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INTRODUCTION 

Propositional Dynamic Logic (PDL) of [FL] defines meaning of pro- 

grams in terms of binary input-output relations. Basic regular opera- 

tions on programs are interpreted as superposition, union, and reflex- 

ive-transitive closure of relations. The intersection, cf. [HI , is a 

binary program forming functor a~b with the meaning given by the 

set-theoretical intersection of relations corresponding to programs a 

and b. By adding intersection of programs to PDL we obtain a program- 

ming logic called PDL with intersection. Harel [H] has proved that the 

problem of whether or not a formula of PDL with intersection has a de- 

terministic model is highly undecidable (~-hard). The present paper 

shows that in the general case (nondeterministic models allowed) the 

satisfiability problem for PDL with intersection is decidable in time 

double exponential in the length of the formula tested. In comparison 

with PDL with strong loop predicate ED] , this is more powerful and 

interesting example of a logic which is decidable in contrast to its 

deterministic case and despite the lack of finite and even tree model 

properties. 

The entire paper is devoted to the proof of the result which re- 

duces the satisfiability problem to the emptiness problem for special 

tree automata in the sense of [RTO] . This is done in two stages. The 

first stage proves an analogue of a tree model property for PDL with 

intersection: a formula has a model iff it has a special model, that 

is a model which can be represented by a particular, usually infinite 

labelled tree. The second stage shows how a special tree automaton can 

recognize trees that represent special models of a given formula. All 

that is technically organized as follows. 
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The first two sections present syntax, semantics and all graph 

notions needed to define special models and their tree representa- 

tions. In Section 3, executions of programs with intersections are 

described in terms of well nested graphs, that is, parallel-sequen- 

tial compositions of paths. Then, in Section 4, special models of a 

formula are obtained as tree-like compositions of well nested graphs. 

The first stage of our proof ends with the equivalence: a formula 

has a model iff it has a consistent validation tree, where the lat- 

ter is a tree representation of a special model. 

The second stage is dominated by a problem which is the main dif- 

ficulty in every proof of that type: a tree automaton must be able to 

recognize if any node in which a formula ~a ~ q is claimed to be 

false is not a beginning of a succesful execution of the program a~q?. 

To solve this problem we describe executions of programs in terms of 

finite state concurrent processes, Section 5, and then seek a way to 

simulate them by tree automata. The simulation becomes possible due to 

the following facts. The processes are well nested and admit an appro- 

priate decomposition (Lemma 5.2). Special models have cutpoints which 

sequentialize processes in such a way that parallel transitions are 

necessary only between pairs of nodes Which can be represented by a 

single node of the corresponding validation tree (the idea of coupl- 

ing, Section 6). Finally, the whole simulation can be expressed as the 

existence of an additional labelling of a validation tree that satis- 

fies some local conditions (Section 7). 

Once the main difficulty is solved, all what remains is an easy 

construction of a special tree automaton which recognizes the set of 

consistent validation trees of a given formula (Section 8). Recall, 

that the emptiness problem for special tree automata is solvable in 

time polynomial of the number of states [RT0]. 

Let A, B, C, ..., be atomic programs, and P, Q, R, ~.., atomic 

formulae. If a, b are programs and p, q are formulae, then a;b , 

a~b, a~b, a ~ , p? are programs, and (a)p, ~p are formulae° As 

usual we oan define p&q~-~p? )q, [a] p ~ (a)7 p~ true~ pV~p. 

Formulae are interpreted in classical PDL structures of the form 

~ (X, ~ , ~ ~ ), where X is a nonempty set of nodes, ~ is a 

satisfiability relation for atomic formulae, ~ ~ X× ~P, Q, R, ...), 
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the set of triples ~ C_I X~ {A, B, C, ...~ × X defines binary rela- 

tions ~ A ~CX ~ X giving meaning to every atomic program A. j~t is 

said to be deterministic if for every atomic program A, ~ A ~ is a 

function, i. e. x ~A~ y and x~A~ z imply y =z. Relations ~ and 

~ are extended to arbitrary formulae and porograms as follows: 

x~p iff not x~ p, x~<a>p iff ~ y~X: x~a~y and y~p, 

~a;b~= ~ a~" ~b~ (superposition of relations), ~ aub~=~ay~b2 , 

a~b2 = ~a~ ~b~ , ~a~=~a~ ~ (transitive and reflexive clo- 

sure of ~a~), ~p?~={(x, x): x ~ p). Jvt is a model for a formu- 

la p, in short j~t~p, if x ~p for some node x of ~. A formu- 

la is satisfiable if it has a model. 

Notation: for sets, iXI and ~(X) stand for the cardinality and 

the powerset of X, respectively. For formulae, Ipl is the length of 

p. 

2. WELL NESTED AND SPECIAL GRAPHS 

By a A -graph we mean a directed graph with edges labelled with 

elements of A . Formally, it is a pair G=(X, E), where X is a set of 

nodes and E C X x ~  X is t~e set of edges. We say simply "graphs" 

if the exaot form of labels is inessential. ~or graphs G and G" every 

of which has distinguished two nodes, the origin and the sink, we de- 

fine operations of sequential G;G" and parallel G//G' compositions. 

The graph G;G' results from disjoint copies of G and G t by glueing 

the sink of G with the origin of G', and the graph G//G t is obtained 

by glueing the origin of G with the origin of G' and the sink of G 

with the sink of G'. In both cases the origin of G and the sink of G' 

become the origin and the sink of the new graph, respectively. 

