
Approximation results for probabilistic survivability∗

Yingqian Zhang
University of Manchester

zhangy@cs.man.ac.uk

Efrat Manister, Sarit Kraus
Bar-Ilan University

{manister,sarit}@macs.biu.ac.il

V.S. Subrahmanian
University of Maryland

vs@cs.umd.edu

Abstract

As multiagent systems (MASs) are increasingly used in
industrial applications, the need to make them more ro-
bust and resilient against disruption increases dramatically.
Kraus et al. [1] has developed a probabilistic model (as-
suming complete ignorance of dependencies between node
failures) of survivability based on deploying each agent in a
MAS on one or more nodes. Finding a deployment that max-
imizes survivability is highly intractable for two reasons:
firstly, computing the survivability of any deployment is in-
tractable, and secondly, going through an exponential num-
ber of deployments to find the best one adds another layer
of intractability. In this paper, we study what happens when
node failures are independent. We show that computing sur-
vivability in this environment is still intractable. We propose
various heuristics to compute the survivability of a given de-
ployment. We have implemented and tested all these heuris-
tics. We report on the advantages and disadvantages of dif-
ferent heuristics in different environmental settings.

1. Introduction

As the use of Multiagent Systems (MASs) becomes
more and more widespread, there is a growing need to en-
sure that MASs are robust under attack. This can be en-
sured in many ways. One way is to ensure that security pro-
tocols are built into MASs so that they do not get compro-
mised. Another way is to ensure that when a network node
on which an agent is located goes down, that does not cause
the MAS itself to go down. This latter property can be en-
sured by replicating the agents wisely across the network.
This idea was first proposed by [3] and later studied by [1].

This paper builds upon work of [1] where a probabilistic
model of survivability is proposed. They assume that each
agent a in an MAS M has a size size(a) and that there is a
fully connected overlay network of nodes. Each node n has
a size size(n) denoting the amount of memory that that node
makes available to the MAS M for storing agents: size(n)

∗ Sarit Kraus is also affiliated with University of Maryland. This
work is supported in part by NSF grant #0222914, ISF grant #8008,
ARO grant DAAD190310202, ARL grants DAAD190320026
and DAAL0197K0135, AFOSR grant FA95500510269, NSF
grants IIS0329851 and 0205489, UC Berkeley contract num-
ber SA451832441 (subcontract from DARPA’s REAL program), and
EPSRC grant GR/R57843/01.

can be zero, it can be small or large as the owner of that node
wishes. In addition, each node has an associated disconnect
probability that denotes the probability that node will “go
down” within a finite window of time. A deployment µ of
the MAS M takes a node as input, and tells us which agents
in M are located at that node. For a deployment to be valid,
the space constraints of each node must be satisfied (i.e. the
sum of the sizes of the agents placed at that node by the de-
ployment must not exceed the size of the node). In addition,
each agent of M must be placed somewhere. [1] uses a lin-
ear programming model to define the probability of survival
of µ under the assumption that we are completely ignorant
about node failure dependencies. However, this assumption
is not always valid—for example, if there is an attack on US
government computers, it is unlikely that UNESCO com-
puters are under attack as well. The events “UMD com-
puters go down” and “UNESCO computers go down” are
probably independent. Likewise, because of the ignorance
assumption of [1], survival probabilities tend to be extraor-
dinarily pessimistic (low). [1] show that finding an optimal
deployment is intractable under their assumptions and pro-
vide an exponential algorithm to compute the survivability
of a given µ and double exponential algorithms to find a de-
ployment that maximizes the probability of survival. They
provide heuristics to find suboptimal deployments in poly-
nomial time.

As we can see above, there are many cases where the ig-
norance assumption of [1] is not appropriate and the inde-
pendence assumption is valid. In this paper, we make the
following contributions under the independence assump-
tions:

1. We show that even if we assume independence, find-
ing an optimal deployment and computing the surviv-
ability of a given deployment are both NP-hard.

2. We show that if we use a polynomial approximation to
find a suboptimal deployment, there will be instances
where the polynomial approximation says the surviv-
ability of a deployment is 0, when in fact the true sur-
vivability is 1. Thus, polynomial approximations are
guaranteed to find at least one terrible solution.

3. We provide two survivability functions SF1n and
SF1a. SF1n is exponential in the number of nodes,
while SF1a is exponential in the number of agents.

4. We provide five approximations that underestimate the
survivability of a deployment under the independence
assumption.

5. We describe results of an exhaustive set of experiments
we conducted to assess both the computation time and
the quality of solutions found by the above approxima-
tions. We identify the situations under which different
approximations work well.

2. Related work

The file allocation problem [2, 4, 8] tries to place a sin-
gle file in a location that minizes read/write and/or commu-
nications cost. Johnson et al. [9] add an additional constraint
that forces every object to have at least t copies on differ-
ent nodes so that the solutions tolerate up to (t−1) failures.
Our problem differs from theirs in two ways: first, we opti-
mize survival probability and second, we ensure that an en-
tire set of agents survive rather than just one file.

[3, 14] clone and merge agents to support load balanc-
ing. Fan [5] furnishes each local agent with the capability
of load-balancing. He proposes a BDI mechanism to for-
mally model agent cloning for balancing agent workload.
Fedoruk and Deters [6] hide agent replication methods in-
side each agent. Mishra and Huang [13, 12] develop three
protocols for recovering node and communication failures.
Marin et al. [11] develop a framework to design reliable dis-
tributed applications. They use simulations to assess migra-
tion and replication costs. Kumar et al. [10] replicate broker
agents to ensure that they are available when system fail-
ures occur. They use teamwork theory to specify how to
recover from broker failure. The RecoMa system [7] uses
multiple servers to support matching agents to computers.
None of these works assume a probabilistic failure model
for nodes and they do not optimize a probabilistic objec-
tive function that captures survivability.

