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Abstract. Though multiagent systems (MASs) are being increasingly used, few
methods exist to ensure survivability of MASs. All existing methods suffer from
two flaws. First, a centralized survivability algorithm (CSA) ensures survivability
of the MAS - unfortunately, if the node on which the CSA exists goes down,
the survivability of the MAS is questionable. Second, no mechanism exists to
change how the MAS is deployed when external factors trigger a re-evaluation
of the survivability of the MAS. In this paper, we present three algorithms to
address these two important problems. Our algorithms can be built on top of any
CSA. Our algorithms are completely distributed and can handle external triggers
to compute a new deployment. We report on experiments assessing the efficiency
of these algorithms.

1 Introduction

Though multiagent systems are rapidly growing in importance, there has been little
work to date on ensuring the survivability of multiagent systems (MASs for short). As
more and more MASs are deployed in applications ranging from auctions for critical
commodities like electricity to monitoring of nuclear plants and computer networks,
there is a growing need to ensure that these MASs are robust and resilient in the face of
network outages and server down times.

To date, there has been relatively little work on survivability of MASs. Most ap-
proaches to ensuring survivability of MASs are based on the idea of replicating or
cloning agents so that if a node hosting that agent goes down, a copy of the agent
residing on another network location will still be functioning. This paper falls within
this category of work. However, existing replication based approaches suffer from two
major flaws.

The first major flaw is that the survivability algorithms themselves are centralized.
In other words, even though the agents in the MAS may themselves be distributed across
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the network, the survivability algorithm itself resides on a single node. Thus, if the node
hosting the survivability algorithm goes down along with all nodes containing some
agent in the MAS, then the system is compromised. This way of “attacking” the MAS
can be easily accomplished by a competent hacker.

The second major flaw is that the survivability algorithms do not adapt to changes
that affect the survivability of the MAS. Most algorithms assume that once the surviv-
ability algorithm tells us where to replicate agents, we just replicate the agents at the
appropriate nodes and then ignore survivability issues altogether. It is clearly desirable
to continuously (or at least regularly) monitor how well the MAS is “surviving” and to
respond to changes in this quantity by redeploying the agent replicas to appropriate new
locations.

We present three distributed algorithms to ensure that a multiagent system will sur-
vive with maximal probability. These algorithms extend centralized algorithms for sur-
vivability such as those developed by [1] but are completely distributed and are adaptive
in the sense that they can dynamically adapt to changes in the probability with which
nodes will survive. The algorithms are shown to achieve a new deployment that pre-
serves whatever properties the centralized algorithm has. For example, in a recent paper
on survivability, Kraus et. al. [1] develop a centralized algorithm called COD for com-
puting deployments of MASs that maximize the probability of survival of the deploy-
ment. If our distributed algorithms were built on top of COD, the resulting deployments
created by our system would also maximize probability of survival.

We have also developed a prototype implementation of our algorithms and con-
ducted detailed experiments to assess how good the algorithms are from three points
of view: (i) what is the CPU time taken to find a deployment, (ii) what is the amount
of network time used up in redeploying agents, and (iii) what is the survivability of
deployments.

2 Assumptions

Throughout this paper, we assume that an agent is a program that provides one or more
services. Our framework for survivability is independent of the specific agent program-
ming language used to program the agent. In addition, we assume that a multiagent
application is a finite set of agents. We will develop the concept of a deployment agent
introduced in the next section that can be used by the MAS to ensure its own surviv-
ability.

We assume that a network is a fully connected graph G = (V, E),i.e. E = VxV.In
addition, we assume that each node n € V' has some memory, denoted space(n), that it
makes available for hosting agents in a given multiagent system. We also use space(a)
to denote the space requirements of an agent a. If A is a set of agents, space(A) is used
to denote ), - 4 space(a).

When a set D of nodes in a network G = (V, E) goes down, the resulting network
is the graph G' = (V — D, E — {(v1,v2) | (v1,v2) € E and eithervy € D orvy € D}).

A deployment of a MAS {ay,...,a,} w.rt anetwork G = (V, E) is a mapping
p:V — 2MAS guch that for all 1 < i < n, there exists a v € V such that a; € u(v).



