FAME(Q): An Automated Tool for Forgetting in
Description Logics with Qualified Number
Restrictions

Yizheng Zhao?3 and Renate A. Schmidt3

! National Key Laboratory for Novel Software Technology, Nanjing University, China
2 School of Artificial Intelligence, Nanjing University, China
3 School of Computer Science, The University of Manchester, UK

Abstract. In this paper, we describe FAME(Q), a Java-based implemen-
tation of a forgetting method developed for eliminating concept and role
names from ALCOQH-ontologies. FAME(Q) is presently the only tool
for concept forgetting in description logics with qualified number restric-
tions and nominals, and the only tool for role forgetting in description
logics with qualified number restrictions. FAME(Q) can be used as a
stand-alone tool or a Java library for forgetting, or related tasks. An
evaluation of FAME(Q) on a large corpus of biomedical ontologies shows
that the tool is able to compute forgetting solutions in 90% of the test
cases; in most cases, the solutions are computed within a few seconds.

1 Introduction

Forgetting is an ontology re-engineering technique that seeks to produce new
ontologies from existing ones using only a subset of their signature while pre-
serving all logical consequences up to the names in the subset. This is done by
eliminating from an ontology a set of concept and role names (the forgetting
signature) in such a way that all logical consequences are preserved up to the
names in the remaining signature. The ontology produced by forgetting (the
forgetting solution), can be seen as a view of the original ontology. In traditional
databases, a view is a subset of a database, whereas in ontologies, a view is more
than a subset; it may contain not only axioms contained in the original ontol-
ogy, but also contains those entailed by the ontology (implicitly contained in the
ontology). Forgetting is potentially useful for many ontology processing tasks
such as ontology reuse, alignment, versioning, merging, debugging, repair, and
logical difference computation [IJIOIT3IBIT2I6IETAITE]. Forgetting is also useful
for other tasks such as information hiding and explanation generation [52].

At present, practical methods for forgetting in description logics with qual-
ified number restrictions are the resolution-based approach of the LETHE sys-
tem [8I7/9] and the one developed by [I7/19]. FAME(Q) is a Java implementation
of the latter, which computes uniform interpolants for ALCO QH-ontologies. The
method is a hybrid approach that makes use of both resolution and Ackermann’s

Lemma. It is so far the only approach able to forget concept and role names in
description logics with qualified number restrictions.

In this paper, we describe the forgetting method used by FAME(Q), the imple-
mentation of FAME(Q), and details of an evaluation of FAME(Q) on a large cor-
pus of publicly accessible biomedical ontologies. The current version of FAME(Q)
can be downloaded via http://www.cs.man.ac.uk/~schmidt/sf-fame/.

2 Forgetting for ALCO QH-Ontologies

Let N¢, Ng and N; be (countably infinite and pairwise disjoint) sets of concept
names, role names and individual names (nominals), respectively. Concepts in
ALCOQH have one of the following forms:

T|L]|a|A|]-C|COD|CUD|zmrC | <nrC,

where a € Nj, A € N¢, r € Ng, C and D denote arbitrary concepts, and m > 1
and n > 0 are natural numbers. Further concepts are defined as abbreviations:
Ir.C = >1r.C, Vr.C = <0r.-C, ->mr.C = <nr.C and —-<nr.C = >mr.C,
where n = m — 1. Concepts of the form >mr.C' and <nr.C' are referred to as
(qualified) number restrictions.

An ALCOQH-ontology is comprised of a TBox, an RBox and an ABox. A
TBox is a finite set of axioms of the form C' T D (concept inclusions), where C
and D are concepts. An RBox is a finite set of axioms of the form r C s (role
inclusions), where , s € Ng. An ABox is a finite set of axioms of the form C(a)
(concept assertions) and r(a,b) (role assertions), where a,b € Nj, € Ng, and
C is a concept.

