On the Use of Spearman's Rho to Measure the Stability of Feature Rankings: Supplementary material

Sarah Nogueira, Konstantinos Sechidis and Gavin Brown
School of Computer Science, University of Manchester, Manchester M13 9PL, UK
sarah.nogueira@manchester.ac.uk,
WWW home page: http://www.cs.man.ac.uk/~nogueirs/

This document is the supplementary material of [1]. We first remind the notations used in the paper in section 1 to facilitate the reading of this material. We then provide the proofs of all theorems and corollaries of the paper in section 2.

1 Notations

We shortly remind the notations of the paper.

- M is the number of bootstrap samples taken, also the number of rankings in \mathcal{R}.
- d is the total number of features.
- \mathcal{R} is a matrix of size $M \times d$ where the $i^{t h}$ row represents the $i^{t} h$ ranking \mathbf{r}_{i}.
- $r_{i, f}$ is the rank of the $f^{t h}$ feature in the $i^{t} h$ ranking.
- $\mathbf{r}_{i}=\left(r_{i, 1}, \ldots, r_{i, d}\right)$ is the $i^{t h}$ ranking. A ranking is a permutation of the integers from 1 to d (we assume to tied ranks).
- $V_{r}=\frac{d^{2}-1}{12}$.
- $\hat{\Phi}(\mathcal{R})$ is the average pairwise Spearman's rho between each pair of distinct rankings. In other words, it is the average value of $\rho\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)$ for all $M(M-1)$ pairs of ranks where $i \neq j$.
- $\hat{\Phi}^{\text {all }}(\mathcal{R})$ is the average value of $\rho\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)$ for all M^{2} pairs of ranks.
- X_{f} is the ransom variable corresponding to the rank of the $f^{t h}$ feature.
- σ_{f}^{2} is the maximum likelihood estimator of the variance of X_{f}.
- s_{f}^{2} is the unbiased sample variance of $X_{f}\left(s_{f}^{2}=\frac{M}{M-1} \sigma_{f}^{2}\right)$.

2 Proof of Theorems and Corollaries

2.1 Theorem 1

Theorem 1. The stability $\hat{\Phi}$ using Spearman's ρ can be re-written as follows:

$$
\begin{equation*}
\hat{\Phi}(\mathcal{R})=1-\frac{\frac{1}{d} \sum_{f=1}^{d} s_{f}^{2}}{V_{r}} \tag{1}
\end{equation*}
$$

where $V_{r}=\frac{d^{2}-1}{12}$ is a constant only depending on d.

We calculate the stability $\hat{\Phi}(\mathcal{R})$ using the average pairwise Spearman's ρ between the rankings in \mathcal{R} :

