
Forgetting Concept and Role Symbols in
ALCH-Ontologies

Patrick Koopmann and Renate A. Schmidt

The University of Manchester, UK
{koopmanp, schmidt}@cs.man.ac.uk

Abstract. We develop a resolution-based method for forgetting con-
cept and role symbols in ALCH ontologies, or for computing uniform
interpolants in ALCH. Uniform interpolants use only a restricted set of
symbols, while preserving logical consequences of the original ontology
involving these symbols. While recent work towards practical methods
for uniform interpolation in expressive description logics limits attention
to forgetting concept symbols, we believe most applications would bene-
fit from the possibility to forget both role and concept symbols. We focus
on the description logic ALCH, which allows for the formalisation of role
hierarchies. Our approach is based on a recently developed resolution-
based calculus for forgetting concept symbols in ALC ontologies, which
we extend by redundancy elimination techniques to make it practical for
larger ontologies. Experiments on ALCH fragments of real life ontologies
suggest that our method is applicable in a lot of real-life applications.

1 Introduction

Ontologies model a domain of interest using description logics by describing the
vocabulary of this domain in terms of roles and concepts. Reflecting the different
applications and contexts in which ontologies are used, ontologies are modelled
using different description logics that vary in expressivity and complexities of
common reasoning tasks. In the development of complex ontologies, it is often
desirable to restrict the vocabulary of an ontology to a smaller set of symbols.
Uniform interpolation, also known as forgetting, establishes this by construct-
ing a new ontology that only uses a predefined set of symbols, such that all
logical consequences of the original ontology using these symbols are preserved.
Examples where this is useful are: (i) Ontology Reuse. When constructing larger
ontologies, it can be useful to reuse parts from existing ontologies. Using uniform
interpolation, one can restrict the vocabulary of the reused ontology to the sym-
bols that are known and interesting for the new application. (ii) Predicate Hiding.
When publishing or sharing an ontology, it is often desirable to hide confidential
parts from the ontology, without affecting the intended meaning of the remaining
vocabulary [5]. (iii) Exhibiting Hidden Relations. Relations between symbols are
often stated indirectly in an ontology and only become visible through the use
of reasoners. With increased complexity of the ontology, this makes it hard to
get a deeper understanding of the ontology and to maintain ontology changes.

2

The uniform interpolant over a set of symbols makes the relations between these
symbols explicit. (iv) Logical difference. In the development of evolving ontolo-
gies, it is important for ontology engineers to ensure that modifications do not
interfere with the meaning of existing terms. This can be achieved by comput-
ing the uniform interpolants of two versions of an ontology over the common
set of used symbols, or over a set of symbols under consideration, and checking
whether the resulting ontologies are equivalent [12].

Uniform interpolation has been extensively investigated for simpler descrip-
tion logics such as EL or DL-Lite [8, 22, 15, 13]. Recently, practical algorithms for
forgetting concept symbols in the more expressive description logic ALC have
been developed [12, 11]. In this paper, we investigate forgetting of role symbols
as well, and supplement earlier presented work with optimisation techniques to
make it practical on larger ontologies. Since roles play a larger role in this con-
text, we focus on the description logic ALCH, which extends ALC with role
hierarchies. It is known that already in the description logic ALC uniform inter-
polants cannot be finitely expressed in the language of the logic [14]. This also
applies to ALCH. For this reason our method computes uniform interpolants
for the target language ALCHµ, which extends ALCH with fixpoint operators,
thus enabling us to always compute finite representations. If fixpoints are used
in the uniform interpolant, it is possible to represent it in ALCH by extending
the signature of the interpolant.

Our work is based on a recently developed method for forgetting concept
symbols in ALC-ontologies [11]. The method is based on a resolution-based de-
cision procedure for ALCH. In order to analyse the practicality of our approach,
we undertake an experimental evaluation on ALCH-fragments of a set of real-life
ontologies. The results suggest that uniform interpolation can be used for the
presented applications in a lot of real-life situations.

Proofs of all theorems can be found in the accompanying technical report [9].

2 Preliminaries

Let Nc, Nr be two disjoint sets of concept symbols and role symbols. Concepts
in ALCH are of the following form:

⊥ | > | A | ¬C | C tD | C uD | ∃r.C | ∀r.C,

where A ∈ Nc, r ∈ Nr and C and D are arbitrary concepts. >, C uD and ∀r.C
are defined as abbreviations: > stands for ¬⊥, C uD for ¬(¬C t¬D) and ∀r.C
for ¬∃r.¬C.

A TBox is a set of concept axioms of the forms C v D (concept inclusion)
and C ≡ D (concept equivalence), where C and D are concepts. An RBox
is a set of role axioms of the form r v s (role inclusion) and r ≡ s (role
equivalence), where r and s are role symbols. C ≡ D is a short-hand for the
two concept axioms C v D and D v C, and r ≡ s is a short-hand for the two
role axioms r v s and s v r. We assume an ontology consists of a TBox and an

3

RBox. Given an ontology O, we define vO to be the reflexive transitive closure
of the role inclusions in O.

