The Axiomatic Translation Principle for Modal
Logic

RENATE A. SCHMIDT
University of Manchester
and

ULLRICH HUSTADT
University of Liverpool

In this paper we present a translation principle, called the aziomatic translation, for reducing
propositional modal logics with background theories, including triangular properties such as tran-
sitivity, Euclideanness and functionality, to decidable fragments of first-order logic. The goal
of the axiomatic translation principle is to find simplified theories, which capture the inference
problems in the original theory, but in a way that can be readily automated and is easier to deal
with by existing (first-order) theorem provers than the standard translation. The principle of
the axiomatic translation is conceptually very simple and can be almost completely automated.
Soundness is automatic under reasonable assumptions, general decidability results can be stated
and termination of ordered resolution is easily achieved. The non-trivial part of the approach is
proving completeness. We prove results of completeness, decidability, model generation, the small
model property and the interpolation property for a number of common and less common modal
logics. We also present results of experiments with a number of first-order logic theorem provers
which are very encouraging.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic]: Modal Logic, Proof theory;

1.2.3 [Deduction and Theorem Proving]: Deduction, Resolution; 1.2.4 [Knowledge Repre-
sentation Formalisms and Methods]: Modal logic, Predicate logic

General Terms: Algorithms, Performance, Theory
Additional Key Words and Phrases: Translation approach, decidability, completeness, small model
property

1. INTRODUCTION

Modal logic provides an appropriate formal framework for an ever increasing num-
ber of different application areas of computer science. In the field of knowledge
representation, particularly in the subfield concerned with description logics, modal
logics arise in the form of the basic multi-modal logic and propositional dynamic
logic. Modal logics form the basis of many agent logics. Various aspects of agents
are formalised by modal operators, e.g. S5 modalities for knowledge, KD/5 modal-
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2 . R. A. Schmidt and U. Hustadt

ities for belief, and so on. Normally agent logics also include operators formalising
notions such as ability and commitment which are given by non-standard modal
operators. Agent-based systems are a particular application area, where there is
a clear need for non-standard modal logics, that is, modal logics that do not just
simply coincide with familiar modal logics. There is therefore an increasing interest
in non-standard combinations of modal logics. These modal logics are commonly
given through a set of modal axiom schemas in the form of a Hilbert axiomati-
sation. Anyone who has studied Hilbert-style axiomatisations of modal logics or
other logics knows that, except for very simple theorems, it is difficult to derive
theorems in this framework. With lots of practice one can become quite good at
doing Hilbert-style proofs, but in general, writing down proofs using this kind of
approach requires a lot of skill. What makes this syntactic approach difficult to
use is that it is a bottom-up approach. One needs to guess with which axioms
to start and which instances of the inference rules to apply during the deduction.
This is also why Hilbert-style proof search is difficult to automate effectively. While
Hilbert-style deduction is easy to automate by reduction to first-order logic, due
to the absence of the subformula property the search space is enormous. Conse-
quently, there are currently no effective implementations of Hilbert systems. The
question arises how effective reasoning systems can be constructed for a given com-
bination of (possibly interacting) modal logics. The most common approach is
to adopt a semantics-based method. The popular tableau approaches, and many
sequent-style approaches, can be seen as methods for constructing a Kripke model
for a given formula. Another option is to use a semantics-based translation into
first-order or second-order logic and then to use first-order or second-order theo-
rem provers [Ohlbach et al. 2001]. In all these cases it is necessary to find a class
of Kripke models with respect to which the given Hilbert axiomatisation is sound
and complete. Again one would want to automate this process, or at least have
some sort of automated support. A number of automated second-order quantifier
elimination procedures were developed and studied that transform Hilbert axioms
into corresponding properties of the accessibility relation in the Kripke semantics
of modal logics (cf. Nonnengart et al. [1997]).