Forgetting can be defined in two closely related ways. In particular, it can be
defined as the dual of uniform interpolation or model-theoretically as semantic
forgetting [6I17/4]. The two notions differ in the sense that uniform interpolation
preserves all logical consequences whereas semantic forgetting preserves semantic
equivalence up to certain names. The results of semantic forgetting (the seman-
tic solutions), are in general stronger than those of uniform interpolation (the
uniform interpolants). This means that semantic solutions always entail uniform
interpolants, but the converse does not hold. Uniform interpolants are always
expressible in the source logic, while semantic solutions are often not, and may
require an extended target language to express them.

By sigc(X) and sigg(X) we denote respectively the sets of the concept names
and role names that occur in X, where X ranges over concepts, roles, clauses,
axioms, sets of clauses and sets of axioms (ontologies). By sig(X) we denote the
union of sig(X) and sigg(X).

Definition 1 (Uniform Interpolation for ACCOQH). Let O be an ALCOQH-
ontology and let F C sig-(O) be a set of concept and role names. An ontology V is
an ALCOQH-uniform interpolant of O for sig(O)\F iff the following conditions
hold: (i) sig(V) C sig(O)\F, and (ii) for any axiom o with sig(a) C sig(O)\F,
VE aiff O a. In this case, sig(O)\F is called the interpolation signature,
i.e., the set of concept and role names to be preserved.

http://www.cs.man.ac.uk/~schmidt/sf-fame/

Definition [1| says that uniform interpolants have the same logical consequences
with the original ontologies up to the interpolation signature.

Definition [2] below says that semantic solutions preserve equivalence up to
the interpretations of the names in the forgetting signature F. We say that 7
and 7’ are equivalent up to a set F of concept and role names, or F-equivalent,
if Z and 7' coincide but differ possibly in the interpretations of the names in F.

Definition 2 (Semantic Forgetting for ALCOQH). Let O be an ALCOQH-
ontology and let F C sig(O) be a set of concept and role names. An ontology V
is a semantic solution of forgetting F from O iff the following conditions hold:
(1) sig(V) C sig(O)\F and (i) for any interpretation T: T =V iff T' = O, for
some interpretation ' F-equivalent to T. F is called the forgetting signature,
i.e., the set of concept and role names to be forgotten.

3 The Forgetting Method

Next, we briefly describe the forgetting method implemented in FAME(Q). The
method is mainly based on two calculi: a calculus for concept name elimination
and a calculus for role name elimination. The former was presented in our recent
work [19] and the latter in [I7]. The method is terminating and sound.

Both calculi operate on ALCOQH-ontologies in clausal normal form, which
are obtained from axioms using the standard transformations based on logical
equivalence such as —— >mr.C = >mr.C. In the following, we always use the
notation N to denote a set of clauses (clausified from an ALCOQH-ontology).

Definition 3 (Clausal Normal Form). A TBox literal in ALCOQH is a
concept of the form a, —a, A, =A, >mr.C or <nr.C, where a € N;, r € Ng,
C is a concept, and m > 1 and n > 0 are natural numbers. A TBox clause in
ALCOQH is a disjunction of a finite number of TBox literals. An RBox clause
in ALCOQH is a disjunction of a role name and a negated role name. A clause
is called an S-clause if it contains S, for any concept/role name S in NcU Ng.

Our method is a rounds-based method, where forgetting solutions (uniform
interpolants and semantic solutions) are computed by iteratively eliminating
the (concept and role) names in F. We call the name under consideration for
forgetting in the current round the pivot.

The calculus for eliminating a concept name from a set N of clauses includes
two purify rules and one combination ruleﬁ The purify rules are applied when the
pivot occurs only positively or only negatively in N, i.e., the pivot is pure in N.
The purify rules say that if the pivot occurs only positively (negatively) in N, it
is eliminated by substitution with the top (bottom) concept. The combination
rule is applied when the pivot occurs both positively and negatively in N, i.e.,
the pivot is impure in N. It is applicable iff A is in a specialized normal form
called A-reduced form, if A is the concept pivot.

