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Abstract

We prove that the satisfiability problem for C? is decidable.

C? is first-order logic with only two variables in the presence of arbitrary counting
quantifiers 3™, m > 1. It considerably extends L2, plain first-order with only two
variables, which is known to be decidable by a result of Mortimer. Unlike L2, C?
does not have the finite model property. As C? extends L? by expressive means for
counting, significant applications arise from the fact that C? embeds corresponding
counting extensions of modal logics.

1 Introduction

Let L% be the fragment of first-order logic (with equality), that only has the variable
symbols z and y — i.e. the closure of atomic formulae involving no variables apart
from z and y under Boolean operations and Jz, dy. Throughout this paper we restrict
attention to finite vocabularies consisting of relation symbols and constants.

By [7], L? has the finite model property, i.e. every satisfiable sentence has a finite
model. Consequently, the satisfiability problem for L? is decidable. Standard terminol-
ogy uses the following:

e sat(X) for the the set of ©» € X that are satisfiable;

e fin-sat(X) for the set of ©» € X that have a finite model;
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o inf-sat(X) for the set of ¢ € X that have an infinite model;
o infaxioms(X) for sat(X ) — fin-sat(X ), the infinity azioms of X.

By the finite model property, sat(L?) = fin-sat(L?). Note that fin-sat(X) is recursively
enumerable for any formula class with effective semantics, and that sat(X) is co-r.e.
for any X that can effectively be embedded into first-order logic FO (by completeness).
So, as a fragment of FO that has the finite model property, L? is decidable. In fact
Mortimer also proves a recursive bound on the size of small finite models, so there is a
more direct argument for decidability. Mortimer’s proof and the quality of this bound
have recently been improved upon in [3] so that the complexity of sat(L?) could be
determined precisely.

Some of the important applications of this result arise in the context of modal logics
that can be embedded into L?. From a practical point of view, L? remains too weak for
many applications, though. Although several extensions of modal logic like propositional
dynamic logic PDL, computation tree logic CTL, or propositional g-calculus L, (which
feature expressive means that make them useful as process logics) are known to be
decidable, it was shown in [4] that several corresponding extensions of L? are no longer
decidable.

Unlike FO, L? is not closed under assertions that there are at least m elements
satisfying some property for m > 2. It is therefore natural to extend L? to allow
arbitrary counting quantifiers 3™, m > 1.

Definition 1.1 C? is that extension of L? which admits all counting quantifiers 3>™,
m > 1 rather than just 3.

For instance, the C%-sentence V23$"yFEzy defines the class of all graphs whose degree
is bounded by m. Here we have already allowed derived quantifiers V for 32! and
3™ for —~32™* Quantifiers 3=™, 3>™ etc. may similarly be admitted in C? without
increasing its expressive power.

We point out one particularly interesting piece of evidence for the expressive power
of C%, which far exceeds that of L%, Immerman and Lander [6] show that the C%-
theory of a finite graph (which is actually axiomatized a single sentence of C?) exactly
characterises the stable colouring of that graph. By results of Babai and Kucera [1] it
follows that almost all finite graphs are characterized up to isomorphism by their C?-
theory — almost all in the sense of asymptotic probabilities: the proportion of graphs
with vertices 0,...,n — 1 having this property tends to 1 as n goes to infinity. For
more information on the expressive power and model-theoretic properties of C'? (and
extensions thereof) we refer to [8, 9].

That C? does not have the finite model property is witnessed by
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which asserts that F is the graph of an injective function from the universe to itself which
fails to be surjective. This is clearly an infinity axiom. Therefore fin-sat(C?) ¢ sat(C?),
and there are two different decidability issues to be settled.

In the present exposition we give a full proof for the decidability of sat(C?). As
C? C FO, it suffices to establish that sat(C?) is r.e., and for this — as fin-sat(C?)
clearly is r.e. — it suffices to show inf-sat(C?) to be r.e.

In the full version of this paper we will also address the finite satisfiability problem.
Further, we will point out some consequences of our decidability results, e.g. for modal
logics with graded modalities.

2 Notation and basic definitions

Let 7 always be some finite vocabulary of unary and binary relation symbols and con-
stants. It is not difficult to see that in two-variable logics (even in the presence of
constants) predicates of higher arity can be eliminated preserving satisfiability. Details
will be given in the full version of this paper.

