
SCAN is complete for all Sahlqvist formulae?

V. Goranko1, U. Hustadt2, R. A. Schmidt3 and D. Vakarelov4

1 Rand Afrikaans University, South Africa vfg@na.rau.ac.za
2 University of Liverpool, UK, U.Hustadt@csc.liv.ac.uk
3 University of Manchester, UK, schmidt@cs.man.ac.uk

4 Sofia University, Bulgaria, dvak@fmi.uni-sofia.bg

Abstract. scan is an algorithm for reducing existential second-order
logic formulae to equivalent simpler formulae, often first-order logic for-
mulae. It is provably impossible for such a reduction to first-order logic
to be successful for every second-order logic formula which has an equiv-
alent first-order formula. In this paper we show that scan successfully
computes the first-order equivalents of all Sahlqvist formulae in the clas-
sical (multi-)modal language.

1 Introduction

One of the most general results on first-order definability and completeness in
modal logic is Sahlqvist’s theorem [16] where two notable facts are proved for
a large, syntactically defined class of modal formulae, now called Sahlqvist for-
mulae: first, the correspondence result, which says that Sahlqvist formulae all
define first-order conditions on Kripke frames and these conditions can be ef-
fectively “computed” from the modal formulae; and second, the completeness
result, which says that all those formulae are canonical, i.e. valid in their respec-
tive canonical frames, hence axiomatise completely the classes of frames satisfy-
ing the corresponding first-order conditions. The class of Sahlqvist formulae has
been studied extensively, and several alternative proofs and generalisations have
been proposed (see [19, 17, 11, 4, 10, 9]).

Computing the first-order equivalent of a modal formula (if it exists) amounts
to the elimination of the universal monadic second-order quantifiers expressing
the validity in a frame of that formula or, equivalently, the elimination of the
existential monadic second-order quantifiers expressing the satisfiability of the
formula. A well-known algorithm for eliminating existential second-order quanti-
fiers is scan [8]. scan does not succeed for all first-order definable modal formu-
lae, for example, if we take the K axiom 2(ϕ → ψ) → (2ϕ → 2ψ) and replace
φ and ψ by two distinct instances of the McKinsey axiom, e.g. 23p → 32p

? This work was supported by EU COST Action 274, and research grants GR/M88761
and GR/R92035 from the UK EPSRC. The first author’s work was supported by
research grants from Rand Afrikaans University. Part of the work by the third author
was done while on sabbatical leave at the Max-Planck-Institut für Informatik, Ger-
many, in 2002. We would also like the thank the referees for their helpful comments.



and 23q → 32q, respectively, then scan will not terminate on the resulting
formula, although it is equivalent to the first-order formula >. However, scan

has been proved correct whenever it gives an answer [8].
An alternative algorithm to scan is dls [5, 13, 18]. scan and dls are incom-

parable concerning their ability to compute first-order correspondences for modal
formulae. For example, while scan successfully computes a first-order equivalent
formula for (32(p∨q)∧32(p∨¬q)∧32(¬p∨q)) → (23(p∨q)∨23p∨23(p∧q)),
dls fails. On the other hand, there are also examples where dls succeeds and
scan fails.

In this paper we show that scan successfully computes the first-order equiv-
alents of all classical Sahlqvist formulae. To our knowledge, this is the first
completeness result for a quantifier elimination algorithm.

We assume basic knowledge of the syntax and semantics of modal logic and
first-order resolution. State-of-the-art references on modal logic and on auto-
mated deduction including resolution are [2, 3] and [1, 15], respectively.

2 Sahlqvist formulae

We fix an arbitrary propositional (multi-)modal language. For technical conve-
nience we assume that the primitive connectives in the language are ¬, ∧, and
the diamonds, while the others are definable as usual, e.g. ϕ → ψ is defined as
¬(ϕ ∧ ¬ψ). Most of the following definitions are quoted from [2].

An occurrence of a propositional variable in a modal formula ϕ is positive
(negative) iff it is in the scope of an even (odd) number of negations. A modal
formula ϕ is positive (negative) in a variable q iff all occurrences of q in ϕ are
positive (negative). A modal formula ϕ is positive (negative) iff all occurrences
of propositional variables in ϕ are positive (negative). A boxed atom is a formula
of the form 2k1

. . .2kn
q, where 2k1

, . . . , 2kn
is a (possibly empty) string of

(possibly different) boxes and q is a propositional variable.
A Sahlqvist antecedent is a modal formula constructed from the propositional

constants ⊥ and >, boxed atoms and negative formulae by applying ∨, ∧, and
diamonds. A definite Sahlqvist antecedent is a Sahlqvist antecedent obtained
without applying ∨ (i.e. constructed from the propositional constants ⊥ and
>, boxed atoms and negative formulae by applying only ∧ and diamonds). A
(definite) Sahlqvist implication is a modal formula ϕ → ψ where ϕ is a (def-
inite) Sahlqvist antecedent and ψ is a positive formula. A (definite) Sahlqvist
formula is a modal formula constructed from (definite) Sahlqvist implications
by freely applying boxes and conjunctions, and by applying disjunctions to for-
mulae without common propositional variables. A basic Sahlqvist formula is a
definite Sahlqvist formula obtained from definite Sahlqvist implications without
applying conjunctions. It can be shown [9]) that that every Sahlqvist formula is
semantically equivalent to a conjunction of basic Sahlqvist formulae.