4 In [1I9], the combination rule is named the Ackermann rule.

Definition 4 (A-Reduced Form). Let N be a set of clauses. Let A € sigc(N).
A clause is in A-reduced form if it has the form C U A, CU—-A, CU>mr.A,
CuU>mr.—A, CU<nr.A or CU<nr.—A, wherer € Ng, C is a clause that does
not contain A, and m > 1 and n > 0 are natural numbers. A set N of clauses
is in A-reduced form if all A-clauses in N are in A-reduced form.

A-clauses not in A-reduced form can be transformed into A-reduced form by
introducing definer names (or definers for short). Once N is in A-reduced form,
one can immediately apply the combination rule to A/ to eliminate A. For space
reasons we do not present and describe the combination rule in this paper, but
refer the reader to [I9] for a comprehensive description of the rule.

The calculus for eliminating a role name from A includes two purify rules
and five combination rulesEI The purify rules are applied when the pivot is pure
in A/. The combination rules are applied when the pivot is impure in N. They
are applicable iff A is in r-reduced form, where r is the pivot.

Definition 5 (r-Reduced Form). Let N be a set of clauses. Let r € sigg(N).
A TBoz clause is in r-reduced form if it has the form CU>mr.D or CU<nr.D,
where C' and D are concepts that do not contain r, and m > 1 and n > 0 are
natural numbers. An RBox clause is in r-reduced form if it has the form —sUr
or sU—r, where s € Ng and s # r. A set N of clauses is in r-reduced form if
all r-clauses in N are in r-reduced form.

r-clauses not in r-reduced form can be transformed into r-reduced form by
introducing definers as in concept forgetting. Once N is in r-reduced form, we
apply an appropriate combination rule to N to eliminate r. We refer the reader
to [I9] for presentation and a comprehensive description of the rules.

In order to be able to express more semantic solutions of concept forgetting,
the target language is ALCOQH extended with the top role, role negation, role
conjunction and role disjunction.

4 The Implementation

FAME(Q) is a Java-based implementation of the forgetting method described in
the previous section. In this section we describe the implementation in detail, and
discuss some of its notable features. For users’ convenience, FAME(Q) provides
a graphic user interface, shown in Figure[l] FAME 1.0 [I§] is a preceding system
for forgetting in description logics without number restrictions, but since the
inference rules used by FAME(Q) are different from those in FAME 1.0, FAME(Q)
is not simply an improvement of FAME 1.0, but is a novel system.

FAME(Q) has a modular design consisting of six main modules: Load Ontol-
ogy, Parse into Own Data Structure, Role Forgetting, Concept Forgetting, Unparse
into OWL Data Structure, and Save Ontology, which are linked as depicted in Fig-
ure [2| Each successively undertakes a particular task. FAME(Q) uses the OWL

51In [I7], the purify rules are named Ackermann rules I and II, and the combination
rules are named the Ackermann rules III, IV and V.

o0e®

FAME(Q) -- An Automated Tool for Forgetting in Description Logics with Number Restrictions

NEMO_9687000 c NEMO_7158000
NEMO_5550000 c sproper_part_of. NE}
NEMO_B086000 c NEMO_5315000
(NEMO_0000216 n NEMO_0000218) C
NEMO_0632000 c NEMO_5315000
NEMO_B8411000 c NEMO_0000382
(NEMO_0000190 n NEMO_0000191) C
NEMO_1725000 c GenericallyDepende
NEMO_8359000 c sproper_part_of.NE}
NEMO_3620000 c NEMO_1453000
NEMO_1490000 c Narrative_Resource
NEMO_1656000 c NEMO_2000000
NEMO_0000302 c NEMO_6052000
NEMO_0000191 c NEMO_0000185
NEMO_1637000 c NEMO_4954000
(NEMO_0000265 n NEMO_0000270) ©
NEMO_0337000 c NEMO_8203000
NEMO_0561000 c NEMO_G587000
PATO_0001464 c NEMO_5183000
NEMO_B0Z2 8000 c NEMO_3538000
NEMO_2933000 c 1AD_0000009
NEMO_2049000 c NEMO_6902000
(NEMO_0000265 n NEMO_0000271) C
(NEMO_0000266 n NEMO_0000270) C
T © NEMO_0660000