The semantics of ALCH is defined as follows. An interpretation is a pair
I = 〈∆I , ·I〉, where the domain ∆I is a nonempty set and the interpretation
function ·I assigns to each concept symbol A ∈ Nc a subset of ∆I and to each
role symbol r ∈ Nr a subset of ∆I×∆I . The interpretation function is extended
to concepts as follows.

⊥I := ∅ (¬C)I := ∆I \ CI (C tD)I := CI ∪DI

(∃r.C)I := {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

A concept inclusion C v D is true in an interpretation I iff CI ⊆ DI . I is model
of a TBox T if all concept inclusions in T are true in I. A TBox T is satisfiable
if there exists a model for T , otherwise it is unsatisfiable. T |= C v D holds iff in
every model of T we have CI ⊆ DI . Two TBoxes T1 and T2 are equi-satisfiable
if every model of T1 can be extended to a model of T2, and vice versa. The
definitions of truth, model, satisfiability and equi-satisfiability extend to roles,
RBoxes and ontologies in a similar way. Observe that O |= r v s iff r vO s.

In order to define ALCHµ, we extend the language with a set Nv of concept
variables. ALCHµ extends ALCH with concepts of the form µX.C and νX.C,
where X ∈ Nv, and C is a concept in which X occurs as a concept symbol only
positively (under an even number of negations). µX.C denotes the least fixpoint
of C on X and νX.C the greatest fixpoint.

A concept variable X is bound if it occurs in the scope C of a fixpoint
expression µX.C or νX.C. Otherwise it is free. A concept is closed if it does
not contain any free variables. Axioms in ALCHµ are of the form C v D and
C ≡ D, where C and D are closed concepts.

Following [2], we define the semantics of fixpoint expressions. Let V be an
assignment function that maps concept variables to subsets of ∆I . V[X 7→W]
denotes V modified by setting V(X) = W . CI,V is the interpretation of C
taking into account this assignment, and when V is defined for all variables
in C, CI,V = CI . The semantics of fixpoint concepts is defined as follows:

(µX.C)I,V :=
⋂
{W ⊆ ∆I | CI,V[X 7→W] ⊆W}

(νX.C)I,V :=
⋃
{W ⊆ ∆I |W ⊆ CI,V[X 7→W]}.

The size of an (ALCH- or ALCHµ-)axiom is defined recursively as follows:
size(A) = 1, where A is a concept symbol, size(¬C) = size(C) + 1, size(∃r.C) =
size(∀r.C) = size(C) + 2, size(C t D) = size(C u D) = size(C) + size(D) + 1,
size(µX.C) = size(νX.C) = size(C) + 2 and size(C v D) = size(C ≡ D) =
size(C) + size(D) + 1.

A signature Σ is a subset of Nc∪Nr. sig(E) denotes the concept and role sym-
bols occurring in E, where E ranges over concept descriptions, axioms, TBoxes,
RBoxes and ontologies. Given two ontologies O1 and O2 and a signature Σ, we
say O1 and O2 are Σ-inseparable, in symbols O1 ≡Σ O2, iff for every concept or

4

role inclusion α with sig(α) ⊆ Σ, O1 |= α implies O2 |= α, and vice versa. Given
an ontology O and a signature Σ, O′ is a uniform interpolant of O if sig(O′) ⊆ Σ
and O ≡Σ O′. From this definition, it follows that uniform interpolants for a
given ontology and signature are unique modulo logical equivalence. For a given
ontology O and signature Σ, we will therefore speak of the uniform interpolant
and denote it by OΣ . Given an ontology O and a concept or role symbol σ,
the result of forgetting σ in O, denoted by O−σ, is the uniform interpolant OΣ ,
where Σ = sig(O) \ {σ}.

3 Overview of the Method

We reduce the problem of computing uniform interpolants to the problem of
forgetting single symbols. In order to compute the uniform interpolant for any
signature Σ, we forget each symbol in sig(O) \ Σ one by one. The method for
computing O−σ, where σ is either a role or a concept symbol, consists of three
phases:

Phase 1: Eliminate the symbol using a resolution-based calculus, obtaining
O′ = FσALCH(O).

Phase 2: Eliminate the newly introduced symbols, obtaining O−σ = FD(O′).
Phase 3: Apply simplifications and represent clauses as proper concept inclu-

sions.

Central to the method is a new resolution-based calculus which works on a
structural transformation based normal form. The calculus is described in Sec-
tion 4. Depending on whether the symbol to be forgotten is a role or a concept
symbol, in Phase 1 a different method based on this resolution calculus is used to
derive consequences on the selected symbol. This is described in Section 5. The
result is a finitely bounded set N of axioms such that σ 6∈ sig(N) and N ≡Σ O
for Σ = sig(O) \ {σ}, but N may use new symbols due to structural transforma-
tion. These symbols, called definers, all occur in a form that allows for elimination
in a simple and uniform way, following a known principle first presented in [16].
This is performed in Phase 2 and described in Section 6. Depending on whether
the aim is to compute a representation in ALCHµ or in ALCH, the result may
involve fixpoint operators or extend the signature of the original ontology.