By well nested A-graphs we mean the smallest class of Z~-graphs 

closed under sequential and parallel compositions and containing all 

single node graphs with no edges (origin equals the sink), and all 

single edge graphs. In the latter case, the beginning and the end of 

the edge are the origin and the sink of the graph, respectively, and 

there are no other nodes. Observe, that a well nested graph may con- 

tain loops since a parallel co~iposition with a single node graph glues 

origin with sink. 

Now, assume that every graph has a distinguished node called a 

root, and if the graph is well nested this is the origin. The opera- 
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tion of grafting G ~ on G at a node x is the glueing the root of 

G ~ wit~ the node x of G. The root of G becomes to be the root of 

the new graph. The closure of well nested ~-graphs on a finite or in- 

finite number of grafting operations gives the class of special graphs. 

(Formal definition in terms of type-2 trees.) If during construction 

no more than k grafts are made at each particular node, then we say 

that the resulting special graph has degree k. 

The above inductive definitions suggest a natural way in which 

well nested and special graphs can be represented by trees. The idea 

is plain, ~owever, very important is the notation and terminology in- 

troduced below. By a n-ary tree we mean a tree in which every node 

has no more than n immediate successors (sons). A root has no prede- 

cessors and a leaf has no successors. In a (2k+2)-ary tree T, immedi- 

ate successors of a node u will be denoted by: left son(u), right 

son(u), i-th left son(u), i-th right son(u), i~ I, ..., k. The first 

two sons are distinguished and play a special role. For a node u ~T, 

T u is t~e ful~ subtree of T consisting of u and all its successors, 

while t u stands for the restricted subtree with the root u, consist- 

ing of u and only those its successors which are reachable by left 

and right sons. 

By a type-] tree over ~ we mean a finite binary tree t in which 

every node u Et is labelled with sign(u)=~;, //, "equal")~A in 

such a way that if sign(u) E A~"equa!") then u is a leaf, and 

if sign(u) C ~;, //), then both left and right sons of u are defined. 

We write t =t~;t ~ or t=t~//t ~ if sign(root(t)) = ; or //, res- 

pectively, and the left (right) son of the root of t is the root of 

t" (t~). 

In an obvious way, every type-1 tree t over Z~ defines a well 

nested A-graph G(t). If t consists of a single leaf, then G(t) is 

a single node, or a single edge ~(x, ~ , y)) graph with x @ y, de- 

pending on whether sign(root(t)) = "equal" or ~ , CEz~ . This is 

extended to all type-] trees by G(t;t')=G(t)~G(t'), G(t//t ') = 

~ G(t)//G(t I ). 

~or technical reasons of 3ections 6 and 7, it is convenient to 

define G(t) in the following equivalent form. For every u~ t, the 

two pairs (u, I), (u, 2) will be called places. The relation of el- 

ementary equivalence of places ~ is defined as follows: (al): if 

sign(u) = "equal", then (u, I) ~ (u, 2), (a2): if v=left son(u), 
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w=right son(u), and sign(u)= ~ , then (u, 1)~(v~ I), (v, 2)~(w, 1), 

(w, 2)N(u, 2), (a3)z if v, w are as above and sign(u)=// , then 

(u, I) ~ (v, 1)~(w, 1), (u, 2)~(v, 2)~(w, 2). Let ~ be the reflex- 

ive and transitive closure of ~, and let mi, i6 {1, 2} , denote the 

equivalence class [(u, i)]~ o It is easy to see, that G(t)=(X, E) 

where X is the set of equivalence classes of places in~, i. e. 

X=(t×{], 2})/~ , and E is the smallest subset of X ~×X such 

that for every u E t, if sign(u)~ , then (u], ~ , u2)E E. This 

definition enables us to see beth t and G(t) in one picture, and this 

is very useful in proofs (cf. Fig. 1). 

(a) (b) 

A 

For nodes x, y of G(t) and u of t~ we say "x falls in u" in- 

stead of x~[u], u2}, and "x, y are coupled by u" instead of 

{x, y~C{u], u2~. Observe that the origin and the sink of G(t) are 

(d) 
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Fig. !. A well nested graph (a), the corresponding type-1 tree 

(b), and how to see both of them in one picture (c). In (c) black 

dots mean places and elementarily equivalent places are connected 

by straight line segments. The elementary equivalence of places 

for i-th left (right) sons is presented by (d). 
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coupled by the root of t, ~ud so on for subgraphs and subtrees. 

By a (2k+2)-ary type-2 tree over /k we mean a (2k+2)-ary tree T 

(finite or infinite) with nodes uc T labelled with sign(u) belonging 

to ~;, //, "equal")~/k in such a way that every restricted subtree 

t u is a type-1 tree over Z~ o Remark: if sign(u)E Z~ {"equal" 3 then 

left and right sons of u are undefined, but i-th sons may exist. 

Every type-2 tree T over Z~ defines a special A-graph G(T) ac- 

cording to the following rule. If t, t" are type-1 trees with roots 

u, u', respectively, and v is some node of t, then a new tree T 

which results from t and t ~ by adding a link i-th left son(v) ~ u ~, 

for some 1~i~n, defines a special graph G(T) which results from 

G(t) and G(t') by grafting G(t') on G(t) at the node vl. The link 

i-th right son(v):u" means t~at G(t') is grafted at the node v2 of 

G(t). In general, the construction of G(T) may require an infinite 

number of grafts, so it is convenient to define G(T) formally by means 

of places. 