Example 1.

i. 3(¬2(p ∨ q) ∧ 322q) → 23(p ∧ q) is a Sahlqvist formula.



ii. 23p → 2p and 2(p ∨ q) → 2p are not Sahlqvist formulae, but can be
converted into Sahlqvist formulae defining the same semantic conditions by
taking their contrapositions and reversing the signs of p and q.

iii. 23p→ 32p and 2(2p→ p) → 2p are not Sahlqvist formulae, and cannot
be converted into Sahlqvist formulae defining the same semantic conditions,
because both are known not to be first-order definable.

Theorem 1 ([16]). Every Sahlqvist formula ϕ is locally first-order definable,
i.e. there is a first-order formula αϕ(x) of the first-order language with equality
and binary relational symbols corresponding to the modal operators in ϕ, such
that for every Kripke frame F with a domain W and w ∈ W , F,w |= ϕ iff
F 
w αϕ(x) (where |= denotes modal validity, while 
 denotes first-order truth).

The problem whether a given modal formula is frame-equivalent to some
Sahlqvist formula is not known to be decidable, and most probably it is not.
However, syntactical transformations like the one used in Example 1.ii can extend
the applicability of the result we present in this paper.

3 The SCAN algorithm

scan reduces existentially quantified second-order sentences to equivalent first-
order formulations. Given a second-order sentence containing existentially quan-
tified second-order variables, the algorithm generates sufficiently many logical
consequences, eventually keeping from the resulting set of formulae only those
in which no second-order variables occur. The algorithm involves three stages:

(i) transformation to clausal form and (inner) Skolemization;
(ii) C-resolution;
(iii) reverse Skolemization (unskolemization).

The input of scan is a second-order formula of the form ∃Q1 . . . ∃Qk ψ,
where the Qi are unary predicate variables and ψ is a first-order formula. In
the first stage scan converts ψ into clausal form, written Cls(ψ), by transfor-
mation into conjunctive normal form, inner Skolemization, and clausifying the
Skolemized formula [12, 14]. In the second stage scan performs a special kind of
constraint resolution, called C-resolution. It generates all and only resolvents and
factors with the second-order variables that are to be eliminated. When com-
puting frame correspondence properties, all existentially quantified second-order
variables Q1, . . . , Qk are eliminated.

To allow for a more concise proof of the main result, our presentation of
C-resolution differs slightly from [8] in that we have explicitly included purity
deletion, subsumption deletion, and condensation in the calculus.

In the following clauses are considered to be multisets of literals. A literal
is either an atom P (t1, . . . , tn) or t1 ≈ t2 (also called positive literal) where
P is an n-ary predicate symbol and t1, . . . , tn are terms, or a negative literal
¬P (t1, . . . , tn), or t1 6≈ t2. An atom t1 ≈ t2 is also called an equation, while



a negative literal t1 6≈ t2 is called an inequation. We consider clauses to be
identical up to variable renaming, that is, if C and D are clauses such that there
exists a variable renaming σ with Cσ = D, then we consider C and D to be
equal. A subclause of a clause C is a submultiset of C. A variable indecomposable
clause is a clause that cannot be split into non-empty subclauses which do not
share variables. The finest partition of a clause into variable indecomposable
subclauses is its variable partition. If D = C ∨ s1 6≈ t1 ∨ . . .∨ sn 6≈ tn is a clause
such that C does not contain any inequations, and σ is a most general unifier of
s1 ≈ t1 ∧ . . . ∧ sn ≈ tn (that is, siσ ≈ tiσ for every i, 1 ≤ i ≤ n, and σ is the
most general substitution with this property), then we say Cσ is obtained from
D by constraint elimination. Note that Cσ is unique up to variable renaming.

A literal with a unary predicate symbol among Q1, . . . , Qk, is a Q-literal, a
literal with a binary predicate symbol (not including equality) is an R-literal.

A subclause D of a clause C is a split component of C iff (i) if L′ is a literal
in C but not in D, then L′ and D are variable-disjoint and (ii) there is no proper
subclause D′ ⊂ D satisfying property (i). If C ∨L1 ∨ . . .∨Ln, n ≥ 2, is a clause
and there exists a most general unifier σ of L1, . . . , Ln, then (C∨L1)σ is called a
factor of C ∨L1∨ . . .∨Ln. The condensation cond(C) of a clause C is a minimal
subclause D of C such that there exists a substitution σ with Lσ ∈ D for every
L ∈ C. A clause C is condensed iff cond(C) is identical to C. A clause set is a
set of clauses. With ] we denote the disjoint union of two sets.

