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This document is the supplementary material of [1]. We first remind the nota-
tions used in the paper in section 1 to facilitate the reading of this material. We
then provide the proofs of all theorems and corollaries of the paper in section 2.

1 Notations

We shortly remind the notations of the paper.

• M is the number of bootstrap samples taken, also the number of rankings
in R.

• d is the total number of features.
• R is a matrix of size M × d where the ith row represents the ith ranking ri.
• ri,f is the rank of the f th feature in the ith ranking.
• ri = (ri,1, ..., ri,d) is the ith ranking. A ranking is a permutation of the

integers from 1 to d (we assume to tied ranks).

• Vr = d2−1
12 .

• Φ̂(R) is the average pairwise Spearman’s rho between each pair of distinct
rankings. In other words, it is the average value of ρ(ri, rj) for all M(M −1)
pairs of ranks where i 6= j.

• Φ̂all(R) is the average value of ρ(ri, rj) for all M2 pairs of ranks.
• Xf is the ransom variable corresponding to the rank of the f th feature.
• σ2

f is the maximum likelihood estimator of the variance of Xf .

• s2f is the unbiased sample variance of Xf (s2f = M
M−1σ

2
f ).

2 Proof of Theorems and Corollaries

2.1 Theorem 1

Theorem 1. The stability Φ̂ using Spearman’s ρ can be re-written as follows:

Φ̂(R) = 1−
1
d

∑d
f=1 s

2
f

Vr
, (1)

where Vr = d2−1
12 is a constant only depending on d.
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We calculate the stability Φ̂(R) using the average pairwise Spearman’s ρ
between the rankings in R:

Φ̂(R) =
1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

ρ(ri, rj)

=
1

M(M − 1)

M∑
i=1

M∑
j=1

ρ(ri, rj)−
1

M(M − 1)

M∑
i=1

ρ(ri, ri)

=
1

M(M − 1)

M∑
i=1

M∑
j=1

ρ(ri, rj)−
1

M(M − 1)

M∑
i=1

1

=
1

M(M − 1)

M∑
i=1

M∑
j=1

ρ(ri, rj)−
1

M − 1

=
M2

M(M − 1)
− 1

M(M − 1)

6

d(d2 − 1)

d∑
f=1

M∑
i=1

M∑
j=1

(ri,f − rj,f )2 − 1

M − 1

=
M

M − 1
− 1

M(M − 1)

6

d(d2 − 1)

d∑
f=1

M∑
i=1

M∑
j=1

(r2i,f − 2ri,frj,f + r2j,f )− 1

M − 1

=1− M

M − 1

 6

d(d2 − 1)

d∑
f=1

(
2

M

M∑
i=1

r2i,f

)
− 6

d(d2 − 1)

 2

M2

d∑
f=1

M∑
i=1

M∑
j=1

ri,frj,f


=1− M

M − 1

 12

d(d2 − 1)

d∑
f=1

(
1

M

M∑
i=1

r2i,f

)
− 12

d(d2 − 1)

d∑
f=1

(
1

M

M∑
i=1

ri,f

)2


=1− M

M − 1

1

d

1

Vr

d∑
f=1

(
1

M

M∑
i=1

r2i,f

)
− 1

d

1

Vr

d∑
f=1

(r̄f )2


=1− 1

Vr

1

d

d∑
f=1

M

M − 1

[(
1

M

M∑
i=1

r2i,f

)
− (r̄f )2

]

=1−
1
d

∑d
f=1 s

2
f

Vr
.

(2)

2.2 Proof of Corollary 1

Corollary 1. Φ̂(R) is an unbiased and consistent estimator of:

Φ = 1−
1
d

∑d
f=1 Var(Xf )

Vr
. (3)
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We start by showing that Φ̂ is an unbiased estimator of Φ, i.e. E(Φ̂) = Φ.

E(Φ̂) = E

(
1−

1
d

∑d
f=1 σ

2
f

Vr

)
= 1−

1
d

∑d
f=1 E(σ2

f )

Vr
= Φ, (4)

since by definition s2f is an unbiased estimator of Var(Xf ) and by linearity of

the expected value. We also have that s2f is a consistent estimator of Var(Xf ),
therefore:

lim
M→∞

(s2f ) = Var(Xf )

⇒ lim
M→∞

(
1

d

d∑
f=1

s2f ) =
1

d

d∑
f=1

Var(Xf )

⇒ lim
M→∞

(Φ̂) = Φ.

(5)

2.3 Proof of Theorem 2

Theorem 2. Φ̂ is asymptotically bounded (as M goes to ∞) by 0 and 1.