We shall suppress 7 in our notation — everything will be quite uniform also with
respect to 7 so that it may be regarded as fixed in most arguments. If K is any set of
parameters, we may treat these as new constant symbols and write 7 = 7 U K for the
extended vocabulary. Usually K is a subset of some structure, and we do not distinguish
between the element k£ € K and the constant k£ which is the syntactic name for k. We
denote structures as A = (A,...) where A is the universe of 2.

An atomic n-type over vocabulary 7 is a maximally consistent set of atomic and
negated atomic 7-formulae in n variable symbols.

Let O denote the finite set of atomic 1-types over 7 in the single variable z. Let
(3 stand for the finite set of those atomic 2-types over T in two variables # and y which
include =z =y. ¥ will denote the set of atomic 1-types over 7 in the variable z. o€
is finite if K is.

We use letters a and 3 to denote typical elements of Q¢ (or aK) and 3, respectively.
For 7-structures 2, some fixed subset K C A, and distinct elements ¢ and b in A let

atp?l(a) € «,
atpf(a) € ak,
atp%l(av b) € /6

denote the respective atomic types. It is clear that for a € O and quantifier-free 5
in the single variable z, it can effectivley be determined whether o |= 7, i.e. whether
realizations of a necessarily satisfy 7. (To see this put 7 in disjunctive normal form.)



Similarly 3 |= 7, for 8 € B and 5 quantifier-free, and a |= 7, for a € ¥ and quantifier-
free 1 in the single variable z but possibly with parameters from K, are decidable.

We shall see that the analysis of structures with respect to C? can make good use
of one further fundamental notion of type, which explicitly incorporates some limited
counting information.

Definition 2.1 For an element a of A let the counting star of a, denoted ctpg(a), be
the function
v 6 - {07 17 2+}

#zes ... counts the number of z € S satisfying ... according to 0, 1, 2% (= many). We
use 7Y to denote the finite set of all non-degenerate satisfiable counting stars, i.e. of all
ctpy(a) that are realized in some structure 2 that has at least two elements. For any
particular 2 (with at least two elements) let Yo C 7Y denote the set of those vy € 7Y that
are realized in .

Any atomic 2-type 3 € B uniquely determines two atomic 1-types atp,(5) and atp,(5)
as the 1-types of z and y respectively that are prescribed in 3. Note that through the
atpy(8), for those 3 with y(8) # 0, each v € 7Y determines its atomic 1-type atp(7).
Semantically atp(7) is the unique a € Q¢ realized by all a that realize 7.

We shall also make use of the mapping on atomic 2-types § that exchanges the roles
of x and y:

b — ﬁ = ﬁ%
The truncated counting information in the counting stars plays an essential réle with
respect to the following useful normal form, which only involves counting up to 2.

A normal form

Definition 2.2 Say that a sentence ¢ € C? is in normal form if it is a conjunction of
sentences of the following kinds: VaVyn and Yo3=tyn, where the 5 are quantifier-free.

Lemma 2.3 There is a recursive reduction NF from C?-sentences to C*-sentences in
normal form (over an extended vocabulary), which is sound for satisfiability: ¢ € sat(C?)

if and only if NF(p) € sat(C?).

Proof. The proof is given in two parts. We first show that for any sentence ¢ € C? of
vocabulary 7 (which without loss of generality contains a constant ¢) there are sentences
o and @ in an expanded vocabulary satisfying the following.



(i) 0 is a conjunction of sentences of the form Vz3*™yn and Ya3I<™yn for quantifier-
free n and m > 1. g is quantifier-free.

(ii) Each 7-structure has a unique expansion to a model of 6.
(iii) @ implies equivalence of ¢ and .

Note that (ii) and (iii) imply that ¢ is satisfiable if and only 6 A g is satisfiable. In the
second step we shall transform 6 A g into normal form to finish the proof of the lemma.

f and g are constructed inductively with respect to the number of quantifiers in (.
If  is quantifier-free, we are done. Otherwise consider a subformula v of type 3Z™yy,
where y is free in y, but z may or may not be free in xy. These two cases are treated
separately. Consider firstly ¢(z) = 32™yx(=z,y), with displayed variables occurring free.
Introduce a new unary predicate P and let #; be the conjunction of

Va3Zmy(Pr — x(z,y))
VaeI<"y(-=Pz A x(z,y))

which is equivalent to Vz(Pz < 3*™yx(z,y)). Let ¢’ be the result of replacing the
subformula ¥ (z) in ¢ by the atom Pz. Then ¢’ has fewer quantifiers than ¢, 6 is of the
desired form, and, since any model of #; must interpret P as {z|¢(z)} it follows that
brEp— .