Derivations in the C-resolution calculus are constructed using expansion rules
and deletion rules. The only expansion rule in the C-resolution calculus is the
following:

Deduction:
N

N ∪ {C}
if C is a C-resolvent or C-factor of premises in N .

C-resolvents and C-factors are computed using the following inference rules :

C-resolution:
C ∨Q(s1, . . . , sn) D ∨ ¬Q(t1, . . . , tn)

C ∨D ∨ s1 6≈ t1 ∨ . . . ∨ sn 6≈ tn
provided the two premises have no variables in common and C ∨ Q(s1, . . . , sn)
and D∨¬Q(t1, . . . , tn) are distinct clauses. (As usual we assume the clauses are
normalised by variable renaming so that the premises of the C-resolution do not
share any variables.) The clause C ∨Q(s1, . . . , sn) is called the positive premise
and the clause D∨¬Q(t1, . . . , tn) the negative premise of the inference step. The
conclusion is called a C-resolvent with respect to Q.

C-factoring:
C ∨Q(s1, . . . , sn) ∨Q(t1, . . . , tn)

C ∨Q(s1, . . . , sn) ∨ s1 6≈ t1 ∨ . . . ∨ sn 6≈ tn
The conclusion is called a C-factor with respect to Q.

In addition, the C-resolution calculus includes four deletion rules:

Purity deletion:
N ] {C ∨Q(s1, . . . , sn)}

N
if all inferences with respect to Q with C ∨Q(s1, . . . , sn) as a premise have been
performed.



Subsumption deletion:
N ] {C,D}
N ] {C}

if C subsumes D, i.e. there is a substitution σ such that Cσ ⊆ D.

Constraint elimination:
N ] {C}
N ] {D}

if D is obtained from C by constraint elimination.

Condensation:
N ] {C}

N ] {cond(C)}

A derivation in the C-resolution calculus is a (possibly infinite) sequence of
clause sets N0, N1, . . . such that for every i ≥ 0, Ni+1 is obtained from Ni by
application of an expansion rule or a deletion rule. In the following we assume
that the condensation rule is applied eagerly, that is, whenever a clause set Ni in
a derivation contains a clause C which is not condensed, the condensation rule
is applied to Ni to derive Ni+1 in which C is replaced by cond(C).

The algorithm generates all possible C-resolvents and C-factors with respect
to the predicate variables Q1, . . . , Qk. When all C-resolvents and C-factors with
respect to a particular Qi-literal and the rest of the clause set have been gen-
erated, purity deletion removes all clauses in which this literal occurs. The sub-
sumption deletion rule is optional for the sake of soundness, but helps simplify
clause sets in the derivation.

If the C-resolution stage terminates, it yields a set N of clauses in which
the specified second-order variables are eliminated. This set is satisfiability-
equivalent to the original second-order formula. If no clauses remain after purity
deletion, then the original formula is a tautology; if C-resolution produces the
empty clause, then it is unsatisfiable. If N is non-empty, finite and does not
contain the empty clause, then in the third stage, scan attempts to restore the
quantifiers from the Skolem functions by reversing Skolemization. This is not
always possible, for instance if the input formula is not first-order definable.

If the input formula is not first-order definable and stage two terminates
successfully yielding a non-empty set not containing the empty clause then scan

produces equivalent second-order formulae in which the specified second-order
variables are eliminated but quantifiers involving Skolem functions occur and the
reverse Skolemization typically produces Henkin quantifiers. If scan terminates
and reverse Skolemization is successful, then the result is a first-order formula
logically equivalent to the second-order input formula.

The scan algorithm as described above differs in two details from the scan

implementation.5 First, the implementation does not restrict C-factoring infer-
ences to positive literals, although this is sufficient for the completeness of the
algorithm. Concerning this aspect the implementation also differs from the scan

algorithm as described in [8]. Second, the implementation of reverse Skolemiza-
tion does not take into account that variable-disjoint subclauses can be un-
skolemized separately, which is crucial for our results. For example, unskolem-
izing the clause r(x, f(x)) ∨ r(y, g(y)) should result in the first-order formula

5 http://www.mpi-sb.mpg.de/units/ag2/projects/SCAN/index.html



(∀x∃uR(x, u)) ∨ (∀y∃vR(y, v)). Instead the scan implementation will produce
a formula involving a Henkin quantifier. Obviously, these two deviations be-
tween the scan algorithm and its implementation are minor and could be easily
incorporated into the implementation.