After Phase 2, the uniform interpolant is already computed, but we add
a third phase that makes the resulting ontology more accessible by applying
several equivalence-preserving transformations. The following main theorem of
this paper states the correctness of the method.

Theorem 1. For any ALCH-ontology O and any symbol σ, our method termi-
nates and returns the uniform interpolant of O over sig(O) \ {σ} in ALCHµ. If
the result does not make use of a fixpoint operator, it is the uniform interpolant
of O over sig(O) \ {σ} in ALCH.

5

4 The Underlying Calculus

Our method for forgetting concept and role symbols is based on a resolution
calculus RALCH which provides a decision procedure for ALCH-ontology satis-
fiability. The calculus extends a calculus introduced in [11] by incorporating the
role hierarchy. In order to make our method practical for larger ontologies, we
extend RALCH with redundancy elimination techniques, resulting in the calculus
RsALCH.

Both calculi operate on sets of clauses, which are defined as follows. Let
ND ⊆ Nc be a set of definer symbols or definers, which do not occur in any
input ontology.

Definition 1. An ALCH-literal is a concept description of the form A, ¬A,
∀r.D or ∃r.D, where A is a concept symbol, r a role symbol and D is a definer.

A TBox is in ALCH-conjunctive normal form if every axiom is of the form
> v L1 t ... t Ln, where each Li is an ALCH-literal. The right part of such
a concept inclusion is called ALCH-clause. In the following we assume ALCH-
clauses are represented as sets of literals (this means no clause contains the same
literal more than once and the order of the literals does not matter). The empty
clause is denoted by ⊥ and represents a contradiction.

For our method it is crucial that any ALCH-TBox is transformed into an equi-
satisfiable TBox in ALCH-conjunctive normal form using structural transfor-
mation as follows. First the input TBox is transformed into negation normal
form. Then every concept C that occurs immediately below a role restriction
is replaced by a definer D, and we add the axiom D v C for each such sub-
concept. The resulting TBox does not contain any nested role restrictions and
can be brought into ALCH-conjunctive normal form by applying standard CNF-
transformation techniques. For an ontology O, let clauses(O) refer to the set of
clauses generated in this way from the TBox of O.

The calculus RALCH uses the rules shown in Figure 1. Since the normal form
has to be preserved, the role propagation rule may require the introduction of a
new definer symbol D3 representing the conjunction of the definers D1 and D2

occurring in the premises. This is done by adding new clauses ¬D3 t D1 and
¬D3 t D2 to the clause set. Observe that the resolution rule also applies to
definer literals. This way for each pair of clauses ¬D1 t C1 and ¬D2 t C2 we
derive the clauses ¬D3 t C1 and ¬D3 t C2, for which the side conditions of the
rules are satisfied.

In order to ensure termination, it is necessary to reuse definers whenever pos-
sible. For this we define an identification function for introduced definers, that
identifies definers with the context from which they have been created, and whose
range is finitely bounded. The function id(D) is defined as follows. (i) If D is in-
troduced by the initial normal form transformation, then id(D) = {D}. (ii) If D
is required by the role propagation rule and the respective role restrictions are
∀s.D1 and Qr.D2, then id(D) = id(D1) ∪ id(D2).

If the role propagation rule requires a new definer D, we first check whether
a definer D′ with id(D) = id(D′) is already present, and reuse it in this case.

6

Resolution:
C1 tA C2 t ¬A

C1 t C2

provided C1 t C2 does not contain more than one negative definer literal.

Role Propagation:

C1 t ∀s.D1 C2 t Qr.D2

C1 t C2 t Qr.D3

r vO s

where Q ∈ {∃, ∀} and D3 is a (possibly new) definer representing D1 u D2,
provided C1 t C2 does not contain more than one negative definer literal.

Existential Role Restriction Elimination:

C t ∃r.D ¬D

C

Fig. 1. Rules of the calculus RALCH.

Otherwise we introduce a new definer in the way described above. Observe that
the domain of id is bounded by 2n, where n is the number of definers introduced
by the initial normal form transformation. Therefore the number of clauses that
can possibly be derived is limited by a double-exponential bound. We can prove:

Theorem 2. RALCH is sound and refutationally complete, and provides a de-
cision procedure for ALCH-ontology satisfiability.

As in traditional resolution-based decision procedures, it is possible to extend
the method with redundancy elimination and further simplification techniques.
For this purpose, it is possible to exploit the structure imposed by the introduced
definers. Note that new definers are introduced by adding clauses of the form
¬D1tD2. ¬D1tD2 is equivalent to the concept inclusion D1 v D2. This concept
inclusion can be transferred to subsumption between existential and universal
role restrictions, and to subsumption between clauses.