If ¥» = 32™yx(y) does not have z as a free variable, then one may similarly use a
unary P and the constant ¢ to simulate a Boolean value in quantifier-free fashion. We
may take the conjunction of the following for 6;:

V23> y(Pr — x(y))
V3<"y(=Pz A x(y))-

8, forces P to be the full, respectively empty, predicate according to the truth value
of ¢. For ¢’ we now take the result of substituting the atom Pec for ¢ in ¢. Again
b1F = ¢

An inductive application of this procedure eventually yields 6 (as the conjunction of
the 8; of each step) and a quantifier-free g, as desired.

It remains to transform a sentence 6 A ¢y as obtained into proper normal form
without affecting satisfiability. As ¢g cannot have any free variables, it may as well be
universally quantified to form an VV-conjunct. Using VV-conjuncts to eliminate other
quantifier-free constituents, we may actually assume that the quantifier-free parts of the
V3™ and V3<™-conjuncts in @ are atomic fromulae Pzy.



In order to translate V232" yPzy into normal form we use m new binary predicates
Pi,..., P, and the conjunction of

VxVy(\/ Pzy — Puxy)

/\ VaVy(Pzy — —Pjzy)
i#]
/\‘v’xEIZly Pry

For Yx3<™yPzy, where m > 1 we similarly use m new binary P,..., P,_; and the
conjunction of

VaVy(Pzy — \/ Pzy)
/\ Vz3=ly Pxy

Va3<lyPzy, finally is equivalent with Y2Vy—-Pxy which is in normal form.
It is clear that these replacements are sound for satisfiability and yield a sentence in
normal form. |

This reduction is particularly important, since counting stars alone determine which
sentences in normal form are satisfied in a structure.

Lemma 2.4 Given ¢ in normal form and Yo (for any A with at least two elements),
it is effectively decidable whether 2 |= .

Sketch of proof. Recall that for § € 3 and quantifier-free n(x,y) it can directly be
checked whether 3 |= n(z,y) and whether atp,(8) = n(z,z). And similarly, for vy € Y
it can be checked whether atp(vy) = n(z,z).

Consider now separately the constituent sentences of ¢ in normal form. For an
V¥-sentence YaVyn(z,y) it suffices to check that for all ¥ € ¥y and any 3 for which
v(8) > 0 it is true that § |= n(z,y) and atp,(5) | n(z,z).

For an V3= !-sentence Vz3='yn(z,y) similarly it merely has to be checked that all
7 € Vo satisly the follwing: either 3 5, »7(8) = 1 and atp(y) | —n(z,z), or
atp(y) = n(z, ) and 351, (5, 7(B) = 0. For the correctness of these sums note that
different § are mutually exclusive. a



3 Analysis of infinite structures

We turn to the analysis of infinite structures 2. In a definable way we shall separate 2|
into a finite part and a rather homogeneous infinite part. We shall find finite descriptions
for the infinite part, that suffice to check for satisfaction of sentences in normal form.

Let %l be a fixed infinite 7-structure. Recall that 7Y is the set of all counting stars.
Split 7Y into three disjoint subsets

7 = 7007ﬁn L‘Jﬂyinf

according to whether 7 is realized in 2 not at all, or finitely often, or infinitely often.
Thus, the set Yg of counting stars realized in 2l is Van U Vine-

The kings. Let & C 2, the kings of 2, be the finite substructure with universe
K :={a € A|ctpy(a) € Van}-

Formally we here admit that K = () and allow ourselves to talk about possibly empty
structures. In any case, the kings are the elements of rare kinds. And as usual, they
come with a court, which will consist of those elements that have special relationships
with the kings.

Relationships with the kings are formalized by taking atomic 1-types with constant
names for the kings into account. Recall that @ denotes the set of these types — @
is finite since K is finite.

Extended counting stars. The extended counting star is defined according to

ctp (a) := (ctpy(a), atpk (a)).