From Theorem 1, we have that:

Φ̂(R) = 1−
1
d

∑d
f=1 s

2
f

Vr
.

By definition, we know that the unbiased sample variance s2f is greater or equal

to 0. Therefore, 1
d

∑d
f=1 s

2
f ≥ 0 which implies that Φ̂(R) ≤ 1.

To prove that Φ̂(R) is asymptotically positive, we will show that is can be
re-written as follows:

Φ̂(R) =
1

M(M − 1)

1

d2

∑
f<f ′

[
M∑
i=1

ri,f − ri,f ′
√
Vr

]2
︸ ︷︷ ︸

≥0

− 1

M − 1︸ ︷︷ ︸
→

M→+∞
0



IV

which gives us that lim
M→+∞

[Φ̂(R)] ≥ 0. Indeed, we have:

1

M(M − 1)

1

d2

∑
f<f ′

[
M∑
i=1

ri,f − ri,f ′
√
Vr

]2

=
1

M(M − 1)

1

d2

∑
f<f ′

[
M∑
i=1

ri,f√
Vr
−

M∑
i=1

ri,f ′
√
Vr

]2

=
1

M(M − 1)

1

d

d∑
f=1

(
M∑
i=1

ri,f√
Vr

)2

−

1

d

d∑
f=1

M∑
i=1

ri,f√
Vr

2


=
1

M(M − 1)

1

d

d∑
f=1

M∑
i=1

M∑
j=1

ri,frj,f
Vr

− 1

M(M − 1)

1

d

M∑
i=1

1√
Vr

 d∑
f=1

ri,f

2

=
1

M(M − 1)

1

d

d∑
f=1

M∑
i=1

M∑
j=1

ri,frj,f
Vr

− 1

M(M − 1)

(
1

d

M∑
i=1

1√
Vr

d(d+ 1)

2

)2

=
1

M(M − 1)

1

d

d∑
f=1

M∑
i=1

M∑
j=1

ri,frj,f
Vr

− 1

M(M − 1)

(
M√
Vr

(d+ 1)

2

)2

=
1

M(M − 1)

1

d

d∑
f=1

M∑
i=1

M∑
j=1

ri,frj,f
Vr

− M

M − 1

1

Vr

(d+ 1)2

4

=
1

M(M − 1)

6

d(d2 − 1)

d∑
f=1

M∑
i=1

M∑
j=1

2ri,frj,f −
M

M − 1

1

Vr

(d+ 1)2

4

=Φ̂(R)− 1 +
1

M − 1

12

d(d2 − 1)

d∑
f=1

M∑
i=1

r2i,f −
M

M − 1

1

Vr

(d+ 1)2

4
using Equation (2)

=Φ̂(R)− 1 +
1

M − 1

12

d(d2 − 1)

M∑
i=1

d(d+ 1)(2d+ 1)

6
− M

M − 1

1

Vr

(d+ 1)2

4

=Φ̂(R)− 1 +
M

M − 1

1

Vr

(d+ 1)(2d+ 1)

6
− M

M − 1

1

Vr

(d+ 1)2

4

=Φ̂(R)− 1 +
M

M − 1

1

Vr

[
(d+ 1)(2d+ 1)

6
− (d+ 1)2

4

]
=Φ̂(R)− 1 +

M

M − 1

=Φ̂(R) +
1

M − 1
.
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2.4 Proof of Theorem 3

Theorem 3 (Correction For Chance). Φ̂ is corrected by chance which means
that its expected value is constant and equal to 0 when the FR is random (i.e.
when all rankings/permutations have equal probability).

First of all, let us prove that Vr = d2−1
12 is the variance of Xf when the feature

ranker (FR) is random. Let us assume Xf is the rank of the f th feature by a
random FR. By definition we have that:

V ar(Xf ) = E(X2
f )− (E(Xf ))2 (6)

Let us calculate E(Xf ):

E(Xf ) =

d∑
i=1

i×P(Xf = i), (7)

where P(Xf = i) is the probability that the rank of the f th feature is equal
to i. Since the feature ranker is random, all ranks are equiprobable, therefore

P(Xf = i) = (d−1)!
d! = 1

d since there are d! permutations of the natural numbers
from 1 to d and that in (d− 1)! of them, the f th feature has a rank equal to i.
Replacing this in Equation (8), we get that:

E(Xf ) =

d∑
i=1

i
1

d
=

1

d

d∑
i=1

i =
1

d

d(d+ 1)

2
=
d+ 1

2
. (8)

Now, let us do the same type of calculation for E(X2
f ):

E(X2
f ) =

d∑
i=1

i2 ×P(Xf = i) =
1

d

d∑
i=1

i2 =
(d+ 1)(2d+ 1)

6
. (9)

Now using the results of equations (8) and (9) in Equation (10), we get that:

V ar(Xf ) =
(d+ 1)(2d+ 1)

6
−
(
d+ 1

2

)2

=
d2 − 1

12
. (10)

Therefore, we get that Vr = d2−1
12 .