Definition 2. A literal l1 is subsumed by a literal l2 (l1 vl l2) if either l1 = l2
or if l1 = Qr.D1 and l2 = Qr.D2 for Q ∈ {∃,∀} and there is a clause ¬D1 tD2

in the current clause set. A clause C1 is subsumed by a clause C2 (C1 vC C2)
if every literal l1 ∈ C1 is subsumed by a literal l2 ∈ C2. A clause C is redundant
with respect to a clause set N , if N contains a clause C ′ with C ′ vC C. The
reduction of a clause C, red(C), is obtained from C by removing every literal
that is subsumed by another literal in C.

Example 1 (Subsumption and reduction). Assume D3 represents D1uD2, which
means we have the clauses ¬D3tD1 and ¬D3tD2. Then ¬AtB is subsumed by

7

Tautology deletion: N ∪ {C tA t ¬A}

N

Subsumption deletion: N ∪ {C, D}

N ∪ {C}
provided C vC D

Reduction: N ∪ {C}

N ∪ {red(C)}

Fig. 2. Simplification rules.

¬AtBtC, ∃r.D3 is subsumed by ∃r.D1, ∀r.D3tB is subsumed by ∀r.D1tAtB
and red(A t ∃r.D3 t ∃r.D2) = A t ∃r.D2.

In addition to subsumption and reduction, we also detect tautological clauses
which contain pairs of contradictory literals. This leads to a set of simplification
rules shown in Figure 2. We denote the calculusRALCH extended with these rules
by RsALCH. It can be shown that these rules preserve soundness and refutational
completeness, as stated by the following theorem.

Theorem 3. RsALCH is sound and refutationally complete and provides a deci-
sion procedure for ALCH-ontology satisfiability.

5 Forgetting Concept and Role Symbols

In this section, we describe the methods FAALCH and FrALCH for forgetting respec-
tively concept symbols and role symbols. Both methods are based on RsALCH.

For any definer D, we say D is connected to A, if D either co-occurs with A
in a clause or if D co-occurs in a clause with another definer D′ that is connected
to A. If the aim is to forget a concept symbol, we restrict the rules of RsALCH
by adding the following conditions:

Resolution: A is the symbol we want to forget or a definer.
Role Propagation: D1 and D2 are connected to the symbol we want to forget.

For a concept symbol A, FAALCH denotes the calculus RsALCH with these
modifications for A. For any ontology O, FAALCH(O) denotes the ontology con-
sisting of the RBox of O and the TBox represented by clauses(O) saturated
using the rules of FAALCH, after removing all clauses containing A or positive
definer literals that are not role restrictions.

Theorem 4. Given an ontology O, FAALCH(O) is a clausal representation of O−A,
that is, FAALCH(O) ≡Σ O, where Σ = sig(T) \ {A}, and every symbol in
FAALCH(O) is either a definer or in Σ.

8

Role hierarchy:
s v r r v t

s v t

Universal role restriction monotonicity:

C t ∀r.D

C t ∀s.D
s v r ∈ O

Existential role restriction monotonicity:

C t ∃r.D

C t ∃s.D
r v s ∈ O

Role restriction resolution:

C0 t ∀r.D0 ... Cn t ∀r.Dn C t ∃r.D

C0 t ... t Cn t C
O |= D0 u ... uDn uD v ⊥

provided (i) there is no role s with r v s ∈ O and (ii) C0 t ... t Cn t C does not
contain more than one negative definer literal.

Fig. 3. Rules for forgetting role symbol r.

The method FAALCH provides a focused way to forget the concept symbol A.
In order to forget role symbols, a few modifications have to be made. Since role
symbols also occur in the RBox of an ontology, the RBox has to be processed as
well. Additionally, we need rules that compute all derivations on a selected role
symbol in a focused way.

The rules in Figure 3, together with the rules of RALCH, where the resolution
rule is restricted to only resolve on definer literals, constitute the method FrALCH,
where r is the role symbol to be forgotten. The role hierarchy rule is the only rule
applied on the RBox of the input ontology, and makes implicit role inclusions
around the role symbol to be forgotten explicit. The universal and existential role
monotonicity rules compute inferences on the basis of clauses and RBox axioms.
If there is no role inclusion s v r, the universal role monotonicity rule cannot
be applied and we have to apply role propagation on that role exhaustively in
order to preserve all consequences when forgetting r.

If there is no role inclusion r v s, we can neither apply the existential role
restriction monotonicity rule nor role propagation. Instead we use the role re-
striction resolution rule in this case, which is similarly motivated as the resolution
rule, but works on larger sets of clauses. This rule is formulated to allow the use
of an external reasoner to check satisfiability of concepts (even though in theory
RALCH can be used for this as well).

9

Non-cyclic definer elimination:

T ∪ {D v C}

T [D 7→C]
provided D 6∈ sig(C)

Definer purification:

T

T [D 7→>]
provided D occurs only positively in T

Cyclic definer elimination:

T ∪ {D v C[D]}

T [D 7→νX.C[X]]
provided D ∈ sig(C[D])

Fig. 4. Rules for eliminating definer concept symbols

For any ontology O, we define FrALCH(O) as the ontology consisting of the
RBox of O and the TBox represented by clauses(O) saturated using the rules
of FrALCH, after removing all the axioms and clauses that use the symbol r or
contain a positive definer literal that is not a role restriction.

