an unbiased estimator of Var(Xy) and by linearity of
the expected value. We also have that s? is a consistent estimator of Var(Xy),
therefore:
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2.3 Proof of Theorem 2

Theorem 2. & is asymptotically bounded (as M goes to 00) by 0 and 1.

From Theorem 1, we have that:
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@(R):l—%.

By definition, we know that the unbiased sample variance sfc is greater or equal
to 0. Therefore, é Z?Zl S? > 0 which implies that Q%(R) <1.

To prove that @(R) is asymptotically positive, we will show that is can be
re-written as follows:
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which gives us that lim [#(R)] > 0. Indeed, we have:

M —+o00

1 [i Tif = Tif
_ 2
MM-1)d & | = V7
M M 2
~ETE 2 [ v v
M(M —1) d? == Vi =V

\
=
< =
|
=
S
ME
/N
] g
3
N——
[V}
|
/
ISHEE
ME
5 S
o3
=
N~ —
[\V]

<.
Il

-
Il

2
M M M d
- 1 1 Ti,fT4,f 1 l 1
M(M—l)dzz V,  M(M-1) (dz\/ﬁ(z”’f))
f=11i=1j=1 i=1 f=1
2
1 lzd:”firhmf 1 Ien 1 d(d+1)
_M(M—1)df:“:u:1 v, MM-1)\d= VvV, 2
R lzd:Mi”:n,fw 1 M (d+1)\°
_1\4(1\4—1)czf:“,:”:1 v, MM —-1) \VV, 2
BRI TR I UL
M(M —1)d 4« v, M—-1V, 4
f=1i=1j=1
e s S - g
MM —1)d(d ~1) =~ = WM STV, 4
M
. 1 12 M 1 (d+1)? . .
:@(R) -1 + mm Z ZTZ'Q,f — M — 1 ?< 4 ) using Equatlon (2)
f=1i=1 T
_bR) 14 L 12 ~dd+1)@2d+1) M 1 (d+1)?
B M —1d(d?—1) & 6 M-1V, 4
. M 1 (d+1)(2d+1) M 1 (d+1)?
=P(R) — 1 — — —
®) U YT 6 M~-1V, 4
M 1 [(d+1)2d+1) (d+1)?
= -1 il _
®) +M1VT[ 6 4
. M
=B(R) =1+ 37—
. 1
=d(R) +




2.4 Proof of Theorem 3

Theorem 3 (Correction For Chance). & is corrected by chance which means
that its expected value is constant and equal to 0 when the FR is random (i.e.
when all rankings/permutations have equal probability).

First of all, let us prove that V,. = di;l is the variance of X when the feature

ranker (FR) is random. Let us assume X is the rank of the f' feature by a
random FR. By definition we have that:

Var(X;) = E(X3) - (B(X)))? (6)
Let us calculate E(X):
d
Xp) =S ix P(X) = i), (7)
i=1

where P(X; = ) is the probability that the rank of the ft feature is equal
to i. Since the feature ranker is random, all ranks are equiprobable, therefore

P(X;=1i)= (ddl)' E since there are d! permutations of the natural numbers
from 1 to d and that in (d — 1)! of them, the f*" feature has a rank equal to i.
Replacing this in Equatlon (8), we get that:

227 dz ldd-i-l):d;-l. (8)

Now, let us do the same type of calculation for E(X f):
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in Equation (10), we get that:

Now using the results of equations (8) and (9
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Var(Xy) = (10)
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Therefore, we get that V,. = 121.
d Zf 1 Var(Xy)

Using Equation (4) that E($) = & = 1 — A
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. Since Var(Xy) =V,

when the FR is random, we get tha = 1 in that case and therefore

that E($) = 0.

2.5 Proof of Theorem 4

Theorem 4. The average squared error of the mean rank over the d features
can be decomposed into two positive terms as follows:

av. SE of the mean ranker av. MSE of the K rankers

ambiguity term
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where the ambiguity term is also equal to %Z?:1 O'ch and where V. = digl.
Therefore, the error of the ensemble ranker is guaranteed to be less or equal than
the one of the individual rankers on average.

Let us first calculate the average MSE term:
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Now we calculate the ambiguity term as follows:
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Now subtracting the ambiguity term from Equation (13) from the average MSE
term from Equation (12), we get the following;:
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which is the average squared error term given on the left-side of the equation.
Let us know show that the average MSE term and the ambiguity term are
both positive. By definition, we know that a sum of squares is positive, therefore
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the average MSE term is positive. Let us now prove that the ambiguity term is
positive as well:
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Since 0; is always positive by definition, we have that %E‘;:l UJQ‘- > 0 and
therefore that the ambiguity term is positive.

2.6 Proof of Theorem 5

Theorem 5. Assuming the K rankings in the ensemble are independent and
identically distributed (i.i.d), the stability of the mean ranking is reduced by %
compared to the stability of the individual FR:
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1 —d _
5 _, Var(r
U(E)=1- M
d K
1 a2y Var(g 3l i)
- v,
1 d 1 K
i —1 7z D) Var(r;
=1-° Ef_l = §1_1 ris) since Cov(r; ¢,7j,5) =0 for i # j using the i.i.d. assumption
d K
- @21 77 e Var(Xy)
— -

_ 1 52?21 Var(Xy)

K Vi




VIII

Therefore:
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