Suppose p is a deployment of {a1,...,a,} w.r.t. a network G and suppose G' =
(V', E') is the resulting network when some set D of nodes goes down. u survives the
loss of D iff the restriction u' of u to V' — D is a deployment w.r.t. G'. Intuitively, this
definition merely says that a MAS survives when a set of nodes goes down if and only
if at least one copy of each agent in the MAS is still present on at least one node that
did not go down. We demonstrate our problem using the following example.

Example 1. Suppose V = {ny,nz,n3,n4} and M AS = {a, b, ¢, d}. A current deploy-
1{nent}iS given by: pioia(n1) = {a}, pora(n2) = {b,d}, pora(ns) = {a, b}, pora(ns) =
b, c}.

Suppose the system administrator of node n4 announces that this node will go down
in an hour in order to perform an urgent maintenance task. It is easy to see that ;4 will
not survive this event as agent ¢ will not be present in any of the nodes. Thus, 4
should be changed: a copy of agent ¢ should be deployed on one of the nodes n1, ..., n3
and additional copy of b may also be deployed in 71, ..., n3. Space restrictions of these
nodes may lead to additional changes in the deployment, e.g., a copy of d may be moved
from node n» to node ns.

3 Distributed Multiagent Survivability

In this section, we provide three alternative algorithms to ensure the survivability of
a MAS. As mentioned above, we assume that our distributed survivability algorithms
build on top of some arbitrary, but fixed centralized survivability algorithm CSA. Sev-
eral such algorithms exist such as those in [1]. We now describe each of these three
algorithms. Note that all copies of the deployment agent perform the actions here,
not just one copy (if only one copy performed the computations, then we would just
have a centralized algorithm).

As mentioned earlier, our algorithms will use a deployment agent (da for short)
which will ensure survivability. da is added to the MAS as an additional survivability
agent.

Definition 1. Suppose MAS is a multi-agent application. The survivability enhance-
ment of M AS, denoted M AS*, is the set M AS U {da} where da is a special agent
called deployment agent.

The rest of this section focuses on different ways of designing and implementing the
deployment agent da.

3.1 The ASA1 Algorithm

The ASA1 algorithm deploys a copy of da in every node of the network. We make the
following assumptions about da: (i) da knows the current deployment, (ii) whenever a
new deployment needs to be computed, da is triggered, (iii) da is built on top of any
arbitrary centralized survivability algorithm CSA.

As da is located in each node, we will assume that for any n € V, space(n) is the
available memory on n excluding the space for da.

Whenever the da agents are notified that a new deployment needs to be computed,
each copy of the da agent performs the following steps:



1. It examines the current deployment 44
2. Once da is told to redeploy by an external process, it uses the CSA algorithm to
compute a new deployment fiy,eq;
3. da stores the difference between fi;q and pineq in a special data structure called a
difference table. The difference table di f has the following schema:
— Node (string): node id for alln € V;
— Deploy (set of string): agents’ current deployments fio;4;
— Insrt (set of string): agents that are presently not located in the node but need
to be allocated according to the new deployment fi,,¢q;
— Remv (set of string): agents that are presently located in the node but need to
be deleted from it according to the new deployment i ,e4;
4. Each copy of da at each node looks at its Insrt and Remv columns and makes a
decision on how to delete and/or add agents from its node.

Notice that at any given instance in time, all the deployment agents on all nodes have
the same difference table. Our key task is to design step 4. Before doing this, we present
an example of a difference table.

Example 2. Consider the MAS and p,;q of Example 1. Consider a new deployment:

Mnew (nl) = {aa b}’ Mnew (n2) = {b: C}’ Mnew (7’L3) = {a: d}, and Mnew (’I’L4) = {d} In
this case, the difference table between ;4 and fineq 1S given by Table 1.

Node|Insrt|Remv|Deploy
ni | b a
na ¢ d b,d
n3 | d b a,b
ng | d | bc| b,c

Table 1. A difference table generated by deployment agent

Adding and/or deleting agents to/from nodes can be performed according to the
difference table. However, these operations should be handled very carefully as there
are two constraints that must be satisfied during the whole re-deployment process:

— space: while these operations are being performed, the space constraint on each
node must be satisfied;

— copies of agents: at any point in time during step (4), there must exist at least one
copy for each agent a € M AS in the network.

Example 3. To see why Step 4 is complex, consider the difference table in Table 1. One
may be tempted to say that we can implement the insertions and deletions as follows:
(i) Insert ¢ on ns. (ii) Delete d from ns. Notice however that we can insert ¢ on 75 only
if there is enough space on ns to accommodate b, ¢, d simultaneously (as otherwise the
host node n» may reject the insertion of c) for space violations. Alternatively, one may
be tempted to first delete d from node n4 to free space to insert ¢ - but this means that
agent d has disappeared from all nodes and is hence lost for ever !