Theorem 5. For any ontology O, FrALCH(O) is a clausal representation of O−r.

6 Definer Elimination

In Phase 2, the symbols introduced by the normal form transformation or the role
propagation rule are eliminated. Note that we only derive clauses that contain
at most one negative definer literal in Phase 1. This means we can for each
definer D group the clauses of the form ¬D tCi, 0 ≤ i ≤ n, into a single axiom
of the form D v

d
0≤i≤n Ci that can be seen as a definition of the definer. This

definition can be used to undo the structural transformation and eliminate the
remaining definers. If a definition is cyclic, we use a fixpoint operator in the
result. Figure 4 shows the rules for definer elimination. The rules are justified
by Ackermann’s Lemma and its generalisation to the fixpoint case [1, 16].

If the output of the algorithm contains fixpoints, we can represent it in ALCH
by extending the desired signature Σ by the cyclic definers. This is done by
omitting the cyclic definer elimination rule.

7 Examples

To illustrate the presented method this section includes two examples of respec-
tively forgetting concept and role symbols.

Example 2 (Forgetting Concept Symbols). Let O1 be the following ontology.

A v B t C B v ∃r.B C v ∀s.¬B r v s

10

We want to compute O−B1 . We obtain the following clause set clauses(O1).

1. ¬A tB t C 2. ¬B t ∃r.D1 3. ¬D1 tB
4. ¬C t ∀s.D2 5. ¬D2 t ¬B

We first apply the resolution rule.

6. ¬A t C t ∃r.D1 (resolution on 2 and 1)

7. ¬D1 t ∃r.D1 (resolution on 2 and 3)

8. ¬D2 t ¬A t C (resolution on 5 and 1)

We cannot resolve on clauses 3 and 5, since the conclusion would contain more
than one negative definer literal. We can however apply role propagation on
clauses 2 and 4, which makes further applications of the resolution rule possible.

��9. ¬B t ¬C t ∃r.D3 (role propagation on 2 and 4, id(D3) = {D1, D2})
��10. ¬D3 tD1

��11. ¬D3 tD2

��12. ¬D3 tB (resolution on 10 and 3)

��13. ¬D3 t ¬B (resolution on 11 and 5)

14. ¬D3 (resolution on 12 and 13)

Clause 14 makes clauses 10–13 become redundant, and existential role restriction
elimination on Clause 9 possible.

15. ¬B t ¬C (exist. role restr. elimination on 9 and 14)

Clause 15 makes Clause 9 become redundant. We saturate the remaining clauses.

��16. ¬A t C t ¬C (resolution on 15 and 1, tautology)

17. ¬D1 t ¬C (resolution on 15 and 3)

Only clauses that do not containB or a positive definer are included in FBALCH(O1).
These are the clauses 4, 6, 7, 8, 14 and 17. Eliminating the definers and ex-
pressing clauses as concept inclusions (Phases 2 and 3) results in the following
ontology O−B1 :

A v C t ∃r.νX.(¬C u ∃r.X) C v ∀s.(¬A t C)

Example 3 (Forgetting Role Symbols). Let O2 contain the following axioms. We
want to compute O−r2 .

A v ∃r.(A tB) B v ∀r.¬A
C v ∀r.¬B s v r

We obtain the following clausal representation clauses(O2):

1. ¬A t ∃r.D1 2. ¬D1 tA tB
3. ¬B t ∀r.D2 4. ¬D2 t ¬A
5. ¬C t ∀r.D3 6. ¬D3 t ¬B

11

We observe that there is no role r′ with r v r′ and that D1 u D2 u D3 is
unsatisfiable, which means we can apply role restriction resolution on 1, 3 and 5:

7. ¬A t ¬B t ¬C (role restriction resolution on 1, 3 and 5)

Furthermore, we do have a role r′ with r′ v r, namely s which means we can
apply universal role restriction monotonicity:

8. ¬B t ∀s.D2 (universal role restriction monotonicity on 3)

9. ¬C t ∀s.D3 (universal role restriction monotonicity on 5)

Omitting all clauses containing r and applying Phases 2 and 3 leads to the
uniform interpolant O−r2 consisting of the following axioms:

A uB u C v ⊥ B v ∀s.¬A C v ∀s.¬B

8 Experimental Evaluation

In order to investigate the practicality of our approach, we implemented our
method in Scala1 using the OWL-API2 and evaluated it on ALCH-fragments of
ontologies from the NCBO Bioportal ontology repository.3 The ontologies of this
corpus are known to have diverse complexity, size and structure [7]. For the role
restriction resolution rule, we made use of the HermiT reasoner Version 1.3.6 [18]
for checking satisfiability of conjunctions of definer concepts.