If T is type-2 tree, then T~{I, 2) is the set of places, and 

G(T) is defined as for type-1 trees with the exception that the ele- 

mentary equivalence of places ~ includes the following additional 

cases. For every ue T, if v:i-th left son(u), w:i-th right son(u), 

then (u~ I) ~(v, I), (u, 2)~ (w, I), (cf. Fig. I (d)). It should be 

clear, that for every special graph G of degree k there exists a 

(2k+2)-ary type-2 tree T such that G:G(T). The tree T is usually 

not unique and in general, a (2k+2)-ary type-2 tree may define a spe- 

cial graph of unbounded degree. 

All the above notions will be applied to graphs in which both 

edges and nodes are labelled. A ~,~-graph G~(X, E, F) is a Z~- 

graph with a node labelling function F: X ~ . The introduction 

of node labels induces the following minor changes and exceptions 

in definitions. The glueing is allowed if the nodes involved have the 

same label. This means that parallel and sequential compositions, and 

grafting are from now on partial operations. For example, G;G ° exists 

if the sink of G has the same label as the origin of G o . 

A type-1 (resp. type-2) tree over ~,~ is a type-1 (resp. type-2) 

tree over ~ such that every node u has two additional labels ~1(u), 

F2(u)e~. The additional labelling must satisfy the following, con- 
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dition: every elementary equivalence of places (u, i)~(v, j) implies 

the equality of labels Fi(u)=Fj(v), i, j = I, 2 . Thus, any such 

tree T over /k,F defines a A ,E-graph G(T)=(X, E, F) in which 

nodes are labelled as follows: F(ui)=~i(u), for every u6T, i, j 

from { 1, 2} . 

3. EXECUTIONS OF PROGRAI~S: STATIC ...... DE$0RI~TION 

A PDL program can be treated as a regular expression which de- 

fines a set of words over the alphabet containing atomic programs and 

tests° These words are often called execution sequences, since they 

describe all possible runs of the program. If we map an execution se- 

quence into a structure, we obtain a path that connects nodes semanti- 

cally related by the program. A similar description can be done for 

programs with intersections, however, we must replace sequences by 

well nested graphs. 

Let ~be a finite set of atomic programs and let ~ be a power- 

set of some finite set of formulae ~ . Consider a program a with 

atomic programs from /% and tests from ~. The set ET(a) of all exe- 

cution trees of the program a is defined by the following induction. 

For every atomic program A6Zk, ET(A) is the set of all single 

leaf {u ] type-] trees over ~,~ such that sign(u)=A. 

For every formula qE ~ , ET(q?) is the set of all type-1 

trees over A,~ consisting of a single node u with sign(u)="equal" 

and q ~F1(u)=F2(u). 

ET(a;b) ={t;t': tCET(a), t'C ET(b)] 

ET(a~b)={t//t': t CET(a), t'C ET(b)] 

ET(a~b)= ET(a)~ET(b) 

ET(a ~ ) = ET(true?)uET(a)~{t;t': t EET(a), t'E ET(a~)} . 

Any G(t) with t 6 ET(a) is called an execution graph of the 

program a. Such a graph has edges labelled with atomic programs from 

/k and every node x labelled with a set of formulae F(x)C ~. 

By a hemomerphism restricted to £k and ~ from some execution 

graph G into a PDL structure J/t we mean a mapping h: G ~ J~b such 

that for every atomic program A 6 Zk if there is an edge (x, A, y) 
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in G, then h(x)~A~h(y) in~, and for every formula qE ~, 

qEF(x) in G iff h(x)~ q in J¢~ . If A and ~ are not explicitly 

specified, it means that the homomorphism is restricted to atomic sub- 

programs and all subfermulae of a program or a formula in question. 

Lena 3, J Por every structure J~ and every program a, x~a~y 

in J~t iff there exist an execution graph G of a and a homomor- 

phism h: G ~ % which maps the origin of G on x and the sink 

of G on y. The homomorphism h is restricted to atomic programs and 

all formulae contained in ao [] 

4. VALIDATION TREES AND SPECIAL MODELS 

Let p be a formula and let Z~ be the set of its atomic programs 

and ~ the set of sll its subformulae. AssuMe further that ~ ~(~) 

and that <ai> Pi' i: I, ..., k, are all diamond subformulae of p. 

By a validation tree of a formula p we mean any (2k÷2)-ary 

type-2 tree T over A,~ with labellings sign, FI, F2, such that 

the following conditions are satisfied: (ci): pE Fl(root(T)) , 

(c2): for every uET, i= I, 2, Fi(u) is a consistent set of formu- 

lae, that is for every subformula 7q of p, qEFi(u) iff ~q~ Fi(u), 

(c3): if <ai) PiEFI(u) for some uET, then v=i-th left son(u) 

is defined and the restricted subtree t v is an execution tree of the 

program ai;Pi?, i. e. tv6ET(ai~Pi?), (c4): if (a i> pi EF2(u) 

for some u~T, then w:i-th right son(u) is defined and t w is in 

ET(ai;Pi?). 

The set of all validation trees of p will be denoted by VT(p), 

and every G(T) with T~ VT(p) is a validation graph of p. Any node 

x of G(T) is labelled with a consistent set P(x) of subformulae of p. 

By means of G(T), the validation tree T defines a special PDL struc- 

ture J~(T) which has the sa~e set of nodes and edges as G(T) and 

its satisfaction relation ~ is defined for any atomic formula q as 

follows: 

(4.1) x ~q in JV~(T) iff q~F(x) in G(T), 

for any node x of G(T). 

If (4.1) holds for every subformula q of p, then we say that T 

is a consistent validation tree for p. In this case J~L(T) is a spe- 
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ciai model for p. 

Lemma~] A formula p has a model iff it has a special model, 

that is, iff there exists a consistent validation tree for p. 

