Boosting the correspondence between description
logics and propositional dynamic logics

Giuseppe De Giacomo and Maurizio Lenzerini
Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”

Via Salaria 113, 00198 Roma, Italia

{degiacom,lenzerini }@assi.dis.uniromal.it

Abstract

One of the main themes in the area of Terminologi-
cal Reasoning has been to identify description logics
(DLs) that are both very expressive and decidable. A
recent paper by Schild showed that this issue can be
profitably addressed by relying on a correspondence
between DLs and propositional dynamic logics (PDL).
However Schild left open three important problems,
related to the translation into PDLs of functional re-
strictions on roles (both direct and inverse), number
restrictions, and assertions on individuals. The work
reported in this paper presents a solution to these
problems. The results have a twofold significance.
From the standpoint of DLs, we derive decidability
and complexity results for some of the most expres-
sive logics appeared in the literature, and from the
standpoint of PDLs, we derive a general methodol-
ogy for the representation of several forms of program
determinism and for the specification of partial com-
putations.

Introduction

The research in Artificial Intelligence and Computer
Science has always paid special attention to formalisms
for the structured representation of information. In
Artificial Intelligence, the investigation of such for-
malisms began with semantic networks and frames,
which have been influential for many formalisms pro-
posed in the areas of knowledge representation, data
bases, and programming languages, and developed to-
wards formal logic-based languages, that will be called
here description logics' (DLs). Generally speaking,
DLs represent knowledge in terms of objects (individ-
uals) grouped into classes (concepts), and offer struc-
turing mechanisms for both characterizing the relevant
properties of classes in terms of relations (roles), and
establishing several interdependencies among classes
(e.g. is-a).

Two main advantages in using structured formalisms
for knowledge representation were advocated, namely,

! Terminological logics, and concept languages are other
possible names.

epistemological adequacy, and computational effective-
ness. In the last decade, many efforts have been de-
voted to an analysis of these two aspects. In partic-
ular, starting with (Brachman & Levesque 1984), the
research on the computational complexity of the rea-
soning tasks associated with DLs has shown that in
order to ensure decidability and/or efficiency of rea-
soning in all cases; one must renounce to some of the
expressive power (Levesque & Brachman 1987, Nebel
1988, Nebel 1990a, Donini et al. 1991a, Donini et al.
1991b, Donini et al. 1992). These results have led to
a debate on the trade-off between expressive power of
representation formalisms and worst-case efficiency of
the associated reasoning tasks. This issue has been
one of the main themes in the area of DLs, and has
led to at least four different approaches to the design
of knowledge representation systems.

e In the first approach, the main goal of a DL is
to offer powerful mechanisms for structuring knowl-
edge, as well as sound and complete reasoning pro-
cedures, while little attention has to be paid to the
(worst-case) computational complexity of the rea-
soning procedures. Systems like OMEGA (Attardi
& Simi 1981), LOOM (MacGregor 1991) and KL-
ONE (Brachman & Schmolze 1985), can be consid-

ered as following this approach.

e The second approach advocates a careful design of
the DLs so as to offer as much expressive power
as possible while retaining the possibility of sound,
complete, and efficient (often polynomial in the
worst case) inference procedures. Much of the re-
search on CLASSIC (Brachman et al. 1991) follows
this approach.

e The third approach, similarly to the first one, ad-
vocates very expressive languages, but, in order to
achieve efficiency, accepts incomplete reasoning pro-
cedures. No general consensus exists on what kind
of incompleteness is acceptable. Perhaps, the most
interesting attempts are those resorting to a non-
standard semantics for characterizing the form of
incompleteness (Patel-Schneider 1987, Borgida &
Patel-Schneider 1993, Donini et al. 1992).

e Finally, the fourth approach is based on what we
can call “the expressiveness and decidability thesis”,
and aims at defining DLs that are both very expres-
sive and decidable, i.e. designed in such a way that
sound, complete, and terminating procedures exist
for the associated reasoning tasks. Great attention
is given in this approach to the complexity analy-
sis for the various sublogics, so as to devise suitable
optimization techniques and to single out tractable
subcases. This approach is the one followed in the

design of KRIS (Baader & Hollunder 1991).

The work presented in this paper adheres to the fourth
approach, and aims at both identifying the most ex-
pressive DLs with decidable associated decision prob-
lems, and characterizing the computational complexity
of reasoning in powerful DLs. In order to clearly de-
scribe this approach, let us point out that by “very
expressive DL” we mean:

1. The logic offers powerful constructs in order to form
concept and role descriptions. Besides the con-
structs corresponding to the usual boolean connec-
tives (union, intersection, complement), and exis-
tential and universal quantification on roles, three
important types of construct must be mentioned,
namely, those for building complex role descriptions,
those for expressing functional restrictions (i.e. that
a role is functional for a given concept), and those
for expressing number restrictions (a generalization
of functional restrictions stating the minimum and
the maximum number of links between instances of
classes and instances of roles).