3. Survivability of MASs

We now quickly recapitulate the concepts in [1]. A MAS
M is a finite set of agents—these agents can be written in
any language. We assume the existence of a network Ne =
(V,E) where V is the set of nodes in the network and E =
V × V , i.e. Ne is a fully connected overlay network. 1 A
deployment w.r.t. M,Ne is a mapping µ from V to 2M such
that:

1. For each n ∈ V , Σa∈µ(n)size(a) ≤ size(n).
2. For each a ∈ M , there exists a n ∈ V such that a ∈

µ(n).

µ(n) specifies the set of agents at node n.

1 This is a reasonable assumption as it does not require full connectivity
of the underlying physical network (just that all nodes in the physical
network are reachable - perhaps through multiple physical links - from
all other nodes).

Throughout the rest of this paper, we will assume that
M is an arbitrary but fixed MAS, and that Ne is an arbi-
trary, but fixed network. As a consequence, we will just say
“deployment” instead of “deployment w.r.t. M,Ne”.

A disconnect probability function (dp for short) is a map-
ping dp : V → [0, 1] that assigns to each node n ∈ V ,
a probability of “going down” or somehow being discon-
nected from the network.

Example 1 Consider a fully connected network with
V = {n1, n2, n3} and suppose the disconnect probabil-
ity function dp is given by: dp(n1) = 0.7, dp(n2) =
0.6, dp(n3) = 0.4. A deployment µ is given by:
µ(n1) = {a1, a2, a3}, µ(n2) = {a1}, µ(n3) = {a2, a3}.

We are now ready to define a survivability function.

Definition 3.1 A survivability function SF is a mapping
that takes as input, a deployment function µ and a dis-
connect probability function dp, and returns the probabil-
ity with which it is guaranteed that the MAS will survive,
i.e., at least one copy of each agent will be accessible.

This generalizes the probabilistic definition of survivability
given in [1] who makes the strong assumption that we are
ignorant of any dependencies between nodes.

4. Complexity results for survivability under
independence assumption

Any node in V can “go down” or somehow get “discon-
nected” from the network. Thus, any (N,N × N) where
N ⊆ V is a possible network that can arise in the future.
The survivability of N (under independence) is given by

surv(N) =
∏

np∈N

(1 − dp(np)) ·
∏

nq∈V \N

dp(nq). (1)

We say that µ is valid w.r.t. N iff for each agent a, {n | a ∈
µ(n)} ∩ N �= ∅. Suppose V alidN(µ) = {Ni | Ni ⊆ V
and µ is valid w.r.t Ni}. Then the probability of survival of
µ is given by ΣNi∈V alidN(µ)surv(Ni).

Finding the probability of survival of a deployment is at
least NP-hard even if we make the independence assump-
tion. Similarly, finding an optimal deployment is at least
NP-hard.

Proposition 4.1 The problem of computing the survival
probability of a given deployment under the independence
assumption and the problem of finding an optimal deploy-
ment are at least NP-hard.

One may be tempted to believe that we can find an approxi-
mation algorithm that is guaranteed to terminate in polyno-
mial time and give a deployment whose survival probability
is within ε of the survival probability of the optimal deploy-
ment (ε > 0). Unfortunately, the best such ε is 1 (under the
assumption that P �= NP.)

Theorem 4.2 If P �= NP , then for each polynomial algo-
rithm to compute a sub-optimal deployment, there are in-
stances in which the optimal deployment’s survival proba-
bility is 1, but the algorithm returns a deployment with sur-
vival probability 0.

Proof. Suppose that the claim above is not correct. Then
there exists a polynomial algorithm AL that always returns
a deployment with survival probability larger than 0, when
the optimal deployment survival probability is 1. We will
use AL in order to solve the NP-complete problem “sub-
set sum”. Given a set S = {s1, · · · , sn} and a sum S1, we
will build the following network.

Each member of the set s ∈ S will be represented by
an agent as, whose memory requirement is s, mem(as) =
s. There are 2 nodes, n1 and n2, with available memory
mem(n1) = S1 and mem(n2) =

∑
s∈S s − S1, respec-

tively. The disconnect probability for each node is 0, i.e.
∀idp(ni) = 0. It is easy to see:

1. The survivability of the optimal deployment is 1, if
there exists a subset S′ ⊆ S such that

∑
s′∈S′ s′ = S1.

2. If there is no subset S′ ⊆ S which its sum is S1, the
optimal deployment’s survival probability is 0.

Therefore we can define the following algorithm in order to
solve subset sum:
• By given a set S, build the corresponding network Ns

(as we described above).
• Run algorithm AL on Ns.
• If AL returns a deployment that its survival probability

is larger than 0, return Yes (There exists a subset S′ ⊆
S which its sum is S1).

• Otherwise return No.

5. Computing Survivability under the inde-
pendence assumption

Unless P = NP , we know (as finding the survivabil-
ity of a deployment is NP-hard) that any algorithm to com-
pute survivability must be exponential. We provide two al-
gorithms for this purpose (neither of which uses the expen-
sive linear programming approach of [1]). The SF1n al-
gorithm is a “naive” algorithm which is exponential in the
number of nodes (and is therefore suitable for use when V is
small) while the SF1a algorithm is exponential in the num-
ber of agents (and hence is suitable when M is small).

5.1. SF1n: a naive algorithm

One way to find the survivability of µ under the assump-
tion of independence is to use the definition directly. We
find all subsets of Ni ⊆ V w.r.t. which µ is a valid deploy-
ment. For each Ni, we compute the probability that Ni sur-
vives. The probability that µ survives (under independence)

is the sum of the probabilities that the Ni’s survive. This is
illustrated below.