Proof~ Let p be a formula and J~ ~(X, ~ , ~) a structure. Sup- 

pose that x o ~ p for some Xo~ X. Now we are going to show how to 

construct a consistent validation tree T of p together with a homo- 

morphism h: G(T) -~JvL . Let (ai> Pi' 1~i~k, be all diamond sub- 

formulae of p. For every 1~i~k and every xE X with x~ (a i) Pi 

we choose a tree tix C ET(ai;Pi? ) and a homomorphism hix: G(tix ) -@ 

-@~ which maps the origin of G(tix) on x (Lemma 3.1). Zet to= 

={u} be a single node tree with sign(u) = "equal", FI(u)=F2(u)= 

= { q : Xo~ q, where q is a subformula of p} . There is an obvious 

homomorphism ho~ G(to) ~ ~ with ho(ul)=x O. 

To construct T, we start with t o as the root of T, and regard it 

as already constructed part of T. ~'or every node u in the already con- 

structed part of T, if (ai) PiEF](u) and h(ul) ~x, then we extend 

the constructed part of T by taking a copy of tix and defining the 

link i-th left son(u) ~root(tix). Using hix we extend the homomor- 

phism h to the current part of G(T). Similarly for (ai)Pi@ F2(u) , 

h(u2) =x, but the link is i-th right son(u) =root(tix ). We repeat 

this procedure until (c3) and (c@) are satisfied. In the limit we 

obtain a validation tree T with a homomorphism h: G(T) --~ ~ . 

It remains to show that T is consistent. The proof that (4.]) 

holds for every subformula q of p is by structural induction. Let us 

consider only the most interesting case of a diamond subformula q = 

=(ai) Pi of p. Assume that (4.1) holds for every formula contained 

in q. By (c3), (e4), and Lemma 3.1, qCF(x) in G(T) implies x ~q 

in JC~(T). It remains to prove that x ~ q in Y~(T) implies qC F(X ) 

in G(T). Indeed, if x ~ q in Jr(T), then for some t EET(ai;Pi?), 

there exists a homomorphism g: G(t) --~ j~(T) which maps the origin 

of G(t) on x. Under the inductive assumption, the superposition hg 

is a homomorphism from G(t) to ~, and by Lemma 3.1, h(x) ~ q in 

v~. Since h is a homomorphism, the fact h(x) ~ q in J v b implies that 

q E F(x) in G(T). The converse implication in Lemma 4.] is immediate.[] 

Looking forward to Section 8, we are interested in recognizing 

whether a given validation tree is consistent. In fact, all easy for 

tree automata consistency requirements are already contained in the 
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notion of a validation tree. The remaining difficulty is isolated by 

the following lemma. 

A validation tree T of a formula p is consistent if 

every diamond subfermula <a ) q of p satisfies the following condi- 

tion: 

(4.2) if every formula contained in a or in q satisfies (4.1), 

then for every node x of G(T) 

<a >q ~ F(x) in ~(T) im~lles x~ <a>q in J~t(~). 

Proof: Directly from definitions of validation tree and censistency. 

~ EXECUTION ~ OF lrROGRA~IS: DYNAMIC DESCRIPTION 

Lemma 4. 2 points ou1~ a condition in the notion of consistency 

which must be further transformed to be more suitable for tree automa- 

ta. In the case of regular programs without intersection this can be 

done quite easily. For a formula <a > q we construct a finite autom- 

aton OL which recognizes the set of execution sequences of the pro- 

gram a;q?. The condition (4.2) is satisfied iff every node x of a 

validation graph G(T) can be labelled with a set R(x) of "reach- 

able" states of 0t in such a way that the following three conditions 

hold: (d]): if <a>q ~ F(x), then all initial states of Ot belong 

to R(x), (d2): if nodes x, y are adjanced and there is an Ot- 

transition from a state s in x to a state s t in y, then sER(x) 

implies s~ R(y), (d3): for any node X, R(x) contains no final 

states of Ol . All (dl)-(d3) can be easily checked by a tree automa- 

ton with the input T. 

Here, in the presence of intersections, we follow the same idea. 

However, single finite automaton must be replaced by a system of co- 

operating automata, To execute a program a~b we may start one au- 

tomaton for a and one for b, allow them to work independently, and 

then check if they meet in final states in one node of a structure. 

Since a and b may contain further intersections, it is convenient 

to implement this idea in the following "token game" style. 

To begin an execution of a program a at a node x we put at x 

a marker beg a. If a~a] ;a 2 , then beg a is replaced in x by the 



44 

marker beg a I. If a I=A (atomic program), then beg a I in x is re- 

placed by a marker end a I in some node y with x~A ~y, and fur- 

ther, end a I is replaced in y by beg a 2. If a2=a3~a4, then beg a 2 

is replaced by two markers beg a~, beg a4, both in y° If later end a 3 

meets with end a 4 in some node z, then they both are replaced by a 

single marker end a 2 in z, and this in turn is replaced by end a. 

Such a "game" is nothing but a transformation from regular programs 

to corresponding finite automata, however, intersections make that au- 

tomata split and merge. Observe, that if a=A;A, then we must differ- 

entiate between markers of the first and the second occurrence of A. 

This is why in formal definitions we refer to nodes of the syntactical 

tree of a (i. e. to particular ocurrences of subprograms) rather than 

to subprograms as such. 

This section presents the semantics of programs in terms of mark- 

ers and transitions. Next two sections will show how to. compute sets 

of reachable states. 