NEMO_3116000 c NEMO_9128000
NEMO_2432000 c NEMO_8446000
NEMO_7347000 c NEMO_9128000

1A0_0000039

1A0_0000136

1A0_0000221

1A0_0000407

NEMO_0000030
NEMO_0000031
NEMO_0000032
NEMO_0000033
NEMO_0000034
NEMO_0000035
NEMO_0367000
NEMO_0654000
NEMO_1109000
NEMO_1568000

Book
Conference_Proceeding
Dispaosition

Function
GenericallyDependentContinuant
1A0_0000001
1A0_0000003
1A0_0000009
1A0_0000010
1A0_0000027
1A0_0000028
IAD_0000029
1A0_0000030

Forget

NEMO_9687000 c NEMO_7158000
NEMO_5550000 c aproper_part_of. NE
NEMO_8086000 c NEMO_5315000
(NEMO_0000216 n NEMO_0000218) C
NEMO_0632000 c NEMO_5315000
NEMO_8411000 c NEMO_0000382
(NEMO_0000190 n NEMO_0000191) C
NEMO_8359000 c 3proper_part of.NEP
NEMO_3620000 c NEMO_1453000
NEMO_1490000 c Narrative_Resource
NEMO_1656000 c NEMO_2000000
NEMO_0000302 c NEMO_6052000
MNEMO_0000191 © NEMO_0000185
NEMO_1637000 c NEMO_4954000
(NEMO_D000265 n NEMO_0000270) C
NEMO_0337000 c NEMO_8203000
NEMO_0561000 c NEMO_6587000
PATO_0001464 c NEMO_5183000
NEMO_8028000 c NEMO_3538000
NEMO_2049000 c NEMO_6902000
(NEMO_0000265 n NEMO_0000271) C
(NEMO_D000266 n NEMO_0000270) c
T C NEMO_DG60000

NEMO_3116000 c NEMO_9128000
NEMO_2432000 c NEMO_8446000
NEMO_7347000 c NEMO_9128000
NEMO_5261000 c slocated_in.NEMO_3
NEMO_0000481 c NEMO_0000479

[save E}EJ-IUgy |

Fig.1: Graphic User Interface of FAME(Q)

API Version 3.5.d§|for the tasks of loading, parsing, unparsing and saving ontolo-
gies. The ontology to be loaded must be an OwWL /XML file, or a URL pointing to
an OWL/XML file. Internally (during the forgetting process), FAME(Q) uses own
data structures to store and manipulate data so it can be processed efficiently.

4.1 Forgetting Process

Central to FAME(Q) are the Role Forgetting process and Concept Forgetting pro-
cess, in which the role names and concept names in F are eliminated. FAME(Q)
eliminates role names and concept names in a focused manner, that is, it per-
forms role forgetting and concept forgetting separately. Although FAME(Q) can
eliminate role and concept names in any specified order, it defaults to eliminat-
ing role names first. This is because during the concept forgetting process, role
negation and role disjunction may be introduced, and the calculus for role name
elimination does not support these two role constructs.

The role forgetting process is an iteration of several rounds in each of which
a role name in the forgetting signature F is eliminated using the calculus for
role name elimination. The concept forgetting process has two phases executed
in sequence. In the first phase concept names in F are eliminated using only the

5 http://owlcs.github.io/owlapi/

Load ontology Eg;ieggtiﬁj‘ﬁg . Role forgetting
Parse into .
Save ontology owL/Xur file [Concept forgetting

Fig. 2: Top-level design of FAME(Q)

purify rules. These iterations are intended to eliminate those concept names that
are pure in N. This is because purification does not require the ontology to be
normalized or in reduced form, and thus is relatively cheap. Another reason is
that purification introduces the top concept into clauses which are immediately
simplified or eliminated; this makes subsequent forgetting less challenging. The
second phase contains several rounds in each of which a concept name in the
forgetting signature F is eliminated using not only the combination rule, but also
the purify rules. This guarantees that all concept names in F are considered for
elimination from F.