Before presenting our algorithm for deleting/adding agents, we first present a few
definitions of concepts that will be used in the algorithm.

Definition 2. An agent a can be safely deleted from node n (denoted by safeDel(a,n))
if the number of copies of agent a in the Deploy column of the difference table is larger
than the number of copies of agent a in the Remv column.

When an agent can be safely deleted, we are guaranteed that at least one copy of the
agent is present elsewhere on the network. In our running example (Table 1), the only
agent that can be safely deleted is agent b at node n3.

We use Insrt(n), Remuv(n) and Deploy(n) to denote the insert list, the remove
list and the deploy list of node n € V in the difference table. The implementation of
da in ASAT1 algorithm is based on a set of logical rules governing the operations of da.
We first present these rules before describing the algorithm in detail. The rules use the
following action predicates (predicates representing actions are used in much the same
way as in Kowalski’s and Green’s formulations of planning, cf. [2]).

- ADD(a,n): Add agenta € M AS tonoden € V;

- DEL(A,n): Delete a set of agents A C M AS fromnode n € V;

- SWITCH(A,n,A',n'): Switch two sets of agents A C M AS and A’ C M AS
that are located on nodes n and n' respectively;

- remdif(A, L, n) and insdif (A, L, n): Suppose A is a set of agents, L is a string in
{Remwv, Insrt, Deploy}, and n is a node. remdif (A, L, n) removes all nodes in the
L-list of node n in the difference table. Likewise, insdif (A, L, n) inserts all nodes
in A into the L list of node n’s entry in the difference table.

Note that Insrt(n) represents the Insrt field of node n in the difference table. It spec-
ifies what new agents must be inserted into node n. In contrast, insdif (A, Insrt, n) spec-
ifies that Insrt(n) must be updated to Insrt(n) U A, i.e. it refers to an update of the
difference table itself. In the example of Table 1, remdif({b}, Deploy, ny) causes the
deploy field associated with n to be reset to just {d} instead of {b, d}.

We now introduce the rules governing the execution of these actions.

Rule 1 The first rule says that if A is a set of agents each of which can be safely deleted
from node n, then A can be removed from node n.
DEL(A,n) «+ (Va € A)safeDel(a,n)

Rule 2 This rule says that if a set A of agents is deleted from node n, we need to update
the difference table by removing A from the remove and deploy lists of node n.
remdif (A, Remv, n) A remdif (A, Deploy,n) <~ DEL(A,n)

Rule 3 This rule says that an agent a can be added to node n if there is sufficient space
on node n to accommodate a’s memory needs.
ADD(a,n) + (space(n) — space(Deploy(n)) > space(a)

Rule 4 If agent a is added to node n, we must remove its id from the insert column and
add it to the deploy column of node n.
remdif ({a}, Insrt, n) A insdif ({a}, Deploy(n)) < ADD(a,n)



Rule 5 These rules says that two sets of agents, A deployed on node n. and A" on node
n'!, can be switched if: A' is a subset of the insert set on node n as well as A’ is in
the deleted set of node n'; A is a subset of the remove set on node n and it is also in
the added list of node n'; furthermore, the space constraints on switching A and A'
between n and n' must be satisfied.
SWITCH(A,n,A",n") «

A" C Remu(n') N A" C Insrt(n) AN A C Remv(n) A A C Insrt(n') A

CHKSWITCH (A,n,A',n').
CHKSWITCH(A,n,A',n') «

(Space(n) — space(Deploy(n)) + space(A) > space(A’)) A

(space(n') — space(Deploy(n')) + space(A") > space(A)).

SWITCH (A,n, A',n") performs appropriate ADD and DEL actions on agents at
the appropriate nodes.
(Va € AYADD(a,n) A (Va € A)ADD(a,n') N DEL(A",n') A DEL(A,n)

«~ SWITCH(A,n,A",n)

Rule 6 This rule says when SWITCH (A,n, A',n') is performed, we must update the
difference table.
remdif (A, Remv,n) A remdif(A’, Remv, n’) A remdif(A’, Insrt, n)
Aremdif (A, Insrt,n’) A remdif(A, Deploy,n) A insdif (A’, Deploy, n)
Aremdif (A’ Deploy, n') A insdif (A, Deploy, n')
+— SWITCH(A,n,A',n').