Any program, treated as an expression, has a syntactical tree in 

which leaves are labelled with atomic programs or tests and internal 

nodes are labelled with program forming functors ;, ~ , ~ , or ~. Let 

a be a program. We define the set Mark(a) of markers of a as the 

set of all expressions of the form beg~ , end ~, where ~ is any node 

in the syntactical tree of a. Some particular sets of markers will 

be called control states of a. The set of control states Cst(a) and 

the set of instructions Instr(a) of the program a are defined by 

the following structural induction on nodes of the syntactical tree. 

If ~ is a leaf labelled with A or q?, respectively, then 

Cst(~ ) = {{begs] , ~end~}} and Instr(~) contains the single 

instruction {begs] ~(A)@ {end~} , or {begs) ~(q?)@ {end~), 

respectively. 

If c~ = ~ ; ~ or o< =~ ~ ~ , then Cst(~) = { {beg~], {end~}) 

uCst( ~ )~ Cst( ~ ), Instr(og ) contains Instr( ~ )~ Instr( ~ ) and 

the following instructions. In the case ~= ~;~: {begc~}l .... ~ ~beg ~] 

{end l~} ~ ~ {beg ~} , [end ~] I ~ [end~]. In the case ~=~u~: 

end ~j ~ lender] . 

If o(=~, then Cst(o~)----{<begC~}, {end~}]tJ {SuS" : 

SECst(~ ), S'E Cst(~ )~, Instr(~) contains Instr(~)vlnstr(~) 
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and the following instructions: 

{ end~, end~} ~-~ <end~} . 

{ begs} ~{beg~, begS} , 

If ~=~ , then Ost(~ )= [{begone, ~end~]] [J Cst(~), 

instr(c< ) contains Instr( ~ ) and the following instructions: 

~beg~] ~ ~beg~} , {end~ ~ [begS] , ~end~} ~ ~endc~}. 

Let J~t~(X, ~ ,~) be a structure. A state of a program a 

in jv[ is any mapping Q: S ~ X, where S ~ Cst(a). We shall treat 

Q as a subset of Mark(a)× X and the fact that a marker s is put 

at x, i. e. Q(s):x, will be written as (s, x)~Q. Every state of the 

form Q=S× ~ x } will be called concentrated at x and written as 

Q=(S, x). 

The transition relation ~ between states of a program a in 

~/b is defined as follows. Q ~-'1Qt in J~ iff there exist S, St~ 

Mark(a) and x, y~X, such that (S, x)~ Q, Qt=(Q\(S , x))U(S t, y) 

and one of the following conditions holds. Either (el): x=y and 

S ~ S'@Instr(a), or (e2): x=y, x ~ q in~t, and S ~(q?~ S t is 

in Instr(a), or (e3): x<A~y and S ~(A), S'~Instr(a). Q ~ Qt 

means Q I .... k Q" for some k~0, where Q t .... o Q~ stands for Q=Q~, 

and Q ~ .... k Q'' wit~ k~1, means Q ~--k-1Q~+ ~'~1 +Qt, for some Q~'. 

Lemma ~ For any nodes x~ y of a structure3d, and any program a, 

x~a~y indvt iff ((beg a}, x) ~ ((end a}, y).F] 

We eay that a transition Q ~ ........ k Q'' k~1, can be splitted if 

there exist states QI~Q, Q~CQ' such that QI ~'--m Q~ and 

(QkQI) ~--n (QtkQ~), where m+n=k, and either m, n~1, or n=0 
and Q \ql ~ ~" 

A transition Q ~--'k Q" can be concentrated at a node z, if 

there exists a concentrated state (S, z) such that Q ~--m (S, z), 

and (S, z) ~--n Q~' where m~ n~1, m+n=k. 

We end this section with a decomposition lemma which reflects the 

fact that an execution graph of a program is well nested. 

Lemma 5. 2 Every transition Q ~---k Q+ with k>1 can be either 
splitted or concentrated. 
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Proof: Let Qo ~--I Q1 ~--I "° ~-I Qk be a tramsition, where 

Qi: Si --+ X, S iECst(a), for every O~.~.i~k. The whole proof is by 

a careful analysis of the set of instructions. If ISoI=l , then Q1 

also must be concentrated. If ISoI~I , then SoECst(b~c) for some 

subprograms b, c of a. Now, we ask if end(b~c) appears in any 

S i or not. If yes, then the only possibility is that S i is a 

singleton { end(b~c)} and therefore Qi is concentrated. If not, 
# #I 

then every S i must be a union of disjoint sets S i and S i , 

where S i~Cst(b), S~ ECst(c). This induces the split.~] 

6. OUTPOINTS ~%ND CONCENTRATIONS IN SPECIAL GRAPHS 

This section presents the crucial properties of special graphs 

that enable tree automata to compute sets of reachable states of pro- 

grams. 

For nodes x, y, z in a directed graph, we say that z is a 

cutpoint for the pair (x, y) if x ~ z ~ y and every path from x to 

y must contain z. 

Recall, that T u is the full subtree of T starting with u as 

the root. Thus, G(T u) is a subgraph of G(T). A node x of G(T) is 

inside G(Tu) if it belongs to G(Tu) but is different from the origin 

ul and the sink u2 of G(Tu). A node is outside G(T u) if it does 

not belong to G(Tu). 

Lemma 6. I If x ~ y and z is a cutpoint for (x, y), then any 

transition from a state concentrated at x to a state concentrated 

at y can be concentrated at s. 