Once a name has been eliminated from the clause set A/, it is removed from
the forgetting signature F. A name that cannot be eliminated in the current
round may become eliminable after the elimination of another name [I6]. The
elimination rounds are therefore implemented in a do-while loop. The break
condition checks if there were names eliminated in the previous rounds. If so,
FAME(Q) repeats the iterations, attempting to eliminate the remaining names.
The loop terminates when F becomes empty or no names were eliminated in the
previous rounds.

Introduced definers are eliminated as part of the concept forgetting process
using the calculus for concept name elimination. Unlike regular concept names,
there is no guarantee that all definers can be eliminated. If the original ontology
contains cyclic dependencies over the names in the forgetting signature F, it may
not be possible to eliminate all definers, see [I7/19] for examples. This means the
forgetting method is incomplete.

Our method can eliminate any concept and role names, though this is at
the cost that the definers introduced may not be all eliminated. If the ontology
computed by FAME(Q) does not contain any definers, we say that FAME(Q)/the
forgetting is successful. In the successful cases, the forgetting solution is a uni-
form interpolant or a semantic solutionm If it is a uniform interpolant, it can be
saved as an OWL/XML file. If it is a semantic solution, generally it cannot be

7 Because in some cases a uniform interpolant and a semantic solution coincide, when
we say a forgetting solution is a semantic solution, we means it is only a semantic
solution but not a uniform interpolant.

saved as an OWL/XML file, because of extra expressivity such as role negation/-
conjunction/disjunction being not supported by the OWL API. In these cases,
the forgetting solutions are represented in the data structure of FAME(Q).

4.2 Frequency Count

A frequency counter is used in FAME(Q) to check the existence of each name
of F in M and in each clause of A/, and count the frequency of positive and
negative occurrences of the name in A and in each clause of A/. Algorithm
below computes the frequency counts of positive occurrences of a concept name,
where AtomicConcept denotes a concept name, GreaterThan and LessThan denote
the ternary number restriction operators > and <, respectively, and Conjunction
and Disjunction denote the n-nary operators of M and LI, respectively. The first
operand of GreaterThan and LessThan is a positive integer and a non-negative
integer, respectively, the second operand is a role name, and the third operand is
a concept. The operands of Conjunction and Disjunction are concepts. Operands
are stored in a list, an ordered collection of objects allowing duplicate values.
We used a list, not a set, because the insertion order is preserved in a list, and
allows positional access and insertion of elements. The algorithms (for counting
negative frequency of a concept name and for counting positive frequency and
negative frequency of a role name) were implemented similarly.

4.3 Definer Reuse

FAME(Q) reuses definers whenever possible. For example, consider the case of
forgetting A € sige(N) from A, when a concept has been replaced by a specific
definer in an A-clause, it is replaced uniformly by the definer in all A-clauses.
We do not introduce new definer names for the same concept in other A-clauses.
On the other hand, if a concept C has been replaced by a definer D, the con-
cept of =C' is replaced (if necessary) by —D, rather than a fresh definer, that
is, FAME(Q) introduces definers in a conservative manner (as few as possible).
This significantly improves the efficiency of FAME(Q). Definers and the concepts
replaced by them (the corresponding concepts) are stored as keys and values re-
spectively in a Java HashMap, which allows for easy insertion and retrieval of
paired elements.

5 The Evaluation

In order to understand the practicality and usefulness of FAME(Q), we evaluated
the current version on a corpus of ontologies taken from the NCBO BioPortal
repositoryﬂ a resource currently including more than 600 ontologies originally
developed for clinical research. The corpus was based on a snapshot of the repos-
itory taken in March 2017 [I1], containing 396 OWL API compatible ontologies.
Statistical information about these ontologies can be found in [18].

