
Terminating Minimal Model Generation
Procedures for Propositional Modal Logics?

Fabio Papacchini and Renate A. Schmidt

The University of Manchester, UK

Abstract. Model generation and minimal model generation are useful
for tasks such as model checking and for debugging of logical specifica-
tions. This paper presents terminating procedures for the generation of
models minimal modulo subset-simulation for the modal logic K and all
combinations of extensions with the axioms T, B, D, 4 and 5. Our pro-
cedures are minimal model sound and complete. Compared with other
minimal model generation procedures, they are designed to have smaller
search space and return fewer models. In order to make the models more
effective for users, our minimal model criterion is aimed to be semanti-
cally meaningful, intuitive and contain a minimal amount of information.
Depending on the logic, termination is ensured by a variation of equality
blocking.

1 Introduction

Automated reasoning methods are often designed to check satisfiability and va-
lidity of formulae. In many applications the “yes or no” answer returned by
these methods is all the information that is needed, but there are tasks where
additional information is required. Model generation methods complement such
automated reasoning methods by returning models that explain why a certain
answer holds. Examples of tasks where model generation methods are useful
are fault analysis, model checking and debugging of logical specifications [18,
13]. Even for the most well-behaved, decidable logics, in general, there are un-
countably many different models for satisfiable formulae and models can be very
large, which makes effective model generation a challenging problem. For these
reasons, there have been several studies about the generation of different kinds
of minimal models for classical and non-classical logics [2, 15, 14, 16, 17, 13, 7].

In this paper we introduce a semantic notion of minimality, similar to the no-
tions used in [17, 13]. Our minimality criterion is based on a preorder on models
called subset-simulation (i.e., it is a variation of the more common notion of sim-
ulation [4]). The criterion is designed so that minimal models are semantically
meaningful, more natural than models minimal with respect to other minimality
criteria, and contain a minimal amount of information. In this paper we propose

? The first author is supported by an EPSRC EU Doctoral Training Award. The
research was partially supported by EPSRC research grant EP/H043748/1.

2

the first terminating, minimal model sound and complete procedures for the gen-
eration of models minimal modulo subset-simulation for all normal modal logics
in between K and S5. If a model generator is minimally sound and complete,
not only will it generate one minimal model, but it will generate the complete
set of all minimal models. In comparison with other approaches, our procedures
benefit from smaller search spaces, and fewer models are returned. In particular,
we aim to return the smallest set of all relevant minimal models, so that the user
is not swamped with too many similar models.

As modal logics are closely related to description logics, our procedures can
be used as methods complementary with respect to ontology debugging methods
such as the ones proposed in [19, 8]. The usual definition of ontology debugging
assumes that an ontology is incoherent (inconsistent). In this case, debugging is
the ability to identify the cause of the incoherence and fix it. An ontology can
however be considered faulty even when it is coherent, but it does not properly
model the domain of interest. This can be because aspects and properties of the
domain of interest, that are expected to hold, do not follow from the ontology.
In this context, similarly to test-driven software development paradigms, our
procedures complement the notion of ontology debugging and provide assistance
to model correctly the domain of interest. Minimal model generation procedures
can be used to check whether these properties hold at any stage of the life cycle
of the ontology, and then corrected based on the computed models.

Another possible use for the generation of models minimal modulo subset-
simulation is positive query answering for Horn fragments of modal logics similar
to [13]. In [13] the query answering problem is reduced to a model checking
problem. Our procedures can be used in the same way, but it is not restricted
to Horn fragments of modal logics.

The logics and the main properties of models minimal modulo subset-simula-
tion are presented in Section 2. Section 3 defines minimal model sound and com-
plete procedures for the logics under consideration. As minimal model soundness
can be easily shown if the procedures are minimal model complete, we focus on
formally proving minimal model completeness (Section 4). Termination results
for all the logics under consideration are presented in Section 5, as one of the
main contributions of the paper. How our procedures relate to other minimal
model generation procedures, what are possible extensions of the procedures,
and how it is possible to further improve them is discussed in Section 6. Sec-
tion 7 summarises the contributions of the paper and mentions directions of
future work.

2 Modal Logics and the Minimality Criterion

We work with modal formulae of the propositional modal logic K possibly ex-
tended with a subset of the well-known axioms T, B, D, 4, and 5. Specifically,
the logics covered in this paper are all propositional normal modal logics be-
low S5, namely, K, KD, KDB, K4, K5, KD4, KD5, K45, KD45, KB4,

3

Table 1. Modalities and their corresponding frame conditions

� Axiom Frame condition First-order representation

K

T �p→ p reflexivity ∀xR(x, x)

B p→ �♦p symmetry ∀x∀y(R(x, y) → R(y, x))

D �p→ ♦p seriality ∀x∃yR(x, y)

4 �p→ ��p transitivity ∀x∀y∀z(R(x, y) ∧R(y, z) → R(x, z))

5 ♦p→ �♦p Euclideanness ∀x∀y∀z(R(x, y) ∧R(x, z) → R(y, z))

KT4, and KT5(= S5). All these logics are decidable. Table 1 lists the axioms
and their semantic characterisations as frame properties.