The present paper investigates an alternative approach to automated reasoning
for modal logic. The idea is based on an approach in which, starting from a Hilbert
axiomatisation, by a process of partial translation and proof-theoretic transforma-
tion we can directly obtain proof methods for a wide variety of modal logics. We
introduce and study a principle, called the axiomatic translation principle, of re-
ducing modal logic problems into first-order logic. What we try to achieve with the
axiomatic translation principle is to find a simplified theory, which captures the se-
mantic background theory of a given modal logic in a new way, which has both theo-
retical and practical advantages. The axiomatic translation principle is conceptually
very simple; it is based on the standard relational translation method, but instead
of using correspondence properties, the axiomatic translation principle incorporates
modal axioms into the first-order translation of modal formulae. This provides a
method for avoiding having to handle properties such as transitivity, Euclideanness
and functionality, which are difficult to deal with efficiently by current first-order
logic theorem provers. In general, it is not known how to use first-order logic theo-
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The Axiomatic Translation Principle of Modal Logic . 3

rem provers as decision procedures for these properties. For example, no resolution
decision procedures are known for decidable first-order logic fragments relevant to
modal logics which include the formula Vzyz (R(z,y) A R(x,z) — R(y,z)) ex-
pressing the Euclideanness of a relation R. The clauses in the clausal form of this
formula, and also Euclideanness and functionality, contain no single maximal lit-
eral under common orderings. This means these clauses are eligible for many more
inferences compared to clauses which contain just one maximal literal. Examples
of the latter kind are properties such as reflexivity, symmetry and seriality. One
contribution of this paper is overcoming the difficulties of using correspondence
properties. Modal axiom schemas are incorporated into the translation of a modal
logic problem by partial instantiations of the modal axiom schema, which are given
by partial instantiations of so-called schema clauses. These schema clauses can
be automatically deduced from the modal axioms, and we show that soundness
of the presented method is automatic under some weak, reasonable assumptions.
More challenging is proving completeness. First, a bounded set of instantiations
of the schema clauses needs to be identified. Second, in our approach to proving
completeness, we need to prove that it is possible to simulate hyperresolution refu-
tations based on the relational translation using classical correspondence properties
with the axiomatic approach. The reward for succeeding in proving completeness
is automatic decidability, and other nice properties such as interpolation and sound
and complete tableau systems. Besides proving completeness everything else can
be easily automated and implemented. While in this paper we focus on the applica-
tion of the axiomatic translation to well-known axiom schemas, it is clear that the
principle and the insights underlying the axiomatic translation are applicable to a
wide range of non-standard axiom schemas. This could turn out to be especially
useful in applications, for instance, agent-based systems and description logics, as
well as related fragments of first-order logic. For example the principle can be used
to obtain decision procedures for the monadic two-variable guarded fragment with
transitivity introduced in Ganzinger, Meyer and Veanes [1999].

The paper is structured as follows. Section 2 gives an informal introduction
and overview of the principle of the axiomatic translation. The axiomatic trans-
lation is then defined in two steps. First a standard semantics-based translation
of modal formulae is defined in Section 3. Then in Section 4 the axiomatic trans-
lation is specified by incorporating modal axioms into the standard translation.
General soundness results are proved for a pure form of the axiomatic translation
and a mixed form where the classical translation using correspondence properties
and the axiomatic translation are used together. In Section 5 completeness results
are presented for a series of familiar modal logics and modal logics extended with
generalised modal axioms. Since the axiomatic translation reduces modal logics to
decidable first-order fragments and decidable clausal classes, general conditions can
be identified under which modal logics are decidable. Results of decidability, decid-
ability by resolution, model generation and the small model property are presented
in Section 6. The results of practical experience with first-order theorem provers is
reported in Section 7. Section 8 discusses further consequences and related work,
and Section 9 is the conclusion.

It is assumed that the reader has a basic familiarity with modal logic, first-order
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logic and resolution. The notation used in this paper is the same as in the survey
papers [De Nivelle et al. 2000; Schmidt and Hustadt 2003]. For easy reference
Appendices A and B give a summary of the basics of modal logic and clause logic,
and define the hyperresolution calculus used in the completeness proofs. The formal
proofs of results in this paper are given in Appendices C-G.

2. THE IDEA OF THE AXIOMATIC TRANSLATION PRINCIPLE

The idea of the principle presented in this paper can be situated in the general
framework of Ohlbach [1998] for the combination of Hilbert-style deduction and
semantic reasoning for non-classical logics. In this framework, if a first-order se-
mantics is known for some of the logical connectives in such logics, the semantic
definitions are used as rewrite rules for eliminating these connectives. In addition,
Hilbert axioms and rules are encoded directly with quantification over formula
variables. The formulas are left as terms and are treated in a special way. Thus
a problem specification has four components, the semantic rewrite rules determin-
ing the semantic encoding of some of the logical operators, the specification of a
semantic structure, for example, in the form of frame correspondence properties,
the encoded Hilbert axioms and rules, and finally the conjecture to be proved or
refuted. The result is a first-order formulation of the problem and now ordinary
first-order theorem proving methods can be applied.