Since we intend to apply scan to Sahlqvist formulae, we now define a trans-
lation of modal formulae into second-order logic. Let

Π(ϕ) = ∀Q1 . . . ∀Qm∀x ST(ϕ, x),

where ST(ϕ, x) is the (local) standard translation of a modal formula ϕ with
a free variable x, and Q1, . . . , Qm are all the unary predicates occurring in
ST(ϕ, x). The standard translation itself is inductively defined as follows:

ST(⊥, x) = ⊥

ST(qi, x) = Qi(x) ST(¬φ, x) = ¬ ST(φ, x)

ST(φ ∧ ψ, x) = ST(φ, x) ∧ ST(ψ, x) ST(3ki
φ, x) = ∃y(xRki

y ∧ ST(φ, y))

where Qi is a unary predicate symbol uniquely associated with the propositional
variable qi, Rki

and is a binary predicate symbol representing the accessibility
relation associated with 3ki

, and x is a first-order variable. The important prop-
erty of the standard translation is that it preserves the truth of a modal formula
at any state w of a Kripke model M , i.e. M,w |= φ iff M |= ST (φ, x)(w/x)
where M is regarded as a first-order structure for the language of the standard
translation. Thus, validity (resp. satisfiability) of a modal formula is expressed
by a universal (resp. existential) monadic second-order formula.

Let scan
∗ denote the extension of the scan algorithm with the preprocess-

ing and postprocessing necessary for computing first-order correspondences for
modal logic formulae. The preprocessing involves translating the given modal
formula to the second-order formula Π(ϕ) and negating the result. The post-
processing involves negating the result output of scan, if it terminates.

4 Completeness of SCAN for Sahlqvist formulae

In the following, we show that scan
∗ is complete for Sahlqvist formulae. We

need to prove that for any second-order formula ψ obtained by preprocessing
from a Sahlqvist formula ϕ, scan can compute a first-order equivalent for ψ. To
this end, we have to show two properties:

1. The computation of C-resolvents and C-factors terminates when applied to
the set Cls(ψ) of clauses associated with ψ, i.e. scan can generate only
finitely many new clauses in the process.

2. The resulting first-order formula, which in general contains Skolem functions,
can be successfully unskolemized.

We first consider the case when ϕ is a definite Sahlqvist implication.

Theorem 2. Given any definite Sahlqvist implication ϕ, scan
∗ effectively com-

putes a first-order formula αϕ logically equivalent to ϕ.



Proof (Sketch). Let ϕ = A → P . In the preprocessing stage, scan
∗ computes

Π(ϕ) and negates the result. Since Π(ϕ) = ∀Q1 . . . ∀Qm∀x ST(ϕ, x), the nega-
tion ¬Π(ϕ) is equivalent to ∃Q1 . . . ∃Qm∃x ST(¬ϕ, x) = ∃Q1 . . .∃Qm∃x ST(A ∧
¬P, x). So, the initial clause set N we obtain after clausification and Skolemiza-
tion is given by Cls(ST(A ∧ ¬P, a)) where a is a Skolem constant. The definite
Sahlqvist antecedent A is constructed from propositional constants, boxed atoms
and negative formulae by applying only ∧ and diamonds. In addition ¬P is also
a negative formula, since P is a positive formula. Thus, A∧¬P is itself a definite
Sahlqvist antecedent. Note that

ST(α ∧ β, ai) = ST(α, ai) ∧ ST(β, ai)

ST(3ki
α, ai) = ∃y(aiRki

y ∧ ST(α, y)).

Skolemization will replace the existentially quantified variable y by a new con-
stant ai+1 which replaces any occurrence of y in aiRki

y∧ST(α, y). Consequently,

Cls(ST(α ∧ β, ai)) = Cls(ST(α, ai)) ∪ Cls(ST(β, ai))

Cls(ST(3ki
α, ai)) = {aiRki

ai+1} ∪ Cls(ST(α, ai+1))

It follows by a straightforward inductive argument that we can divide the clause
set N = Cls(ST(A ∧ ¬P, a)) into a set Nn of clauses which stems from negative
formulae occurring in A ∧ ¬P and a set Np of clauses which stems from the
translation of the propositional constants > and ⊥, and boxed atoms.

The translation of boxed atoms with respect to a constant ai is given by

ST(2k1
. . .2kn

qj , ai) = ∀x1(aiRk1
x1 →

∀x2(x1Rk2
x2 → · · ·

∀xn(xn−1Rkn
xn → Qj(xn)) . . .))

where n ≥ 0. Clausification transforms ST(2k1
. . .2kn

qj , ai) into a single clause
of the form

¬aiRk1
x1 ∨

∨n−1

l=1
¬xlRkl

xl+1 ∨Qj(xn),

for n ≥ 0. In the case of n = 0, the clause we obtain consists of a single positive
ground literalQj(ai). Besides clauses of this form,Np can only contain the empty
clause, which is the result of translation of the propositional constant ⊥, while
the translation of > will be eliminated during clausification.

Thus, every clause inNp contains at most one predicate symbolQj . Moreover,
all clauses inNp will only contain positive occurrences of unary predicate symbols
Qj . In contrast, by definition, all occurrences of propositional variables qj in the
negative formulae in A ∧ ¬P are negative. So, the corresponding occurrences of
unary predicate symbols Qj in Nn are all negative as well.

