A Lower Complexity Bound for Propositional
Dynamic Logic with Intersection

Martin Lange

Institut fiir Informatik, University of Munich

July 13, 2004

Abstract

This paper shows that satisfiability for Propositional Dynamic Logic
with Intersection is EXPSPACE-hard. The proof uses a reduction from
the word problem for alternating, exponential time bounded Turing
Machines.
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1 Introduction

Propositional Dynamic Logic, PDL, was defined in [4] to reason about pro-
gram behaviour but is nowadays mainly interesting because of its connec-
tion to Description Logics (DL) [16]. It is an extension of multi-modal logic
where modalities take as arguments elements of a Kleene Algebra with a
test operator.

PDL enjoys nice algorithmic properties: its model checking problem is
P-complete and solvable in linear running time [4]; its satisfiability problem
is complete for EXPTIME [14, 15]. PDL is embeddable into infinitary multi-
modal logic and thus has the tree model property. It also has the finite model
property [6]. It is finitely axiomatisable [17, 10]. However, it is rather weak
in expressive power since it is strictly less expressive than the alternation-free
fragment of Kozen’s modal p-calculus [9].

Several variants of PDL have been studied since, for example restrictions
to deterministic atomic programs, etc. Most variants aim at extending the
set of operators in the underlying Kleene Algebra in order to allow properties
of more programs to be expressed. Examples of these are loop constructs,
the converse operator [18], an interleaving operator [12], etc. In most cases
axiomatisations and decision procedures for these extension can be obtained
by extending PDL’s axiom system and its decision procedures.

One variant for which this approach fails entirely is PDL with Inter-
section, IPDL [7]. Using the connection to Description Logics mentioned



above, IPDL can be seen as a DL which can express intersection of roles.
Although intersection looks like yet another regular operation it cannot be
defined using the operators of a Kleene Algebra. This is simply because of
the lack of both tree and finite model property for IPDL which makes it a
good candidate for an undecidable logic.

Nevertheless, IPDL is only undecidable if atomic programs are required
to be deterministic [7]. If they are allowed to be non-deterministic then its
satisfiability problem is decidable [3]. Danecki even showed that it can be
decided in double exponential running time.! This is proved by constructing
Biichi tree automata for IPDL formulas. They do not work on the formula’s
models directly but on trees describing their models.

These are the only results about IPDL so far. It is not known whether
there is a better decision procedure for IPDL or whether it is complete for
double exponential time. Complexity issues for modal logics containing the
intersection operator have been addressed in [11] for instance. However,
there modalities take elements of a boolean algebra rather than a Kleene
algebra like PDL does.

Fragments of IPDL have been studied in [5, 13, 1] for instance, mainly
regarding the issue of axiomatisability. They also show that the presence of
the intersection operator makes IPDL a “strange” logic compared to PDL
for example.

In this paper we show that the satisfiability problem for IPDL is hard for
exponential space. The proof presents a reduction from the word problem
for alternating exponential time bounded Turing Machines. This is inspired
by [19] where satisfiability of the temporal logic CTL* is shown to be hard
for double exponential time. It remains to be seen whether the lower bound
can be pushed up match IPDL’s 2-EXPTIME upper bound.

2 Preliminaries

2.1 Propositional Dynamic Logic with Intersection

Let P = {p,q,...} be a finite set of propositional constants which includes

tt and ff. Let A = {a,b,...} be a finite set of atomic program names. A

Kripke structure is a triple (S, {-% | a € A}, L) with S being a set of states,

-, for every a € A is a binary relation on states, and L : S — 27 labels the

states with propositions, s.t. for all s € S: tt € L(s) and ff ¢ L(s).
Formulas ¢ and programs o of IPDL are defined as:

o = q | Ve | o | (o

a == a | aUa | ana | oga | o

| @?

"However, this piece of information seems to have never made it into common knowl-
edge. Many seem to believe that only decidability but no complexity results are known.



where ¢ ranges over P, and a ranges over A.

We will use the standard abbreviations ¢ A := = (=@ V —)), p — 1) =
= V1, [a]p := ={a)-p and o™ = a; a*.

IPDL formulas are interpreted over Kripke structures. The semantics of
an IPDL formula is explained using an extension of the accessibility relations
— to full programs o.