Hint to the proof: If (S, x) ~ (S', y) and x y, then every 

marker from $ makes a trip from x to y through some trajectory 

that passes z. The whole task is to reorganize the order in which in- 

structions are performed. Here we use the fact that the system of tra- 

jectories of markers is a fragment of a well nested graph. In such a 

fragment, sources of all trajectories are labelled with x, targets 

with y, and we can find a level in which every point is labelled with 

z and neither point of the level precedes the other. This means that 

if a marker from S (strictly speaking, a successor of such a marker) 

reaches this choosen level, it can wait until remaining markers from 

S reach this level. This does not affect the final result of the 
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transition nor the number of instructions performed.[] 

Lemma 6. 2 Let uET and let x, y be nodes of G(T) such that x 

is inside G(Tu) and y is outside G(Tu). Then, either: one of the 

nodes ul or u2 is a cutpoint for both (x, y) and (y, x) , 

or: ul is a cutpoint for (y, x) and u2 is a cutpoint for (x, y). 

Proof: Induction on the complexity of Tu. D 

Nodes u, v of T are neighbours if u is a son or the father 

of v. Recall, that nodes x, y of G(T) are coupled by u if they both 

fall in u, i. e. x, yE~ul, u2~. For nodes x, y, z of G(T) we say 

that z is in the neighbourhood of (x, y) if there exist neighbours 

u, v in T such that x, y are coupled by u and z falls in u 

or v. 

Lemma 6. 3 If nodes x, y of G(T) are not coupled in T, then the 

pair (x, y) has a cutpoint in G(T). 

Proof: For any nodes x, y of G(T) we can find the shortest undirect- 

ed path in T, UoU1.,.u k , such that x falls in u o and y falls 

in u k. If x, y are not coupled, then k>O. If k>1, then we can 

find v=u i such that x is inside, and y is outside G(Tv), or 

vice versa, and then apply Lemma 6.2. If k I, then the proof is by 

an immediate analysis of cases. [] 

Lemm a 6. 4 Suppose that nodes x, y of G(T) are coupled in T. If 

a transition (S, x) ~ ~ (S', y) can be concentrated, then it can be 

concentrated in the neighbourhood of (x, y). 

Proof: Suppose that (S, x) ~-- (S ee, z) ~--- (S', Y)9 x @ z @y. 

Case I. (x~y): Find the shortest undirected path UoUl...u k in T 

such that x falls in u o and z falls in u k. If k~1, the case 

is proved. If k>1, then x and z are on different sides of u I 

and, by Lemma 6.2, some cutpoint z" for (x, z) falls in u I, By 

Lemma 6.1, the transition can be concentrated at z' in the neighbour- 

hood of x. 

Case 2. (x ¢ y): Find the shortest undirected path UoU1...u k in T 

such that x, y are coupled by u o and z falls in u k , k>1. One 

of the nodes x or y does not fall in u I. Thus, similarly as in 

the Case I, by Lemma 6.2, either the pair (x, z) or the pair (z, y) 
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has a cutpoint that falls in u I. In both cases, by Lemma 6.1, the 

transition can be concentrated in the neighbourhood of (x, y).~ 

TJE DIFBICULTY 

Let us return to Le~ma 4.2 and recall what we mean by the main 

difficulty. Suppose T is a validation tree for some formula p. Let 

< a> q be a subformula of p, such that every formula q' contained 

in a or in q satisfies for every node x of G(T) the condition: 

q'@ F(x) in G(T) iff x ~q" in JVt(T). Our task is to transform 

the following implication to the form suitable for tree automata. 

(7.1) If <a>q ~ F(x) in G(T), then x ~ <a> q in ~(T), 

for every node x of G(T). 

Such a form will be presented in the last lemma of this section. 

By a reacbability plan for a program a in G(T) we mean a la- 

belling of T, which to every u~T assigns two sets R1(u), R2(u) 

of control states of the program a in such a way that the following 

condition ~olds: 

(7.2) if SeRi(u) arid (S, ui) ~-- (S', wj), then S'@Rj(w), 

S" for all u, wET, i, j=1, 2, S, ECst(a). 

Le~na 7. 1 The condition (7.1) is satisfied iff there exists a 

reachability plan RI, R2 for the program a;q? in G(T) such that 

for every u~T, i= I, 2, the following conditions hold: 

(7.3) 

(7.4) 

<a >q~Fi(u) implies { beg(a~q?)} ~ ~i(u), 

(end(a~q?)]~ Ri(u) . 

Proof: Immediately from definitions and Lemma 5.1. [] 

Suppose that for every uET there are defined four binary rela- 

tions Mij(u) C~(~ark(a)) 2, i, j = I, 2, on sets of markers of a pro- 

gram a. We say that the labelling Mij, i, j=1, 2, of T is a plan 

of transitions of the program a between coupled nodes of G(T), if 

for every u~T, i, j=1, 2, S, StE Cst(a), 

(7.5) (s, ui) ~-- (s', uj) implies (s, s')~mj(u) . 
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Lemma 7. 2 Suppose that for every ugT, R1(u), R2(u) C Cst(a)o 

The labelling RI, R2 of T is a teachability plan for a in G(T) 

iff there exists a plan of transitions of a between coupled nodes 

of G(~), ~ij, i, j=1, 2, such that for every uET, i, j=1, 2, 

S, S'E Cst(a), the following two conditions hold: 

(7.6) 

(7.7) 

SERi(u) and (S, S')e~ij(u) imply S'ERj(u), 

if places (u, i) and (w, j) are elementarily equivalent in 

T, then Ri(u)=Rj(w). 