Rule 7 The rules below deal with the case where there is no agent that can be safely
deleted from node n (the case shown in rule 1) and there is no current available space
for adding an agent (as described in rule 3) and there is no direct switch that could be
performed (the case of rule 5). That is, when more than two nodes are involved with
switch, we need the following rules.
SWITCH(A,n,A",n")
A" C Remwv(n') A A C Remwv(n) A (3B C A")B C Insrt(n) A
CHKSWITCH(A,n,A',n').
(Va € A"YADD(a,n) A (Va € A)ADD(a,n') NDEL(A",n') A DEL(A,n)
«~ SWITCH(A,n,A",n")

When switching A and A', if we move an agent b to a node where b is not the desired
agent in the new deployment, we should delete b from that node in the future process,
that is, we should add b to the delete list of the node.
remdif (A, Remv, n) A remdif (A’, Remv, n') A remdif (A, Deploy, n)A
insdif (A, Deploy, n) A remdif (A’, Deploy, n’) A insdif (A, Deploy, n’)
«~ SWITCH(A,n,A",n")
insdif ({b}, Remv,n) < (Vb € A")b ¢ Insrt(n) ASWITCH(A,n,A',n').
remdif ({b}, Insrt,n) < (Vb € A")b € Insrt(n) ASWITCH(A,n, A", n').
insdif ({b}, Remv,n’) < (Vb € A)b ¢ Insrt(n') ANSWITCH(A,n,A’',n").
remdif ({b}, Insrt,n’) « (Vb € A)b € Insrt(n') NSWITCH(A,n,A",n'").



Our algorithm to redeploy a MAS is based on the above set of rules.

Algorithm 1 ASA1(Ne, MAS,dif)

(% Input: (1) network Ne = (V, E) * )
(* (2) multiagent application M AS x)
(* (3) current difference table dif )

1. flag:s = true
2. while flag: do (* changes are needed by diff table *)
— if (foralln € V, Remv(n) = ) and Insrt(n) = (), then flag:, = false;
— else, do
(1) flags = true, flags = true
(2) while flags, do (* do updates; diff table updated *)
(a) flag: = false
(b) for eachn € V, do
A. A = Remw(n) (*do all possible deletions *)
B. if A # 0, then
(dzfa flag2) = DEL(A: n, dif, flag2)
(c) for eachn € V do
A. A = Insrt(n)
B. if A # 0, then (* add all agents you can *)
(dif, flags) =ADD(A, M AS, n,dif, flags)
(3) for eachn € V, do
if flags, then
i. A= Insrt(n)
ii. if A # {, then (* switch agents that could not be added before *)
(dif, flags) = SWITCH(A, M AS,n,dif, flags)

The function DEL(A,n, dif, flag) receives as input: (1) a set of agents A, (2) a
node n (3) a current difference table dif and (4) a flag. For each agent in A, the al-
gorithm checks if it can safely delete the agent; if so it deletes the agent from n and
updates the di f table. It returns the updated di f table and sets the flag to be true if any
agent was deleted. The function ADD(A, M AS,n,dif) receives as an input (1) a set
of agents A, (2) a multiagent application M AS, (3) a node n, (4) the current difference
table di f, and (5) a flag. For each agent @ € A if there is enough space on n to deploy
a, i.e., space(n) — space(Deploy(n)) > space(a), it adds a to n, updates the di f table
and changes flag to indicate an agent has been added to n. It returns: (1) the di f table,
and (2) the flag.

The SWITC H function uses a subroutine called CHK SWITCH (A,n, A',n',dif, M AS).
This function checks to see if any space overflows occur when exchanging a set A of
agents current on node n with a set of agents A’ currently on node n'. If no space
overflow occurs, it returns true - otherwise it returns false.