A modal formula is a formula of the form >, ⊥, pi, ¬φ, φ1 ∧ φ2, φ1 ∨ φ2,
♦φ, �φ, where > and ⊥ are two nullary logical operators for, respectively, true
and false; pi ∈ Σ is a propositional symbol belonging to the set Σ of proposi-
tional symbols; ¬, ∧, ∨, ♦, � are, respectively, the logical operators of negation,
conjunction, disjunction, diamond and box; and φ1, φ2, φ are modal formulae.

We adopt the standard semantics of modal formulae, known as Kripke se-
mantics. A frame for a modal logic is a tuple (W,R), where W is a non-empty
set of worlds and R ⊆W ×W is the accessibility relation over W . An interpreta-
tion I is a tuple (W,R, V) composed of a frame and an interpretation function V
that assigns to each world u ∈ W a set of propositional symbols, meaning that
such propositional symbols hold in u. Given an interpretation I = (W,R, V) and
a world u ∈W , truth of a modal formula φ is inductively defined as follows.

I, u 6|= ⊥ I, u |= >
I, u |= pi iff pi ∈ V (u)

I, u |= ¬φ iff I, u 6|= φ

I, u |= φ1 ∨[∧] φ2 iff I, u |= φ1 or[and] I, u |= φ2

I, u |= �φ iff for every v ∈W if (u, v) ∈ R then I, v |= φ

I, u |= ♦φ iff there is a v ∈W such that (u, v) ∈ R and I, v |= φ

Given an interpretation I, a world u and a modal formula φ, if I, u |= φ
holds, then I is a model of φ.

A model graph M = (W,R,V) is an interpretation except that V(u) returns
the set of formulae true in u. Given a model graph M = (W,R,V) it is possible to
obtain the corresponding interpretation I = (W,R, V), where V (u) = V(u) ∩Σ
for all u ∈W .

Let u and v be two elements of the domain of a model I. If there is a path
in the model from u to v, then u is an ancestor of v and v is a descendant of u.

The frame closure of a model I is the model obtained by computing the
closures of the relevant frame properties (e.g., transitive closure).

Let I = (W,R, V) and I ′ = (W ′, R′, V ′) be two models of a modal formula φ.
A bisimulation is a binary relation B ⊆W×W ′ such that for any two worlds u ∈
W and u′ ∈W ′, if uBu′ then the following hold.

4

– V (u) = V ′(u′),
– if uRv, then there exists a v′ ∈W ′ such that u′Rv′ and vBv′, and
– if u′R′v′, then there exists a v ∈W such that uRv and vBv′.

An auto-bisimulation is a bisimulation between a model and itself.
Let I = (W,R, V) and I ′ = (W ′, R′, V ′) be two models of a modal formula φ.

A subset-simulation is a binary relation S ⊆ W × W ′ such that for any two
worlds u ∈W and u′ ∈W ′, if uSu′ then the following hold.

– V (u) ⊆ V ′(u′), and
– if uRv, then there exists a v′ ∈W ′ such that u′Rv′ and vSv′.

If S is such that for all u ∈W there is at least one u′ ∈W ′ such that uSu′, then
we call S a full subset-simulation from I to I ′. We say a subset-simulation S is
a maximal subset-simulation if there is no other subset-simulation S′ 6= S such
that S ⊂ S′. Given two models I and I ′, if there is a full subset-simulation S
from I to I ′, we say that I ′ subset-simulates I, or I is subset-simulated by I ′.
We write I ≤⊆ I ′ if I is subset-simulated by I ′.

Subset-simulation is a preorder on models. That is, subset-simulation is a
reflexive and transitive relation on models. For this reason it can be used to define
the following minimality criterion. A model I of a modal formula ϕ is minimal
modulo subset-simulation iff for any model I ′ of ϕ, if I ′ ≤⊆ I, then I ≤⊆ I ′.

As bisimulation is more restrictive than subset-simulation, any model IB
bisimilar to a model I preserves the original subset-simulation relationship of I.
This result is formally expressed in the following lemma, and is used for proving
termination of our procedures.

Lemma 1. Bisimulation preserves subset-simulation. That is, given two mod-
els I and I ′, any bisimilar model IB of I is such that if I ≤⊆ I ′ then IB ≤⊆ I ′,
and if I ′ ≤⊆ I then I ′ ≤⊆ IB.

3 Procedures for the Generation of Minimal Models

Our procedures for the generation of models minimal modulo subset-simulation
are composed of a tableau calculus and a minimality test. Depending on which
logic below S5 is considered, different rules for handling frame properties and
different termination techniques are used. The tableau calculus, without the
minimality test, is devised to generate minimal models, but it can also generate
non-minimal models. We prove minimal model completeness of the calculus in
Section 4, and that the use of the minimality test results in minimal model sound
and complete procedures.