To explain the translation principle, we give more details of the Ohlbach frame-
work. Let ‘holds’ be a designated predicate capturing the semantic definition of the
logical operators =, A, V, —, <> and O by the following first-order equivalences:

VpVa (holds(—p, ) < —holds(p,x)) (1)
Vpg Vx (holds(p x ¢, x) < (holds(p, ) x holds(gq, x))) (2)
VpVz (holds(Op, x) « Vy (R(z,y) — holds(p,y))) (3)

where x € {A,V, —, <—}. Let S be the (finite) set of these equivalences, and let A be
a (finite) set of modal axioms. A T-encoded problem specification of the satisfiability
of ¢ in a (multi-)modal logic K(,,)A in the Ohlbach framework is given by

i, a () = 3p 3w holds(p, ) A \ S A J\ H.

H is the (finite) set of T-encodings of the axioms in A. For any axiom A in A, its
T-encoding is defined by VpVa holds(A, x), where D are the propositional variables
occurring in A. (Ohlbach also allows mixed semantics and T-encoded problem
specifications.)

Theorem 2.1 Let ¢ be a modal formula, let A be a finite set of modal logic
formulae and let H be the set of T-encodings of A. Suppose K(,;,)A is sound and
complete. Then, ¢ is satisfiable in K,)A iff trr,, A () is first-order satisfiable.

Note that the modus ponens inference rule is not part of trg,,, a(®). Thus, when
showing the satisfiability/validity of trr,, a(¢) we are not simply constructing
Hilbert-style proofs in first-order logic.

The equivalences in S can be used as rewrite rules to transform the candidate
formula to be proved and also the axioms in H. For example, if the candidate
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formula is ¢ = O—0Op then Jp 3z holds(p, x) transforms to
Ip32vy (R(z,y) — =(V2 R(y, z) — holds(p, 2))),

by exhaustively applying the equivalences (1)—(3) from left-to-right. Ohlbach calls
this the S-normalised representation of ¢. Hilbert axioms can be normalised in a
similar fashion. For example, rewriting the T-encodings of the axioms 4 = Op —
Odp and T = Op — p one obtains:

VpVz holds(Op — OOp, x) = VpVz (holds(Op, ) — holds(Oop, x))
= VpVaz (holds(Op, z) — Yy (R(z,y) — holds(Op, y))) (4)
= VpVa (Vy (R(z,y) — holds(p,y)) (5)
— Vy (R(z,y) — (Vz (R(y, 2) — holds(p, 2)))))
VpVz holds(Op — p, x)
= VpVaz (holds(Op, z) — holds(p, x)) (6)
= VpVa (Vy (R(x,y) — holds(p,y)) — holds(p, x)) (7)

If we replace the holds(p, ) literals in (5) and (7) by literals of the form P(z) and
the Vp quantifier by VP then what we have is the standard translation of 4 and T'.
The standard translation of the axioms are thus second-order formulae, while the
T-encodings of modal axioms are always first-order logic formulae (in which modal
formulae are encoded as terms).

Since K4, KT and S4 are decidable logics, an immediate question is: Which first-
order methods decide T-encoded problem specifications in these logics? There are a
number of solvable first-order fragments which can be decided with first-order meth-
ods. These include the two-variable fragment, the guarded fragment [De Nivelle
and de Rijke 1999; Ganzinger and de Nivelle 1999], Maslov’s class K [Hustadt and
Schmidt 1999b], and fluted logic [Schmidt and Hustadt 2000]. Evidently, (5) and (7)
are formulae in more than two variables, and thus do not belong to FO*. The usual
techniques are not sufficient to reduce them to FO? either. Neither (5) nor (7) is
a guarded formula, because of the absence of a guard literal in the quantification.
Fluted logic is also not suitable for expressing (5) and (7), since no linear order can
be defined over the variables and quantification to meet the syntactic requirements
of the definition of fluted logic. While the formula for axiom T" belongs to Maslov’s
class K, the formula for axiom 4 does not. Analysis of the respective clausal forms

for 4:  R(z, fa(p,x)) V ~R(z,y) V - R(y, 2) V holds(p, z)
—holds(p, fa(p,z)) V - R(z,y) V ~R(y, z) V holds(p, )
for T R(z, fr(p,x)) V holds(p, z)
= holds(p, fr(p,x)) V holds(p, x)

reveals also that the normalised T-encoding of the axiom 4 does not belong to
any known solvable clausal classes. However, the normalised T-encoding of 1" can
be expressed, for example, in DL* [De Nivelle et al. 2000] or the clausal class of
Maslov’s class K [Hustadt and Schmidt 1999b].