It turns out that several additional optimisations are necessary to make the
method perform well on larger ontologies. Especially the role propagation rule
creates a lot of unnecessary derivations when applied in its unrestricted form.
This can be reduced by analysing the structure of the clause set before applying
the rule to see in which cases it actually leads to new derivations on the symbol
we want to forget. We further used module extraction in order to reduce the
size of the input ontologies. Given an ontology O, the >⊥∗-module of O over Σ
contains a subset of the axioms of O that preserves all consequences of O in Σ,
given O is consistent [17]. In order to compute OΣ , it is therefore sufficient to
apply our method on the >⊥∗-module of O over Σ. In order to keep the clauses
small, we further apply structural transformation to replace every subconcept C
in the TBox that does not contain the symbol we want to forget by a new
symbol X, which reduces the number of clauses a lot [12]. These symbols are
replaced by the original subconcepts in the final result. For a complete overview
of optimisations used we refer to the paper [10] on practical aspects of computing
uniform interpolants in ALC.

The corpus for our experiments was created as follows. From the NCBO
Bioportal repository, we selected those ontologies that contain role hierarchies,
and for which parsing and module extraction using the OWL-API was possible.
We then restricted the selected ontologies to ALCH by removing all axioms that

1 http://www.scala-lang.org
2 http://owlapi.sourceforge.net
3 http://bioportal.bioontology.org

12

are not expressible in ALCH using simple reformulations. This led to a corpus
of 115 ontologies, on which we ran our experiments.

The experiments were conducted on an Intel Core i5-2400 CPU with four
cores running at 3.10 GHz and 8 GB of RAM. Since our implementation does not
make use of multi-threading (except for computations of the HermiT reasoner),
we ran several experiments in parallel, taking care that experiments do not affect
each other due to use of resources.

We started with a series of experiments to evaluate the perfomance of for-
getting small sets of symbols, which may for example be interesting for pred-
icate hiding or for computing logical differences between ontology versions, as
mentioned in the Introduction. First, we evaluated the performance of concept
forgetting. For this, we randomly selected samples of 5, 50, 100 and 150 concept
symbols for each ontology and computed the result of forgetting these, with a
timeout set to 100 seconds. In 4.5% of the cases, our implementation was not
able to compute the uniform interpolant in the given time limit, and in 16.7% of
the remaining cases, fixpoints where used in the result. Even though it known
that uniform interpolants can be of size triple exponential of the size of the in-
put ontology [14], in our experiments uniform interpolants were much smaller.
In fact, in 62.8% of the cases where a uniform interpolant could be computed,
the uniform interpolant was smaller than the input ontology. In the worst case
however, the uniform interpolant was 104 times bigger than the input ontology.
The difference also becomes more apparent when looking at the axiom size.

On average, the average axiom size of the uniform interpolant was 1.8 times
bigger than in the input ontology, and the largest axiom size 10.3 times bigger.
This effect was to be expected since more information about the role structure of
the ontology and indirect concept relations has to be presented in the definitions
of fewer concepts. Considering that in the input ontologies the average axiom
size was only 3.48, and the average maximal axiom size was 15.21, this still
means most axioms were not overly complex. However, in the worst case, the
computed uniform interpolant contained an axiom that was 1,406 times bigger
than the largest one in the input.

Next we evaluated forgetting of role symbols. Since the role restriction resolu-
tion rule makes use of an external reasoner, and can have more than two clauses
as premises, one could expect that forgetting role symbols is much more expen-
sive than forgetting concept symbols. On the other hand, since most ontologies
have much fewer role symbols than concept symbols, it seems reasonable to con-
duct the experiments with smaller sets of symbols to be forgotten. We therefore
compared how forgetting 5 role symbols performed in comparison with forgetting
5 concept symbols, again with a timeout of 100 seconds. Forgetting role sym-
bols could be performed in 86.6% of the cases in the given time frame, whereas
forgetting concept symbols succeeded in 99.8% of the cases. The impact on the
ontology size was on the other hand less apparent. In only 3.8% of the cases
the uniform interpolant was actually bigger than the input ontology (10.5% for
concept symbols), and on average the interpolant was 93% of the size of the in-
put ontology (97% for concept symbols). The largest axiom per ontology was on

13

|Σ| Timeouts Fixpoints Interpolant Axiom Size Max. Axiom Average
Size Size Duration

50 15.12% 6.99% 22.50% 799.37% 1,053.68% 24.2 sec.

100 18.38% 11.57% 45.21% 646.32% 847.36% 21.0 sec.

150 22.25% 13.58% 76.55% 837.66% 5,657.87% 23.7 sec.

All 18.38% 10.44% 45.74% 757.69% 2,309.08% 23.0 sec.

Table 1. Results for computing uniform interpolants.

average 1.58 times larger than in the input ontology (1.18 for concept symbols),
and in the worst case 51.1 times larger (360.3 for concept symbols). One might
suspect that this result is partly due to the exploitation of role hierarchies using
the role restriction monotonicity rules. But it turned out that when ignoring the
RBox, the results were nearly unchanged, and even slightly better.

To evaluate our complete method, we computed uniform interpolants for
small signatures of size 50, 100 and 150. This corresponds to the applications
exhibiting hidden relations and ontology reuse mentioned in the Introduction, as
well as predicate hiding, if only a small part of the ontology is to be published.