As the minimality criterion is based on a preorder, it is possible to have
symmetry classes of models and minimal models belong to the same symmetry
class. Models that belong to the same symmetry class share the same positive
information, meaning that all the models entail the same positive formulae. For
this reason, we define minimal model completeness as follows. A procedure is

5

Table 2. Tableau calculus for the generation of minimal models

(�)
(u, v) : R u : �φ

v : φ
(α)

u : (φ1 ∧ . . . ∧ φn) ∨ Φ+
α

u : φ1 ∨ Φ+
α

...
u : φn ∨ Φ+

α

(β)
u : A ∨ Φ+

u : A u : Φ+

u : neg(Φ+)

where A is of the form ♦φ, �φ, or pi, and
neg(Φ+) = ¬p1 ∧ . . . ∧ ¬pn, where each pi
is a disjunct of Φ+.

(♦)
u : ♦φ

(u, v) : R
v : φ

where v is fresh.

(SBR)
u : p1 . . . u : pn u : ¬p1 ∨ . . . ∨ ¬pn ∨ Φ+

α

u : Φ+
α

minimal model complete if it generates at least one witness for each symmetry
class of minimal models.

The input to the calculus is a modal formula in negation normal form labelled
by an initial world u. Transformation to negation normal form is not essential,
but it simplifies the presentation. It also means that there is no need for pre-
processing before applying the calculus, and reduces the number of rules in the
calculus. Disjunctions and conjunctions are assumed to be flattened (e.g., we
write φ1 ∨ φ2 ∨ φ3 instead of φ1 ∨ (φ2 ∨ φ3)). By A we mean a modal formula
of the form pi, ♦φ or �φ. We use Φ+ to denote a non-empty disjunction, where
all disjuncts are of the form A, and use Φ+

α to denote a possibly empty disjunc-
tion, where all disjuncts are of the form A or are conjunctions. By neg(Φ+) we
mean the conjunction ¬p1 ∧ . . . ∧ ¬pn, where the pi are all the positive propo-
sitional variables appearing as disjuncts of Φ+. If Φ+ does not contain any pi,
then neg(Φ+) = >. The exclusive selection of positive propositional variables is
crucial for the minimal model completeness of the calculus. An example of this
is given in the explanation of the (β) rule.

Table 2 presents the rules of the calculus for the modal logic K. Given an
input formula u : φ, the rules are exhaustively applied. At most one rule is
applied to any formula appearing as the main premise, where the main premise
of a multi-premise rule is the premise on the right. For fairness, each instance
of a rule application is performed exactly once. Given an open branch B in a
tableau derivation, a model I = (W,R, V) can be extracted from B as follows.
The domain W is the set of all the labels occurring in B, the accessibility relation
is composed of all the instances (u, v) : R in B, the interpretation function V is
such that V (u) = {pi | u : pi ∈ B}. A partial model graph M is extracted from
a branch B in a similar way, except that V(u) = {φ | u : φ ∈ B}.

6

The (α) rule is a variation of standard rule for conjunctions. If Φ+
α = >

then it just expands the conjunction, otherwise the application of the (α) rule
performs lazy clausification. If such lazy clausification is performed in a clever
way, for example, by using a good heuristic for choosing the right conjunction to
expand, it can result in the reduction of inferences due to the implicit restriction
of Φ+

α in the premise of the rule.
The (�) rule and the (♦) rule are the common rules for box and diamond

formulae. They simply expand formulae in the scope of a modality as required
by their semantics.

The (β) rule is the only branching rule of the calculus. Its purpose is to branch
over disjunctions without any negated propositional variables, and to close the
left branch if it is not minimal. This latter point is achieved by the use of a limited
form of complement splitting (more common uses of complement splitting can be
found in the literature, e.g. [2]). The reason why complement splitting is applied
only on positive propositional variables is that the negation of diamond formulae
or box formulae would result in new modal formulae (specifically, box formulae
and diamond formulae) that can compromise the minimality of the resulting
model. For example, let us assume that the (β) rule is applied to u : φ1∨�φ2. If
the complement ♦¬φ2 of �φ2 would have been added to the left branch, the left
branch would still be open, and the resulting model would still be a model for
the original formula, but the newly introduced diamond formula would generate
unnecessary information. The resulting model would not be minimal. A similar
example can be given for the case of the negation of diamond formulae.

The (SBR) rule is a selection-based resolution rule. It can be seen as a weaker
version of the (SBR) rule in [16], the PUHR rule in [2], or the hyper-tableau
rule in [1]. The aim of this rule is twofold. First, it provides the closure rule of the
calculus, because atomic closure is sufficient. Second, it allows to remove negative
information (i.e., all negative propositional variables) from a disjunction. The
rationale for the (SBR) rule is that if a disjunction contains negative information
(at least one negated propositional variable) that is not in conflict with any
formula on the branch, then any expansion of such a disjunction results in either a
minimal model, where the disjunction is true due to the negative information, or
in a non-minimal model. Hence, there is no advantage in expanding a disjunction
as long as it is not possible to remove all the negative information from it.
The (SBR) rule is the reason why other rules, specifically the (β) rule and
the (α) rule, can be applied only to disjunctions of the form Φ+ or Φ+

α . This
decreases the number of required inferences.