Algorithm 2 SWITCH(R, M AS,n,dif, flag)

(% Input: (1) a set of agents R *)
(% (2) multiagent application M AS )
(* (3) node idn *)
(% (4) current difference table dif )
(% (5) flag *)
(% Output (1) updated difference table dif x)
(* (2) flag *)



1. for each agent a € R, if (flag), do
if there exists a set A C Remwv(n), n' € V and a set A' C Remwv(n') such that
a. a€ A and
b. CHKSWITCH(A,n, A", n',dif, MAS) = true
then
a. switch A and A’ between nodes n and n'
b. Remv(n) = Remv(n) \ A, Remv(n') = Remv(n’) \ A,
Deploy(n) = Deploy(n) U A"\ A,
Deploy(n’) = Deploy(n') U A\ A
c. for eachb € A’, do
if b ¢ Insrt(n) then Remv(n) = Remwv(n) U {b}
else Insrt(n) = Insrt(n) \ {b}
d. for eachb € A, do
ifb ¢ Insrt(n') then Remv(n') = Remv(n') U {b}
else Insrt(n') = Insrt(n') \ {b}
e. update dif
[ flag = false
2. returndif and flag

The following lemmas are needed to prove that ASA1is correct.

Lemma 1. Each execution of action DEL, ADD, and SWITCH always results in a
decrease on the number of agents in column Remv or Insrt.

Proof. Rules 2 and 4 clearly show that the actions DEL(A,n) and ADD(a,n) remove
agents from Remuw(n) and Insrt(n) respectively. Now consider the SWITC H action.
When switching agents between two nodes only (Rule 5), SWITCH (A,n, A’',n') re-
moves A from Remwv(n), A from Insrt(n'), A’ from Remuv(n'), and A’ from Insrt(n),
as shown in Rule 6. In the case of Rule 7, where more than two nodes are involved in the
switch, action SWITCH (A, n, A',n') adds at most A+ A’ —1 agents in Remv(n) and
Remuw(n'), while removing at least A + A’ + 1 agents from Remv and Insrt of node
n and n'. This shows that performing each action must reduce the number of agents in
the Remwv or Insrt columns. O

Lemma 2. In each iteration of the while loop shown in Step 2 of algorithm ASA1, at
least one action (DEL, ADD, or SWITC H ) must be executed.

Proof. In Step (b) of the while loop (2), all possible deletions D EL will be performed
if agents in Remw can be safely deleted according to Rule 1. In the loop of Step (c),
all possible additions ADD will be done based on constraints shown in Rule 3. Even
if no action is performed in the while loop (2), in Step (3), according to Rule 5 and
Rule 7, there must exist two sets of agents on two different nodes such that action
SWITCH(A,n,A’,n') can be performed. This shows that for each while loop in
Step 2, at least one action on agents will be executed. O

Theorem 3 (Correctness). Suppose the rules (Rule 1 - 7) are applied according to
the order listed. Then the sequence of actions performed by Algorithm ASA1 is the one
performed by the rules. ASA1 always terminates.



Proof. In ASA1, the execution of actions is determined by the rules. With the assump-
tion that the actions of the rules are taken according to their order, actions executed by
the algorithm are those entailed by the rules.

In Algorithm ASA1, the while loop of Step (2) makes sure that no more agents can
be safely deleted and no more agents can be added to the nodes, i.e. flag, = false.
Thus, the loop in Step (2) terminates after some iterations.

For each execution of the while loop in Step 2, according to Lemma 2, there must
execute at least one action on some agent at some nodes. Moreover each action must
reduce the size of Remwv(n) or Insrt(n) as explained in Lemma 1. Thus the size of
Remuv and Insrt decreases monotonically with each iteration of the while loop. There-
fore the algorithm must reach a step where for all n in the network, Remwv(n) = () and
Insrt(n) = 0, which make flag; false, and the algorithm terminates. O

Example 4. Consider the network and the deployment of example 1. Suppose each node
in the network can store a deployment agent da and two regular agents. Suppose that
da were triggered and suppose they computed a new deployment as specified in exam-
ple 2. Then, each copy of da computes the di f table as listed in Table 1. According to
algorithm ASAT, b is first deleted from node n3 by da located on that node and b and
c are deleted from node ny4 by its deployment agent. d is not deleted in the first round
because it is not safe to delete it at that stage. b is then inserted into node n; (copied
from n2) and d is inserted into node n3 and ny. d is then removed from ns, and finally
c is inserted into node ns.

3.2 The ASA2 Algorithm

In this algorithm the deployment agent da is not located at each node. Instead, we add
da to a multiagent system M AS to get an updated multiagent system M AS™* and apply
the centralized algorithm on M AS™. This returns a new deployment fi,,¢,, Which is then
executed by the deployment agent. In this case, the programming of da is somewhat
different from the programming of it in ASA1 because there is no guarantee that every
node has a copy of da.