For these uniform interpolants, usually a large number of symbols, including
both role and concept symbols, had to be forgotten from the input ontology,
even though module extraction already performs part of the job. For this rea-
son we set a higher timeout of 1,000 seconds. The results are summarised in
Table 1. It shows the percentage of experimental runs where a timeout occured,
the percentage in the remaining set where fixpoints were used in the result,
the ontology size, average axiom size and maximal axiom size of each uniform
interpolant compared to the respective values of the input ontologies, and the
average duration. In 18.38% of the cases the uniform interpolant could not be
computed in 1,000 seconds, and in only 10.44% of the remaining cases, it made
use of fixpoint operators. Despite the relatively high number of timeouts, the
average duration was only 23 seconds, and the cumulative distribution of dura-
tions shows (Figure 5), that around 1,600 out of 2,911 runs (more than half of
them) could be performed in less than a second. This suggests that computing
uniform interpolants is in most cases a cheap operation.

It is known that uniform interpolants of ALC-ontologies can be in the worst
case be triple exponential in the size of the input ontology [14]. When fixpoints
are used, the worst case complexity is better, but still double exponential. This
bound was not at all reflected in the empirical results, where the average in-
terpolant is less than half the size of the input ontology. In only 6.05% of the
cases the uniform interpolant was bigger (see also Figure 5). The axioms in the
uniform interpolant were usually around 8–10 times larger than in the input
ontology, which is still a reasonable size for ontology analysis considering that
in the input ontologies the average axiom size was less than 4.

It should be noted that randomly drawn samples of signatures not neccessar-
ily reflect realistic use cases. One might assume that it is most often desirable

14

 0

 500

 1000

 1500

 2000

 2500

 1 10 100 1000

N
um

be
r

of
 E

xp
er

im
en

ts

Time (s)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

U
ni

fo
rm

 In
te

rp
ol

an
t S

iz
e

Input Size

Fig. 5. Cumulative distribution of durations of experimental runs and sizes of the
computed uniform interpolants.

to forget or preserve symbols that are closer related to each other, whereas ran-
domly selected symbols are more likely to be randomly distributed along the
whole ontology, which can contain thousands of symbols. We therefore believe
that our method would perform even better in realistic use cases.

9 Related Work

Most previous work has focused on uniform interpolation in simpler description
logics like EL and DL-Lite (see for example [8, 22, 15, 13]). In [21, 20], one of
the first approaches for a more expressive description logic, namely ALC, is
presented. Their method uses a tableaux-reasoner to add inferences from the
input ontology in an incremental way. Regular checking for TBox-equivalence
is used to decide whether the uniform interpolant is computed and the process
can stop. By using tableaux-reasoning as a basis, the authors hope to make
their method easily extendable with known techniques from existing tableau-
reasoners. Its less focused way of deriving inferences make it however unfeasible
for large ontologies. In [14], it was discovered that the method is incomplete. The
solution offered can be seen as an extension of the original method, even though
tableau-reasoning is not stated explicitly. The resulting method can be used to
compute all uniform interpolants that can be finitely represented in ALC, but
offers no solutions for ontologies where the interpolant cannot be represented
without fixpoints.

A more practical approach for forgetting concept symbols in ALC is pre-
sented in [12]. A resolution-based method influenced by [6] is used to derive
consequences on the selected concept symbol in a focused way. Experiments on
modified ontologies from the NCBO Bioportal ontology show the practicality of
this approach under certain restrictions. Since their approach does not use struc-
tural transformation, a calculus based on meta-rules is used to make resolutions
on nested concepts expressions possible. A disadvantage is that the method does

15

not terminate if infinite chains of nested role-restrictions are derivable. The so-
lution offered is to approximate interpolants by a given (lower) bound instead.

A method using fixpoints for the description logic EL was presented in [15].
This method aims at forgetting concept symbols, and computes derivation graphs
for least common subsumers and most general subsumees of the concept to
be eliminated. This graph is analysed to decide whether fixpoint operators are
necessary in the result or not. In [13], an automata based representation is used
to make finite representations of uniform interpolants possible. The computed
automata can be used to decide whether a finite representation in pure EL is
possible and can be translated into corresponding EL-TBoxes in this case.

The method presented in this paper is an extension of a recently introduced
method for forgetting concept symbols in ALC-ontologies [11], which is evaluated
in [10]. Both methods take ideas from second-order quantifier elimination tech-
niques presented in [4], especially from the resolution-based method SCAN [3]
and a method based on a generalised version of Ackermann’s Lemma [16]. The
latter technique has first been applied for description logics in [19]. Like the
methods presented in [12] and [15], the method presented in [11] focuses on
forgetting concept symbols. Our current method adds redundancy elimination
techniques and is the first practical algorithm for forgetting role symbols from
ontologies in expressive description logics.