2. Besides the possibility of building sophisticated class
descriptions, the logic provides suitable mechanisms
for stating necessary and/or sufficient conditions for
the objects to belong to the extensions of the classes.
The basic mechanism for this feature is the so-called
inclusion assertion, stating that every instance of a
class is also an instance of another class. Much of
the work done in DLs assumes that all the knowl-
edge on classes is expressed through the use of class
descriptions, and rules out the possibility of using
this kind of assertions (note the power of assertions
vanishes with the usual assumption of acyclicity of
class definitions).

3. The logic allows one to assert properties of single in-
dividuals, in terms of the so-called membership as-
sertions. Two membership assertions are taken into
account, one for stating that an object is an instance
of a given class, and another one for stating that two
objects are related to by means of a given role.

Note that, among the constructs for role description,
the one for inverse of roles has a special importance,
in particular because it makes DLs powerful enough to
subsume most frame-based representation systems, se-
mantic data models and object-oriented database mod-
els proposed in the literature. Also, functional restric-
tions on atomic roles and their inverse are essential for

real world modeling, specially because the combined
use of functional restrictions and inverse of atomic roles
allows n-ary relations to be correctly represented.

Two main approaches have been developed following
the “expressiveness and decidability thesis”. The first
approach relies on the tableau-based technique pro-
posed in (Schmidt-Schauff & Smolka 1991, Donini et
al. 1991a), and led to the identification of a decision
procedure for a logic which fully covers points (2) and
(3) above, and only partially point (1) in that it does
not include the construct for inverse roles (Buchheit,
Donini, & Schaerf 1993). The second approach is based
on the work by Schild, which singled out an interest-
ing correspondence between DLs and several propo-
sitional dynamic logics (PDL), which are modal log-
ics specifically designed for reasoning about program
schemes. The correspondence is based on the simi-
larity between the interpretation structures of the two
logics: at the extensional level, objects in DLs corre-
spond to states in PDLs, whereas connections between
two objects correspond to state transitions. At the
intensional level, classes correspond to propositions,
and roles correspond to programs. The correspondence
is extremely useful for at least two reasons. On one
hand, it makes clear that reasoning about assertions
on classes is equivalent to reasoning about dynamic
logic formulae. On the other hand, the large body of
research on decision procedures in PDL (see, for ex-
ample, Kozen & Tiuryn 1990) can be exploited in the
setting of DLs, and, on the converse, the various works
on tractability /intractability of DLs (see, for example,
Donini et al. 1991b) can be used in the setting of PDL.

However, in order to fully exploit this correspon-
dence, we need to solve at least three problems left
open in (Schild 1991), concerning how to fit functional
restrictions (on both atomic roles and their inverse),
number restrictions, and assertions on individuals, re-
spectively, into the correspondence. Note that these
problems refer to points (1) and (3) above.

In this paper we present a solution to each of the
three problems, for several very expressive DLs. The
solution is based on a particular methodology, which
we believe has its own value: the inference in DLs is
formulated in the setting of PDL, and in order to repre-
sent functional restrictions, number restrictions and as-
sertions on individuals, special “constraints” are added
to the PDL formulae. The results have a twofold sig-
nificance. From the standpoint of DLs, we derive de-
cidability and complexity results for some of the most
expressive languages appeared in the literature (the
only language which is not subsumed by ours is the one
studied in (Buchheit, Donini, & Schaerf 1993), whose
expressive power is incomparable with respect to the
DLs studied here), and from the standpoint of PDLs,
we derive a general methodology for the representation
of several forms of program determinism correspond-
ing to functional? and number restrictions, and for the

2Note that no decidability results were known for a PDL

specification of partial computations (assertions on in-
dividuals).

The paper is organized as follows. In Section 2, we
recall the basic notions of both DLs and PDLs. In
Section 3, we present the result on functional restric-
tions, showing that Converse PDL is powerful enough
to allow the representation of functional restrictions
on both atomic roles and their inverse. In Section 4,
we outline the generalization to the case of number re-
strictions, and in Section 5 we deal with the problem
of representing assertions on individuals. In particu-
lar, we analyze two languages and show that reason-
ing in knowledge bases consisting on both assertions
on classes and assertions on individuals in these two
languages can be again reduced to satisfiability check-
ing of particular PDL formulae. Finally, in Section
6, we present examples of modeling with the powerful
and decidable DLs introduced in the paper, and out-
line possible extensions of our work. For the sake of
brevity all proofs are omitted.

Preliminaries

We base our work on two logics, namely the DL C, and
the PDL D, whose basic characteristics are recalled in
this section.

The formation rules of C are specified by the follow-
ing abstract syntax

C — T|L|A|=C|CiNCy|CiUCs |
Cy = Cy | 3R.C |VR.C
R — P|R1UR2|R10R2|R*|ZCI(0)

where A denotes an atomic concept, C' (possibly with
subscript) denotes a concept, P denotes an atomic role,
and R (possibly with subscript) denotes a role. The se-
mantics of concepts is the usual one: an interpretation
7 with domain A7 interprets concepts as subsets of AT
and roles as binary relations over A%, in such a way
that the meaning of the constructs is preserved (for ex-
ample, (C1 = Cy)f = {d e AT |d ¢ Cf or d € CE},
where C7 denotes the set of elements of AZ assigned
to C' by 7). Note that C is a very expressive language,
comprising the constructs for union of roles R; U R,
chaining of roles Rj o Ry, transitive closure of roles R*,
and the identity role id(C') projected on C.