We have to establish the following.
The derivation always terminates for the formulae (clauses) under consider-

ation. We define a function µ1 that assigns to each clause C a triple µ1(C) =

〈nQ
C , n

R
C , dC〉 of natural numbers such that nQ

C is the number of Qi-literals in
C, nR

C is the number of all remaining literals in C, and dC is the depth of C.



We call µ1(C) the complexity of clause C. It is straightforward to show that for
a given triple c = 〈nQ, nR, d〉 of natural numbers the preimage of c under µ1

contains only finitely many clauses (up to renaming of variables). We also define
an ordering � on N×N×N by the lexicographic combination of the ordering >
on the natural numbers with itself. Obviously, the ordering � is well-founded.

We have already established that no clause in N contains a positive Qi-literal
as well as a negative Qj-literal and the clauses in Np have the property that each
clause which contains a positive Qi-literal contains exactly one such literal. It
follows that in any C-resolution derivation from N no inference steps by C-
factoring are possible. Furthermore, any C-resolvent D obtained by C-resolution
with positive premise Cp and negative premise Cn will not contain a positive Qi-
literal, and D contains less Qi-literals than Cn. Thus, µ1(Cn) � µ1(D). Since no
other inference steps are allowed in the C-resolution calculus, we have established
that the conclusion of any inference step in a derivation from N is of strictly
smaller complexity than one of its premises. The application of a deletion rule
will only replace a clause C of complexity µ1(C) be a clause D with smaller
complexity µ1(D). It follows that any derivation from N terminates.

The restoration of the quantifiers does not fail. To ensure that the restoration
of quantifiers does not fail once the derivation from N has terminated, we can
show by induction that for any clause C in a derivation from N , (i) C contains
only inequations of the form

b 6≈ z, b 6≈ c, b 6≈ f(z), y 6≈ z, y 6≈ c, or y 6≈ f(z),

(ii) there are no two inequations in C of the form y 6≈ f(z) and y 6≈ g(z)
with f 6= g, and (iii) if C contains negative Qi-literals then these are of the
form ¬Qi(z), ¬Qi(c) or ¬Qi(f(z)), where c is a Skolem constant and f a unary
Skolem function. An alternative formulation of property (ii) is that for any two
inequations x1 6≈ f(y) and x2 6≈ g(z) in C with f 6= g we have x1 6= x2.

Inspection of the unskolemization procedure defined in [6] shows that prop-
erties (i) and (ii) are sufficient to ensure that unskolemization is successful,
property (iii) enables us to show that the other two properties are preserved in
inference steps. ut

The theorem can be extended to the case of basic Sahlqvist formulae, ob-
tained from definite Sahlqvist implications by applying boxes and disjunctions
to formulae not sharing predicate variables.

In contrast to definite Sahlqvist antecedents, Sahlqvist antecedents can in-
clude disjunction as a connective. This makes the proof of completeness of scan

with respect to Sahlqvist implications much more involved. The cornerstone of
our proof is the notion of a chain.

Let (t1, . . . , tn) be an ordered sequence of pairwise distinct terms. A chain
C over (t1, . . . , tn) is a clause containing only literals of the form (¬)sRki

t and
(¬)Qj(u) such that the following three conditions are satisfied:

(1) for every i, 1 ≤ i ≤ n−1, either ¬tiRki
ti+1 or tiRki

ti+1 is in C;
(2) for every (¬)uRki

v ∈ C, u = tj and v = tj+1 for some j, 1 ≤ j ≤ n− 1;



(3) for every (¬)Qj(u) ∈ C, u = tj for some j, 1 ≤ j ≤ n.

Lemma 1. Let C be a chain over (t1, . . . , tn). Then there does not exist an
ordered sequence (s1, . . . , sm) of pairwise distinct terms which is distinct from
(t1, . . . , tn) such that C is also a chain over (s1, . . . , sm).

The length of a chain C over (t1, . . . , tn) is n. Note that by Lemma 1 the chain
C uniquely determines (t1, . . . , tn). So, the length of a chain is a well-defined
notion.

The link between the clauses we obtain from translating Sahlqvist formulae
or modal formulae, in general, and chains is not as straightforward as one may
hope. For example, consider the Sahlqvist antecedent ¬q1∨2q2∨2q3. The clausal
form of its translation consists of the single clause

¬Q1(a) ∨ ¬aRx ∨Q2(x) ∨ ¬aRy ∨Q3(y).

It is straightforward to check that we cannot arrange the terms a, x, and y in an
ordered sequence S such that the whole clause would be a chain over S. Instead
the clause consists of at least two chains: ¬Q1(a) ∨ ¬aRx ∨ Q2(x) over (a, x)
and ¬aRy ∨ ¬Q3(y) over (a, y), or alternatively, ¬aRx ∨ Q2(x) over (a, x) and
¬Q1(a) ∨ ¬aRy ∨ ¬Q3(y) over (a, y). However, we could also divide the clause
into three or more chains, for example, ¬Q1(a) over (a), Q2(x) over (x), Q3(y)
over (y), ¬aRx over (a, x) and ¬aRy over (a, y).