Algorithm ASA2 assumes that each agent has a mobility capability, i.e., it can ob-
tain a movement instruction from a da and perform it. In addition, each agent can delete
itself. In addition, all agents in M AS as well as da satisfy the condition that whenever
it receives a message from any da to move to another location, it does so. After per-
forming the move, it sends a message to all deployment agents saying it has moved.

Once piney is computed by CSA, each copy of da executes an algorithm called
DELETECOPY that deletes all but one copy of all agents in M AS. All copies of
da send messages to the agent copies to be deleted telling them to delete themselves.
da copies create a plan to move and/or copy the one remaining copy of each agent to
the nodes specified by fi,,¢.,- Note that all copies of da perform the same actions at the
same time.

Algorithm 4 ASA2(Ne, M AS™, poid; tnew)

(% Input: (1) network Ne = (V, E) *)
(% (2) multiagent application M AS™ x)
(% (3) current deployment po1q *)
(% (4) new deployment pinew *)



1. for each a € M AS*, do DELETECOPY(a, poid);
2. flag = true;
3. while flag, do
— if(foralln € V, poig(n) = pnew(n)), then flag = false
— else, do
(a) flag2 = false, flag3 = true
(b) forallm € V, do
i A= lnew(n)
ii. flag2=ADDCOPY (A, poid, bnew, M)
(c) if (flag2 = false), then
foreachn € V, do
if flag3, then
i. A= pold(n)
ii. flag3=SWITCHCOPY(A, jioid, finew)

The above algorithm uses DELET ECOPY (not specified explicitly due to space
constraints) which uses a deterministic algorithm to delete all but one copy of each
agent (e.g. via a lexicographic order on nodes). It is important that all copies of da use
the same DELET ECOPY algorithm so that they all agree on what nodes each agent
should be deleted from. Likewise AD DCOPY (a, ftoid, new, ™) adds a copy of agent
a to node n if there is space on node n and if the new deployment fi,,¢,, requires a to
be in n - it does this by asking a node currently hosting a to clone and move such a
copy of n. Details of ADDCOPY are suppressed due to space constraints. All these
algorithms update fo;4.

Algorithm 5 SWITCHCOPY(A, pold, thnew)
(% Input: (1) a set agents A * )
(* (2) old deployment poia  *)
(% (3) new deployment pinew *)
(% Output: (1) flag * )

1. for each agent a € A, do
if there exists a set A" onn' such that
(a) a € poa(n'), and
(b) CHKSWITCH(A,n,A',n') = true
then
(a) switch A and A’ between nodes n and n' and update Holds
(b) flag = false;
2. return flag

Example 5. Suppose nodes n;1 and ng of the network of Example 1 can store a da
agent and two other agents. Suppose ny and n4 can store only two regular agents. First,
agents a,b and da are removed from node ns. Then, agent b is removed from node 74.
The deployment agent da in node n; is responsible for all these deletions and for further
updates. It also updates p,;q accordingly. b is then added to node 11, and d and da are
added to nodes n3 and ng4. Only then is d deleted from n,. ¢ is then added to ny and
then deleted from ng4.



3.3 The ASA3 Algorithm

Just as in algorithm ASA2, the deployment agent used in Algorithm ASAS3 is not lo-
cated on each node. Instead it is treated just like any other agent and deployed using the
CSA. However, the procedure to decide on the order of deletion and adding copies of
agents to nodes is that of algorithm ASA1. The behavior of the deployment agent is as
follows.

Originally, it is deployed (along with other agents) using the CSA algorithm.
When survivability of one or more nodes changes, each da computes the dif-
ference table (as in the ASA1). Each da then sends a message to all agents
that can be safely deleted (including, possibly a deployment agent da ) telling
them to delete themselves and send a message just when they are about to
finish the operation. After this, they send “move” or “exchange” messages to
agents one at a time. When they get an acknowledgment that the move has been
performed, they send a move message to the next agent, and so on until they
are done. Note that while in Algorithm ASA1, agents can be moved/copied to
other nodes simultaneously, in algorithm ASAR this is done sequentially.

The correctness proof of ASAS is similar to the one done for ASA1. The details of the
proof are omitted in the paper due to space constraints.