PR iff JueS st s uanduLst
s ifF s %torsPst

s 20 i s-%tand s 2ot

PR iff HneN,sa—n>twhere

0 n+1 . )
Vs, t€S:s-%5s, and s 2—t iff s ¢

s s iff  skEep

where the meaning of s = ¢ is explained below.
Assuming a Kripke structure 7 to be fixed we define the semantics of a
formula ¢ just as s = ¢ instead of 7, s = .

skEq iff  qeL(s)

sEeVYy iff  skEgorskEY

s =g iff  spEe

s = (a)p if JFeSst.sStandtlEgp

2.2 Alternating Turing Machines.

We use the following model of an alternating Turing Machine, which differs
slightly from the standard model [2] in the way that it either moves its head
or it writes a symbol and branches existentially or universally. It is not hard
to see that this model is equivalent to the standard one w.r.t. the standard
time and space complexity classes.

An alternating Turing Machine M is of the form M = (Q, X, g0, ¢acc, ),
where @ is the set of states, ¥ is the alphabet which contains a blank symbol
0, and qo, Gaec € @ — the starting and the accepting state.

The set @ of states is partitioned into Q = Q3 U Qv U @,,,, where we
write @ for Q3 U Qv, these are the branching states. We assume @, to
contain the only accepting state gq. in which M simply moves to the left
end of the tape whilst staying in state q,... Having arrived there, it stays
on this cell in state gqec.

The transition relation ¢ is of the form

6§ C (QpxExQxX) U (QmxExQx{L,R}).

We also write (¢',b) € d(q,a) to denote (q,a,q’,b) € § for given ¢ and a.



In a branching state ¢ € Qp, the machine can overwrite the symbol under
the head but not move the head. Furthermore, it can branch nondeterminis-
tically or universally. In a state ¢ € @, the machine acts deterministically
and moves its head, i.e., for each a € X, there is exactly one transition
(¢,a,q',D) € 6, for ¢ € Q and D € {L, R}, meaning that the head moves
to the left (L) or right (R), and the machine enters state ¢'.

Every alternating, exponential time bounded Turing Machine can be
transformed into such one that still decides its language in alternating ex-
ponential time.

A configuration of a Turing Machine is a snapshot in time consisting of
the actual state that the machine is in plus the current content of the tape.
The initial configuration consists of gy and the input word written on the
tape followed by blank symbols.

The Turing Machine accepts the input if its initial configuration is ac-
cepting. The configurations’ acceptance depends on the kind of state:

e If the state is g4c then the configuration is accepting.

e If the state is in @y, \ {qqcc }, then the configuration is accepting iff its
unique successor is accepting.

o If the state is in ()3, then the configuration is accepting iff at least one
of its successors is accepting.

o If the state is in @y, then the configuration is accepting iff all of its
successors are accepting.

The entire computation is accepting if the initial configuration is. Note
that a witness for an accepting computation can be represented as a tree of
configurations with the starting configuration as its root, and where every
existential and deterministic configuration has exactly one successor whereas
all possible successors of a universal configuration are preserved in the tree.?

2.3 Complexity classes

We will quickly recall the definitions of the complexity classes used in this
paper. Let DTIME(f(n)), resp. DSPACE(f(n)), be the classes of problems
that can be decided by a deterministic Turing Machine in time f(n), resp.
with space f(n), where n is the size of the input to the machine. The classes
we refer to in this paper are those of exponential time, space and double

2If computations of alternating Turing Machines are regarded as a game then such a
witness is nothing more than a winning strategy for the existential player.



exponential time. They are defined as

EXPTIME

|J DTIME(2P™)
EXPSPACE := | ] DSPACE(2"™)

2-EXPTIME := | J DTIME(2*"")

where p(n) ranges over all polynomials in n. These classes also have charac-
terisations via alternating Turing Machines [2]. The following hold:
EXPSPACE = AEXPTIME and 2-EXPTIME = AEXPSPACE.

3 The Reduction
Theorem 1 Satisfiability of IPDL is EXPSPACE-hard.

PROOF According to [2], there is an alternating, exponential time bounded
Turing Machine whose word problem is EXPSPACE-hard. Suppose M =
(Q,%,q0,qq,9) is such a Turing Machine that has been tailored so that it
obeys the restrictions laid out in the previous section. Let w =ag...an—1 €
3* be an input for M. W.l.o.g. we assume the space needed by M on input
w to be bounded by 2P(™ for some polynomial p. Let N := 2P(") — 1 be the
maximal index of a tape cell.