A C-intensional knowledge base (C-TBox) is defined
as a finite set K of inclusion assertions of the form
C1 C (5, where C1,Cy are C-concepts. The assertion
C} C O, is satisfied by an interpretation Z if C¥ C C7,
and 7 is a model of K if every assertion of K is satisfied
by Z. A TBox K logically implies an assertion C; C Cl,
written K | Cy E Cy, if Cy C Cy is satisfied by every
model of K.

As pointed out in (Schild 1991), there is a direct
correspondence between C and a PDL, here called D,

where both atomic programs and their converse can be
made (locally) deterministic.

whose syntax is as follows:

¢ — true| false | A|=¢ | o1 Ag2 |1V |
b1 = 2| <r>d|[r]o

r — PlrUry|ryyra|r*]|e?

where A denotes a propositional letter, ¢ (possibly
with subscript) denotes a formula, P denotes an atomic
program, and r (possibly with subscript) denotes a
program. The semantics of D is based on the no-
tion of structure, which is defined as a triple M =
(8, {Rp},0), where S denotes a set of states, {Rp}
is a family of binary relations over &, such that each
atomic program P is given a meaning through Rp, and
IT is a mapping from & to propositional letters such
that II(s) determines the letters that are true in the
state s. Given M, the family {Rp} can be extended
in the obvious way so as to include, for every program
r, the corresponding relation R, (for example, R, .., is
the composition of R,, and R,,). For this reason, we
often denote a structure by (S,{R,},), where {R }
includes a binary relations for every program (atomic
or non-atomic). A structure M is called a model of
a formula ¢ if there exists a state s in M such that
M,s = ¢. A formula ¢ is satisfiable if there exists a
model of ¢, unsatisfiable otherwise.

The correspondence between C and D is realized
through a mapping é from C-concepts to D-formulae,
and from C-roles to D-programs. The mapping é maps
the constructs of C in the obvious way. For example:

§(A)=A §(AR.C) =< 6(R) > 6(C)
5(P) =P (R1 L RQ) = (S(Rl) U 5(R2)
§(-C) =—-8(C) 6(Ryo Ra)=6(Ry1);6(R2)
O(R*) =6(R)" 6(id(C)) = 6(C)?

In the rest of this section, we introduce several no-
tions and notations that will be used in the sequel.
Some of them are concerned with extensions of D that
include the construct r—, denoting the converse of a
program r (see Section 3).

The Fisher-Ladner closure of a D-formula @, de-
noted CL(®), is the least set F' such that & € F
and such that (we assume V, =[] to be expressed by
means of =, A, < - > as usual):

P1Ng2 €F = ¢1,02€F,

¢ EF = ¢€EF

<r>¢€erF = o¢E€F,
<ryre>@9€EF = <rp><rs>¢€F,
<PMUm>¢cF = <ri>¢,<ra>¢€EF,
<r*>¢€erF = <r><r*>¢€rF,
<P >¢peF = ¢ eF.

Note that, the size of C'L(®) is linear with respect to
the size of ®. The notion of Fisher-Ladner closure can
be easily extended to formulae of other PDLs.

We introduce the notion of path in a structure M,

which extends the one of trajectory defined in (Ben-
Ari, Halpern, & Pnueli 1982) in order to deal with the

converse of an atomic programs. A path in a struc-
ture M is a sequence (sg,...,s,) of states of M, such
that (si—1,s;) € R4 for some ¢ = P | P, where
i=1,...,q. The length of (so,...,s,) is ¢. We induc-
tively define the set of paths Paths(r) of a program r
in a structure M, as follows (we assume, without loss
of generality, that in r all occurrences of the converse
operator are moved all the way in):

Paths(a) Rq(a=P|P7),

Paths(ry Ura) Paths(r1) U Paths(ra),

Paths(ry;r2) {(s0s-+ -, Suy -5 5¢) |
(sg,...,84) € Paths(ry) and
(Su,--.,84) € Paths(ra)},

Paths(r*) {(s) | s € 8} U (U;sq Paths(r')),

Paths(¢'?) {(s) | M,s =¢'}.

We say that a path (s¢) in M satisfies a formula ¢
which is not of the form < r > ¢’/ if M,sq = ¢. We
say that a path (so,...,s,) iIn M satisfies a formula ¢
of the form < r; > -+ < r; > ¢', where ¢’ is not of
the form < ' > ¢",if M,s, = ¢' and (sg,...s4) C
Paths(ry;-- ;).

Finally, if a denotes the atomic program P (resp.
the inverse of an atomic program P~), then we write
a” to denote P~ (resp. P).