4 Implementation and Experimental Results

We developed a prototype implementation of all the above algorithms in Java and tested
them out on a Linux PC. We used a sample of 31 existing agents to determine a distribu-
tion of agent sizes (in the 0 to 250 KB range). We ran experiments with varying network
bandwidths - for space reasons we only report on experiments where the bandwidth was
100 K B/s (this is twice the bandwidth of a dial-in model, but much smaller than the
bandwidth of broadband connections that may exceed 100 M B/s). The centralized
survivability algorithm we used for our experiments was COD [1].

Figure 1 shows the effect of problem size on the CPU time required by the algo-
rithms as well as the network time required to move the agents around. We used various
measures of “problem size” in our experiments (such as sum of numbers of agents and
nodes, ratio of number of agents to the number of nodes, etc.). Only the first is reported
in figure 1 due to space constraints. The markings such as n : 5,a : 4 refer to a MAS of
4 agents deployed over 5 nodes. We made the following observations:

1. CPU Time: ASA1 and ASA3 always outperform ASA2 w.r.t CPU time. ASA1 and
ASA3 are more or less incomparable.

2. Network Time: Again, ASA1 and ASA3 always outperform ASA2. As the problem
size gets larger, ASA1 outperforms ASA3.

Due to space constraints, we are unable to present full details of all our experiments.
However, the above experiments imply that ASA1 is preferable to both ASA2 and
ASARQ as far as time is concerned.



Figure 2 reports some results on survivability of deployments using the three al-
gorithms described in this paper. In the first set of experiments, we fix the size of da
agent but vary the problem size, while in the second set of experiments, we change the
ratio of da size to the average agent’s size. As shown in Figure 2, when the problem
size increases or the size of the da agent increases, the survivability of the deployments
identified by ASA3 becomes higher than the survivability of deployments identified by
ASA1 (note ASA2 has the same survivability as ASA3 ). The results demonstrate the
effect of da agents on survivability of deployment. Compared with ASA2 and ASA3,
ASA1 deploy more da agents in the network, and hence, the amount of available space
for adding regular agents is decreased.

5 Related Work and Conclusions

To our knowledge, there are no distributed probabilistic models of survivability of a
MAS. In addition, there are no works we are aware of that allow for redeployment of
agents when there are changes that trigger the need to examine if a redeployment is
needed. [7, 6] use agent-cloning and agent-merging techniques to mitigate agent over-
loading and promote system load balancing. Fan [8] proposes a BDI mechanism to
formally model agent cloning to balance agent workload. Fedoruk and Deters [12] pro-
pose transparent agent replication technique. Though an agent is represented by multi-
ple copies, this is an internal detail hidden from other agents. Several other frameworks
also support this kind of agent fault tolerance. Mishra and Huang [17, 13] present a De-
pendable Mobile Agent System (DaAgent), which includes three protocols for recover-
ing node and communication failures. Marin et al. [10] develop a framework to design
reliable distributed applications. They use simulations to assess migration and replica-
tion costs. Kumar et al. [11] apply the replication technique to the broker agents who
may be inaccessible due to system failures. They use the theory of teamwork to spec-
ify robust brokered architectures that can recover from broker failure. Our algorithms
ASA1, ASA2 and ASAS can be built on top of any of these centralized agent surviv-
ability models. The RECoMa system in [3] uses multiple servers to support matching
agents to computer. Our framework assumes that any agent can be deployed on any
computer, and focuses on dynamically deploying agents to increase system survivabil-
ity taking into account space constraints on nodes.

Klein et al. [18] propose a domain independent approach to handling of exceptions
in agent systems. This service can be viewed as a “coordination doctor”, who prede-
fines several typical abnormal situations that may arise in the system. Based on that,
they monitor agent’s behaviors, diagnose problematic situations and take recovery ac-
tions. Exception handling in their method is carried out by a set of collaborative agents,
however, the approach itself is essentially centralized. Kaminka et al [19] utilize social
knowledge, i.e. relationships and interactions among agents, to monitor the behavior of
team members and detect the coordination failures. Their work focuses on exceptions
concerning the agents themselves.

The fault-tolerance research area has used the N-Version Problem (NVP) approach
for fault tolerance. NVP involves the “independent generation of N > 2 functionally
equivalent programs from the same initial specification” [4]. In this approach, the relia-



bility of a software system is increased by developing several versions of special mod-
ules and incorporating them into a fault-tolerant system [14]. However, no distributed
architecture for ensuring the survivability of the program ensuring survivability is dis-
cussed.
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