8 https://bioportal.bioontology.org/

Algorithm 1: POSITIVE(A, cls)
Input : a concept name A
a clause cls
Output: an integer i

1 if cls instance of AtomicConcept then

2 if cls equals to A then

3 ‘ return 1,

4 else

5 ‘ return 0;

6 else if cls instance of Negation then

7 Clause operand = cls.getOperands().get(0);

8 return NEGATIVE(A, operand);

9 else if cls instance of GreaterThan or LessThan then
10 Clause operand = cls.getOperands().get(1);

11 return POSITIVE(A, operand);
12 else if cls instance of Conjunction or Disjunction then
13 initialize Integer sum to O;

14 List<Clause> operand_list = cls.getOperands();

15 foreach clause operand in operand_list do

16 | sum = sum + POSITIVE(A, operand);

17 end

18 return sum;
19 else
20 ‘ return 0;

Table [1] lists the types of axioms handled by FAME(Q). All these can be en-
coded as SubClassOf axioms. Axioms not expressible in ALCOOQH were removed
from each ontology as FAME(Q) only accommodated ALCOQH-ontologies.

To reflect real-world application scenarios, we evaluated the performance of
FAME(Q) for forgetting different numbers of concept names and role names from
each ontology. We considered the cases of forgetting 10%, 30% and 50% of con-
cept and role names from the signature of each ontology. LETHE was the only ex-
isting tool for forgetting in description logics with number restrictions; it handled
ALCQH but only for concept forgetting. We compared the results of concept for-
getting computed by FAME(Q) with those by LETHE on the ALC QH-fragments.
The fragments were obtained similarly as for the ALCO QH-fragments. In order
to allow a fair comparison with LETHE which was evaluated on randomly chosen
forgetting signatures we did the same. The experiments were run on a desktop
with an Intel® Core™ i7-4790 processor, four cores running at up to 3.60 GHz,
and 8 GB of DDR3-1600 MHz RAM. The experiments were run 100 times on
each ontology and we averaged the results in order to verify the accuracy of our
findings. A timeout of 1000 seconds was imposed on each run.

The results obtained from forgetting 10%, 30% and 50% of concept names
and role names from the ALCOQH-ontologies are shown in Table [2] where one
can observe that, on average, FAME(Q) was successful in nearly 90% of the test

| [Type of Axiom [Representation |

SubClassOf(C1 C2) SubClassOf(C1 C2)
EquivalentClasses(C1 C2) SubClassOf(C1 C2), SubClassOf(C2 C1)
DisjointClasses(C1 C2) SubClassOf(C1 ObjectComplementOf(C2))

EquivalentClasses(C ObjectUnionOf(C1...Cn))
DisjointClasses(C1. .. Cn)
SubObjectPropertyOf(R1 R2) SubObjectPropertyOf(R1 R2)
SubObjectPropertyOf(R1 R2)
SubObjectPropertyOf(R2 R1)
ObjectPropertyDomain(R C) |SubClassOf(ObjectSomeValuesFrom(R owl:Thing), C)
ObjectPropertyRange(R C) SubClassOf(owl: Thing ObjectAllValuesFrom(R C))
ClassAssertion(C a) SubClassOf(a C)
ObjectPropertyAssertion(R al a2) SubClassOf(al ObjectSomeValuesFrom(R a2))

DisjointUnion(C C1...Cn)
TBox

EquivalentObjectProperties(R1 R2)

ABox

Table 1: Types of axioms that can be handled by FAME(Q)

Settings Results
Forgetting [Forget %| Time [Timeout[Success Rate[ND Leftlv,ﬁ,l_l, u

10% 3.1sec.| 1.3% 96.2% 2.5% 10.6%

Concept 30% 9.0 sec. | 4.0% 89.7% 6.3% | 31.6%
Forgetting 50% [14.2 sec.| 7.5% 83.7% 8.8% | 53.3%
Avg. 8.8 sec. | 4.3% 89.8% 59% | 31.8%

10% 4.0 sec. | 1.5% 96.7% 1.8% 18.3%

Role 30% 9.1 sec. | 4.6% 90.1% 5.3% 25.3%
Forgetting 50% [15.2 sec.| 7.8% 82.7% 9.5% | 41.9%
Avg. 9.5 sec. | 4.7% 89.8% 5.5% 25.4%

Table 2: Results of concept and role forgetting computed by FAME(Q)

cases (89.8% for both concept forgetting and role forgetting). In most successful
cases, the forgetting solutions were computed within 10 seconds (8.8 seconds
for concept forgetting and 9.5 seconds for role forgetting). The column headed
Np Left shows the percentages of the test cases where the definers were present
in the resulting ontologies. The column headed Vv, —, M, LI shows the percentages
of the test cases where the forgetting solutions involved role constructs.