Let Y& stand for the finite set of all those elements of ¥ x @ that obey the following
restriction:

(7,0) €Y il for all B: (8) > #rex(a |= Bz, k).
It is clear that any ctpg(a) € YK, Let TI be the natural projection

M YE —

(1,0) — 7.
We also split V¥ according to the number of elements of 21 that realize (7, a) into

YR =TE 0T OV



The court. Let the court be the substructure € C %l with universe
C:={aeAlctpy(a) e YR}

It is clear that & C € C 2, where £ and € are finite and possibly empty. If we let 'Yé}
be the set of (7,a) € VX that are realized in 2, then

Yo = I(YE) and also Vi = WY

The latter assertion follows from the first one, if we notice that the fibres of the projection
IT are finite: TT~1(y) C aX is finite.

The counting stars of kings only depend on their court and a very rough knowledge
of the rest of the society:

Remark 3.1 Given &, € such that & C € and YE, C YK, it is possible to determine
(recursively) ctp (k) for allk € K.

Proof. Let ctpl(k) = (y,@). Then a = atp(a) = atpX(a), and the interesting
information to be reconstructed is () for each § € 8. We distinguish two cases:
if there is some (7',a’) € YE such that o/ |= Blk,a] then #,c4(% = Blk,a]) = w,

inf

so that v(8) = 2F. If there is no such (7/,a’) € VX, then it must be the case that

inf?

H#acaA(U |= Bk, a]) = #4ec(U = B[k, a]), which may be determined in €. O

Reduced stars. In some of the considerations to follow it will be important to classify
elements of A\ C' according to how many (-edges they can have to elements other than
kings. It is clear that this information can directly be extracted from ctpgf(a). For
notational convenience let us introduce a function

red: YK — %

(7,0) — 77

2+ if 7(8) = 2+
where v=(f§) =
Y(B) — #rex(a |E plz,k]) otherwise.

Note that by definition of Y, red(v, ) is a well-defined counting star — in particular
no negative values can occur for y=(3). In fact, for a ¢ K, a realisation of red(ctpl (a))
is obtained by introducing 2 extra (-edges from a to new vertices for those 5 that have
v(3) = 2%, and removing all former kings.



Finite characteristics. For infinite structures 2 as considered above we abstract the
following finite data as characteristic information, which we shall call the characteristic

of A, or char(2) for short.

K CC kings and court

F:.C — YK
c — ctpk(c)

K ~K
Vi €TE

Let M be the recursive set of all tuples (&, €, F, X ), where & C € are finite 7-structures
(possibly empty), F is a mapping F:C — Y and § £ X C VK.

Consider the situation in which rather than 2 itself, only char(2l) is presented and
we want to know whether 2l = ¢ for ¢ in normal form. By Lemma 2.4 it suffices to de-
termine Vo = Vg U Y ine. But Vg, = {ctpy(k) | £ € K} may, by Remark 3.1, effectively
be determined from the knowledge of &, €, and Y., which is just the projection of the
given VK. This yields the following.

inf*
Remark 3.2 2 |= ¢ can be decided in terms of char(2l) for ¢ in normal form.

It follows that the set of C'*-sentences in normal form that are in inf-sat(C?) is r.e.,
provided we can show that {char(2l) | & an infinite 7-structure } is a recursive subset
of M. This is shown in the following section.

4 Decidability of the characteristics

Theorem 4.1 Given (R,€, F,X) € M, it is decidable whether there is an infinite 2
such that (R, €, F, X )= char(2).

The proof is separated into two parts: in the first step we isolate three necessary condi-
tions; these are shown to be sufficient in the second step.

Three necessary conditions

Let (R, €, F, X) = char(2) for some infinite 2. We may write Y% and 7Y, for X and

inf

its projection II(X). Then the following conditions C1, C2, and C3 are satisfied.



Condition C1: Compatibility of F with & and ¢.

C1 actually is a group of rather simple conditions. They assure for vertices in € that
F specifies atomic types (with parameters in K') in accordance with the actual atomic
types in €; and that the counting stars specified by F' are such that (1) no vertex already
has more outgoing (-edges within € than are allowed by its counting star, and (2) if
a vertex has fewer outgoing (-edges within € than required by its counting star, then
there are extended counting stars in Y%, which accept incoming 3-edges.