In the following we will construct an IPDL formula ¢4 ,, over a singleton
set A = {z} of atomic programs s.t. w € L(M) iff ¢y, is satisfiable. The
letter x indicates “moving to the next state”. Informally, a witness for an
accepting computation of M on w will serve as a model for paq,,-

The following propositions are needed.

P=QuUXU {Co, o 7Cp(n)—1} @] {do, e dp(n)—l}

e ¢ € (Q is true in a state of the model iff the head of M is on the
corresponding tape cell in the corresponding configuration while the
machine is in state q. The formula h := \/quq says that the tape
head is on the current cell.

e a € Y is true iff a is the symbol on the corresponding tape cell.

® Cy(n)—1s---Co represent a counter C' in binary coding. The counter
value will be 0 in the leftmost and N in the rightmost tape cell for
instance. Let P := p(n)—1 be the index of the most significant counter
bit.

® dyn)—1,---,do represent a counter D. The value of this counter will be
the index of the actual configuration (i.e. the distance to the starting
configuration in M’s computation tree).



The encoding of M’s configurations is very similar to the ones presented in
[19] or [8]. A configuration of the form

(@ [a @] .. [an]

with the tape head on, say, the third cell from the left and the machine in
state ¢ is modelled by a sequence of states of the form

cp
q
Co C1 Co
ao a a2 an
T T T T
*e — 0 — 0 — .. —e

Here, the counter bits for D are left out to avoid clutter. Successive config-
urations are modelled by concatenating these sequences.

For every fixed m € {0,...,N} we can write a formula xc—p,, resp.
XD=m, Which says that the counter value of C' or D is m in the current
state, e.g.

P P

P
XC=0 = /\_‘Ci , XC=1 = CO/\/\_‘Ci and xo=N = /\Ci
i=0 =1 =0

for the leftmost (m = 0), second (m = 1) and rightmost (m = N) position
in a configuration.

For the next part we need auxiliary formulas gogw, gogw that increase the
value of C, resp. D, as long as they do not equal N.

p

e = V(e A fala AN (e Alalme) A
i=0 j<i

/\, (cj = [z]ej) A (mej — [x]=eg) )

This is just the standard formula for incrementing a binary value: there is a
bit which changes from 0 to 1, all higher bits remain the same and all lower
bits change from 1 to 0. We also need to be able to say that the value of D
remains unchanged.

P
Croman = \(di = [2]d; ) A (=di — [2]~d;)
=0

Then we can write down a formula which requires the counter C' to be
increased by one modulo N + 1 in every move from a state to a successor.



At the same time, counter D is incremented iff the value of C changes from
N back to 0.

Peount = [.T*]( ( Xc=N A [x]XCZO A ()0515) \

(_'XC:N A SOiC’IVLC A (przmain ))
We form programs

® a5t which goes from any state to the beginning of the next configu-
ration, i.e. it traverses the rest of the current configuration,

Qpest = (ﬁXC:N?;x)*;XC:N?

® oy, agp, which do an arbitrary amount of z-actions whilst seeing at
least two, resp. no tape heads.
a o *. h?: +.h7. *
2h = T T S NhET

aon, = (2h? )" —h?

Then we can formalise the general requirements on a Turing Machine: every
tape cell is marked with exactly one symbol from ¥ and never with two
different states; no configuration has more or less than one cell marked with
the tape head. Finally, as long as the counters both do not have the value
N there is still a successor.

Pgen = ["]( (\/ a) A /\_‘(a/\b) A /\ —~(gA{q)
a€Y a,beX,b#a 0,94 €Q,q#q’
A (Xc=0 — [orest N (con U aop)|EE )
A (=Xc=N N "XD=N — (T)tt))
At the beginning, the input word w = ag...an_1 is written on the tape,
followed by blank symbols O until a state with counter value 0 is reached
again.
Ystart = XCc=0 N qo N ag A\
[z]( a1 A
[]( ag A
VAR
[z]( an—1 A
[(z;=xc=0?)T]O ) ..))
Next we give a formula which expresses the fact that M’s computation is

accepting. Note that we assumed M to move its head to the very left, go
into state ¢,, and leave the head there once its computation is finished.