The idea of the approach described in this paper is the following. Take a modal

axiom, form its T-encoding, but instead of normalising all modal connectives away,
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do a partial normalisation which stops before the innermost modalities are elimi-
nated, i.e. in the case of 4 and T the normalisation process stops once (4) and (6)
are generated. The clausal forms are:

—holds(Op, z) V = R(z,y) V holds(Op, y) for 4
—holds(Op, z) V holds(p, x) for T

Now, if we regard Op and p as ground terms then it is not difficult to see that
both clauses belong to a large selection of solvable clausal classes and decidable
first-order fragments, for example, DL* and the class of guarded clauses [Ganzinger
and de Nivelle 1999]. They even belong to FO? and all other decidable fragments
mentioned above. This can be more easily seen if the terms Op and p are embedded
in the predicate symbol, as in:

_'Qﬂp(x) v —‘R(‘f, y) N QDp(y) and
~Quop(x) V Qp(2).

The way to view literals of the form Q(z), is to think of them as saying that
the formula 1 holds at the world x. These clauses are examples of what we call
schema clauses. The properties of a transitive (resp. reflexive) O operator are
captured by including all (partial) instantiations of the propositional variables of the
appropriate schema clause with modal formula terms. Clearly the set of all partial
instantiations is infinite. However since proofs are finite, any proof will require
only finitely many of the partial instantiations of the Hilbert-axioms and therefore
of the schema clauses. If we knew which schema clause instances are essential for
arbitrary proofs, then this would be extremely beneficial, since then we would get a
decision procedure. Thus the main intuition of the axiomatic translation principle
is to restrict the number of partial instantiations of the schema clauses to a finitely
bounded set and incorporate the set into the translation of a candidate formula.
For the translation to work the schema clauses must be linked with the translation
of the candidate formula. This is achieved by basing the translation on a particular
form of structural transformation.

It is instructive to consider an example. Suppose we want to test the satisfiability
of the formula ¢ = O-0Op in K. (It is obviously satisfiable in K, but the example
is deliberately kept small so that the idea of the principle is not obscured.) The
following is a suitable structural form of the classical relational translation of ¢.
New symbols have been introduced for all O subformulae of . (It is not exactly
the translation defined formally below, but serves to illustrate the principle.)

Quo-op(a)
Va (Qo-gp(r) < Yy (R(z,y) — =Qnp(y))) definition for o—-oOp
Vo (Qop(x) < Vy (R(z,y) — Qp(y))) definition for Op

The symbol a denotes the Skolem constant representing the root world in a Kripke
model. The translation used is satisfiability equivalence preserving. Thus, the
formula ¢ is satisfiable in K iff the conjunction of the above three formulae is first-
order satisfiable. The satisfiability of O—0Op in K can now be tested by applying a
standard theorem prover to the above set.
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In order to test satisfiability in K/, the standard approach is to add frame corre-
spondence properties for R as a theory to the translation of the candidate formula.
However, we adapt the translation of the candidate formula by instead incorporat-
ing the axiom 4 into the translation. This is achieved by incorporating a finitely
bounded number of instances of the schema clause of 4.

“Quop(z) V ~R(z,y) V Qop(y) schema clause of 4 for Op

It turns out that in the case of K/ it is enough to restrict the instantiation set to one
instance of the schema clause for every O subformula in the candidate formula. In
the case of our running example we can limit the set to the following two instances,
one for each O subformula of ¢ = O-0Op.

“Qo-op(z) VoR(z,y) V Qu-op(y) schema 4 instance with Op/O0-0Op
“Quop(x) V ~R(z,y) V Qup(y) schema 4 instance with Op/Op

(Here ¢/t denotes the simultaneous replacement of the formula ¢ in a schema
clause by the formula .)

We refer to this form of encoding as the aziomatic translation (or aziomatic
reduction) of ¢ with respect to K4. The general principle of the axiomatic approach
for K/ is the following. For every O subformula, O, of the candidate formula
include the clause ~Qpy(z) V ~R(z,y) V Quy(y) in the translation, provided O is
a 4-modality. Similarly for other axioms. For example, if O is a T-modality then
for every O subformula Ot of the candidate formula we need to include the clause
“Quy () V Qy ().