Example 2 Suppose that a network and a deploy-
ment is given in Example 1. The possible future mini-
mal networks are: N1 = {n1}, N2 = {n2, n3}, N3 =
{n1, n2, n3}, N4 = {n1, n2}, N5 = {n1, n3}. The surviv-
ability of each network is: surv(N1) = (0.3)(0.6)(0.4) =
0.072 and surv(N2) = (1 − 0.6)(1 − 0.4)(0.7) = 0.168.
Similarly we have surv(N3) = 0.072, surv(N4) = 0.048,
surv(N5) = 0.108. The survivability of the deploy-
ment is given by:
surv(µ) = 0.072+0.168+0.072+0.048+0.108 = 0.468.

5.2. SF1a: an agent-based algorithm

Given a deployment µ, let Aa be the event that all the
nodes that agent a is deployed on are disconnected. Let Ad

be the event that at least one of Aa occurs. The probabil-
ity that event Aa does not occur is given by surv(Aa) =∏

a∈µ(nk)(1 − dp(nk)). In order for µ to survive, none of
the events Aa should occur. Unfortunately, the Aas events
are not mutually exclusive. Thus, in order to compute the
survivability of µ using Aa we will need to apply the rule
of the probability of the disjunction of not mutually exclu-
sive events as presented below.

Proposition 5.1 Suppose µ is a deployment w.r.t. an over-
lay network Ne = {V,E} and suppose node failures are
independent. Then
SF1a(µ) = 1 − Pr(Ad) where (2)
Pr(Ad) = Pr(Aa1 ∨ Aa2 ∨ . . . ∨ Aa|M|)

= 1 −
∑

a∈M

Pr(Aa) +
∑

ai �=aj∧ai,aj∈M

Pr(Aai ∧ Aaj)

+ . . . (−1)|M|+1Pr(Aa1 ∧ ... ∧ Aa|M|) (3)

SF1a finds all the Aai
’s and then computes the above for-

mula. The following example shows how it works.

Example 3 Consider the network and deploy-
ment in Example 1. Agent a1 is in nodes n1 and
n2: the probability that both get disconnected is:
Pr(Aa1) = dp(n1)dp(n2) = 0.7 × 0.6 = 0.42. Similarly,
we have: Pr(Aa2) = Pr(Aa3) = dp(n1)dp(n3) = 0.28;
Pr(Aa1 ∧ Aa2) = Pr(Aa1 ∧ Aa3) = dp(n1)dp(n2)dp(n3) =

0.168, Pr(Aa2 ∧ Aa3) = dp(n1)dp(n3) = 0.28;
Pr(Aa1 ∧ Aa2 ∧ Aa3) = dp(n1)dp(n2)dp(n3) = 0.168

Thus, the survivability of the deployment is given by:
SF1a(µ) = 1−(Pr(Aa1)+Pr(Aa2)+Pr(Aa3))+(Pr(Aa1∧
Aa2) + Pr(Aa1 ∧Aa3) + Pr(Aa2 ∧Aa3))− Pr(Aa1 ∧Aa2 ∧
Aa3) = 0.468.

Note that SF1n is exponential in the number of nodes while
SF1a is exponential in the number of agents. This is not a
surprise as the problem of finding the survivability of an
agent deployment is at least NP-hard even when the inde-
pendence assumption is made.

We can improve efficiency if we use an idea in [1] that
eliminates irrelevant agents—an agent a is irrelevant if there
is an agent a′ such that {n | a′ ∈ µ(n)} ⊆ {n′ | a ∈ µ(n′)}.
Throughout this paper, we will assume irrelevant agents are
eliminated.
Example 4 Consider the network Ne and a deployment µ
given in Example 1. We denote the nodes of an agent ai

locates by Loc(ai). For each agent, we have Loc(a1) =
{n1, n2}, Loc(a2) = {n1, n3}, and Loc(a3) = {n1, n3}.
As Loc(a3) ⊆ Loc(a2), we remove a3 from the deployment
µ and update µ as:
µ′(n1) = {a1, a2}, µ′(n2) = {a1}, and µ′(n3) = {a2}.
We compute the survivability of µ′ by SF2a:
surv(µ′) = 1−(Pr(A1)+Pr(A2))+Pr(A1∧A2) = 1−(0.42+

0.28) + 0.168 = 0.468. Clearly, surv(µ′) = surv(µ).

5.3. An upper bound on SF1a

As SF1a, SF1n both take exponential time, we now de-
velop a fast algorithm to compute an upper bound on SF1a.
The upper bound we provide can be used to evaluate heuris-
tics proposed later in the paper. Event Ad is the event that
all nodes on which some agent is located get disconnected.
We are therefore interested in the complement of event Ad.
If we find a lower bound for Prob(Ad) and subtract it from
1, we will get an upper bound on the survivability of µ. It is
easy to see that

∑
a∈M

Pr(Aa)−∑
ai �=aj∧ai,aj∈M

Pr(Aai ∧
Aaj) is a lower bound for Prob(Ad). Similarly, any even
number of terms in the expression of equation 3 provides a
lower bound. This lower bound can be calculate incremen-
tally until we run out of time or the difference between what
we add to the expression (an odd term) and what we sub-
tract from the expression (an even term) is very small. We
can then can take the maximum among all the lower bounds
that we computed. Subtracting this value from 1 will give us
an upper bound on the survivability of µ.

We now propose several approximations to compute de-
ployments. We are interested in finding lower bounds for
SF1n and SF1a — this is because we want to be sure that
when we say deployment µ has survival probability exceed-
ing some threshold, this is in fact true.