$$
\begin{align*}
& \hat{\Phi}(\mathcal{R})=\frac{1}{M(M-1)} \sum_{i=1}^{M} \sum_{\substack{j=1 \\
j \neq i}}^{M} \rho\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right) \\
&=\frac{1}{M(M-1)} \sum_{i=1}^{M} \sum_{j=1}^{M} \rho\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)-\frac{1}{M(M-1)} \sum_{i=1}^{M} \rho\left(\mathbf{r}_{i}, \mathbf{r}_{i}\right) \\
&=\frac{1}{M(M-1)} \sum_{i=1}^{M} \sum_{j=1}^{M} \rho\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)-\frac{1}{M(M-1)} \sum_{i=1}^{M} 1 \\
&=\frac{1}{M(M-1)} \sum_{i=1}^{M} \sum_{j=1}^{M} \rho\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)-\frac{1}{M-1} \\
&=\frac{M}{M(M-1)}-\frac{1}{M(M-1)} \frac{6}{d\left(d^{2}-1\right)} \sum_{f=1}^{d} \sum_{i=1}^{M} \sum_{j=1}^{M}\left(r_{i, f}-r_{j, f}\right)^{2}-\frac{1}{M-1} \\
&=\frac{M}{M-1}-\frac{1}{M(M-1)} \frac{6}{d\left(d^{2}-1\right)} \sum_{f=1}^{d} \sum_{i=1}^{M} \sum_{j=1}^{M}\left(r_{i, f}^{2}-2 r_{i, f} r_{j, f}+r_{j, f}^{2}\right)-\frac{1}{M-1} \\
&=1-\frac{M}{M-1}\left[\frac{6}{d\left(d^{2}-1\right)} \sum_{f=1}^{d}\left(\frac{2}{M} \sum_{i=1}^{M} r_{i, f}^{2}\right)-\frac{6}{d\left(d^{2}-1\right)}\left(\frac{2}{M^{2}} \sum_{f=1}^{d} \sum_{i=1}^{M} \sum_{j=1}^{M} r_{i, f} r_{j, f}\right)\right] \\
&=1-\frac{M}{M-1}\left[\frac{12}{d\left(d^{2}-1\right)} \sum_{f=1}^{d}\left(\frac{1}{M} \sum_{i=1}^{M} r_{i, f}^{2}\right)-\frac{12}{d\left(d^{2}-1\right)} \sum_{f=1}^{d}\left(\frac{1}{M} \sum_{i=1}^{M} r_{i, f}\right)^{2}\right] \\
&=1-\frac{M}{M-1}\left[\frac{1}{d} \frac{1}{V_{r}} \sum_{f=1}^{d}\left(\frac{1}{M} \sum_{i=1}^{M} r_{i, f}^{2}\right)-\frac{1}{d} \frac{1}{V_{r}} \sum_{f=1}^{d}\left(\bar{r}_{f}\right)^{2}\right] \\
&=1-\frac{1}{V_{r}} \frac{1}{d} \sum_{f=1}^{d} \frac{M}{M-1}\left[\left(\frac{1}{M} \sum_{i=1}^{M} r_{i, f}^{2}\right)-\left(\bar{r}_{f}\right)^{2}\right] \\
& V_{r} \tag{2}\\
& m_{f}^{2}
\end{align*}
$$

2.2 Proof of Corollary 1

Corollary 1. $\hat{\Phi}(\mathcal{R})$ is an unbiased and consistent estimator of:

$$
\begin{equation*}
\Phi=1-\frac{\frac{1}{d} \sum_{f=1}^{d} \operatorname{Var}\left(X_{f}\right)}{V_{r}} \tag{3}
\end{equation*}
$$

We start by showing that $\hat{\Phi}$ is an unbiased estimator of Φ, i.e. $\mathbf{E}(\hat{\Phi})=\Phi$.

$$
\begin{equation*}
\mathbf{E}(\hat{\Phi})=\mathbf{E}\left(1-\frac{\frac{1}{d} \sum_{f=1}^{d} \sigma_{f}^{2}}{V_{r}}\right)=1-\frac{\frac{1}{d} \sum_{f=1}^{d} \mathbf{E}\left(\sigma_{f}^{2}\right)}{V_{r}}=\Phi \tag{4}
\end{equation*}
$$

since by definition s_{f}^{2} is an unbiased estimator of $\operatorname{Var}\left(X_{f}\right)$ and by linearity of the expected value. We also have that s_{f}^{2} is a consistent estimator of $\operatorname{Var}\left(X_{f}\right)$, therefore:

$$
\begin{align*}
& \lim _{M \rightarrow \infty}\left(s_{f}^{2}\right)=\operatorname{Var}\left(X_{f}\right) \\
\Rightarrow & \lim _{M \rightarrow \infty}\left(\frac{1}{d} \sum_{f=1}^{d} s_{f}^{2}\right)=\frac{1}{d} \sum_{f=1}^{d} \operatorname{Var}\left(X_{f}\right) \tag{5}\\
\Rightarrow & \lim _{M \rightarrow \infty}(\hat{\Phi})=\Phi
\end{align*}
$$

2.3 Proof of Theorem 2

Theorem 2. $\hat{\Phi}$ is asymptotically bounded (as M goes to ∞) by 0 and 1.