The main difficulty of the axiomatic translation principle is to know how many
and which instances of a schema clause are needed for completeness. In the Hilbert
axiomatisation the axioms are valid for all substitution instances. Since we want
to avoid the use of a substitution rule, we need to make sure that from the outset
enough instances of the schema clauses are present in the translation of the candi-
date formula. Of course this does not preclude a lazy implementation which delays
the translation of subformulae and the inclusion of substitution instances of Hilbert
axioms until absolutely necessary.

3. CLASSICAL TRANSLATION TO CLAUSE LOGIC

In this paper, our definition of the axiomatic translation for modal logics is based on
the standard relational semantics and structural transformation which introduced
new symbols for modal formulae. We therefore first give a formal definition of
the standard relational translation for modal logics and then define the axiomatic
translation as an adaptation in the next section.

Without loss of generality, attention is restricted to modal formulae formulated
in terms of the connectives A, =, O and the constant L. It is assumed that all
occurrences of double negation have been eliminated. If v denotes a modal formula
then, by definition, ~% denotes ¢ if ¥ = —¢, and —) otherwise.

The standard translation into first-order logic is based on the standard Kripke
semantics. Here, it is combined with structural transformation, that is, new symbols
are introduced for subformulae of the candidate formula. Structural transformation
(cf. for example [Boy de la Tour 1992; Plaisted and Greenbaum 1986]) is a well-
known technique and has a number of advantages. It enables the preservation of
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A Axiom Correspondence property

T Op —p reflexivity Vz R(z, x)

4 Op — Odp transitivity Vayz (R(z,y) A R(y, z) — R(z, z))

B COp — p symmetry Vay (R(z,y) — R(y, x))

D Op — $p seriality Va3y R(z,y)

alty Op — Op functionality — Vzyz (R(z,y) A R(z,2) — y = 2)

5 Sop — Op Euclideanness Vayz (R(z,y) A R(z, z) — R(y, z))

4x Op — 0"0Op Vay (R*T!(z,y) — R(z,y))

alt71" OMOp — OR20p Vaoyz (RF T (z,y) A RF2T1(2,2) — y = 2)
5 Ofop — Op Vzyz (R*(z,y) N R(z,2) — R(y, z))

Fig. 1. Axiom schemas and relational background theories (k > 1 and k1, k2 > 0)

the structure of the original formula in the first-order clausal form, thus improving
the readability of first-order resolution proofs (cf. [Hustadt and Schmidt 2002]).
When using hyperresolution and splitting, as is done in the completeness proofs of
this paper, there is an almost one-to-one correspondence between resolution proofs
and modal tableau proofs. Structural transformation can also be used to keep the
complexity of the reduction from one logic into another low.

The translation of a modal logic formula ¢ into first-order logic based on the
classical approach can be specified as follows. For any subformula i of ¢, let the
notation Def(4)) represent the definition of @y, which is defined by:

Def () = Yz (Qy(z) — 7(¢, 7))
AV (Qy () = =Qny (7))
AVZ (Quy(x) — T(~1), ).
QQy is a new predicate symbols uniquely associated with the modal formula %, and
m(1,x) is a first-order formula with one free variable x given by the following.

m(Ll,z)=1 m(p,x) =T m(—p,x) = ~Qp(x)
(Y A ¢, x) = Qu(z) A Qp(x) (=Y A ), 2) = Quy(2) V Qup()
m(0Y,z) = Vy (R(z,y) — Qu(y)) m(=0¢,z) = 3y (R(z,y) A Quyp(y))

Thus, 7 is a function associating a first-order formula with any modal formula.

Here the definition of 7 is based on the standard relational semantics. The symbol y

denotes an arbitrary variable distinct from z. (It is not a mistake that =(p,z) = T.)
Now let IT be the mapping defined by:

() = 3z Q,(x) A Simpl(/\ {Def(y)) [ ¥ € Sf(p)}),

where Sf(¢) denotes the set of all subformulae of . Though not strictly necessary,
the purpose of Simpl is to eliminate obvious redundancies in the definitional forms
which can be dealt with in linear time, for example, deletion of trivially tautologous
formulae such as Vz (Qp(z) — T).