In the following we will only consider maximal chains. A chain C over
(t1, . . . , tn) is maximal with respect to a clause D iff C is a variable indecom-
posable subclause of D and there is no chain C ′ over (s1, . . . , sm), m > n, such
that C ′ is a subclause of D and for every i, 1 ≤ i ≤ n, ti ∈ {s1, . . . , sm}.

Under this definition our example clause can only be partitioned into three
maximal chains, namely, ¬Q1(a) over (a), ¬aRx∨Q2(x) over (a, x), and ¬aRy∨
Q3(y) over (a, y). We can see the obvious link between the modal subformula of
¬q1∨2q2∨2q3 and these three maximals. So, it makes sense to say that the first
chain is associated with the negative formula ¬q1, the second is associated with
from the boxed atom 2q2, and the third from the boxed atom 2q3. In general,
more than one maximal chain can be associated with a single negative formula,
while exactly one maximal chain is associated with a boxed atom. We call a
maximal chain which is associated with a boxed atom a positive chain, while all
the chains associated with a negative formula are called negative chains.

It turns out that in the case of boxed atoms, the clauses we obtain have
another important property: The clauses consist of a single maximal chain which
is rooted. A chain C over (t1, . . . , tn) is rooted iff t1 is a ground term.

Lemma 2. Let ϕ be a Sahlqvist implication. Then any clause C in Cls(¬Π(ϕ))
can be partitioned into a collection D of maximal chains. For any two maximal
chains D and D′ in D, either D and D′ are identical or they share at most one
variable. In addition, if a maximal chain D in D is associated with a boxed atom
in ϕ, then D is rooted and shares no variables with the other maximal chains in
D.



Theorem 3. Given any Sahlqvist implication ϕ, scan
∗ effectively computes a

first-order formula αϕ logically equivalent to ϕ.

Proof (Sketch). Let ϕ = A → P . We know that Cls(¬Π(ϕ)) = Cls(ST(A, a)) ∪
Cls(ST(¬P, a)), where a is a Skolem constant. We also know that all clauses
in N0 = Cls(¬Π(ϕ)) satisfy the conditions stated in Lemma 2, in particular,
any clause C in Cls(¬Π(ϕ)) can be partitioned into a collection D of maximal
chains.

We introduce some additional notation for chains. We know that a chain as-
sociated with a boxed atom contains exactly one positive Q-literal Qi(ti), where
ti is either a Skolem constant or a variable, and in the following we denote such
a chain by C+[Qi(ti)] or C+

j [Qi(ti)]. Chains associated with a negative formula
may contain one or more negative Q-literals ¬Q1(t1), . . . , ¬Qn(tn), where each ti
is either a Skolem constant, a variable, or a Skolem term of the form f(x). We de-
note these chains by C−[¬Q1(t1), . . . ,¬Qn(tn)] or C−

j [¬Q1(t1), . . . ,¬Qn(tn)].

By C+[>] we denote the clause we obtain by removing the Q-literal Qi(ti) from
the chain C+[Qi(ti)]. Analogously, C−[>, . . . ,¬Qn(tn)] denotes the clause ob-
tained by removing ¬Q1(ti) from the chain C−[¬Q1(t1), . . . ,¬Qn(tn)].

Unlike in the case of definite Sahlqvist implications, since a clause in N0

can contain more than one positive Q-literal, inference steps by C-factoring are
possible. Such an inference step would derive a clause D1 ∨C

+

1 [Q(t1)]∨C
+

2 [>]∨
t1 6≈ t2 from a clause D1 ∨ C+

1 [Q(t1)] ∨ C+

2 [Q(t2)]. Since t1 and t2 are either
variables or constants, the constraint t1 6≈ t2 can take the forms

b 6≈ z, b 6≈ c, y 6≈ z, or y 6≈ c.

In all cases, except where b and c are distinct constants, a most general unifier σ
of t1 and t2 exists, and constraint elimination replaces D1∨C

+

1 [Q(t1)]∨C
+

2 [>]∨
t1 6≈ t2 by (D1 ∨C

+
1 [Q(t1)]∨C

+
2 [>])σ. Note that this clause is identical to D1 ∨

(C+

1 [Q(t1)]∨C
+

2 [>])σ, that is, the subclause D1 is not affected by the inference
step nor does it influence the result of the inference step. A problem occurs in the
following situation: The clause Q(a)∨¬R(a, x)∨Q(x) is a chain over (a, x) and a
C-factoring step is possible which derives Q(a)∨¬R(a, x)∨a 6≈ x. This C-factor
is simplified by constraint elimination to Q(a)∨¬R(a, a). However, an R-literal
like ¬R(a, a) with two identical arguments is not allowed in a chain. We could
modify the definition of a chain to allow for these literals, but it is simpler to
consider a clause like Q(a)∨¬R(a, a) as shorthand for Q(a)∨¬R(a, x) ∨ a 6≈ x.