5.4. SF2: an anytime algorithm

Using the same idea that we used for computing the
upper bound, we can also compute a lower bound on the
survivability of µ. Again, looking at the complementary
event Ad, if we compute an upper bound of Prob(Ad)
and subtract it from 1, we get a lower bound on the val-
ues SF1a, SF1n return. Any odd number of terms of equa-
tion 3 provides an upper bound. An anytime algorithm can
iteratively add terms until we run out of time or the ratio be-
tween the maximum among the lower bounds and the min

among the upper bounds is smaller than a specified ratio.
Space limitations prevent us from presenting pseudo code
for the algorithm.

5.5. SF3: tree-based approximation

In order to compute the survivability of µ using SF1n

we sum up the probabilities of all possible future networks
in which µ is valid. Instead of considering all possible fu-
ture networks, SF3 only considers a polynomial number of
future networks (using a search tree defined below) and re-
turns the sum of their probabilities. The root of the tree is
labeled by V . The probability of V is computed. For every
n ∈ V there is a vertex labeled V −{n} in the second level
of the tree. For each label of such a vertex the algorithm
checks if µ is valid. For all such vertices, the probability
of their labeled possible future networks is computed. Only
the α vertices with the highest probability are further ex-
panded in the same way. If a vertex labeled Ni is expanded,
its children will be labeled by Ni \ {n} for n ∈ Ni. Again
only α vertices will be expanded and so on. We stop when
there are no more nodes to expand. SF3 sums the probabil-
ity of all the future networks in the search tree that µ is fea-
sible with respect to them.

If α is polynomial in V , SF3 considers only a polyno-
mial number of future networks. Therefore it may return
very poor results if there is a large number of nodes. SF3
is bounded by the number of subsets considered multiplied
by the largest subset probability. The largest subset proba-
bility is bounded by

∏
n∈V (1−dp(n)). Assume the discon-

nect probability of nodes is distributed normally in [0, 0.5].
The survivability given by SF3 is usually no greater than

α0.9|V |, which is smaller than 10−
|V |
22 . Since the perfor-

mance of SF3 could be very poor, we propose two heuris-
tics to improve its value.

1. Prior to running SF3, we remove a set of agents M ′

whose locations (i.e. the nodes they are deployed on)
are disjoint from the locations of any other agents.
We can compute surv(M ′) directly. We then apply
SF3 on the remaining agents M \ M ′. We return
surv(M ′) · SF3(M \ M ′).

2. The second heuristic is based on the idea that if the
number of nodes involved in SF3 is large (e.g. 20), we
want to reduce the number of nodes by removing some
nodes which contribute less to the survival of the µ.
We sort the nodes in ascending order of a′√1 − dp(n),
where a′ denotes the number of agents on node n. The
first K nodes can be deleted from the deployment. In
this way, we discard nodes whose dp is very low or that
have very few agents on it. 2

2 It may be possible to get rid of more irrelevant agents by the idea in
[1] in order to further simplify computation.

The algorithm below uses the 20-number as a bound.

Algorithm 1 SF3(α, µ, Ne, M, dp)

1. disjointsurv = rmvdisjoint(µ, Ne, M, dp); (* remove

the agents with disjoint locations, return the survivability of the re-
moved agent set *)

2. if |V | > 20, then
rmvnodes(µ, Ne, M, dp); (* remove some nodes ac-

cording to the criteria *)

3. bestval = calc surv(V); (* compute the survivability of
the future network V *)

4. temp = {V }, done = 0;
5. while (¬done), do

(a) flag = 0, X ′ = ∅, Nl = ∅; (* Nl is used for the
feasible future networks of level l *)

(b) while (temp �= ∅)

i. X = headof(temp), temp = temp \ {X};

ii. X ′ = X ′ ∪ {X \ {xi} | xi ∈ X};

(c) while (X ′ �= ∅), do (* remove invalid sets and repeti-
tive sets in X′ *)

i. X ′
sub = headof(X ′);

ii. if X ′
sub /∈ Nl and

⋃
n∈X′

sub

µ(n) = M , then

(* checks whether X′
sub is feasible and wasn’t con-

sidered earlier *)
Nl = Nl ∪ X ′

sub, flag = 1;

(d) if (¬flag), then done = 1;

(e) else, do

i. for (i = 0, i < |Nl|, i + +) (* add the surviv-
ability of feasible future networks of level l *)

bestval = bestval + surv(Ni)

ii. Nl = sort(Nl, surv(Nl)); (* sort sets in N in
descending order according to survivability *)

iii. for (j = 0, j < α, j + +) (* keep first α sets *)

• temp = temp ∪ headof(Nl);

• Nl = Nl \ headof(Nl);

6. return (bestval × disjointsurv).

The following proposition expresses that SF3 is a cor-
rect polynomial time approximation of SF1n.

Proposition 5.2 For any α > 0, SF3 is less than or equal
to the corresponding value returned by SF1n.

Proposition 5.3 Suppose α is fixed. Then the time complex-
ity to compute SF3 is O(α |V |2 log(α |V |) + α |V |2 M),
i.e. the computation is polynomial if α polynomial in |V |.

5.6. SF4: a disjoint based algorithm

For each agent ai ∈ M , let N i = {ni
1, · · · , ni

k} be the
set of nodes where ai is located. Let Ei

j be the event that the
node ni

j will survive, then the event that at least one copy of

ai will keep functioning is denoted by Ei = Ei
1 ∨ . . .∨Ei

k.
The probability of the event Ei can be computed by

P (Ei) = 1 − dp(ni
1)dp(ni

2) . . . dp(ni
k) (4)

We can now define the event that a MAS deployment µ will
survive by:

E(µ) = (E1
1 ∨ . . .∨E1

k)∧ . . .∧ (E|M |
1 ∨ . . .∨E

|M |
l) (5)

The probability of the event E(µ) represents the surviv-
ability of the deployment µ. Unfortunately, the Eis are not
mutually exclusive. However, SF4 assumes that the events
E1, E2, . . . , E|M | are pairwise disjoint. We have

SF4(µ) = P (E1)P (E2) . . . P (E|M |)
= (1 − dp(n1

1) · · · dp(n1
k)) × . . .