Cl(a): K C € and for all £ € &: if F(k) = (70, 20), then
(i) Yo & Y iue-
(ii) ag = atpg(k).

(iii) for all 3 € B:

o if vo(p5) € {0,1}, ) _
then vo(5) = #ceclatpe(k,c) = ) and for all (y,a) € 'Yﬁf: a = =0z, k.

o if y0(8) = 2% and #.co(atpe(k,c) = B) <2,
then there is some (7,a) € Y& such that a |= B[z, k].

C1(b): for all c € €\ &: if F(¢) = (70, a0), then
(i) (v0,a0) € Vi, but 70 € Viar.
(ii) ap = atpX(c).

(iii) for all 3 € B:

* 70(8) = #oeclatpe(c, c) = ).
o if v0(B) > #oec(atpe(c, ) = B),

then there is some (7, ) € VX whose reduced counting star v~ := red(7, a)

satisfies y=(3) > 0.

Proof of necessity. In both cases conditions (i) and (ii) are obvious. For (iii) in (a)
notice that

#acalatpy(k,a) = ) is infinite  if  3(y,a) € YE : a = Blz, k]

The implication from left to right uses finiteness of YX and the fact that any a with
ctpX(a) € YE belongs to the finite €.

inf
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If #4e4(atpg(k, @) = B)is finite (which in particular must be the case if 7o(8) = 0, 1),
then #,e4(atpy(k,a) = B) = #acc(atpe(k,a) = ).

For necessity of (b)(iii), observe that, if 7o(8) > #~ec(atpe(c, ¢’) = 3), then there
must be an @ € A\ C such that atpy(c,a) = B. But (7,a) := ctpf(a) € YE and,
as ¢ ¢ K, the reduced counting star v~ = red(7, a) admits the incoming j-edge (c,a),
whence v=(3) > 0. ]

Condition C2: A closure property of Y&

inf*

This condition assures that Y is closed in the sense that for any extended star type
in the infinite part that requires outgoing 3-edges to elements other than kings, there is
another extended star type in the infinite part that can receive incoming (-edges from
elements other than kings.

C2: For all (yo,0) € YE and 8 € B: if v0(3) > #rex(ao = B[z, k]), then there is
some (7,a) € YK whose reduced counting star v~ := red(v, a) satisfies y=(3) > 0.

Proof of necessity. Consider all b € A\ C with ctp& (b) = (70, ag) — there are infinitely
many of them. vo(8) > #rex(ao |E Bz, k]) implies that for each such b there is some
a € A\ K for which atpg(b,a) = . If for some b there even is such an a € A\ C, then
(7,a) := ctpl (a) € VE, is as desired.

If on the other hand for all b there are only @ € C'\ K with atpy(b,a) = 3, then for
some of these finitely many a it must be the case that v := ctpy(a) € VY. has v(3) = 27.
Let a be such that (y,a) € Y. As v(B) = 2F, also the reduced v~ = red(y, a) has
y=(3) = 2%, and (v, a ) is as desired. ]

Condition C3: A homogeneity property of V...

This last condition asserts that for all pairs of distinct vertices in the infinite part there
is at least one 8 to connect them which is not limited (i.e. has value 2%) according to
the specified star types at either end.

C3: For all 7,9’ € V.. there is some 3 € @ such that v(8) = 7(3) = 27.
This uses a result from Ramsey theory, see Theorem 1 in Chapter 5 of [5].

Fact 4.2 If the edges of the complete bipartite graph K, ., are coloured with finitely many
colours, then it contains monochromatically coloured copies of the complete bipartite
graph K, ,, for all n.

Proof of necessity of C3.  Note that C3 applies even to the case ¥ = 7'. Embed K,
injectively into A\ K in such a way that the parts (of the blpartltlon) are mapped into

11



{a € A | ctpy(a) = 7} and {a € A | ctpy(a) = 7'}, respectively. The g € B3 induce
a finite colouring of the edges, and any 3 that admits a §-coloured copy of K is as
desired. a

Remark 4.3 Conditions C1-C3 are recursive for given (&, &, F,X)e M.

Sufficiency of C1-C3
It remains to prove the following.

Proposition 4.4 For any (R,€, F, X )€ M that satisfies C1-C3, there is an infinite 2
such that (R, €, F, X ) = char(2).