It is important to note that the condition that a maximal chain associ-
ated with a boxed atom does not share any variables with other chains may
no longer be true for C-factors. For example, consider the clause ¬R(a, x) ∨
Q(x) ∨ ¬R(a, u) ∨ ¬R(u, v) ∨ Q(v), obtained from ¬Π(2q ∨ 22q → >), which
can be partitioned into two maximal chains, ¬R(a, x) ∨ Q(x) over (a, x) and
¬R(a, u)∨¬R(u, v)∨Q(v) over (a, u, v). This clause has the C-factor ¬R(a, x)∨
Q(x)∨¬R(a, u)∨¬R(u, v)∨v 6≈ x. Constraint elimination replaces this C-factor
by ¬R(a, x)∨Q(x)∨¬R(a, u)∨¬R(u, x) which can be partitioned into two maxi-
mal chains ¬R(a, x)∨Q(x) over (a, x) and ¬R(a, u)∨¬R(u, x) over (a, u, x) that
share the variable x. Let us call such clauses factored positive chains.



Note that the length of chains in a C-factor is the length of chains in the
premise clause. Also, the depth of terms in a C-factor is the same as in the
premise clause. Let there be cp positive chains in the clauses of N0. Then we can
potentially derive 2cp − 1 factored positive chains.

A C-resolvent can only be derived from a clause D1∨C
+[Qi(ti)] and a clause

D2 ∨ C−[¬Q′

1(t
′

1), . . . ,¬Q′

n(t′n)] where one of the Q′

j , 1 ≤ j ≤ n, is identical
to Qi. Without loss of generality, we assume that Qi = Q′

1. Then the resolvent
is D1 ∨ C

+[>] ∨D2 ∨ C
−[>,¬Q′

2(t
′

2), . . . ,¬Q
′

n(t′n)] ∨ ti 6≈ t′1. The term ti will
either be a Skolem constant b or a variable y, while the term t′1 can either be a
Skolem constant c, a variable z or a Skolem term f(z). Thus, ti 6≈ t′1 has one of
the following forms:

b 6≈ z, b 6≈ c, b 6≈ f(z), y 6≈ z, y 6≈ c, or y 6≈ f(z),

If ti and t′1 are unifiable by a most general unifier σ, then constraint elimination
replaces the C-resolvent by (D1∨C

+[>]∨D2∨C
−[>,¬Q′

2(t
′

2), . . . ,¬Q
′

n(t′n)])σ,
which is identical to D1 ∨D2 ∨ C

+[>] ∨ (C−[>,¬Q′

2(t
′

2), . . . ,¬Q
′

n(t′n)])σ. If ti
is a variable, then the ti and t′1 must be unifiable, since ti cannot occur in t′1.
Furthermore, if ti and t′1 are unifiable, then the most general unifier is either the
identity substitution or a substitution replacing ti by t′1. However, if ti and t′1
are not unifiable, then the constraint ti 6≈ t′1 cannot be eliminated. In this case
ti must be a Skolem constant b and t′1 is either a Skolem constant c distinct from
b or a Skolem term f(z). Again, no terms deeper than terms in N0 occur.

We will focus on the union of negative chains that occur within a single clause
and share variables. We call these joined negative chains. Joined negative chains
are variable indecomposable subclauses of the clauses in which they occur and
they are variable-disjoint from the rest of the clause. A C-resolution inference
step involves one such joined negative chain and one factored positive chain,
and the result is again a joined negative chain. Let cn be the number of joined
negative chains in N0 and let there be at most nQ occurrences of Q-literals in
any joined negative chain. Then at most cn × nQ × 2cp joined negative chains
can be derived by one or more C-resolution inference steps.

Each clause in a derivation N0, N1, . . . is a collection of factored positive
chains and joined negative chains without duplicates modulo variable renaming.
Any clause containing duplicates modulo variable renaming would immediately
be replaced by its condensation. Given there are 2cp − 1 factored positive chains
and cn×nQ×2cp joined negative chains. We can derive at most 2cn×nQ×2

cp+2
cp

−1

distinct clauses. This ensures the termination of the derivation.
As to reverse Skolemization, again the Qi-literals in N have one of the forms

Qi(b), Qi(y), ¬Qi(z), ¬Qi(c) or ¬Qi(f(z)),

where b denotes any Skolem constant, f denotes any Skolem function, and y and
z arbitrary variables. The possible forms of inequality literals in all C-resolvents
and C-factors are then

b 6≈ z, b 6≈ c, b 6≈ f(z), y 6≈ z, y 6≈ c, or y 6≈ f(z).



I.e. the form of inequality literals is s 6≈ t, where s and t are variable-disjoint,
s is either a variable or a constant, and t is either a variable, a constant or a
Skolem term of the form f(x). What is again crucial is that no derived clause
contains two inequations y 6≈ s and y 6≈ t, where s and t are compound terms.
This cannot happen. Consequently, restoration of the quantifiers can always be
successfully accomplished during reverse Skolemization [6].