Functional restrictions

In this section, we study an extension of C, called CZF,
which is obtained from C by adding both the role con-
struct R~ and the concept construct (< 1 a), where
a = P | P~. The meaning of the two constructs in an
interpretation Z is as follows:

(R™)F = {(d1,d2) | (da, d1) € BT},

7 _ 7, there exists at most one d’
(sla)” ={de A such that(d,d’) € at 3

The corresponding PDL will be called DZF, and is
obtained from D by adding the programs of the form
r~, and the formulae of the form (< 1 a), where, again,
a = P | P7. The meaning of the two constructs in
DIF can be easily derived by the semantics of CZF.
Observe that the r~ construct allows one to denote
the converse of a program, and the (< 1 a) construct
allows the notion of local determinism for both atomic
programs and their converse to be represented in PDL.
With the latter construct, we can denote states from
which the running of an atomic program (symmetri-
cally, the converse of an atomic program) is determin-
istic, i.e., it leads to at most one state. It is easy to
see that this possibility allows one to impose the so-
called global determinism too, i.e., that certain atomic
programs and converse of atomic programs are glob-
ally deterministic. Therefore, DZF subsumes the logic
studied in (Vardi & Wolper 1986), called Converse De-
terministic PDL, in which atomic programs (but not
their converse) are globally deterministic.

From the point of view of DLs, as mentioned in
the Introduction, the presence of inverse roles and of

functional restrictions on both atomic roles and their
inverse, makes CZF one of the most expressive DLs
among those studied in the literature.

The correspondence between CZF and DIF is re-
alized through the mapping é described in Section 2,
suitably extended in order to deal with inverse roles
and functional restrictions. From & we easily obtain
the mapping 6 from CZF-TBoxes to DI F-formulae.
In particular, if K = {K;, -+, K,} is a TBox in CZF,
and P, ..., P, are all atomicroles appearing in K then
(we abbreviate (PLU---UP, UP] U---UP_)* by u,
for notational convenience)

§F(K) = [u] 6*({K1}) Ao A SF({Kn}),
§T({C1 C Ca2}) = (8(C1) = 8(Ca)).

Observe that §7(K) exploits the power of program con-
structs (union, converse, and transitive closure) and
the “connected model property” of PDLs in order to
represent inclusion assertions of DLs. Based on this
correspondence, we can state the following: if K is a
TBox, then X |= C; C C (where atomic concepts and
roles in C1, Cy are also in K) iff the DZ F-formula

§T(K) AS(C1) A S(—=Co)

is unsatisfiable. Note that the size of the above formula

is polynomial with respect to the size of K, 1, and Cs.
Let DZ be the PDL obtained from D by adding the

r~ construct only. We are going to show that, for any

DIF-formula ®, there is a DZ-formula, denoted v(®),

whose size is polynomial with respect to the size of

®, and such that ® is satisfiable iff v(®) is satisfiable.

Since satisfiability in DZ is EXPTIME-complete, this

ensures us that satisfiability in DZF, and therefore

logical implication for CZF-TBoxes, are EXPTIME-
complete too.? In what follows, we assume without loss

of generality that ® is in negation normal form (i.e.,

negation is pushed inside as much as possible). We

define the DZ-counterpart y(P) of a DI F-formula @ as
the conjunction of two formulae, y(®) = 71 (®) Ay2(P),
where:

e 71(®) is obtained from the original formula & by
replacing each (< 1 a) with a new propositional
letter A< 14), and each ~(< 1 @) with (< a >
H(S 1 a)) A (< a > _'H(S 1 a)), where H(S 1 a) is,
again, a new propositional letter.

e 72(®) = 3 A - A7yZ, with one conjunct 7% of the
form (we use the abbreviation u for (PyU---U P, U

P ---UP.)*, where Py,..., Py are all the atomic
roles appearing in ®):

[u]((A< 1 A < a> @) = [d]9)
for every A(< 1 4) occurring in y1(®) and every ¢ €
CL(71(®))-

3Indeed 7(5+ (K)A8(Cy) AN8(—C2)) is the DI F-formula
corresponding to the implication problem K |= Cy C C; for
CIF-TBoxes.

Intuitively v2(®) constrains the models M of y(®) so
that: for every state s of M, if A< 1 4) holds in s,
and there is an a-transition from s to ¢; and an a-
transition from s to ts, then t; and ¢5 are equivalent
with respect to the formulae in C'L(y1(®)). We show
that this allows us to actually collapse ¢; and 5 into a
single state. Note that the size of y(®) is polynomial
with respect to the size of &.

To prove that a DZ F-formula is satisfiable iff its DZ-
counterpart is, we proceed as follows. Given a model
M = (S8,{R,},II) of y(®), we build a tree-like struc-
ture M? = (8%, {R.},1I") such that M? root = ~(®)
(root € S* is the root of the tree-structure), and the lo-
cal determinism requirements are satisfied. From such
M?, one can easily derive a model ML of ®. In order
to construct M? we make use of the following notion.
For each state s in M, we call by FS(s) the smallest
set of states in M such that

e s € ES(s), and

o if s € ES(s), then for every s” such that (s',s") €
RG?A(< L amy A ES(s") C ES(s).

The set ES(s) is the set of states of M that are to
be collapsed into a single state of M®. Note that, by
v2(®), all the states in FS(s) satisfy the same formulae
in CL(y1(®)). The construction of M* is done in three
stages.