Lemma 3.1 For any modal formula ¢, II(¢) can be computed in linear time.

If A is a set of first-order definable modal axioms, then let Corr(A) denote the
relational background theory corresponding to A, that is, 1) € Corr(A) iff ¢ is the
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Y 2Qoy(T) V 2Qy(z) | 2 A D) —Qo(yag) () V Quy(T) V Qug ()
L -Qi(x) 0Y  —Quy(z) V ~R(z,y) V Qy(y)
YA PQuas(x) V Qyu(x) —0Y  =Q-gy(z) V R(, f-poy (@)
“Qung(®) V Qg(x) —Q-py (%) V Quy (f-ouw(2))

Fig. 2. Definitional clausal forms

A Axiom Schema clause Ax“(p)

T dp —p —Quop(®) V Qp(z)

4 Op — OOp “Qop(x) V -R(z,y) V Qop(y)

B —0-0p — p —R(z,y) V ~Qop(y) V Qp(x)

D dp — —-O-p “Qop(x) V Q-o-p(x)
alty —0Op — O-p =Q-op(z) V Qo-p(z)

5 —O0-0p — dp “R(z,y) V Quop(y) V Quop(x)

4r Op — 0"0Op ~Quop(z) V =R"(z,y) V Qop(y)

alt7V"? —gFiop — 0"20-p R (z,y) V 2Q-py(y) V ~R72(z, 2) V Qpoy(2)

5%  -0"-op—0Op —~R*(2,y) V ~Qop(y) V Qop(z)

Fig. 3. Schema clauses (k > 1 and k1, k2 > 0)

frame correspondence property (a first-order formula) of some axiom A € A. Some
familiar axioms and their frame correspondence properties are listed in Figure 1.
When we use the symbol <, as is done in the figure, it is taken to be a shorthand
for =0—. RY(s,t) denotes s ~ t, and for any n > 0, R"*!(s,t) denotes 3z (R(s,z) A
R"™(x,t)).

Theorem 3.2 (Soundness and completeness of II) Let ¢ be a modal formula,
and let L be propositional multi-modal logic K(,,)A complete with respect to a class
of frames satisfying first-order relational properties. Then ¢ is satisfiable in L iff
Corr(A) A II(yp) is satisfiable in first-order logic.

PROOF. By the soundness and completeness of the standard translation mapping
and the preservation of (un)satisfiability by structural transformation. [

For instance, ¢ is satisfiable in K(,,) iff II(¢) is satisfiable in first-order logic. Also,
v is satisfiable in K4 iff Vayz (R(x,y) A R(y, z) — R(x, z)) A II(p) is satisfiable in
first-order logic.

In this paper we assume the clausal form of a first-order formula ¢, written Cls(yp),
is computed by transformation into conjunctive normal form, inner Skolemisation,
and clausifying the Skolemised formula. Figure 2 lists modal formulae and the
clausal form of the corresponding definitional clausal forms.

Lemma 3.3 Let ¢ be a modal formula. Each clause in ClsII(¢p) is either (i) the
unit clause @, (a), for some Skolem constant a, or (ii) it is an instance of a defini-
tional clause given in Figure 2.

4. THE AXIOMATIC TRANSLATION PRINCIPLE

In the axiomatic translation the correspondence properties are replaced by a set
of instances of schema clauses. Following the recipe described in Section 2 for the
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axioms 4 and T', the schema clauses can be derived fully automatically from the
Hilbert axioms. Figure 3 lists the schema clauses of a selection of axiom schemas.
The notation =R%(s,t) V C represents =(s a2 t) VV C. If s is a variable that does not
occur in ¢ then —=R%(s,t) V C is equivalent to C{s/t}. For n > 0, =R"T!(s,t) v C
represents —R(s,z) V ~R"(z,t) V C where z is a new variable that does not occur
in the clause. The clauses are assumed to be closed under universal quantification of
the free variables. The propositional variable p in the schema clauses is a parameter,
which will be suitably instantiated in the axiomatic translation defined below.

In this paper we restrict our attention to modal axioms in one variable which are
represented by one schema clause. In general, modal axioms may reduce to a set
of schema clauses (even for modal axioms in one variable). The principle described
in this paper applies uniformly to modal axiom schemas in more than one variable
as well.