× (1 − dp(n|M |
1) · · · dp(n|M |

l))

Fortunately SF4(µ) gives an underestimate of the surviv-
ability of µ.

Proposition 5.4 SF4 underestimates the actual survivabil-
ity of µ.

5.7. SF4g: a group algorithm

SF4 computes each agent’s survival probability and then
returns the product of these survival probabilities. If no node
contains more than one agent, then SF4 returns the exact
answer. However, in general, when the number of agents is
large and there is a large number of nodes in which many
agents are located, SF4 can return a very low probability.
To improve this, if there are agents in a deployment that co-
exist in various nodes, we would consider these agents as
a group and compute the group’s survivability. We divide
all agents into several such groups, and then take the prod-
uct of the survival probabilities of all groups as the surviv-
ability of the deployment. An intuitive way to group agents
is to consider the agent a who has the lowest survivabil-
ity. We group a with other agents who have the most com-
mon nodes with it. When we compute the survivability of
each agent group, we use the algorithm SF1a. As SF1a

takes exponential time in the number of agents, we limit the
size of each group.

5.8. SF5: a split algorithm

Given a specific node, n ∈ V , we can consider two pos-
sible disjoint events. In the first event, E1, the node will stay
connected (and E1’s probability is 1−dp(n)). Alternatively,
in event E2, the node will be disconnected (with probabil-
ity dp(n)). If n stays connected, all the agents that are de-
ployed on it will survive. Thus the survivability of the net-
work, in this case, will depend on the survivability of the

rest of the agents that are located on V \{n}. If n is discon-
nected, the survivability of the network depends on the rest
of the nodes, i.e., V \ {n}. The survivability of the original
network is thus (1 − dp(n))Prob(E1) + dp(n)Prob(E2).
In both events the problem of computing the probability is
smaller than the original problem and could be solved recur-
sively. The sub problems usually become even smaller when
getting rid of irrelevant agents by the idea in [1]. There are
several stopping rules that are specified in the three first
lines of the pseudo code. The first two rules refers to sit-
uations in which it is possible to compute the exact survival
probability of the future network. The third one has to do
with future networks that has very small probability (com-
puting through the recursion using p; p = 1 in the first call
to SF5). For these networks of very low probability, SF4
is applied to underestimate the survivability.

Algorithm 2 SF5(µ, Ne, M, dp, p, ε)

1. If M = ∅ return 1;

2. Else, if the agents of M are located on disjoint sets of nodes
then return(

∏
a∈M

(1 − ∏
a∈µ(n)

dp(n)));

3. Else, if p < ε then return SF4(µ, Ne, M, dp).

4. Else, choose a node n ∈ V .

(a) V ′ = V \ {n}; Ne′ = Ne′′ = (V ′, V ′ × V ′); µ′ =
µ; M ′ = M \ {a|a ∈ µ(n)}; Get rid of irrelevant
agents in M and M ′;

(b) Adjust µ and Ne′ w.r.t M and µ′ and Ne′′ w.r.t M ′;

(c) return dp(n)×SF5(µ, Ne′, M, dp, dp(n)p, ε)+(1−
dp(n)) × SF5(µ′, Ne′′, M ′, dp, (1 − dp(n))p, ε).

Several heuristics that depends on the number of agents
deployed on each node and their dps can be applied to
choose the node in line 4 above. We state in the follow-
ing proposition that SF5 gives an underestimation of the
survivability of µ.

Proposition 5.5 SF5 underestimates the actual survivabil-
ity of µ.

6. Experiments

All algorithms in this paper were implemented on a
Linux PC. We assessed the quality of a solution as follows:
• if the number of nodes (or agents) is small enough (say,

less than 16), we compare the values returned by dif-
ferent approximations with the exact exponential algo-
rithm SF1n(in the case where there are more agents
than nodes) or SF1a (when there are more nodes than
agents); or

• if it is not feasible to compute either SF1n or SF1a,
we use the upper bound algorithm for comparison.

We considered various experimental settings. In this paper,
we consider instances taken from a (fictitous) company that
is using local servers, personal computers, and some web
servers to locate and run multiagent applications. As we

know, web servers and personal computers have high proba-
bilities of going down, while local servers usually have low
disconnect probabilities. In the next section, we describe
the variations of the settings we used in our experiments.
We use the term space ratio to refer to the ratio of the to-
tal amount of space available on nodes to the total space re-
quirements of agents.

6.1. Environments

Suppose a MAS application M includes a large num-
ber of agents but a relatively small number of servers (or
nodes) is available. We set the ratio of agents and nodes be
5/3. We consider the following two environments for such
problem size setting:
s1: The network consists of a small number of web servers
Nw (30%) and many local servers Nl (70%). Their discon-
nect probabilities are either very high, i.e. dp(Nw) ≥ 0.9,
or very low, i.e. dp(Nl) ≤ 0.1. The space ratio of nodes and
agents is between 2 and 3.
s3: The network includes local servers only. Suppose that
some of these servers are new, while the others are old, and
therefore disconnect probability of the servers is distributed
normally between 0 and 0.4. The space ratio of nodes and
agents is around 4.