Stage 1. Let < a1 > 91,...,< ap > ¢ be all the
formulas of the form < a > ¢’ included in CL(®).*
We consider an infinite h-ary tree 7 whose root is root
and such that every node z has h children child;(z),
one for each formula < a; > 1; (we write father(z) to
denote the father of a node). We define two partial
mappings m and [: m maps nodes of 7 to states of M,
and [is used to label the arcs of 7 by atomic programs,
converse of atomic programs, or a special symbol ‘un-
defined’. For the definition of m and [, we proceed level
by level. Let s € S be any state such that M, s = (®).
We put m(root) = s, and for all arcs corresponding
to a formula < a; > ¥; such that M, s E< a; > ¢
we put [((root, child;(root))) = a;. Suppose we have
defined m and [up to level &, let & be a node at
level k + 1, and let I((father(z),z)) = a;j. Then
M, m(father(z)) =< a; > 1;, and therefore, there
exists a path (s,,s1,...,8), with s, = m(father(z))
satisfying < a; > ;. Among the states in £S(s1) we
choose a state t such that there exists a minimal path
(i.e., a path with minimal length) from ¢ satisfying ;.
We put m(z) = t and for every < a; > ¢; € CL(®
such that Mt =< a; > ¢; we put {((, child;(z))) =
a;.
Stage 2. We change the labelling {, proceeding
again level by level. If M,m(root) = A< 1 4), then
for each arc (root, child;(root)) labelled a, except for
one randomly chosen, we put {((root, child;(root)) =

*Notice that the formulas ¥; may be of the form < r >
¢, and that v¥; € CL(®).

‘undefined’. Assume we have modified [up to level £,
and let z be a node at level k4 1. Suppose M, m(z) =
A< 14)- Then if I((father(z),z)) = a~, for each
arc (z,child;(z)) labelled a, we put I((x, child;(x)) =
‘undefined’, otherwise (i.e. [((father(z),z)) # a™)
we put [((z,child;(z)) = ‘undefined’ for every arc
(z, child;(z)) labelled a, except for one randomly cho-
sen.

Stage 3. For each P, let R, = {(z,y) € T |
((z,y)) = Porl((y,z)) = P~ }. We define the struc-
ture M* = (8, {RL}, II*) as follows: &' = {z € T |
(root,z) € (Up(Rp UR'S))*}, R = R N (S x SY),
and II*(z) = [(m(z)) for all z € §'. From {R%L} we
get all {R%} as usual.

The basic property of M? is stated in the following
lemma.

Lemma 1 Let ® be a DIF-formula, M a model of
Y(®), and M a structure derived from M as specified
above. Then, for every formula ¢ € CL(v1(®)) and
everyz € 8, Mz =¢ ff M,m(z) E ¢.

Once we have obtained M?!, we can define a new
structure ML = (S, {R%,}, %) where, 8 =
S, {RL} = {RL}, and I%(z) = M'(z) —
{A< 14), Hi< 1 a)} for each z € 8%. The structure
MZ has the following property.

Lemma 2 Let ® be a DIF-formula, and let M, M%
be derived from a model M of v(®) as specified above.
Then M* root |= 1 (®) implies ML, root = ®.

Considering that every model of ® can be easily
transformed in a model of 4(®) we can state the main
result of this section.

Theorem 3 A DIF-formula ® is satisfiable iff its
DI-counterpart ¥(®) is satisfiable.

Corollary 4 Satisfiability in DIF and logical impli-
cation for CZF-TBozes are EXPTIME-complete prob-
lems.

Number restrictions

In this section, we briefly outline a method that al-
lows us to polynomially encode number restrictions
into CZF. Let us call CZA the language obtained from
CIF by adding the constructs (> n a) and (< n a) for
number restrictions, where n is a non-negative integer,
and @ := P | P~. The meaning of (> n a) (resp.
(< n a)) in an interpretation 7 is given by the set
of individuals that are related to at least (at most) n
instances of a.

Let K be a CZN-TBox. We, first, introduce for each
atomic role P in K a new primitive concept Ap and
two atomic roles Fp and Gp, imposing that each in-
dividual in the class Ap is related to exactly one in-
stance of Iy and Gp. In this way the original P can
be represented by means of the role Fpoid(Ap)oGp.
Then we replace Fp by fp o id(Ap)o (fp o id(Ap))*
and Gp by gp o id(Ap) o (¢ o id(Ap))*, making the

atomic roles fp, fp, gp, gp and their inverse, globally
functional, and requiring that no individual is linked to
others by means of both f; and f'p, or gp and ¢'p. In
this way the concept (< n P) can be obtained simply
by imposing that there are at most n states in the chain
fpotd(Ap)o(fpoid(Ap))*, and the concept (< n P7)
can be obtained by imposing that there are at most n
states in the chain gp o id(Ap)o (g 0id(Ap))*. These
constraints are easily expressible in CZF. Analogous
considerations hold both for (> n @) and for quali-
fied number restrictions, where a qualified number re-
striction is a concept of the form (< n a.C) (resp.
(> n a.C)), which is interpreted as the set of indi-
viduals that are related to at most (resp. at least) n
instances of C' by means of a.