Theorem 1. The tableau calculus in Table 2 is sound and refutationally com-
plete for K.

For reasons of space we omit a formal proof, but the calculus does not differ
much from known calculi. All the rules are sound variations of common rules.
The rule modifications help in directing the calculus toward the generation of
minimal models, for example, the restrictions in Φ+ or Φ+

α .
In the next section we show that the calculus is minimal model complete.

Minimal model completeness means that the calculus generates at least one

7

Table 3. Rules for extending the calculus

(T)
(u, u) : R

(B)
(u, v) : R

(v, u) : R

(4)
(u, v) : R (v, w) : R

(u,w) : R
(5)

(u, v) : R (u,w) : R

(v, w) : R

(D)
u : ♦>

witness per symmetry class of minimal models. We also want the calculus to be
minimal model sound, that is, only minimal models are generated.

To achieve minimal model soundness we define a minimality test to close
branches from which non-minimal models can be extracted. The minimality test
is called subset-simulation test. It consists of two operations. First, let I be a
partial model extracted from an open branch B. If a model I ′ such that I ′ ≤⊆ I
has already been found, then close B. Second, let I be a model newly extracted
from an open and fully-expanded branch B. If a model I ′ such that I ′ ≤⊆ I
has already been found, then close B, and for any already extracted model I ′,
if I ≤⊆ I ′, then close the branch from which I ′ was extracted.

Computing subset-simulation relations between finite models is a decidable
problem. Our procedure uses the algorithm for computing subset-simulations
presented in [17], which is a variation of the algorithm for computing auto-
simulation in [6]. The complexity of the algorithm depends directly on the size
of the domains and on the number of relations in the involved models.

Our minimal model generation procedure extends to all sublogics of S5.
Table 3 contains the structural rules enabling the handling of all these logics.
Augmenting the extensions with the subset simulation test results in minimal
model sound and complete procedures. This is because the subset-simulation
test is independent of the logic. What matters is minimal model completeness,
and [17] proves that such structural rules preserve minimal model completeness.
It is worth noting that some of the extensions, e.g., K4, might have minimal
models with an infinite domain, and this affects termination. However, minimal
model soundness and completeness can be ensured by choosing good branch
selection strategies. A suitable branch selection strategy is to always select the
branch with the smallest number of labels (i.e., the branch where the extracted
partial model has the smallest domain). In Section 5 we show that a better
branch selection strategy can be adopted as soon as termination of the procedure
is ensured.

4 Minimal Model Completeness

Because our minimal model completeness proof relies on results in [17] for
the multi-modal logic K(m) and its extensions, we recall here some definitions

8

from [17]. A simulation relation between models is as a subset-simulation rela-
tion, except that the first property is V (u) = V ′(u′). I ≤= I ′ denotes that I is
simulated by I ′. The minimality criterion in [17] is as follows. A model I of a
modal formula ϕ is minimal modulo subset-simulation iff for any model I ′ of ϕ,
if I ′ ≤⊆ I, then I ≤⊆ I ′ and for any model I ′′ of ϕ belonging to the same
symmetry class of I, if I ′′ ≤= I then I ≤= I ′′. The notion of minimal model
completeness used in [17] requires the generation of all minimal models, and not
just a witness per symmetry class.

As the logics considered in this paper are a subset of the logics considered
in [17], the following lemma is restricted to the logics covered in this paper.

Lemma 2. Let I and I ′ be models of a modal formula ϕ such that I is minimal
with respect to the minimality criterion in [17], and I ′ is minimal with respect
to the minimality criterion used in this paper. Then the following hold.

– I is minimal with respect to the minimality criterion used in this paper, and
– there exists a model I ′′ minimal with respect to the minimality criterion used

in [17] such that I ′′ ≤⊆ I ′.

The lemma explains the relation between the minimality criterion used in [17]
and the minimality criterion used in this paper. The first point of Lemma 2 tells
us that the minimality criterion used in this paper considers as minimal all the
models considered minimal by the minimality criterion in [17], and potentially
more than these. The second point tells us, indirectly, that the symmetry classes
for the two notions are the same.

As the notion of minimal model completeness in [17] is wider than our notion,
and given the relation between the two minimality criteria, the following holds.

Lemma 3. The procedure in [17] is minimal model complete with respect to our
notions of minimal model and minimal model completeness.

From a procedural perspective, the minimal model generation procedure we
propose and the procedure proposed in [17] mainly differ in how diamond for-
mulae are expanded. This is due to the use of different minimality criteria and
different notions of minimal model completeness, which force the calculus in [17]
to explore all possible expansions of diamond formulae. The (♦) rule, simplified
to the uni-modal case, used in [17] is the following.

(♦)
u : ♦φ

(u, u1) : R . . . (u, un) : R (u, v) : R
u1 : φ un : φ v : φ

where each ui appears on the
branch, and v is fresh.