According to the results FAME(Q) was considerably faster than LETHE on the
ALC QH-fragments; on average, it was 8 times faster. An important reason is that
LETHE introduces definers in a systematic and exhaustive manner. The column
headed Np Intro shows the percentages of the test cases where definers were
introduced during the forgetting process. It can be seen that LETHE introduced
definers in nearly 100% of the test cases. In addition, FAME(Q) attained notably
better success rates over LETHE (90.5% over 79.0%). Most failures of LETHE
were due to the timeout.

Another advantage is that solutions computed by FAME(Q) are in general
stronger than those by LETHE. Often, a stronger solution means a better one. For

Settings Results

Tool ‘Forget% Time ‘Timeout‘Success Rate‘ND Intro‘v,—\,ﬂ,u‘Fixpoints

10% 2.9sec. | 1.0% 96.2% 16.3% 10.6% 0.0%

FAME(Q)| 30% 7.5sec.| 3.5% 89.7% 27.2% 31.6% 0.0%

ALCOH | 50% T4 sec.| 6.7% 83.7% 35.8% 53.3% 0.0%

Avg. 8.1 sec. 3.4% 89.8% 5.9% 31.8% 0.0%

10% |25.2 sec.| 7.4% 92.6% 97.2% 0.0% 11.4%

LETHE 30% |59.5 sec.| 20.5% 79.5% 100.0% 0.0% 14.9%

ALCOH | 50% [91.7 sec.| 35.1% 64.9% 100.0% 0.0% 18.2%

Avg. [58.8 sec.| 21.0% 79.0% 99.1% 0.0% 14.8%

Table 3: Results of concept forgetting computed by FAME(Q) and LETHE

example, the solution of forgetting the concept name {Male} from the ontology

{A C >2hasSon.Male, A C >3hasDaughter.-Male,
hasSon C hasChild, hasDaughter C hasChild}

computed by LETHE is

{A C >2hasSon.T, A C >3hasDaughter.T,
hasSon C hasChild, hasDaughter C hasChild},

while the solution of FAME(Q) includes an additional axiom
A C >5(hasSon U hasDaughter). T,

where role disjunction is used. Upon the solution of LETHE, if we further for-
get the role names hasSon and hasDaughter, the uniform interpolant is {A C
>3hasChild. T}, while on the intermediary solution of FAME(Q), the solution is
{A C >5hasChild. T}, which is stronger and closer to the fact: A has at least 5
children. This shows an advantage of semantic forgetting where extra expres-
sivity allows intermediary information (A C >5(hasSon LI hasDaughter).T) to be
captured which produces a better solution.

For users such as SNOMED CT and NCIT who do not have the flexibility to
easily switch to a more expressive language, or are bound by the application, the
available support and tooling, to a specific language, FAME(Q) is not satisfac-
tory. Tracking the logical difference between different versions of ontologies is an
application where the target language should coincide with the source language.
In these cases, LETHE would be more suited.

6 Conclusions

This paper describes the tool of FAME(Q) for forgetting in ALCO QH-ontologies.
FAME(Q) is at present the only tool able to forget concept and role names in
description logics with number restrictions. Compared to LETHE, a tool that can
perform concept forgetting in ALCOQH, FAME(Q) fared better with respect to
success rates and time efficiency on ALC QH-fragments of realistic ontologies.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

J. Bicarregui, T. Dimitrakos, D. M. Gabbay, and T. S. E. Maibaum. Interpolation
in practical formal development. Logic Journal of the IGPL, 9(2):231-244, 2001.
W. M. Del-Pinto and R. A. Schmidt. ABox Abduction via Forgetting in ALC. In
Proc. AAAI’19. AAAT Press, 2019. To appear.