Now we formalise the principle of the axiomatic translation exemplified in Sec-
tion 2. Let L be a normal propositional modal logic. That is, L is an extension
K(m)A of multi-modal logic K(,,), where A denotes a set of axiom schemas. To
each axiom A € A we assign a (predetermined) instantiation set X 4. Since the
instantiation sets are allowed to vary for different axioms and different logics we
let X = {Xa}aea be a collection of these instantiation sets. Each X 4 is the in-
stantiation set for an axiom A in A, and X is the collection of instantiation sets
used in the axiomatic translation of a problem in K(,,)A. Suitable instantiation
sets are specified in the next section when we consider particular modal logics. The
collection X is always relative to the set A of axiom schemas, but to avoid cluttering
we do not make this explicit in the notation.

Definition 4.1 (Axiomatic translation H%) Let HaAe be a function mapping modal
formulae to first-order formulae defined as follows. If ¢ is an L-formula then I1% ()
is (the simplification with Simpl of) the conjunction of the following.

(1) The structural translation of .

() = 3z Qyu(x) A Simpl(/\ {Def(v) |4 € St(¢)})

(2) For each axiom schema A in A and each schema clause C' associated with A,
the 1 instances of C for each formula ¢ in X 4.

NAA@) | A€ A, ¢ eXal

By definition, Ax (1) is the conjunction of (the universal closure of) all clauses
C{p/v}, where C is a schema clause in the schema clause set associated with
the axiom schema A.

(3) The structural translation of subformulae in X = {Ind(¢)| A € A, ¢ € X4},
where Ind” (1) denotes the set of modal formulae occurring in the indices of
the instances of the clauses associated with the axiom A as determined by the
instance set X 4.

Simpl(/\ {Def(¥) |4 € S{(X)})
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The Axiomatic Translation Principle of Modal Logic . 11

(4) The reverse implications of the links between @y and Q.. in the definitions.
Az (~Qnu(@) — Qu(x)) | ¥ € SEHX) USE(p)}

The implicit limitation in the definition to axiom schemas with one free vari-
able, or clauses with one parameter, is not crucial. The definition can be easily
generalised for modal axioms in more than one variable.

Notice that the clausal form of the formulae in (4) of Definition 4.1 are positive
clauses. As a consequence hyperresolution generates also non-ground conclusions
for the axiomatic encoding. They are omitted from the definitions in II(p) so
that inferences with non-ground positive premises using the standard translation
approach need not be simulated in the completeness proofs. We call the formulae in
Definition 4.1.(4) positive shortcut formulae and their clausal form positive shortcut
clauses. In general, by shortcut formulae we mean formulae logically equivalent to
YV (2Qn~y(z) <« Qy(x)). Their clausal form are called shortcut clauses and consist
of two clauses, a positive and a negative clause. We call them positive and negative
shortcut clause, respectively. For some modal logics and modal axioms the positive
shortcut formulae are not strictly necessary, however they are included for reasons
of uniformity. Experience shows that the presence of the corresponding shortcut
clauses can be beneficial, because theorem provers can terminate earlier and the
proofs can be shorter.

The definition of the translation mapping contains unnecessarily repeated defi-
nitional forms. Since for an arbitrary modal formula v, Def(¢)) and Def(~)) are
equivalent in the definition of II¢ () it would have been more economic to include
definitions and shortcut formulae for unnegated subformulae only. If v is a propo-
sitional literal then Def(1)) can be defined equivalently and more economically by
vV (Qu(x) — (¥, x)) AV (Quy(x) — m(~1,x)). Another possible improvement
which is achievable with minimal extra computational overhead replaces the set
in (3) of Definition 4.1 by the smaller set

Simpl(/\ {Def(v)) |4 € X\ Sf(¢)}),

which does not include the structural translation of subformulae already in II(¢p).
Soundness of the axiomatic translation is not difficult to prove. (The formal
proof is given in Appendix C.)

Theorem 4.2 (Soundness of H%) Let L be a propositional modal logic K(,,)A
with A a (finite) set of modal formulae. Let ¢ be any L-formula and assume
Usea X4 is a (finite) set of L-formulae. If ¢ is L-satisfiable then II () is first-
order satisfiable, where X = {X 4} aca.