Proof: What the Lemma 7.2 actually says is that, if ui=wj implies 

Ri(u) =Rj(w) (this is guaranteed by (7.7)), then the condition (7.2) 

can be restricted to pairs of coupled nodes ui, uj , instead of arbi- 

trary nodes ui, wj. Suppose that (7.2) holds for pairs of coupled 

nodes, and let S~Ri(u), (S, ui) F-- (S', wj) for some S~Ost(a), 

ui, wjEG(T). If the pair (ui, wj) has no cutpeints, then by Lemma 

6.3, ui and wj are coupled, and S'ERj(u). If there are cutpoints 

for (ui, wj), then by Le~ma 6.1, the transition can be decomposed 

(S, u i ) = ( S o ,  Uo) ~ (S 1, x I) I - -  . . .  I (Sk, X k ) = ( S ' ,  w j ) ,  where 

every pair (Xi_l, xi) has no cutpoints and therefore is coupled. 

Thus, by superposition and (7.2) for coupled nodes, S'~Rj(u).~ 

Lemma 7. 3 Let Mij(u)~(~ark(a)) 2, for every ueT, i, j=l, 2. 

The labelling ~ij, i, j=1, 2, of T is a plan of transitions of the 

program a between coupled nodes in G(T) iff the following con- 

ditions are satisfied (universal quantifiers omitted): 

(7.8) if S ~ S'~Instr(a), then (S, S')el~ii(u), 

(7.9) if S ~(A)~ S'EInstr(a) and sign(u)=A, then 

(S, S ' )£  M12(u), 

(7.10) if S F(p?)-~ S'EInstr(a) and pEl~i(u), then 

(S, S ' )g  lviii (u), 

(7.11) any relation ~ii(u) is reflexive and transitive, 

(7. t2) i f  $1~$2=~ and {(S 1, S~), (S 2, S~)} ~ Mi j (u ) ,  
then (Stu $2, S~uS~)e Mi j (u)  , 

(7.13) the elementary equivalence of places (u, i)~(u', i') and 

(u, j)~(u', j') implies I~ij(u)=~i'j'(u'), 

(u, i)~(u, j) implies Igii(u):-Mij(u), 

(u, i)'~(w, j) implies Mii(u)-----Mjj(w), 
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(7.~4) 

(7.15) 

~ij(u).~ji(u)~ Idii(u), ~ii(u) ~ij(u),~jj(u) CMij(u), 

(superposition of relations), 

if sign(u): ; , v =left son(u), w=right son(u)~ then 

M12(v)-~12(w)r--~12(u), M21(w)'M21(v)~21(u), 
M12(u).M21(w)CX~12(v), N12(w)'~21(u)CI~21(V), 
~21(v),~12(u)~12(w), M21(u).M12(v)C2 ~21(w). 

Proof: The only interesting part of the lemma is that conditions 

(7.8)-(7.15) imply (7.5). The proof is by induction on the size of 

transitions, where the size of (S, x) ~---k (St' y) is k~ ISi . Ob- 

serve, that (7.5) says the following: if (B, x) ~-- (S', y) and 

x=ui, y=uj, for some ugT, i, j: I, 2, then (S, St)EMij(u). That 

is, we must prove the consequent for every representation of x, y in 

T. This will be solved in advance in a series of four facts which show 

that, if (7.5) is proved for one representation, it holds for all re- 

maining. Let us assume that a labelling ~ij satisfies (7.8)-(7.15). 

Recall, that ui :wj in G(T) iff there exists a sequence of places 

(Uo, io).o.(Uk, ik) such that u =uo, w =uk, i=io, J=ik, and for 

all 0<n~k, (Un_l, in_1)~(Un, in). The shortest such sequence will 

be called the evidence of the equality ui: wj. 

Fact I: If ui =uj, then ~ij(u) is reflexive. The proof of 

this fact is by induction on the of the evidence of ui ~ uj. Basis is 

provided by (7.13) and (7.11). For induction, observe that an evidence 

of ui: uj does not enter i-th sons, since it would produce useless 

loops. ~oreover, such an evidence lays fully inside or fully outside 

G(Tu). Thus, every evidence of ui:uj has either the form 

(u, i)~(v, il)...(v, i2)~(w, Jl)...(w, J2)~(u, j) , or a simpler 

one, without w, where one of the nodes u, v, w is the father of re- 

maining two, and the equalities vil:vi2, wJ1= wJ2 have shorter 

evidences than ui: uj. Thus, by inductive assumption, Mkl(v) and 

~kl(w) are reflexive for any k, 1=I, 2. Now it is easy to combine 

(7.11)-(7.15) to prove reflexiveness of Mij(u). 

Fact 2: If ui =wj, then ~ii(u) =~jj(w). This is an obvious 

induction on the length of the evidence of equality. The basis is as- 

sumed in (7.13). 

Fact 3: If ui-----uj, then l~ii(u)~-~ij(u). The proof is by Fact 

I and (7.14). 
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~a~t 4i If ui=u'i ~ and uj=u~j ~, then ~lij(u)=Mi~j~(u~). 

Consider the shortest undirected path UoUl..oU k in T from u=u o 

to u'=u k. Observe, that evidences for both ui=u'i" and uj=u'j ' 

must pass through every node Un, 1<n<k, i. e. for every n there 

exist Unin =ui, UnJn=uJ. Thus, it suffices to prove Fact 4 for u 

and u' being neighbours in T. If u=u" or ui=uj, the case reduces 

to Fact 3. The analysis of remaining cases shows, that at least one of 

the equalities has an evidence of length I, and the remaining, in the 

worst case, has an evidence of the form, say, (u, i)~(w, ii)... 