From Theorem 1, we have that:

$$
\hat{\Phi}(\mathcal{R})=1-\frac{\frac{1}{d} \sum_{f=1}^{d} s_{f}^{2}}{V_{r}}
$$

By definition, we know that the unbiased sample variance s_{f}^{2} is greater or equal to 0 . Therefore, $\frac{1}{d} \sum_{f=1}^{d} s_{f}^{2} \geq 0$ which implies that $\hat{\Phi}(\mathcal{R}) \leq 1$.

To prove that $\hat{\Phi}(\mathcal{R})$ is asymptotically positive, we will show that is can be re-written as follows:

$$
\hat{\Phi}(\mathcal{R})=\frac{1}{M(M-1)} \frac{1}{d^{2}} \sum_{f<f^{\prime}} \underbrace{\left[\sum_{i=1}^{M} \frac{r_{i, f}-r_{i, f^{\prime}}}{\sqrt{V_{r}}}\right]^{2}}_{\geq 0}-\underbrace{}_{M \rightarrow+\infty} \frac{1}{M-1}
$$

which gives us that $\lim _{M \rightarrow+\infty}[\hat{\Phi}(\mathcal{R})] \geq 0$. Indeed, we have:

$$
\begin{aligned}
& \frac{1}{M(M-1)} \frac{1}{d^{2}} \sum_{f<f^{\prime}}\left[\sum_{i=1}^{M} \frac{r_{i, f}-r_{i, f^{\prime}}}{\sqrt{V_{r}}}\right]^{2} \\
& =\frac{1}{M(M-1)} \frac{1}{d^{2}} \sum_{f<f^{\prime}}\left[\sum_{i=1}^{M} \frac{r_{i, f}}{\sqrt{V_{r}}}-\sum_{i=1}^{M} \frac{r_{i, f^{\prime}}}{\sqrt{V_{r}}}\right]^{2} \\
& =\frac{1}{M(M-1)}\left[\frac{1}{d} \sum_{f=1}^{d}\left(\sum_{i=1}^{M} \frac{r_{i, f}}{\sqrt{V_{r}}}\right)^{2}-\left(\frac{1}{d} \sum_{f=1}^{d} \sum_{i=1}^{M} \frac{r_{i, f}}{\sqrt{V_{r}}}\right)^{2}\right] \\
& =\frac{1}{M(M-1)} \frac{1}{d} \sum_{f=1}^{d} \sum_{i=1}^{M} \sum_{j=1}^{M} \frac{r_{i, f} r_{j, f}}{V_{r}}-\frac{1}{M(M-1)}\left(\frac{1}{d} \sum_{i=1}^{M} \frac{1}{\sqrt{V_{r}}}\left(\sum_{f=1}^{d} r_{i, f}\right)\right)^{2} \\
& =\frac{1}{M(M-1)} \frac{1}{d} \sum_{f=1}^{d} \sum_{i=1}^{M} \sum_{j=1}^{M} \frac{r_{i, f} r_{j, f}}{V_{r}}-\frac{1}{M(M-1)}\left(\frac{1}{d} \sum_{i=1}^{M} \frac{1}{\sqrt{V_{r}}} \frac{d(d+1)}{2}\right)^{2} \\
& =\frac{1}{M(M-1)} \frac{1}{d} \sum_{f=1}^{d} \sum_{i=1}^{M} \sum_{j=1}^{M} \frac{r_{i, f} r_{j, f}}{V_{r}}-\frac{1}{M(M-1)}\left(\frac{M}{\sqrt{V_{r}}} \frac{(d+1)}{2}\right)^{2} \\
& =\frac{1}{M(M-1)} \frac{1}{d} \sum_{f=1}^{d} \sum_{i=1}^{M} \sum_{j=1}^{M} \frac{r_{i, f} r_{j, f}}{V_{r}}-\frac{M}{M-1} \frac{1}{V_{r}} \frac{(d+1)^{2}}{4} \\
& =\frac{1}{M(M-1)} \frac{6}{d\left(d^{2}-1\right)} \sum_{f=1}^{d} \sum_{i=1}^{M} \sum_{j=1}^{M} 2 r_{i, f} r_{j, f}-\frac{M}{M-1} \frac{1}{V_{r}} \frac{(d+1)^{2}}{4} \\
& =\hat{\Phi}(\mathcal{R})-1+\frac{1}{M-1} \frac{12}{d\left(d^{2}-1\right)} \sum_{f=1}^{d} \sum_{i=1}^{M} r_{i, f}^{2}-\frac{M}{M-1} \frac{1}{V_{r}} \frac{(d+1)^{2}}{4} \quad \text { using Equation (2) } \\
& =\hat{\Phi}(\mathcal{R})-1+\frac{1}{M-1} \frac{12}{d\left(d^{2}-1\right)} \sum_{i=1}^{M} \frac{d(d+1)(2 d+1)}{6}-\frac{M}{M-1} \frac{1}{V_{r}} \frac{(d+1)^{2}}{4} \\
& =\hat{\Phi}(\mathcal{R})-1+\frac{M}{M-1} \frac{1}{V_{r}} \frac{(d+1)(2 d+1)}{6}-\frac{M}{M-1} \frac{1}{V_{r}} \frac{(d+1)^{2}}{4} \\
& =\hat{\Phi}(\mathcal{R})-1+\frac{M}{M-1} \frac{1}{V_{r}}\left[\frac{(d+1)(2 d+1)}{6}-\frac{(d+1)^{2}}{4}\right] \\
& =\hat{\Phi}(\mathcal{R})-1+\frac{M}{M-1} \\
& =\hat{\Phi}(\mathcal{R})+\frac{1}{M-1} \text {. }
\end{aligned}
$$