Consider another multiagent application M ′ which con-
sists of a small number of agents. The company intends to
deploy M ′ on many personal computers and local servers
because the available resources on each server or PC are
limited. We assume that the ratio of nodes and agents is
5/3. The following environment is specified:
s2: Personal computers (30%) are employed, whose discon-
nect probabilities are over 0.9; they also use several local
servers which have low dp’s (less than 0.1). The space ra-
tio of nodes and agents is around 2–3.
s4: Only local servers of different ages are used to host
M ′. The disconnect probability of the servers is distributed
normally between 0 and 0.4. The space ratio of nodes and
agents is around 4.

A sample of 31 existing IMPACT agents deployed in var-
ious applications agents was used to determine a distribu-
tion of agent sizes (in the range of 0 to 250 KB). We use the
environments s1−s4 described above to test the survivabil-
ity algorithms.

6.2. Agent deployment

The method used to generate deployments is important
as different survivability algorithms may work well with
different types of deployments. In this paper, we gener-
ate deployments by the heuristics proposed in [1], namely
node-based heuristics and agent-based heuristics. In addi-
tion, we use a random-based method to represent other pos-

sible deployment. The deployment heuristics work as fol-
lows.

Node-based: This is based on the knapsack problem. We
first sort nodes in ascending order according to their discon-
nect probabilities. We then place agents on the sorted nodes
starting from the node with the lowest dp. We put as many
agents as possible on this node, then go to nodes with the
second lowest dp and so on.

Agent-based: This is based on the idea that we should
first deal with agents with high resource requirements. We
sort agents in ascending order according to resource re-
quirements, deploy the first agent, then choose the agent
with the second highest resource requirement, as so on until
there is no more space left for placing agents. When we de-
ploy an agent, we always choose the node whose dp is the
lowest among those capable of storing this agent.

Random-based: We first randomly choose a node, and
then randomly select and place agents on it subject to space
constraints. We make sure the deployment uses up all avail-
able resources on nodes.

6.3. Experimental results

In the results below, α in the tree based algorithm (SF3)
is set as the number of nodes in the deployment. The thresh-
old of approximation ratio in the anytime algorithm (SF2)
is defined as 0.9 and the time limit on the main part of the
algorithm was set to 5 seconds. The time units are of mi-
croseconds. Every recorded observation was averaged over
50 runs. We compare approximations in terms of the com-
putation time and the approximation ratio (i.e. SFs

actual value)
on various deployments with different environment settings
s1 − s4. We varied the problem size, i.e. sum of the num-
ber of agents and nodes, in all experiments. We present the
results as follows.

Experiment 1. In Experiment 1, we ran and compared five
approximations in setting s1 where the space ratio of nodes
to agents is between 2 and 3 and the dps are distributed ei-
ther in 0–0.1 or in 0.9–1. There are two kinds of deploy-
ments: one generated by agent-based heuristic and the other
by node-based heuristic. Table 1 illustrates the results of
approximation ratio by different algorithms. The problem
size varied from 48, 64 to 80. In the table, n18, a30 refers
to a MAS of 30 agents deployed over 18 nodes. SF3 and
split algorithms return very good approximations. In partic-
ular, SF3 always gives higher accuracy than SF4, anytime
and group algorithm. The split algorithm has the best ap-
proximation, though the difference between it and SF3 is
very small. Figure 1 shows the computation time (in loga-
rithm scale) taken by different approximations with varying
problem size on agent-based deployments. It is obvious that
SF3 needs much less computation time than split algorithm
and anytime algorithm (in the order of 103, 104, 105 − 107

respectively), while SF4 is the fastest algorithm among all.
It only takes several microseconds to compute the surviv-
ability of a given deployment. The time needed by group
algorithm is close to that of SF3.

Overall, in experimental setting s1, if the space ratio of
nodes to agents is below 3, SF3 outperforms other algo-
rithms both w.r.t. approximation ratio and computation time
into account.

Computation time
agent-based deployment

10

100

1000

10000

100000

1000000

10000000

48 64 80

Problem size

T
im

e(
lo

ga
rit

hm
 s

ca
le

)

Anytime SF4 SF3 SPlit Group

Figure 1. Experiment 1: computation time using
different algorithms with setting S1

Experiment 2. Table 2 and Figure 1 report the results of
various approximations in experimental setting s2. In terms
of accuracy, the split algorithm is still the best, followed
by SF3, which outperforms the group algorithm both on
the node-based deployments with problem size 48, 64, 80,
and on the agent-based deployments with size 80. In addi-
tion, the performance of SF4 and group algorithm is bet-
ter than that in Experiment 1. This is not surprising as in
s2, there are more agents who have disjoint locations with
others compared to those deployments in setting s1. Thus
SF4 and group algorithm should work better. The compu-
tation time taken by different approximations is similar to
that shown in Figure 1. We did not include it in the paper
due to space constraints. The results imply that SF3 is best
among all approximations as far as both time and accuracy
concerned.

Experiment 3. Figure 2 and 3 illustrate the approximation
ratios and the computation times for different algorithms in
setting s3. In both figures, the x-axis represents the prob-
lem size, varying from 32 to 98 in step of 16. The figures
show computation times on various deployments (i.e, node-
based, agent-based, and random-based) respectively. We did
not include the results of SF3 since its approximation ratio
is much lower (below 0.8) than others in this setting. Figure
2 shows the advantage of the split algorithm, which gives
the best approximation ratio no matter what kind of deploy-
ments it works on. The figure illustrates that all algorithms

Problem size deployment Anytime algorithm SF3 SF4 Split algorithm Group algorithm

n18, a30 node-based 0.951475 0.998919 0.879377 0.999515 0.948644
agent-based 0.930565 0.972725 0.879446 0.973295 0.947005

n24, a40 node-based 0.85197 0.964037 0.836856 0.965813 0.923682
agent-based 0.861461 0.881713 0.796948 0.889531 0.859259

n30, a50 node-based 0.899324 0.937145 0.775934 0.939865 0.893412
agent-based 0.811792 0.851059 0.731787 0.852492 0.827303