Membership assertions

In this section, we study reasoning involving knowledge
on single individuals expressed in terms of membership
assertions. Given an alphabet O of symbols for individ-
uals; a membership assertion is of one of the following
forms:

C'(Ozl), R(al,ag)

where C' is a concept, R is a role, and aj, ay belong
to O. The semantics of such assertions is stated as
follows. An interpretation 7 is extended so as to assign
to each a € O an element a? € AZ in such a way that
different elements are assigned to different symbols in
O. Then, T satisfies C(a) if af € CT, and T satisfies
R(ay,az) if (af,a2) € RZ. An extensional knowledge
base (ABox) M is a finite set of membership assertions,
and an interpretation Z is called a model of M if 7
satisfies every assertion in M.

A knowledge base is a pair B = (K, M), where K is a
TBox, and M is a ABox. An interpretation 7 is called
a model of B if it is a model of both K and M. B is
satisfiable if it has a model, and B logically implies an
assertion § (B |), where f is either an inclusion or
a membership assertion, if every model of B satisfies 3.
Since logical implication can be reformulated in terms
of unsatisfiability (e.g. if § = C(«), then B = g iff
BU{~C(«)} is unsatisfiable), we only need a procedure
for checking satisfiability of a knowledge base.

It is worth noting that, from the point of view of
PDLs, an ABox is a sort of specification of partial com-
putations; and that no technique is known for integrat-
ing such a form of specification with PDLs’ formulae.

We study the satisfiability problem for knowledge
bases expressed in two extensions of the basic lan-
guage C. The first extension regards the language CF,
obtained from C by adding the construct (< 1 P).
We show that satisfiability of a CF-knowledge base B
can be polynomially reduced to satisfiability of a DF-
formula ¢(B), where DF is the PDL obtained from D
by including the construct (<1 P).

We start by defining ¢g(B) to be the DF-formula re-
sulting from the conjunction of the following formulae

(there is a new letter A; in @o(B) for each individ-
ual a; in B): for every individual a;, A; = Ajzi—Aj;
for every membership assertion of the form C(«y),
A; = 6(C) (é is the mapping introduced in Section 2);
for every membership assertion of the form R(«;, a;),
A; =< R > Aj; for every inclusion assertion C; C Cy
in K, 6(C1) = 6(C5).

Let create be a new atomic program, and u an ab-
breviation for (PyU...UPy,)*, where Py, ..., Py are all
the atomic roles in B. We define the DF-counterpart
of B as ¢(B) = ¢1(B) A p2(B), where:

o p1(B) = @1(B) A -+ A g1(B) A[ereate]([ulpo(B)),
with one ¢} (B) =< create > A; for each individual
«; in B.

e 3(B) is the conjunction of the following formulae:

— For all 4;, for all ¢ € CL([u]pg(B)):
[create](<u> (A; A @) = [u](4i = ¢)). (1)

— For all A;, for all ¢ € CL([u]pg(B)), for all pro-
grams r € CL([u]eo(B)):

[create](<u> (AiA < Tajng > @) = 9
[u](A; =< raing > 9)), @)

where 7-;,4 denotes the program obtained from
the program r by chaining the test (A;2;A;)7 after
each atomic program in r.

— For all A;, A;, for all programs ' € Pre(r), r €
CL([u]eo(B)):

[create](<u> (AN <7l ;> Aj) = (3)
[)(Ai =<1l > A))),

where Pre(r) for a program r, is defined induc-
tively as follows (¢ is the empty sequence of pro-
grams): Pre(P) = {e}; Pre(ry;re) = {ri;r} |
rh, € Pre(ra)}; Pre(ry Urg) = Pre(r1) U Pre(ra);
Pre(r*) = {r*;r" | ' € Pre(r)}; Pre(¢?) = {e}.3

The role of (1),(2) and (3) is to allow us to collapse all
the states where a certain A; holds, so as to be able
to transform them into a single state corresponding to
the individual «;.

In the following we call states t of a model M of ¢(B),
individual-aliases of an individual «; iff Mt = A;.
The formulae (2) and (3) allow us to prove the technical
lemma below.

Lemma 5 Let M be a model of ¢(B), let t be
an indwidual-alias of «;, and let < r > ¢ €
CL([u]eo(B)). If there is a path from t that satisfies
< r > ¢, containing N individual-aliases tq1,... tN
of a1, ..., an respectively, then from every individual-
alias t' of a; in M, there is a path that satisfies
< r > ¢, containing N individual-aliases ty, ... ty
for ai,...,an (in the same order asty,... tn).

®Notice that < ¢ > ¢ = ¢ and [¢]¢ = .