2.4 Proof of Theorem 3

Theorem 3 (Correction For Chance). $\hat{\Phi}$ is corrected by chance which means that its expected value is constant and equal to 0 when the $F R$ is random (i.e. when all rankings/permutations have equal probability).
First of all, let us prove that $V_{r}=\frac{d^{2}-1}{12}$ is the variance of X_{f} when the feature ranker (FR) is random. Let us assume X_{f} is the rank of the $f^{t h}$ feature by a random FR. By definition we have that:

$$
\begin{equation*}
\operatorname{Var}\left(X_{f}\right)=\mathbf{E}\left(X_{f}^{2}\right)-\left(\mathbf{E}\left(X_{f}\right)\right)^{2} \tag{6}
\end{equation*}
$$

Let us calculate $\mathbf{E}\left(X_{f}\right)$:

$$
\begin{equation*}
\mathbf{E}\left(X_{f}\right)=\sum_{i=1}^{d} i \times \mathbf{P}\left(X_{f}=i\right), \tag{7}
\end{equation*}
$$

where $\mathbf{P}\left(X_{f}=i\right)$ is the probability that the rank of the $f^{t h}$ feature is equal to i. Since the feature ranker is random, all ranks are equiprobable, therefore $\mathbf{P}\left(X_{f}=i\right)=\frac{(d-1)!}{d!}=\frac{1}{d}$ since there are $d!$ permutations of the natural numbers from 1 to d and that in $(d-1)$! of them, the $f^{\text {th }}$ feature has a rank equal to i. Replacing this in Equation (8), we get that:

$$
\begin{equation*}
\mathbf{E}\left(X_{f}\right)=\sum_{i=1}^{d} i \frac{1}{d}=\frac{1}{d} \sum_{i=1}^{d} i=\frac{1}{d} \frac{d(d+1)}{2}=\frac{d+1}{2} . \tag{8}
\end{equation*}
$$

Now, let us do the same type of calculation for $\mathbf{E}\left(X_{f}^{2}\right)$:

$$
\begin{equation*}
\mathbf{E}\left(X_{f}^{2}\right)=\sum_{i=1}^{d} i^{2} \times \mathbf{P}\left(X_{f}=i\right)=\frac{1}{d} \sum_{i=1}^{d} i^{2}=\frac{(d+1)(2 d+1)}{6} . \tag{9}
\end{equation*}
$$