Using Equation (4) that E(Φ̂) = Φ = 1 −
1
d

∑d
f=1 Var(Xf )

Vr
. Since Var(Xf ) = Vr

when the FR is random, we get that
1
d

∑d
f=1 Var(Xf )

Vr
= 1 in that case and therefore

that E(Φ̂) = 0.

2.5 Proof of Theorem 4

Theorem 4. The average squared error of the mean rank over the d features
can be decomposed into two positive terms as follows:

av. SE of the mean ranker︷ ︸︸ ︷
1

d

d∑
f=1

(r̄f − r∗f )2 =

av. MSE of the K rankers︷ ︸︸ ︷
1

d

d∑
f=1

(
1

K

K∑
i=1

(ri,f − r∗f )2

)
−

ambiguity term︷ ︸︸ ︷
(1− Φ̂all)Vr , (11)
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where the ambiguity term is also equal to 1
d

∑d
f=1 σ

2
f and where Vr = d2−1

12 .
Therefore, the error of the ensemble ranker is guaranteed to be less or equal than
the one of the individual rankers on average.

Let us first calculate the average MSE term:

1

d

d∑
f=1

(
1

K

K∑
i=1

(ri,f − r∗f )2

)

=
1

d

d∑
f=1

1

M

M∑
i=1

(ri,f − r∗f )2

=
1

d

d∑
f=1

(
1

M

M∑
i=1

r2i,f

)
− 2r̄fr

∗
f + (r∗f )2

(12)

Now we calculate the ambiguity term as follows:

(1− Φ̂all)Vr

=
1

d

d∑
f=1

σ2
f

=
1

d

d∑
f=1

( 1

M

M∑
i=1

r2i,f

)
−

(
1

M

M∑
i=1

ri,f

)2
 by definition of the sample variance

=
1

d

d∑
f=1

[(
1

M

M∑
i=1

r2i,f

)
− (r̄f )

2

]
(13)

Now subtracting the ambiguity term from Equation (13) from the average MSE
term from Equation (12), we get the following:

1

d

d∑
f=1

(
1

K

K∑
i=1

(ri,f − r∗f )2

)
− (1− Φ̂all)Vr

=
1

d

d∑
f=1

(r∗f )2 − 2r̄fr
∗
f + (r̄f )

2

=
1

d

d∑
f=1

(
r̄f − r∗f

)2
,

(14)

which is the average squared error term given on the left-side of the equation.

Let us know show that the average MSE term and the ambiguity term are
both positive. By definition, we know that a sum of squares is positive, therefore
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the average MSE term is positive. Let us now prove that the ambiguity term is
positive as well:

0 ≤ (1− Φ̂all)Vr

⇔ 0 ≤ 1− Φ̂all

⇔ Φ̂all ≤ 1

⇔ 1−
1
d

∑d
f=1 σ

2
f

Vr
≤ 1

⇔
1
d

∑d
f=1 σ

2
f

Vr
≥ 0

⇔ 1

d

d∑
f=1

σ2
f ≥ 0

(15)

Since σ2
f is always positive by definition, we have that 1

d

∑d
f=1 σ

2
f ≥ 0 and

therefore that the ambiguity term is positive.

2.6 Proof of Theorem 5

Theorem 5. Assuming the K rankings in the ensemble are independent and
identically distributed (i.i.d), the stability of the mean ranking is reduced by 1

K
compared to the stability of the individual FR:

Ψ =
K − 1

K
+
Φ

K
. (16)

By definition, we have:

Ψ(r̄) = 1−
1
d

∑d
f=1 Var(r̄f )

Vr

= 1−
1
d

∑d
f=1 Var( 1

K

∑K
i=1 ri,f )

Vr

= 1−
1
d

∑d
f=1

1
K2

∑K
i=1 Var(ri,f )

Vr
since Cov(ri,f , rj,f ) = 0 for i 6= j using the i.i.d. assumption

= 1−
1
d

∑d
f=1

1
K2

∑K
i=1 Var(Xf )

Vr

= 1− 1

K

1
d

∑d
f=1 Var(Xf )

Vr
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Therefore:

Ψ(r̄) = 1− 1

K
(1− Φ) = 1− 1

K
(1− φ) = 1− 1

K
− Φ

K
=
K − 1

K
− Φ

K
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