Given a model M = (8,{R,},) of ¢(B), we can
obtain a new model M’ = (8§',{R.},®) of ¢(B) in
which there is exactly one individual-alias, for each in-
dividual in B. Let s € § be such that M,s = ¢(B).
For every individual «;, we randomly choose, among
its individual-aliases @ such that (s,z) € Rereate, a
distinguished one denoted by s,;. We define a set
of relations {R%} U {R,.41.} as follows: RY., .. =
{(8,80;) € Rereate | @ is an individual}, and R% =
(Rp — {(z,y) € Rp | M,y E Aj for some A;}) U
{(z,54;) | (x,y) € Rp and M,y |= A; for some A;}.
The structure M’ is defined as: &' = {z € S| (s,z) €
(Up RS) U R)}, Ry = Rl 01(S x &) and

/create = R/c/reate N (Sl X S/)’ and Hl(x) = H(I)’ for
each state ¢ € §' (from {R%} and R, ;. We get {R}}
as usual). Observe that the transformation from M to
M' does not change the number of “out-going edges”
for those states of M which are also states of M’. The
following two lemmas concern M’.

Lemma 6 Let M be a model of p(B), and M' a struc-
ture derived from M as specified above. Then for ev-
ery formula ¢ € CL(p1(B)), for every state x of M':
MazkEo if Mok

Lemma 7 Let M be a model of p(B) such that M,s |=
w(B), and let M' be a structure derived from M as
specified above. Then M',s = ¢(B).

We can now state the main theorem on reasoning in

CF-knowledge bases.

Theorem 8 A CF-knowledge base B is satisfiable iff
its DF-counterpart (BB) is satisfiable.

Corollary 9 Satisfiability and logical implication for
CF-knowledge bases (TBox and ABoz) are EXPTIME-
complete problems.

The second extension regards the language CZ, ob-
tained from C by adding the construct for inverse of
roles. Analogously to the case of CF, satisfiability of
a CZ-knowledge base B can be polynomially reduced
to satisfiability of a DZ-formula n(B), where DT is the
PDL obtained from D by allowing converse programs.
Let no(B) be a DI-formula defined similarly to ¢q(B)
in the case of CF, create a new atomic program, and
u an abbreviation for (P1U...UP, UP U...UP;)*,
where Py, ..., Py, are all the atomic roles in B. We de-
fine the DZ-counterpart of B as n(B) = ni(B) A n2(B),
where:

o n(B) =ni(B)A---An(B)Alcreate]([u]no(B)), with
each 0} (B) =< create > A; for each individual «; in

B.

e n2(B) = nA(B)A---Anh(B), where we have one n}(13)
of the form
[createl(<u > (A; A @) = [u](A; = ¢)), (4)

for each A;, and for each ¢ € C'L([u]no(B)).

Again, the role of (4) is to make all the states where a
certain A; holds, equivalent, so as to be able to collapse

them into a single state corresponding to the individual
«;. By reasoning similarly to the case of CF, we derive
the result below.®

Theorem 10 A CZ-knowledge base B is satisfiable iff
its DI-counterpart n(B) is satisfiable.

Corollary 11 Satisfiability and logical implication for
CI-knowledge bases (TBox and ABox) are EXPTIME-
complete problems.

We remark that, in establishing the satisfiability of
CF-knowledge bases, the satisfiability of CZ-knowledge
bases, and the satisfiability of a CZF concepts, we re-
sorted to a transformation of their models. Unfortu-
nately the kind of transformation used in the first two
cases cannot be composed with the one used in the
latter. This results in the impossibility of extending
the constructions carried out in this section to CZF-
knowledge bases.

Discussion and conclusion

The work by Schild on the correspondence between
DLs and PDLs provides an invaluable tool for devis-
ing decision procedures for very expressive DLs. In
this paper we included into this correspondence, no-
tions such as functional restrictions on both atomic
roles and their converse, number restrictions, and as-
sertions on individuals, that typically arise in modeling
structured knowledge. We made use of the correspon-
dence to determine decision procedures and establish
the decidability and the complexity of some of the most
expressive DLs appeared in the literature. It is worth
noticing that the PDLs defined in this paper are novel
and of interest in their own right.

Space limitations have prevented us to demonstrate
the full power of the results presented. We mention
here that they form the basis to derive suitable decision
procedures both for extensions of CZF that include n-
ary relation and qualified number restrictions, and for
knowledge bases (TBox and ABox) based on CF ex-
tended with qualified number restrictions. Moreover,
some of these results can also be formulated in the set-
ting of the p-calculus, that has been used to model
in single framework terminological cycles interpreted
according to Least and Greatest Fixpoint Semantics
(Nebel 1991, Schild 1994, De Giacomo & Lenzerini
1994).

In concluding the paper, we would like to show two
salient examples of use of the powerful DLs introduced
here. They concern the definition of concepts for the
representation of lists; and n-ary trees. Consider the
following inductive definition of list: nil is a list; a
node that has exactly one successor that is a list, is a
list; nothing else in a list. This is equivalent to define a
list as a chain (of any finite length) of nodes that termi-
nates with nil. Assuming node and nil to be concepts

5The proof is much simpler in this case, witness the
absence of constraints analogous to (2) and (3) above.

of our language, we can denote the concept list as (we

use C1 = Cy as a shorthand for €1 C Cy,Cy E Cy):
list = A(id(node N (< 1 succ)) o suce)*.nil

Similarly we can denote the class of (possibly infi-
nite) n-ary trees as:

ntree = Vchild”.L N
Vehild*.(node M (< 1 child™) M (< n child))

which defines a n_tree as a node having no father and
at most n children, and such that all descendents are
nodes having one father and at most n children.