Now using the results of equations (8) and (9) in Equation (10), we get that:

$$
\begin{equation*}
\operatorname{Var}\left(X_{f}\right)=\frac{(d+1)(2 d+1)}{6}-\left(\frac{d+1}{2}\right)^{2}=\frac{d^{2}-1}{12} . \tag{10}
\end{equation*}
$$

Therefore, we get that $V_{r}=\frac{d^{2}-1}{12}$.
Using Equation (4) that $\mathbf{E}(\hat{\Phi})=\Phi=1-\frac{\frac{1}{d} \sum_{f=1}^{d} \operatorname{Var}\left(X_{f}\right)}{V_{r}}$. Since $\operatorname{Var}\left(X_{f}\right)=V_{r}$ when the FR is random, we get that $\frac{\frac{1}{d} \sum_{f=1}^{d} \operatorname{Var}\left(X_{f}\right)}{V_{r}}=1$ in that case and therefore that $\mathbf{E}(\hat{\Phi})=0$.

2.5 Proof of Theorem 4

Theorem 4. The average squared error of the mean rank over the d features can be decomposed into two positive terms as follows:

$$
\begin{equation*}
\overbrace{\frac{1}{d} \sum_{f=1}^{d}\left(\bar{r}_{f}-r_{f}^{*}\right)^{2}}^{\text {av. SE of the mean ranker }}=\overbrace{\frac{1}{d} \sum_{f=1}^{d}\left(\frac{1}{K} \sum_{i=1}^{K}\left(r_{i, f}-r_{f}^{*}\right)^{2}\right)}^{\text {av. MSE of the K rankers }}-\overbrace{\left(1-\hat{\Phi}^{\text {all }}\right) V_{r}}^{\text {ambiguity term }} \tag{11}
\end{equation*}
$$

where the ambiguity term is also equal to $\frac{1}{d} \sum_{f=1}^{d} \sigma_{f}^{2}$ and where $V_{r}=\frac{d^{2}-1}{12}$. Therefore, the error of the ensemble ranker is guaranteed to be less or equal than the one of the individual rankers on average.

Let us first calculate the average MSE term:

$$
\begin{align*}
& \frac{1}{d} \sum_{f=1}^{d}\left(\frac{1}{K} \sum_{i=1}^{K}\left(r_{i, f}-r_{f}^{*}\right)^{2}\right) \\
= & \frac{1}{d} \sum_{f=1}^{d} \frac{1}{M} \sum_{i=1}^{M}\left(r_{i, f}-r_{f}^{*}\right)^{2} \tag{12}\\
= & \frac{1}{d} \sum_{f=1}^{d}\left(\frac{1}{M} \sum_{i=1}^{M} r_{i, f}^{2}\right)-2 \bar{r}_{f} r_{f}^{*}+\left(r_{f}^{*}\right)^{2}
\end{align*}
$$

Now we calculate the ambiguity term as follows:

$$
\begin{align*}
& \left(1-\hat{\Phi}^{\text {all }}\right) V_{r} \\
= & \frac{1}{d} \sum_{f=1}^{d} \sigma_{f}^{2} \\
= & \frac{1}{d} \sum_{f=1}^{d}\left[\left(\frac{1}{M} \sum_{i=1}^{M} r_{i, f}^{2}\right)-\left(\frac{1}{M} \sum_{i=1}^{M} r_{i, f}\right)^{2}\right] \quad \text { by definition of the sample variance } \\
= & \frac{1}{d} \sum_{f=1}^{d}\left[\left(\frac{1}{M} \sum_{i=1}^{M} r_{i, f}^{2}\right)-\left(\bar{r}_{f}\right)^{2}\right] \tag{13}
\end{align*}
$$