10 Conclusion and Future Work

We presented a method for forgetting concept and role symbols from ALCH-
ontologies, or for computing uniform interpolants of ALCH-ontologies. Since
uniform interpolants cannot always be represented in a finite way, the resulting
ontology may use fixpoint operators, which can be simulated in ALCH by ex-
tending the signature of the interpolant. Our experimental results suggest that
the method is already applicable in a lot of real life situations.

An open point regards the use of fixpoints. One can construct easy examples
where our method computes an interpolant with fixpoints, even though the uni-
form interpolant can be represented in ALCH. Reasons for this are interactions
between different fixpoint expressions in the ontology and indirect knowledge
encoded in the remaining part of the ontology. For example, it is possible that
the cyclic relation expressed by a fixpoint expression is already covered by a
set of axioms that was not touched by the method, or that the fixpoint can be
represented in a finite way due to entailments from the remaining ontology. Of
course this leaves also the question on whether optimal use of fixpoint is actually
practical on large ontologies, since an approach focused solely on the symbols
we want to forget would not be sufficient here.

References

1. Ackermann, W.: Untersuchungen über das Eliminationsproblem der mathematis-
chen Logik. Mathematische Annalen 110(1), 390–413 (1935)

16

2. Calvanese, D., Giacomo, G.D., Lenzerini, M.: Reasoning in expressive description
logics with fixpoints based on automata on infinite trees. In: Proc. IJCAI ’99. pp.
84–89. Morgan Kaufmann (1999)

3. Gabbay, D., Ohlbach, H.J.: Quantifier elimination in second-order predicate logic.
In: Proc. KR ’92. pp. 425–435. Morgan Kaufmann (1992)

4. Gabbay, D.M., Schmidt, R.A., Szalas, A.: Second Order Quantifier Elimination:
Foundations, Computational Aspects and Applications. College Publ. (2008)

5. Grau, B.C., Motik, B.: Reasoning over ontologies with hidden content: The import-
by-query approach. J. Artificial Intelligence Research 45, 197–255 (2012)

6. Herzig, A., Mengin, J.: Uniform interpolation by resolution in modal logic. In:
JELIA ’08. LNAI, vol. 5293, pp. 219–231. Springer (2008)

7. Horridge, M., Parsia, B., Sattler, U.: The state of bio-medical ontologies. Bio-
Ontologies 2011 (2011)

8. Konev, B., Walther, D., Wolter, F.: Forgetting and uniform interpolation in large-
scale description logic terminologies. In: Proc. IJCAI ’09. pp. 830–835 (2009)

9. Koopmann, P., Schmidt, R.A.: Forgetting concept and role symbols in
ALCH-ontologies. Technical Report, available from http://www.cs.man.ac.uk/

~koopmanp (2013)
10. Koopmann, P., Schmidt, R.A.: Implementation and evaluation of forgetting in

ALC-ontologies. In: Proc. WoMO’13. CEUR-WS.org (2013)
11. Koopmann, P., Schmidt, R.A.: Uniform interpolation of ALC-ontologies using fix-

points. In: Proc. FroCoS’13. LNAI, vol. 8152, pp. 87–102. Springer (2013)
12. Ludwig, M., Konev, B.: Towards practical uniform interpolation and forgetting for

ALC TBoxes. In: Proc. DL’13. pp. 377–389. CEUR-WS.org (2013)
13. Lutz, C., Seylan, I., Wolter, F.: An automata-theoretic approach to uniform inter-

polation and approximation in the description logic EL. In: Proc. KR’12. AAAI
Press (2012)

14. Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in ex-
pressive description logics. In: Proc. IJCAI ’11. pp. 989–995. AAAI Press (2011)

15. Nikitina, N.: Forgetting in general EL terminologies. In: Proc. DL’11. CEUR-
WS.org (2011)

16. Nonnengart, A., Sza las, A.: A fixpoint approach to second-order quantifier elimi-
nation with applications to correspondence theory. In: Logic at Work, pp. 307–328.
Springer (1999)

17. Sattler, U., Schneider, T., Zakharyaschev, M.: Which kind of module should I
extract? In: Proc. DL’09. CEUR-WS.org (2009)

18. Shearer, R., Motik, B., Horrocks, I.: HermiT: A highly-efficient OWL reasoner. In:
Proc. OWLED’08. pp. 26–27. CEUR-WS.org (2008)

19. Sza las, A.: Second-order reasoning in description logics. J. Appl. Non-Classical
Logics 16(3-4), 517–530 (2006)

20. Wang, K., Wang, Z., Topor, R., Pan, J.Z., Antoniou, G.: Eliminating concepts and
roles from ontologies in expressive descriptive logics. Computational Intelligence
(2012)

21. Wang, Z., Wang, K., Topor, R., Zhang, X.: Tableau-based forgetting in ALC on-
tologies. In: Proc. ECAI ’10. pp. 47–52. IOS Press (2010)

22. Wang, Z., Wang, K., Topor, R.W., Pan, J.Z.: Forgetting for knowledge bases in
DL-Lite. Ann. Math. Artif. Intell. 58(1-2), 117–151 (2010)