Finally, the general case of a Sahlqvist formula ϕ obtained from Sahlqvist
implications by freely applying boxes and conjunctions, as well as disjunctions
to formulae sharing no common propositional variables can be dealt with by
induction of the number of applications of such disjunctions. The basis of the
induction (with no such applications) has been established by Theorem 3.

We can now state the main theorem.

Theorem 4 (Completeness with respect to Sahlqvist formulae).
Given any Sahlqvist formula ϕ, scan

∗ effectively computes a first-order formula
αϕ logically equivalent to ϕ.

5 Conclusion

Sahlqvist’s theorem [16] can be seen as a milestone for a particular kind of
classification problem in modal logics, namely, for which modal formulae can we
establish correspondence and completeness results.

At first sight the work on scan seems to be unrelated to this classification
problem, since scan tries to provide a general automated approach to estab-
lishing correspondence results while, as already noted, it is not complete for all
modal formulae which have a first-order correspondent.

It is interesting to compare this situation to that in first-order logic. The
classification problem in first-order logic is to identify fragments of first-order
logic which are decidable/undecidable. It has been shown in recent years that
general automated approaches to the satisfiability problem in first-order logic,
in particular approaches based on the resolution principle, also provide decision
procedures for many decidable fragments [7]. They can also provide a good
starting point for establishing new decidable fragments of first-order logic.

In this paper we have applied similar approach to scan, showing that this
general automated approach computes first-order correspondents for the class
of Sahlqvist formulae. In fact, the class of modal formulae for which scan is
successful is strictly larger than the class of Sahlqvist formulae (a witness being
the formula given in the introduction). An important open problem is to find a
purely logical characterization of that class.

Interestingly, since scan is based on a variation of the resolution principle, we
were able to employ techniques used for establishing decidability results based
on the resolution principle in first-order logic, to obtain our result.

It can be expected that corresponding results can also be obtained for other
classes of modal formulae, and even classes for which until now no correspondence
and completeness results have been established.



References

1. W. Bibel and P. H. Schmitt, editors. Automated Deduction – A Basis for Appli-

cations, Vol. I–III. Kluwer, 1998.
2. P. Blackburn, M. de Rijke, and V. Venema. Modal Logic. Cambridge Univ. Press,

2001.
3. A. Chagrov and M. Zakharyaschev. Modal Logic, volume 35 of Oxford Logic Guides.

Clarendon Press, Oxford, 1997.
4. M. de Rijke, and Y. Venema Sahlqvist’s Theorem For Boolean Algebras with

Operators with an Application to Cylindric Algebras, Studia Logica, 54:61–78,
1995.

5. P. Doherty, W. Lukaszewics, and A. Szalas. Computing circumscription revisited:
A reduction algorithm. Journal of Automated Reasoning, 18(3):297–336, 1997.

6. T. Engel. Quantifier Elimination in Second-Order Predicate Logic. MSc thesis,
Saarland University, Saarbrücken, Germany, 1996.

7. C. G. Fermüller, A. Leitsch, U. Hustadt, and T. Tammet. Resolution decision
procedures. In Handbook of Automated Reasoning, pp. 1791–1849. Elsevier, 2001.

8. D. M. Gabbay and H. J. Ohlbach. Quantifier elimination in second-order predicate
logic. South African Computer Journal, 7:35–43, 1992.

9. V. Goranko and D. Vakarelov. Sahlqvist formulas unleashed in polyadic modal
languages. In Advances in Modal Logic, vol. 3, pp. 221-240. World Scientific, 2002.

10. B. Jónsson. On the canonicity of Sahlqvist identities. Studia Logica, 53:473–491,
1994.

11. M. Kracht. How completeness and correspondence theory got married. In Dia-

monds and Defaults, pp. 175–214. Kluwer, 1993.
12. A. Nonnengart. Strong skolemization. Research Report MPI-I-96-2-010, Max-

Planck-Institut für Informatik, Saarbrücken, 1996.
13. A. Nonnengart, H. J. Ohlbach, and A. Szalas. Quantifier elimination for second-

order predicate logic. In Logic, Language and Reasoning: Essays in honour of Dov

Gabbay. Kluwer, 1999.
14. A. Nonnengart and C. Weidenbach. Computing small clause normal forms. In

Handbook of Automated Reasoning, pp. 335–367. Elsevier, 2001.
15. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning. Elsevier

Science, 2001.
16. H. Sahlqvist. Completeness and correspondence in the first and second order

semantics for modal logics. In Proc. of the 3rd Scandinavian Logic Symposium,

1973, pp. 110–143. North-Holland, 1975.
17. G. Sambin and V. Vaccaro. A new proof of Sahlqvist’s theorem on modal defin-

ability and completeness. Journal of Symbolic Logic, 54(3):992–999, 1989.
18. A. Sza las. On the correspondence between modal and classical logic: An automated

approach. Journal of Logic and Computation, 3(6):605–620, 1993.
19. J. van Benthem. Modal Logic and Classical Logic. Bibliopolis, 1983.