T. Eiter, G. Ianni, R. Schindlauer, H. Tompits, and K. Wang. Forgetting in man-
aging rules and ontologies. In Web Intelligence, pages 411-419. IEEE Computer
Society, 2006.

D. M. Gabbay, R. A. Schmidt, and A. Szalas. Second Order Quantifier Elimination:
Foundations, Computational Aspects and Applications. College Publications, 2008.
B. C. Grau and B. Motik. Reasoning over ontologies with hidden content: The
import-by-query approach. J. Artif. Intell. Res., 45:197-255, 2012.

B. Konev, D. Walther, and F. Wolter. Forgetting and Uniform Interpolation in
Large-Scale Description Logic Terminologies. In Proc. IJCAI’09, pages 830-835.
IJCAI/AAALI Press, 2009.

P. Koopmann. Practical Uniform Interpolation for Expressive Description Logics.
PhD thesis, University of Manchester, UK, 2015.

P. Koopmann and R. A. Schmidt. Count and Forget: Uniform Interpolation of
SHQ-Ontologies. In Proc. IJCAR’14, volume 8562 of Lecture Notes in Computer
Science, pages 434-448. Springer, 2014.

P. Koopmann and R. A. Schmidt. LETHE: Saturation-Based Reasoning for Non-
Standard Reasoning Tasks. In Proc. DL’15, volume 1387 of CEUR Workshop
Proceedings, pages 23-30. CEUR-WS.org, 2015.

J. Lang, P. Liberatore, and P. Marquis. Propositional independence: Formula-
variable independence and forgetting. J. Artif. Intell. Res., 18:391-443, 2003.

N. Matentzoglu and B. Parsia. BioPortal Snapshot 30.03.2017, Mar. 2017.

G. Qi, Y. Wang, P. Haase, and P. Hitzler. A Forgetting-based Approach for Rea-
soning with Inconsistent Distributed Ontologies. In Proc. WoMO’08, volume 348
of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

K. Wang, G. Antoniou, R. W. Topor, and A. Sattar. Merging and Aligning On-
tologies in DL-Programs. In Proc. RuleML’05, volume 3791 of Lecture Notes in
Computer Science, pages 160-171. Springer, 2005.

K. Wang, Z. Wang, R. W. Topor, J. Z. Pan, and G. Antoniou. Eliminating con-
cepts and roles from ontologies in expressive descriptive logics. Computational
Intelligence, 30(2):205-232, 2014.

Y. Zhao, G. Alghamdi, R. A. Schmidt, H. Feng, G. Stoilos, D. Juric, and M. Kho-
dadadi. Tracking Logical Difference in Large-Scale Ontologies: A Forgetting-Based
Approach. In Proc. AAAI’'19. AAAT Press, 2019.

Y. Zhao and R. A. Schmidt. Forgetting Concept and Role Symbols in
ALCOTHu™ (v, M)-Ontologies. In Proc. IJCAI’16, pages 1345-1352. IJCAI/AAAI
Press, 2016.

Y. Zhao and R. A. Schmidt. Role Forgetting for ALCOQH (V)-Ontologies Using An
Ackermann-Based Approach. In Proc. IJCAI’17, pages 1354-1361. IJCAI/AAAI
Press, 2017.

Y. Zhao and R. A. Schmidt. FAME: An Automated Tool for Semantic Forgetting
in Expressive Description Logics. In Proc. IJCAR’18, volume 10900 of Lecture
Notes in Computer Science, pages 19-27. Springer, 2018.

Y. Zhao and R. A. Schmidt. On Concept Forgetting in Description Logics with
Qualified Number Restrictions. In Proc. IJCAI’18, pages 1984-1990. IJCAI/AAAI
Press, 2018.

	FAME(Q): An Automated Tool for Forgetting in Description Logics with Qualified Number Restrictions