Proof. Let (8,¢, F, X) with C1-C3 be given. Beyond the elements of €, the desired
structure 2 has to have, for each of the finitely many (7, @) € X, an infinite sequence
of vertices that realize exactly that (7,a). We therefore put A := C'U(w x X) for the
universe of /. Think of the new vertices in V := w x X as divided into finitely many
infinite boxes, according to their second components, which specify the extended star
types these vertices shall eventually realize.

The task now is to declare atomic types for all pairs of vertices of A in such a way
that

(a) a consistent interpretation of a 7-structure % over A with & C € C 2 is obtained,

(b) all elements ¢ € C satisfy the counting star and atomic Tx-type that is prescribed
by F: ctpk(c) = F(e),

c¢) all elements of V satisfy the counting star and atomic 7x-type suggested by their
g gg
X-component: ctpk (v) = (7, @) for v = (m, (7,a)), m € w.

With respect to (c), let F be the extension of the given F to all of A according to
F(m,(y,a)) := (7,a). Then (b) and (c) require that ctpl(a) = F(a) for all a € A,
Indeed char(2) = (R, ¢, F, X) then follows. In particular it should be noted that (b)
and (c) imply that & C € C A really become the kings and court of 2.

Giving a full interpretation as a 7-structure to 2 should be thought of as allocating
atomic 2-types B € 3 to any pair of distinct vertices in A. Thus one may think of
successively putting 5-edges for suitable § between any two distinct vertices. Note that
atomic 1-types get settled automatically through the allocation of atomic 2-types.

In the following we first give a rough and intuitive sketch of how (a)—(c) can be
achieved, and afterwards a more detailed and definite description. For these arguments
it may be useful to consult the following diagram, which indicates the scenario we start
with and also highlights some aspects of the tasks discussed below.

12



R C\ R V=wxvE

k‘. PY ° ° ° . L] (] (";’2,0&2)

Fdges involving two vertices from C' are completely specified in €, of course. Observe
also that all edges between K and V are forced by requirement (c): atpgf(w) = B[k, z]
for exactly one 3 € 3, and atpé‘((w) is specified by the box that w belongs to.

In fact it suffices to satisfy (b) for the elements of C'\ K, because (c) then implies that
(b) is also fulfilled for all £ € K. This follows by Remark 3.1 together with condition
Cl(a): if F specifies the counting star of k € K to be v and if v(8) = 0 or 1, then
Cl1(a) guarantees that (1) the corresponding number of 3-edges is already put right in ¢
and that (2) no more (-edges from k to elements of V' can be introduced if the atpf (v)
are put right according to specification. If on the other hand v(8) = 2%, then either
there are already at least two (-edges from k to elements of €, or condition Cl(a) (iii)
implies that infinitely many more will be introduced if the atpéf(v) for v € V are settled
according to specification.

It is important to observe that as yet, i.e. with -edges attributed to pairs over C'
according to the given €, no vertex has more outgoing $-edges than it is meant to have
according to F. This follows from condition C1.

In the allocation of new edges, this property has to be preserved — at both
ends of any new edge!

With this provision in mind, the remaining tasks will be settled in the following order:

T1: introduction of sufficiently many outgoing §-edges of respective kinds at each ¢ €

C\ K to get (b) right.

T2: introduction of sufficiently many outgoing 3-edges of respective kinds at each v € V
to get (c) right.

T3: declaration of all remaining edges between pairs of distinct vertices (without af-
fecting their prospective counting stars any more).

13



A rough sketch. Compare the diagram above for the argument. The outgoing edges
for T1 and T2 (we only talk of those that do not go to kings by now) can all be chosen to
go to vertices in V' (rather than possibly to C'\ K'). Consider T1 for ¢ € C'\ K. If this ¢
requires -edges to vertices outside C', then condition C1(b) (iil) says that there is some
box in the infinite part, whose vertices w can accept an incoming (3-edge; this precisely
means that if (71, 1) is the specification for w, then the reduced star type v~ of w has
7~(8) > 0 — note that v~ rather than v has to be considered as a; may already specify
incoming (-edges from kings (the dotted connection in the diagram could be a §-edge).
Similarly for some v € V that requires (-edges to vertices other than kings: condition
C2 now guarantess that such edges can be directed to vertices in V', whose reduced star
type lets them accept incoming (-edges.