~..(w, i2)~ (u', i'), where w is a son of u or u'. Since wi I= 

=wi2, by Fact 3, N11(w)=Mkl(w), for every k, 1=I, 2. In every par- 

ticular case of this type it is easy to use (7,15), (7.11) to prove 

that Nij(u)=Mi'j'(u). 

Now, we return to the inductive proof of the Lemma 7.3. Basis~ 

It is not hard to see, that (7.8)-(7.12) and Fact 3 suffice to prove 

that (7.5) holds for transitions (S, ui) ~--'I (S', uj) with any size 

of S. 

Induction: Consider a transition (S, ui) ~"--k (S'' uj) and 

assume that (7.5) holds for all transitions of smaller size. It is to 

be proved, that (S, S')~Mij(u). If the transition can be splitted, 

then we apply (7.12). Otherwise, by Lemma 5.2, there exists a concen- 

tration (S, ui): m (S", z) ~---n (S', uj), where m, n<k, z is 

some node of G(T). By Lemma 6.4, we may assume that z is in the 

neighbourhood of (ui, uj), and by Fact 4, we may further assume that 

z falls in u or in a neighbour v of u. To prove that (s, s') is 

in Mij(u) we must analyse all possible situations in the neighbour- 

hood of u. For example, suppose that sign(u): ; , v=left son(u), 

w:right son(u), i: I, j:2, z =wlo Since ul:v!, w1:v2, u2:w2, 

then by the inductive assumption (S, S'')~M12(v), (S'', S')EMI2(w). 
Thus, by (7.15), (S, S')6Z12(u). In a similar way we deal with other 

cases.~ 

L e~m~ 7._~4 If T is a validation tree of a formula p and < a > q 

is a subformula of p~ then the condition (7.1) is satisfied iff for 

every ueT there exist Ri(u)C Cst(a;q?), lij(u)C~(Mark(a~q?))2 

i~ j:1, 2, such that the conditions (7.3)-(7.4) and (7.6)-(7.15) are 

satisfied. (The conditions of Lenama 7.3 are taken for the program 
a~q?.) 

2roof_! Superposition of Le~nas 7.1 - 7.3 .[] 
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8. THE FINAL RESULT 

The essential part of our proof has been completed in Section 7. 

All what remains is to show that the set of consistent validation 

trees of a given formula can be recognized by a special tree autom- 

aton ( [RT0] ). This is rather routine, that is involves only known 

techniques, and we shall not go into details. However, all definitions 

will be recalled and some intermediate claims stated. 

By a (full, infinite) n-ary tree we mean the set of words ~n 

={I, ..., n)~ , where the empty word ~ is the root of ~n' and 

u], u2, ..., un are the sons of u. A n-ary iP~-tree is a mapping 

f: ~n ---*~ ,(i. e. nodes are labelled with elements of~ ). 

A special tree automaton over n-ary ~-trees ([R70]) is a 4- 

tuple 0~= (S, M, S o , ?), where S is a finite set of states, So, 

are subsets of S consisting of initial and final states, respective- 

ly, and M CS×~× S n is a tree transition relation. A tree f is 

accepted by 0t , if there exists a function r:~ n > S, such that 

the following conditions hold: (fl): r(~)ESo, (f2): for every 

u@~-n, (r(u), f(u), r(ul), ..., r(un))~, (f3): for every infi- 

nite path UoU I .... in ~n ' where u i is a son of ui_1, r(ui)~F 

for infinitely many i. 

Every n-ary type-2 tree over ~,Z can be extended to a full in- 

finite n-ary tree by adding nodes with the label ~= . Thus, every such 

tree is a n-ary ~z-tree with ~A~ = (Q;, //' "equal"]UA)×E~U 

U [~] and ul, u2, u3, u4, ... corresponding to left-, right-, 

1-th left-, 1-th right-, ... sons of u. 

Lemma 8. I For every formula p there can be effectively construct- 

ed a special tree automaton Ol which accepts exactly consistent valida- 

tion trees of p. The number of states of 0% is 0(exp exp clpl), 

where c is a constant, and its construction can be done in time poly- 

nomial of the number of states. 

Hint to the proof: Let p be a formula with n-ary validation trees 

over ~,Z. For a n-ary~E-tree f, let Tf be the maximal subtree 

of f which contains the root ~ and only these nodes which are not 

labelled with @. The automaton 0% can be constructed as the conjunc- 

tion of the following three automata. First, we define 0t I that recog- 
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nizes if Tf is a type-2 tree over ~, ~ . This requires only a con- 

stant number of states and the condition (f3) is used to check if 

every restricted (to left and right sons) subtree of Tf is finite. 

Then, we construct ~2 which accepts f iff the following implica- 

tion holds: if Tf is a type-2 tree, then Tf is a validation tree 

of p. This can be done using O(ipl) states with no reference to (f3). 

Here, a useful intermediate step is a construction of an automaton on 

finite trees which recognizes execution trees of a program. Finally, 

we construct OL 3 which accepts f iff the fact that Tf is a vali- 

dation tree implies that Tf is consistent. The construction of 0X 3 

is based on Lemma 7.4. States of Ol 3 guess values of Ri(u), ~ij(u), 

for every diamond subformula of p, and the transition relation of 013 

checks local conditions. This also does not use (f3). The n~mber of 

states of O~ 3 is O(exp exp clpl) for some c. Generally, we need only 

a small part of the power of special automata. ~] 

Theorem 8. 2 The satisfiability problem for PDL with intersection 

is decidable in time double exponential in the length of the formula 

tested. 

Proof: By Lemmas 4.1, 8.1 and the fact, that the emptiness problem 

for special tree automata is decidable in time polynomial of the size 

of the set of states and the input alphabet.[] 
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