Now subtracting the ambiguity term from Equation (13) from the average MSE term from Equation (12), we get the following:

$$
\begin{align*}
& \frac{1}{d} \sum_{f=1}^{d}\left(\frac{1}{K} \sum_{i=1}^{K}\left(r_{i, f}-r_{f}^{*}\right)^{2}\right)-\left(1-\hat{\Phi}^{a l l}\right) V_{r} \\
= & \frac{1}{d} \sum_{f=1}^{d}\left(r_{f}^{*}\right)^{2}-2 \bar{r}_{f} r_{f}^{*}+\left(\bar{r}_{f}\right)^{2} \tag{14}\\
= & \frac{1}{d} \sum_{f=1}^{d}\left(\bar{r}_{f}-r_{f}^{*}\right)^{2}
\end{align*}
$$

which is the average squared error term given on the left-side of the equation.
Let us know show that the average MSE term and the ambiguity term are both positive. By definition, we know that a sum of squares is positive, therefore
the average MSE term is positive. Let us now prove that the ambiguity term is positive as well:

$$
\begin{align*}
& 0 \leq\left(1-\hat{\Phi}^{\text {all }}\right) V_{r} \\
& \Leftrightarrow 0 \leq 1-\hat{\Phi}^{\text {all }} \\
& \Leftrightarrow \hat{\Phi}^{\text {all }} \leq 1 \\
& \Leftrightarrow 1-\frac{\frac{1}{d} \sum_{f=1}^{d} \sigma_{f}^{2}}{V_{r}} \leq 1 \tag{15}\\
& \Leftrightarrow \frac{\frac{1}{d} \sum_{f=1}^{d} \sigma_{f}^{2}}{V_{r}} \geq 0 \\
& \Leftrightarrow \frac{1}{d} \sum_{f=1}^{d} \sigma_{f}^{2} \geq 0
\end{align*}
$$

Since σ_{f}^{2} is always positive by definition, we have that $\frac{1}{d} \sum_{f=1}^{d} \sigma_{f}^{2} \geq 0$ and therefore that the ambiguity term is positive.

2.6 Proof of Theorem 5

Theorem 5. Assuming the K rankings in the ensemble are independent and identically distributed (i.i.d), the stability of the mean ranking is reduced by $\frac{1}{K}$ compared to the stability of the individual FR:

$$
\begin{equation*}
\Psi=\frac{K-1}{K}+\frac{\Phi}{K} . \tag{16}
\end{equation*}
$$

By definition, we have:

$$
\begin{aligned}
\Psi(\overline{\mathbf{r}}) & =1-\frac{\frac{1}{d} \sum_{f=1}^{d} \operatorname{Var}\left(\bar{r}_{f}\right)}{V_{r}} \\
& =1-\frac{\frac{1}{d} \sum_{f=1}^{d} \operatorname{Var}\left(\frac{1}{K} \sum_{i=1}^{K} r_{i, f}\right)}{V_{r}} \\
& =1-\frac{\frac{1}{d} \sum_{f=1}^{d} \frac{1}{K^{2}} \sum_{i=1}^{K} \operatorname{Var}\left(r_{i, f}\right)}{V_{r}} \text { since } \operatorname{Cov}\left(r_{i, f}, r_{j, f}\right)=0 \text { for } i \neq j \text { using the i.i.d. assumption } \\
& =1-\frac{\frac{1}{d} \sum_{f=1}^{d} \frac{1}{K^{2}} \sum_{i=1}^{K} \operatorname{Var}\left(X_{f}\right)}{V_{r}} \\
& =1-\frac{1}{K} \frac{\frac{1}{d} \sum_{f=1}^{d} \operatorname{Var}\left(X_{f}\right)}{V_{r}}
\end{aligned}
$$

Therefore:

$$
\Psi(\overline{\mathbf{r}})=1-\frac{1}{K}(1-\Phi)=1-\frac{1}{K}(1-\phi)=1-\frac{1}{K}-\frac{\Phi}{K}=\frac{K-1}{K}-\frac{\Phi}{K}
$$

References

1. Nogueira, S., Brown, G.: On the use of spearman rho to measure the stability of feature rankings. In: Under review at IbPRIA (2017)