Theorem 2. For any model I ′ extracted from an open and fully expanded branch
of the procedure in [17], there is a model I extracted from an open and fully ex-
panded branch B of our procedure such that I ≤⊆ I ′.

Proof. Let I = (W,R,V) and I ′ = (W ′, R′,V ′). We prove the theorem induc-
tively by creating a relation S ⊆W×W ′ during the construction of the branch B,
and show that S is a full subset-simulation.

9

Base case: Let us assume that the input of the procedure in [17] is u′ : ϕ, and
the input of our procedure is u : ϕ. This means that I ′, u′ |= ϕ, and the initial
partial model graph I is ({u}, ∅,V(u) = {ϕ}). As I ′ is a complete model graph
and I ′, u′ |= ϕ, then ϕ ∈ V ′(u′). This implies that V(u) ⊆ V ′(u′). Let (u, u′) ∈ S.
Then it is immediate that S is a full subset-simulation from I to I ′.

Induction step: Let us assume that after n rule applications, for the ex-
tracted model I there is a subset-simulation S from I to I ′. We prove that S,
or a variation of it, is still a subset-simulation relation after the application of
any rule ρ of our procedure. For reasons of space we give proofs only for three
of the rules, but all the other cases are similar. In all the following cases, we
assume I = (W,R,V) is the model extracted before the application of ρ.

ρ is the (α) rule. This means that the expanded formula is a labelled dis-
junction u : ϕ, where at least one disjunct ϕα is a conjunction. Let Φ be the
set of labelled formulae representing the conclusion of the (α) rule and Ψ =
{ψ | u : ψ ∈ Φ}. This means that Φ is on the branch and the new extracted
model graph I ′′ = I, where V ′′ = V except for V ′′(u) = V(u) ∪ Ψ . By the
inductive hypothesis, there is a u′ ∈ W ′ such that (u, u′) ∈ S, V(u) ⊆ V ′(u′)
and I ≤⊆ I ′. As ϕ ∈ V ′(u′) and I ′ is a complete model, then Ψ ⊆ V ′(u′). This
implies that V ′′(u) ⊆ V ′(u′). That is, the current S is a full subset-simulation
such that I ′′ ≤⊆ I ′. In principle there may be more than one conjunction to be
selected for the application of the (α) rule. This implies that Φ may be different
from the application of the (α) rule applied to generate I ′. Even though the two
sets of conclusions are syntactically different, they are semantically equivalent.
Hence, w.l.o.g. we can assume that the same conjunction is used.

ρ is the (♦) rule. This means that the expanded formula is a labelled diamond
formula, let us say u : ♦ϕ. As a result of the application of the (♦) rule, {v :
ϕ, (u, v) : R} are on the branch and v is fresh on the branch. The new extracted
model I ′′ is as follows. W ′′ = W ∪ {v}, R′′ = R ∪ {(u, v)}, and V ′′ = V ex-
cept for V ′′(v) = {ϕ}. By the inductive hypothesis, there is a u′ ∈ W ′ such
that (u, u′) ∈ S, V(u) ⊆ V ′(u′) and I ≤⊆ I ′. As ♦ϕ ∈ V ′(u′) and I ′ is a com-
plete model, then there is an R-successor v′ ∈ W ′ of u′ such that ϕ ∈ V ′(v′).
Let S′ = S ∪ {(v, v′)}. S′ is a full subset-simulation such that I ′′ ≤⊆ I ′.

ρ is the (4) rule. This means that there are two labelled relations (u, v) : R
and (v, w) : R for which transitivity has not been applied yet. As a result of
the application of the (4) rule, (u,w) : R is on the branch and the new ex-
tracted model I ′′ is such that I ′′ = I, except for R′′ = R ∪ {(u,w)}. By the
inductive hypothesis, there are u′, v′, w′ ∈W ′ such that (u, u′), (v, v′), (w,w′) ∈
S, (u′, v′), (v′, w′) ∈ R and I ≤⊆ I ′. As I ′ is a complete model and R is tran-
sitive, then (u′, w′) ∈ R. That is, the current S is a full subset-simulation such
that I ′′ ≤⊆ I ′. ut

Corollary 1. For any model I ′ minimal with respect to [17], there is a model I
generated by our procedure such that I ≤⊆ I ′.

Minimal model completeness of our tableau calculus follows from Lemma 3
and Corollary 1. Minimal model soundness is the result of applying the subset-
simulation test to minimal model complete tableaux calculi.

10

Theorem 3. The tableau calculus in Table 2 and the extensions with the rules
in Table 3 are minimal model complete. That is, the calculi generate at least one
witness for each symmetry class of minimal models.

Theorem 4. Augmenting the tableau calculus in Table 2 and its extensions with
the rules in Table 3 and the subset-simulation test gives us minimal model sound
and complete procedures. That is, only minimal models and at least a witness for
each symmetry class of minimal models are generated.

5 Ensuring Termination

The presented calculus is (strongly) terminating for the modal logic K and its
reflexive and symmetric extensions (i.e., it terminates for KT, KB and KTB).
It is known that it is always possible to generate finite models for these logics
without using any termination technique. As a reference for this, [16] proves
that these logics have finite minimal Herbrand models and presents a tableau
calculus that does not require any termination technique.