All edges introduced in phases T1 and T2 can be chosen independently in the sense
that no two such edges ever go to the same vertex in V' — thereby preventing the danger
than any individual v € V' gets overloaded. (The right order for going through the v € V
for T2 is to treat them accoding to increasing first component, or column-wise in the
diagram.)

At the end of this phase, all vertices have a correct number of outgoing 3-edges for
all B: their counting stars would be all right, only there remain edges between elements
of V to be declared in phase T3. This is where condition C3 becomes essential, as it
guarantees edges [ that may be used between any pair of distinct vertices from A\ K
without affecting the count that is taken at either end: simply because multiplicity 2%
cannot be spoilt by the introduction of extra edges of that kind.

The explicit construction. A detailed strategy to achieve T1-T3 can actually be
given by means of choice functions telling into which one of the infinite compartments
of V,wx{(v,a)}, edges are to be directed during stages T1 and T2, and which 3-edges
to choose in T3. Such choice functions, f, g and h may be fixed as follows. We already
write YE and 7Y, for the given X C 7YX and its projection II(X), since this is what

inf

we want these sets to become.
o [:(C\K)xp—7L,

such that if F(c) = (y0,0) and 7o(B) > #eec(atpelc, ') | B), then (v, a) := f(c, B)
is as guaranteed in C1(b), i.e. for the reduced counting star v~ := red(v,a): v=(§) > 0

o g VoxB—7i

such that if vo(8) > #rex(ao | Blz, k]), then (v, @) := g((70, @), ) is as guaranteed
in C2, i.e. for the reduced counting star 7y~ := red(7y, a): v=(8) > 0.

° h . ’yinf X 7inf — /67
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such that 8 := h(y,7’) is as guaranteed by C3, i.e. v(8) = 7'(8) = 27.

With these choice functions, we can give a definite description of the desired 2, or of

the allocation of edges 3 to all remaining pairs of distinct elements, according to T1-13

above. To be quite definite about the sequence in which tasks are settled, let C'\ K =

{c1,..,e. 1, B={B1,...,8:}, and VE = {(71,0a1),..., (7, )} be enumerations of the

respective sets without repetitions.

T1: Fori=1,...,r /forj=1,...,s:

if II(F(¢;)) = 7, and if v(5;) exceeds the number of outgoing §;-edges that ¢;
already has, then choose m minimal in w such that v = (m, f(¢;, 3;)) € V does
not yet have any incoming edges from vertices in C'\ K, and put a §;-edge, i.e.
make atpg(c;,v) = (; for that v € V. This procedure is carried out one or two
times, depending on whether v(3;) exceeds the number of outgoing (;-edges that
c originally has within € by 1 or 2.

This is compatible with the requirements on ctp®(v), since f is such that ctp™ (v)
admits at least one §;-edge to vertices outside K.

T2: Forn=0,1,2,.../fori=1,....,t /forj=1,...,s:
if 7;(3;) exceeds the number of outgoing 3;-edges that v = (n, (v;, o;)) already has,
choose m minimal in w such that w = (m, ¢((7:, @;), 5;)) € V does not yet have any
incoming edges from outside K, and put a §;-edge. That is, put atpy(v,w) = 3;
for that w € V. Again, this procedure may have to be applied once or twice to
the same v, depending on the number of 3;-edges required.

Compatibility with the requirements on ctp™ (w) is guaranteed by the choice of g.

T3: It remains to settle all remaining atomic 2-types, namely those between two dis-
tinct vertices v and ¢’ in V, or between v € V and ¢ € C \ K, that have not
yet been connected by any (-edge. For definiteness let v = (m,(7i,;)) and
o' = (m!, (yy, ) with 7 < i’ or m < m/ in the first case, and v = (m, (7;, o))
and v, = II(F(c)) in the second case. We then put atpg(v,v’) = § respectively
atpg(v,¢) = B, for = h(7i,72).

Compatibility with ctp(v) := v and ctp(v') := 7" or ctp(c) := 7’ is clear, since the

(3 selected by h is such that v(8) = 7'(8) = 27.
This finishes the proof of sufficiency: 2 as constructed has char() = (&, ¢, F, X). O
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