Observe that, in order to fully capture the above
concepts, we make use of inverse roles, functional re-
strictions on both atomic and inverse roles, and num-
ber restrictions.

References

Attardi, G., and Simi, M. 1981. Consistency and com-
pleteness of omega, a logic for knowledge representa-
tion. In Proceedings of the International Joint Con-
ference on Artificial Intelligence, 504-510.

Baader, F., and Hollunder, B. 1991. A terminological
knowledge representation system with complete infer-
ence algorithm. In Proceedings of the Workshop on
Processing Declarative Knowledge, Lecture Notes in
Artificial Intelligence, pages 67-86: Springer-Verlag.

Ben-Ari, M.; Halpern, J. Y.; and Pnueli, A. 1982. De-
terministic propositional dynamic logic: Finite mod-
els, complexity, and completeness. Journal of Com-
puter and System Sciences, 25:402-417.

Borgida, A., and Patel-Schneider, P. F. 1993. A se-
mantics and complete algorithm for subsumption in
the CLASSIC description logic. Forthcoming.

Brachman, R. J., and Levesque, H. J. 1984. The
tractability of subsumption in frame-based descrip-
tion languages. In Proceedings of the Fourth National
Conference on Artificial Intelligence, 34-37.

Brachman, R. J.; McGuinness, D. L.; Patel-
Schneider, P. F.; Alperin Resnick, L.; and Borgida,
A. 1991. Living with CLASSIC: when and how to use
a KL-ONE-like language. In John F. Sowa, editor,
Principles of Semantic Networks, 401-456: Morgan
Kaufmann.

Brachman, R. J., and Schmolze J. G. 1985. An
overview of the KL-ONE knowledge representation
system. Cognitive Science, 9(2):171-216.

Buchheit M.; Donini F. M.; and Schaerf, A. 1993.
Decidable reasoning in terminological knowledge rep-
resentation systems. In Proceedings of the Thirteenth

International Joint Conference on Artificial Intelli-
gence, 704-709.

De Giacomo, G., and Lenzerini, M. 1994. Concept
language with number restrictions and fixpoints, and
its relationship with mu-calculus. In Proceedings of
Eleventh European Conference on Artificial Intelli-
gence.

Donini, F. M.; Hollunder, B.; Lenzerini M.,
Marchetti Spaccamela A.; Nardi, D.; and Nutt, W.
1992. The complexity of existential quantification in
concept languages. Artificial Intelligence, 2-3:309-
327.

Donini, F. M.; Lenzerini, M.; Nardi, D.; and Nutt,
W. 1991a. The complexity of concept languages. In
Proceedings of the Second International Conference

on Principles of Knowledge Representation and Rea-
soning, 151-162.

Donini, F. M.; Lenzerini, M.; Nardi, D.; and Nutt,
W. 1991b. Tractable concept languages. In Proceed-
ings of the Twelfth International Joint Conference on
Artificial Intelligence, 458-463.

Donini, F. M.; Lenzerini, M.; Nardi, D.; Nutt, W;
and Schaerf, A. 1992. Adding epistemic operators
to concept languages. In Proceedings of the Third
International Conference on Principles of Knowledge
Representation and Reasoning, 342-353.

Kozen, D., and Tiuryn, J. 1990. Logics of programs.
In Handbook of Theoretical Computer Science — For-
mal Models and Semantics, 789-840: Elsevier.

Levesque, H. J., and Brachman, R. J. 1987. Expres-
siveness and tractability in knowledge representation
and reasoning. Computational Intelligence, 3:78-93.

MacGregor, R. 1991. Inside the LOOM description
classifier. SIGART Bulletin, 2(3):88-92.

Nebel, B. 1988. Computational complexity of termi-
nological reasoning in BACK. Artificial Intelligence,
34(3):371-383.

Nebel, B. 1990. Terminological reasoning is inherently
intractable. Artificial Intelligence, 43:235-249.

Nebel, B. 1991. Terminological cycles: Semantics and
computational properties. In John F. Sowa, editor,
Principles of Semantic Networks, 331-361: Morgan
Kaufmann.

Patel-Schneider, P. F. 1987. A hybrid, decidable,
logic-based knowledge representation system. Com-
putational Intelligence, 3(2):64-77.

Schild, K. 1991. A correspondence theory for termi-
nological logics: Preliminary report. In Proceedings
of the Twelfth International Joint Conference on Ar-
tificial Intelligence, 466-471.

Schild, K. 1994. Terminological cycles and the propo-
sitional p-calculus. In Proceedings of the Fourth In-
ternational Conference on Knowledge Representation
and Reasoning.

Schmidt-Schauf3, M., and Smolka, G. 1991. Attribu-
tive concept descriptions with complements. Artificial
Intelligence, 48(1):1-26.

Vardi, M. Y., and Wolper, P. 1986. Automata-
theoretic techniques for modal logics of programs.

Journal of Computer and System Sciences, 32:183—
221.