The same reasoning cannot be used for the other normal modal logics, namely,
KD, KDB, K4, K5, KD4, KD5, K45, KD45, KB4, KT4, and KT5. The
main challenge to obtain terminating procedures for these logics is to find block-
ing techniques preserving minimal model completeness.

For KD and KDB it is not difficult to achieve termination while preserving
minimal model completeness. This is because the seriality condition is what
affects termination, forcing all models to have paths where a world in which the
only true formula is > is repeated infinitely many times. It is, therefore, enough
to add a reflexive edge as soon as the first such world appears, and the resulting
finite model is bisimilar to the original model. Therefore, the following holds.

Theorem 5. Our procedures to handle the modal logics KD and KDB are
minimal model sound and complete, and terminate if a reflexive loop is added to
each occurrence of a fully-expanded world u where V(u) = ∅.

The rule application order is important in a practical implementation. Specif-
ically, the (♦) rule needs to be the last rule to be applied.

More interesting are the logics K4, KT4, and KD4. For these logics, the
models can be infinite due to the seriality axiom or because of transitivity. The
previous termination strategy is not sufficient for these logics (i.e., it is possible to
have infinite chains where no fully-expanded world has an empty interpretation).
The usual method to obtain a terminating tableau calculus, see, e.g. [9], is to use
static subset blocking. Formally, a world u is subset blocked if there is a parent v
of u such that V(u) ⊆ V(v). This kind of blocking, however, is not compatible
with our minimality criterion because it might potentially merge a world with less
positive information and a world with more positive information. This may lead
to non-minimal models being considered minimal, affecting the minimal model
soundness of the procedure, or to the non-generation of some minimal model,
affecting the minimal model completeness of the procedure. It turns out that

11

∅

{s} {t}

{p}

∅

{s} {t}

{p} {p}

{q}

Fig. 1. Example of incompleteness when anywhere equality blocking is used

equality blocking is more suitable. However, not all forms of equality blocking
can be used, but ancestor equality blocking can. A world u is considered ancestor
equality blocked if there is an ancestor v of u such that V(u) = V(v). We show
that anywhere equality blocking (i.e., v can block u even if it is not an ancestor
of u) violates minimal model completeness by means of an example. Suppose
that φ = ♦s ∧ ♦t ∧�♦(p ∨ q) is the input formula. While the model on the left
in Figure 1 is generated when anywhere equality blocking is used, the model on
the right is not and it is a model minimal modulo subset-simulation. However:

Theorem 6. Our procedures to handle the modal logics K4, KT4 and KD4
are minimal model sound and complete, and terminate when ancestor equality
blocking is used.

Proof. Termination follows from known results that ancestor equality blocking is
enough to ensure termination for these logics (e.g., [9]). We prove that minimal
model completeness is preserved only for the case of K4, but the same reasoning
can be used to prove it for the other logics. Suppose φ is the input modal formula.
Let us assume that M is an infinite model graph of φ such that M,u |= φ. Hence,
there is at least one connected component in the graph with a path composed
of an infinite sequence of worlds. Since the tableau calculus only propagates
subformulae of φ, there are only finitely many formulae per world. This implies
that the infinite path must contain a finite number of distinguishable worlds,
that can be identified with each other. Due to transitivity each world in the
path is connected with all its descendants, meaning we can focus our attention
on the infinite repetition of a finite path of distinct worlds. This implies that M
subset-simulates another model where a loop over the finite path is created. This
reasoning can be iterated for all the infinite components of the graph. Hence, M
subset-simulates a finite model. Therefore, as ancestor equality blocking blocks
the infinite path at the first appearance of the first repeated world, minimal
model completeness is preserved. ut

As in the previous case, the rule application order is important. Specifically,
the (♦) rule needs to be applied last. In this way it is possible to build the
model by exhaustively expanding all formulae world by world. If ancestor equal-
ity blocking is checked only before applying the (♦) rule, then when equality is
detected the set of formulae true in a world cannot change anymore.

12

For all the remaining cases anywhere dynamic equality blocking can be used.
This blocking technique blocks a world if there is another world for which the
interpretation is the same. The dynamic part is due to the possibility of having
false guesses. Specifically, it is possible that two worlds are considered to be the
same at some point in the derivation, but they do not have the same interpre-
tation in a subsequent point in the derivation. Making the blocking technique
dynamic allows for the possibility of blocking and unblocking pairs of worlds.
This technique, or a variation of it, is already used in the literature (e.g., [3, 10]).

Theorem 7. Our procedures to handle the modal logics K5, KD5, K45, KD45,
KB4 and KT5 are minimal model sound and complete, and terminate when
anywhere dynamic equality blocking is used.