Table 1. Experiment 1: Approximation ratio of different algorithms with setting S1

Problem size deployment Anytime algorithm SF3 SF4 Split algorithm Group algorithm

n30, a18 node-based 0.928353 0.990334 0.974706 0.99961 0.989189
agent-based 0.939275 0.996562 0.973966 0.999569 0.998401

n40, a24 node-based 0.880772 0.980832 0.952544 0.98856 0.979202
agent-based 0.907723 0.968986 0.941974 0.991491 0.988068

n50, a30 node-based 0.923707 0.981228 0.958711 0.973521 0.96628
agent-based 0.910653 0.972855 0.900914 0.976648 0.967943

Table 2. Experiment 2: Approximation ratio of different algorithms with setting S2

size deployment Anytime SF4 Split Group

n20,a12 node-based 0.99988 0.999971 0.999996 0.999996
agent-based 0.999845 0.99981 0.99996 0.99994

random 0.991724 0.999837 0.999998 0.999999
n30,a18 node-based 0.999922 0.999965 0.999983 0.999988

agent-based 0.99979 0.999535 0.999852 0.999823
random 0.991622 0.999918 0.999985 0.999983

n40,a24 node-based 0.999723 0.999969 0.999985 0.999983
agent-based 0.999588 0.999269 0.999729 0.999681

random 0.991255 0.999639 0.999895 0.999889
n50,a30 node-based 0.999661 0.999968 0.99989 0.999895

agent-based 0.999398 0.999136 0.999649 0.999638
random 0.990589 0.999655 0.999775 0.999787

n60,a36 node-based 0.999681 0.999923 0.999957 0.999971
agent-based 0.999217 0.998105 0.999344 0.999097

random 0.976279 0.998948 0.999663 0.999713

Table 3. Experiment 4: Approximation ratio of dif-
ferent algorithms with setting s4

have high approximate ratio (over 0.96) on node-based de-
ployments. As for agent-based deployments, all algorithms
return over 0.90 approximate ratio with problem size no
larger than 80. Only the ratio of SF4 drops to 0.86 when
the problem size goes up to 96. All algorithms but anytime
algorithm get above 95% accuracy on random-based de-
ployments. The approximate performance of all algorithms
decrease as the problem size increases. The anytime algo-
rithm converges much faster on node-based deployments
than agent-based deployments with setting s3—the com-
putation time taken on the latter is 100 times or so when
the problem size is over 48 according to Figure 3. The time
taken by split algorithm is about 10 times that taken by the
group algorithm. SF4 is the fast algorithm among all.

Experiment 4. Experiment 4 was carried out with envi-
ronment setting s4, where the ratio of nodes to agents is
5 : 3, and dp’s are distributed normally in [0, 0.4]. Table

3 and Figure 4 show the effect of problem size on the ap-
proximation ratio and computation time by various approx-
imations. We did not include the results of SF3 because of
its low approximation ratio (below 0.8). As far as accuracy
concerned, the performance of all approximations is very
good—the accuracy is always over 0.97. In particular, SF4,
split and group algorithms could always achieve over 0.998
approximation ratio in Experiment 4 according to Table 3.
Since there are more nodes than agents, the size of each
node decreases compared with that in Experiment 3, thus
most of agents are disjoint with others w.r.t their locations,
which makes algorithms, especially SF4 and group algo-
rithm, perform well. Unlike that shown in Experiment 3,
anytime algorithm in Experiment 4 converged pretty fast
with no matter what kind of deployments. The computa-
tion time taken by SF4, split and group algorithm is very
close to those in Experiment 3.

Experiment 5. In Experiment 5, we repeated experiment
1 with setting s1 but increased the space ratio of nodes to
agents from 2–3 to 3–4. Table 4 illustrates that SF3 returns
lower survivabilities than split and group algorithms, more-
over, its accuracy is even lower than SF4 when the num-
ber of nodes and agents is 30 and 50. In addition, Figure 5
shows that SF3 is the most time-consuming algorithm with
the problem size 80 where SF3 needs 100 times of compu-
tation time than split and group algorithms. The experiment
results imply that with such setting used in Experiment 5,
SF3 is no longer the preferred approximations especially
with the large problem size. Instead, split algorithm demon-
strated its capability of fast and accurate computation.

Due to space constraints, we are unable to report full de-
tails of all our experiments. A brief summary is given be-
low:

• As shown in Experiment 1 and 2, SF3 is preferable to

Problem size deployment Anytime algorithm SF3 SF4 Split algorithm Group algorithm

n18, a30 node-based 0.981061 0.98647 0.96855 0.998956 0.98707
agent-based 0.973769 0.986316 0.964855 0.999059 0.988083

n24, a40 node-based 0.979052 0.991792 0.978524 0.99866 0.994861
agent-based 0.980291 0.992817 0.976784 0.998752 0.99174

n30, a50 node-based 0.98326 0.975502 0.982723 0.998131 0.994358
agent-based 0.981894 0.975746 0.978989 0.997898 0.994035

Table 4. Experiment 5: Approximation ratio of different algorithms in setting S1 but with larger space ratio (3-4)

Approximation ratio of different algorithms
node-based deployment

0.95

0.96

0.97

0.98

0.99

1

32 48 64 80 96

Problem size

ap
pr

ox
im

at
io

n
ra

tio

Approximation ratio of different algorithms
 agent-based deployment

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

32 48 64 80 96

Problem size

ap
pr

ox
im

at
io

n
ra

tio

Approximation ratio
random-based deployment

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

32 48 64 80 96

Problem size

ap
pr

ox
im

at
io

n
ra

tio

Anytime algo. SF4 Split algo. Group algo

Figure 2. Experiment 3: approximation ratio of
different algorithms with setting S3

other approximations as far as time and accuracy are
concerned in settings s1 and s2, where (1) the discon-
nect probabilities of the nodes are distributed either in
[0, 0.1], or in [0.9, 1]; and (2) the space ratio of nodes
to agents is less than 3. However, Experiment 5 shows
that when the space ratio is increased to 4, SF3 no
longer give the best performance. The split algorithm
is the best instead.