Pace = [x*;XCZO?;XD:N?]qacc



Before we can encode M'’s transition function §, we need to write programs
that relate a tape cell in one configuration to itself or its neighbours in the
next configuration. Program «q runs the atomic program x arbitrarily often
whilst seeing the counter value C' = 0 only once.

agr = (@;x0c=07)";2; Xc=07; (25 ~xc=07)"

Using this program and the usual trick of incrementing, resp. decrementing
a binary counter we can write a program a_; that turns a tape cell into its
left neighbour in the following configuration.

P
N . . . .t
a_1 = —xo=0l;a0 N U(ci?,m+,ﬂci? N ﬂ—'cj?,m ;ci?
i=0 j<i
.t R o
N ﬂ (¢jzm¢7Uneta™¢? )
7>

Equally, a— and a4 turn it into itself, resp. its right neighbour.

P

a— = ag N ﬂ (cihxTi6? U —e?at;—e?)
=0

a1 = xe=nNTia=;z

Now we are able to formalise §’s transitions in IPDL. Again, there are dif-
ferent requirements on the model depending on the nature of a machine’s
state.

In an existential state, there is one transition that determines all suc-
cessors. In a universal state, all successors behave according to one of the
possible transitions and every possible transition is present in the computa-
tion tree. In a moving state the machine acts deterministically, hence, all
successor configurations must be the same. Finally, the label of any tape
cell which is not under the tape head remains the same in the following
configuration.

ps = [ N\ (ana = \/ laz]pnb))

qu37aeE (pvb)eé(qva)
AN Cana = (laz] \/ b)) A N\ (as)(pAd)))
qGQV’QEE (pvb)eé((La) (pvb)eé(%a)

A /\ (=xc=oAgNha — [a_1]q")
(g,a,9',L)€d



A /\ (=xc=NANgNha — [op1]d )
(g,a,q',R)ES

A /\(ﬂh/\a — [az]a))

a€y

Altogether, the machine’s behaviour is described by the formula

PMw = Peount N\ Pgen N Pstart N\ Pace N Ps

Then, a model for paq. bears a witness for a successful computation of
M on w. Conversely, each successful computation can be transformed into
a model for ¢, by removing the nondeterminism from the model and
keeping the universal branches. Finally, |oaq,| is polynomial in |[M| and
lwl. n

Corollary 2 Satisfiability of IPDL over a singleton set of atomic programs
and tests restricted to atomic propositions is already EXPSPACE-hard.

This is not surprising since every IPDL formula ¢ with complex tests can
be transformed into a ¢’ over additional propositions, s.t. ¢’ only features
atomic tests. Moreover, ¢ is satisfiable iff ¢ is satisfiable. On the other
hand, the reduction in the proof of Theorem 1 can easily be rewritten s.t.
all tests are atomic using for instance the equivalence

(Vao? = U

qeQ qe@
Corollary 3 Satisfiability of IPDL is 2-EXPTIMFE-hard under EXPTIME-
reductions.

PROOF According to [2], there is an alternating, exponential space bounded
Turing Machine whose word problem is hard for double exponential time and
polynomial time reductions. If the reduction is allowed to take exponential
time then one can use exponentially many counter bits for D and make
the reduction go through for an AEXPSPACE machine. Note that with
exponentially many counter bits one can count up to 92" which — with
the right choice of p — is the maximal number of different configurations an
AEXPSPACE machine can be in. ™

Corollary 4 Satisfiability for IPDL is already EXPSPACE-hard over the
class of trees.

Proor Take M, w and ¢aq4, from the proof of Theorem 1. Note that the
representation of a witness for an accepting run of M on w is a tree since
only one atomic program is used. Hence, formula ¢4 ,, has the tree model
property which is not true for arbitrary IPDL formulas. ]



4 Conclusions

This is the first step towards closing the complexity gap for satisfiability of
IPDL. It remains to be seen whether this lower bound can be improved in
order to achieve 2-EXPTIME-completeness or Danecki’s upper bound can
be improved in order to obtain EXPSPACE-completeness.

The other main question that remains open is the exact complexity (i.e.
both upper and lower bound) for test-free IPDL. The proof of the lower
bound presented here relies heavily on the presence of the test operator. A
similar reduction might work for test-free IPDL, but then the encoding of a
model would have to be altered.
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