Proof. As for Theorem 6, we only need to prove that minimal model complete-
ness is guaranteed. We prove it only for the case of K5, but the same reasoning
can be used to prove it for the other logics. Due to frames being Euclidean, the
resulting model is a strongly connected graph where the only exception is the
root world. Hence, any two non-root worlds u and v are related by a reflexive,
symmetric and transitive relation. If V(u) = V(v), then an auto-bisimulation of
the model would merge them into a single world. This implies that the applica-
tion of anywhere dynamic equality blocking is equivalent to a bisimulation step.
For Lemma 1, if the original model was minimal modulo subset-simulation, then
the resulting model is still minimal modulo subset-simulation. ut

From minimal model completeness and the termination results of this section,
this theorem follows.

Theorem 8. All the normal modal logics between K and KT5 have finitely
many symmetry classes of models minimal modulo subset-simulation.

Having strong termination techniques for all the normal modal logics allows
us to vary the branch selection strategy. Specifically, a depth-first left-to-right
branch selection strategy can be used. From a practical perspective this is im-
portant because it allows for memory efficient implementations.

6 Related Work and Discussion

The most similar approach for the generation of minimal models, for both the
methodology used and the minimality criterion involved, is [17]. [17] is the first
paper to introduce the notion of models minimal modulo subset-simulation and,
hence, first to propose a technique for the generation of such minimal models
for the multi-modal logics K(m) and some of its extensions. Our procedures
have however much smaller search spaces than those in [17]. This is because our
notion of minimal model completeness requires the generation of one witness per
symmetry class, while the notion used in [17] requires the whole symmetry classes
to be generated. This is reflected in the rules of the two tableaux calculi. The only
branching rule of our tableau calculus is the (β) rule, while in [17] also the (♦) rule

13

is a branching rule. The (♦) rule in [17] has a high branching factor (i.e., the
number of branches is equal to current number of labels in the branch plus one),
and it leads to the generation of many similar and, therefore, unnecessary models.
In the literature, other notions of minimal model completeness similar to the one
we adopt exist. For example, in [5, 13] not all minimal models are generated, but
only witnesses of a specific kind of equivalences classes are generated.

The used notions of minimality and minimal model completeness allowed us
to simplify the subset-simulation test in [17]. The subset-simulation test can be
improved even more if for any extracted minimal model the auto-bisimulation
is computed. This is because the complexity of checking subset-simulation rela-
tions depends on the number of worlds and the number of edges. Using auto-
bisimulation can potentially result in minimal models having a smaller domain,
making the comparison with other models easier. It is important to note though
that the procedure proposed in [17] is designed to cover more expressive modal
logics than what we cover in this paper, but, as long as termination is not taken
into consideration, our approach can easily be extended to cover exactly the
same expressive multi-modal logics while maintaining the results of this paper.

The minimality criterion in [13] has similarities to our minimality criterion
and, using our terminology, it can be defined as a minimality criterion based on
subset-bisimulation. [13] proposes a method to reduce the problem of answering
positive queries for Horn modal formulae to the task of model checking. The
creation of a minimal model that preserves all positive entailments simplifies the
model checking task. It is interesting to note that any model minimal modulo
subset-simulation is also minimal with respect to the minimality criterion pro-
posed in [13]. This means that our approach can be used to address exactly the
same problem, even for formulae that are outside of the modal Horn fragment.

Apart from our notion of minimal models, other minimality criteria exist.
These can be classified into: syntactic notions of minimality, minimal Herbrand
models [2, 14, 16], and domain minimality [7, 11]. The class of minimal Herbrand
models has the advantage that it can be ordered by the subset relation. It is thus
possible to focus on generating models minimal under this ordering. Generating
minimal Herbrand models for classical logics has been studied in [2, 14] and for
modal logics in [16]. Despite the use of a different minimality criterion, there are
similarities between the models considered minimal by our approach and those
considered minimal in [16]. As long as termination is not taken into consideration,
models minimal modulo subset-simulation are a subset of minimal Herbrand
models. As our minimality criterion takes into consideration the semantics of
models, some minimal Herbrand model can be considered redundant or not
minimal, resulting in a smaller set of minimal models. As soon as termination
techniques are necessary, comparing the two notions of minimality becomes more
difficult. This is also due to the fact that the approach proposed in [16] cannot be
extended easily to cover logics with potentially infinite models, and is restricted
to the multi-modal logics K(m), KT(m), KB(m) and KTB(m).

By contrast, domain minimal models are finite for all logics with the finite
model property. Another possibility therefore is to focus on the generation of

14

models with minimised domains [7, 11]. Domain minimal models, however, tend
to be counter-intuitive because too many worlds are collapsed into a single world.
As a result, all the information needed to satisfy the input formula is pushed
to the least number of domain elements, making tasks such as verification and
debugging harder. Our approach is designed to avoid the creation of domain
minimal models while spreading the positive information as much as possible.
This results in more meaningful and intuitive models, as is shown in [17].