• The Split algorithm outperforms others in setting s3,

Computation Time
node-based deployment

1

10

100

1000

10000

100000

1000000

32 48 64 80 96

Problem Size

T
im

e
Computation Time

agent-based deployment

1

10

100

1000

10000

100000

1000000

10000000

100000000

32 48 64 80 96

Problem Size

T
im

e

Computation time by different algorithms
random-based deployment

1

10

100

1000

10000

100000

1000000

10000000

32 48 64 80 96

Anytime Algo SF4 Split Algo Group Algo

Figure 3. Experiment 3: computation time of dif-
ferent algorithms with setting S3

where (1) the disconnect probabilities of the nodes fol-
low normal distribution in [0, 0.4]; and (2) the ratio of
nodes to agents is 3 : 5.

• in setting s4, where the dp’s are normally distributed
in [0, 0.4] and the ratio of nodes to agents is 5 : 3, al-
though every approximation does well in terms of ac-
curacy, SF4 is preferable to others when computation
time is taken into account.

• All experiment results demonstrate that SF4 has an
unbeatable fast computation time.

Computation time
node-based deployment

1

10

100

1000

10000

100000

32 48 64 80 96

Problem size

T
im

e

Comuputation Time
agent-based deployment

1

10

100

1000

10000

100000

32 48 64 80 96

Problem size

T
im

e

Computation time
random-based deployment

1

10

100

1000

10000

100000

1000000

32 48 64 80 96

Problem size

T
im

e

Anytime SF4 Split Group

Figure 4. Experiment 4: computation time of dif-
ferent algorithms with setting S4

7. Conclusion

In this paper, we extended the work presented in [1]. We
studied what happens when we assume that node failures in
the network are independent. We provided complexity re-
sults on computing optimal deployments under the indepen-
dence assumption and showed that all polynomial approx-
imations are bound to be terrible in some cases. We pro-
posed exponential exact algorithms to compute the surviv-
ability of a deployment and also provided fast heuristics.
These algorithms to compute survivability of a deployment
may be used in conjunction with algorithms in [1] to find
optimal deployments. We conducted a set of experiments to
assess the survivability of deployments found by these algo-
rithms and also the computation time involved. Our results
show that different algorithms work well in different envi-
ronments.

Computation time
agent-based deployment

1

10

100

1000

10000

100000

1000000

48 64 80

Problem size

T
im

e

Anytime SF4 SF3 Split Group

Figure 5. Experiment 5: computation time using
different algorithms in setting S1 but with larger
space ratio (3-4)

References

[1] S. Kraus, V. S. Subrahmanian, and N. C. Tacs. Probabilisti-
cally survivable MASs. In Proc. IJCAI-03, pp 789–795, 2003.

[2] P. M. G. Apers. Data allocation in distributed database sys-
tems. ACM Trans. Database Syst., 13(3):263–304, 1988.

[3] K. S. Decker, K. Sycara, and M. Williamson. Cloning in
intelligent, adaptive information agents. In C. Zhang and
D. Lukose, editors, Multi-Agent Systems: Methodologies and
Applications, pp 63–75. Springer-Verlag, 1997.

[4] X. Du and F. J. Maryanski. Data allocation in a dynamically
reconfigurable environment. In Proceedings of the Fourth In-
ternational Conference on Data Engineering, pp 74–81. IEEE
Computer Society, 1988.

[5] X. Fan. On splitting and cloning agents, 2001. Turku Center
for Computer Science, Tech. Reports 407.

[6] A. Fedoruk and R. Deters. Improving fault-tolerance by repli-
cating agents. In Proc. AAMAS-02, pp 737–744, 2002.

[7] J. A. Giampapa, O. H. Juarez-Espinosa, and K. P. Sycara.
Configuration management for multi-agent systems. In Proc.
of AGENTS-01, pp 230–231, 2001.

[8] Y. Huang and O. Wolfson. A competitive dynamic data repli-
cation algorithm. In ICDE, pp 310–317, 1993.

[9] G. F. Johnson and A. K. Singh. Stable and fault-tolerant object
allocation. In Symposium on Principles of Distributed Com-
puting, pp 259–268, 2000.

[10] S. Kumar, P. Cohen, and H. Levesque. The adaptive agent
architecture: achieving fault-tolerance using persistent broker
teams. In Proc. of ICMAS, pp 159–166, 2000.

[11] O. Marin, P. Sens, J. Briot, and Z. Guessoum. Towards adap-
tive fault tolerance for distributed multi-agent systems. In Pro-
ceedings of ERSADS. 2001.

[12] S. Mishra. Agent fault tolerance using group communica-
tion. In Proc. of PDPTA-01, NV, 2001.

[13] S. Mishra and Y. Huang. Fault tolerance in agent-based com-
puting systems. In Proc. of the 13th ISCA, 2000.

[14] O. Shehory, K. P. Sycara, P. Chalasani, and S. Jha. Increasing
resource utilization and task performance by agent cloning. In
Proc. of ATAL-98, pp 413-426, 1998.