Description logics are closely related to the modal logics considered in this
paper, and all results can be transferred to the corresponding description logics.
An important difference is the presence of TBoxes in description logics. This
difference can be accommodated by using a calculus for modal logics extended
with rules for handling universal modalities. As TBoxes do not need the com-
plete expressiveness of the universal modalities, we can extend our procedures
in such a way that only specific patterns of universal modalities are allowed. In
this way the procedures can handle description logics such as ALC with non-
empty TBoxes. ABoxes pose no technical challenges. The full expressive power
of universal modalities, however, increases the complexity of the procedure, and
termination techniques preserving minimal model completeness are needed.

In this paper we used structural rules to accommodate frame conditions. A
common alternative to the structural rules are propagation rules (e.g., [12]). The
use of propagation rules is possible, but it would require expensive changes to the
procedures. It can be proved that if there is a subset-simulation relation between
two models obtained by using propagation rules, then the same subset-simulation
relation holds also for the frame closures of the models. As the complexity of com-
puting subset-simulation depends on the size of the domain and on the number
of edges, the use of propagation rules seems promising. On the other hand, the
other direction does not hold. In particular, subset-simulation relations between
models where the frame closures are computed are not necessarily transferred
to models generated by using a procedure based on propagation rules. As the
subset-simulation test is applied many times, the use of propagation rules would
require repeated computations of frame closures leading to worse performance.

7 Conclusion

We presented the first terminating, minimal model sound and complete proce-
dures for the generation of models minimal modulo subset-simulation for all the
sublogics of S5. Compared with other minimal model generation approaches,
our procedures greatly benefit from smaller search spaces, fewer models are gen-
erated, and the semantically meaningfulness and naturalness of the models make
them more effective for debugging purposes. These features of the procedures
are really promising from both an implementation and a practical point of view.

We plan to extend our procedures by introducing rules handling more ex-
pressive modal logics. Logics we aim to handle are all the extensions from the
uni-modal case to the multi-modal case, converse relations, universal modali-
ties and inclusion axioms. These generalisations correspond to expressive logics

15

widely used in real world applications. This is why we are currently working on
implementing the procedures. We believe efficient implementations are achiev-
able, and they will have important impact by complementing and improving
techniques for debugging and verification.

References

1. Baumgartner, P., Fürbach, U., Niemelä, I.: Hyper tableaux. In: Proc. JELIA’96.
LNCS, vol. 1126, pp. 1–17. Springer (1996)

2. Bry, F., Yahya, A.: Positive unit hyperresolution tableaux and their application to
minimal model generation. J. Automat. Reason. 25 (1), 35–82 (2000)

3. Cialdea Mayer, M.: A proof procedure for hybrid logic with binders, transitivity
and relation hierarchies. In: Proc. CADE’13. LNCS, vol. 7898, pp. 76–90. Springer
(2013)

4. Clarke, E.M., Schlingloff, B.: Model checking. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, pp. 1635–1790. Elsevier (2001)

5. Denecker, M., De Schreye, D.: On the duality of abduction and model generation
in a framework for model generation with equality. Theoret. Computer Sci. 122
(1&2), 225–262 (1994)

6. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite
and infinite graphs. In: Proc. FCS-36. pp. 453–462. IEEE Comput. Soc. (1995)

7. Hintikka, J.: Model minimization—An alternative to circumscription. J. Automat.
Reason. 4 (1), 1–13 (1988)

8. Horridge, M., Parsia, B., Sattler, U.: Extracting justifications from bioportal on-
tologies. In: Proc. ISWC’12 (2). LNCS, vol. 7650, pp. 287–299. Springer (2012)

9. Horrocks, I., Hustadt, U., Sattler, U., Schmidt, R.A.: Computational modal logic.
In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic,
pp. 181–245. Elsevier (2007)

10. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and
role hierarchies. J. Logic Comput. 9 (3), 385–410 (1999)

11. Lorenz, S.: A tableaux prover for domain minimization. J. Automat. Reason. 13
(3), 375–390 (1994)

12. Massacci, F.: Single step tableaux for modal logics. J. Automat. Reason. 24 (3),
319–364 (2000)

13. Nguyen, L.A.: Constructing finite least Kripke models for positive logic programs
in serial regular grammar logics. Logic J. IGPL 16 (2), 175–193 (2008)

14. Niemelä, I.: Implementing circumscription using a tableau method. In: Proc.
ECAI’96. pp. 80–84. Wiley (1996)

15. Niemelä, I.: A tableau calculus for minimal model reasoning. In: Proc.
TABLEAUX’96. LNCS, vol. 1071, pp. 278–294. Springer (1996)

16. Papacchini, F., Schmidt, R.A.: A tableau calculus for minimal modal model gen-
eration. Electr. Notes Theoret. Computer Sci. 278 (3), 159–172 (2011)

17. Papacchini, F., Schmidt, R.A.: Computing minimal models modulo subset-
simulation for propositional modal logics. In: Proc. FroCoS’13. LNAI, vol. 8152,
pp. 279–294. Springer (2013)

18. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32 (1),
57–95 (1987)

19. Schlobach, S., Huang, Z., Cornet, R., van Harmelen, F.: Debugging incoherent
terminologies. J. Automat. Reason. 39 (3), 317–349 (2007)