Basically the proof uses an argument that is standard for proving the soundness of
renaming techniques. The only difference is that we start with a modal model and
construct a first-order model of the formula IT¢ (). This model is a conservative
extension of the first-order model normally associated with the modal model. An
instance of a schema clause is satisfied in the first-order model, since the corre-
sponding instance of the corresponding modal axiom is satisfied in every world of
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12 . R. A. Schmidt and U. Hustadt

the modal model, for, a schema clause is the clausal normal form of a formula ob-
tained by a partial rewriting of an axiom .4 with respect to Ohlbach’s equivalence
preserving rewrite rules.

The soundness result is very general and very useful, especially when considering
the following equivalent formulation: If TI{ () is unsatisfiable in first-order logic
then ¢ is unsatisfiable in L. As a consequence, it is possible to use the axiomatic
translation method even for proving theorems in non-first-order definable modal
logics. For example, we can prove that D is a theorem in KM, where M is McKin-
sey’s axiom OOp — <Op. The axiom M reduces to a set of schema clauses and a
proof can be found using the O subformula instances of the schema clauses.

We are also going to show that the classical translation and the axiomatic trans-
lation can be used in combination. We refer to such mixed forms of encodings as
mized (aziomatic) reductions or mized (axiomatic) translations. Here is a general
soundness result.

Theorem 4.3 (Soundness of mixed axiomatic reductions) Let L be a propo-
sitional modal logic K(,,)A with A a finite set of modal formulae. Suppose A
can be partitioned into two sets of axioms, A’ and A”, so that all axioms in A’
are first-order definable. Assume (J,.ar X4 is a finite set of L-formulae. Let
X = {Xa}aear and let ¢ be any L-formula. If ¢ is L-satisfiable then Corr(A’) A
12" () is first-order satisfiable.

5. COMPLETENESS

In order to prove completeness of the translation mapping H@, a possible approach
is to take a model-theoretic route and to show how to construct an L-model for ¢
from a given first-order model for H%(tp), for a predetermined, finitely bounded
instantiation set X. For first-order definable logics it is also sufficient to construct
a first-order model for the classical translation of ¢. Alternatively, and this is the
approach taken in this paper, one can use a proof-theoretic argument. A proof-
theoretic argument sufficient for obtaining completeness is to show how to map
refutation proofs of ¢ in L to refutation proofs of H% (¢) in first-order logic for a
predetermined, finitely bounded X. Because the standard translation mapping II
is sound and complete, we show that a certain style of proofs of the unsatisfiability
of Corr(A) A II(p) using the classical translation approach can be mapped to a
proof of the unsatisfiability of H%((p) using the axiomatic translation approach
in first-order logic. For various reasons we use hyperresolution style derivations
combined with splitting for this purpose. Conclusions with hyperresolution are
always positive clauses and, more importantly, the clausal form of Corr(A) A II(y)
for the logics we consider are sets of near range-restricted clauses. A clause C is said
to be range-restricted iff the set of variables in the positive part of C' is a subset of
the set of variables of the negative part of C. Derivations with hyperresolution and
splitting on range-restricted clauses have the property, that all positive premises of
an inference step are ground unit clauses and conclusions are then always positive
ground clauses (cf. e.g. [Bry and Yahya 2000; Georgieva et al. 2001]). For the logics
we consider clause sets may also contain non-ground positive clauses of the form
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The Axiomatic Translation Principle of Modal Logic . 13

(I denotes a natural number):!

R(z,z), R(z, f(z)), R(f(z),x) and R(z, f(z)). (®)

Derivations with hyperresolution and splitting on such near range-restricted clauses
have the following property. All positive premises and all (maximally factored
and split) conclusions of inference steps are either ground unit clauses or have the
form (8). Hyperresolution and splitting not only detects unsatisfiability; for the
kinds of problems we consider, in the case that ¢ is satisfiable, a (Herbrand) model
can be immediately read off from any complete open branch in a derivation. More-
over, the derivations can be mapped directly to derivations in first-order sentence
tableau and in fact also to derivations in labelled modal tableaux.

In proving completeness, a key problem is to determine how many and which
instances of the clausal schemas are needed for the axiomatic translation to work.
That is, we need to specify the set X of formulae for which instances of the schema
clauses are to be formed. To do so in a systematic way, we need some more notation.
If X is a set of modal formulae then OX denotes the set {O0¢ |4 € X}. Let ¢ be
an arbitrary modal formula. We assume that all axiom schemas are unary, i.e. any
axiom schema contains only occurrences of one propositional variable. Suppose A
denotes an arbitrary unary axiom schema with free variable p, and « denotes a
sequence of unary axiom schemas (without repetition). The empty sequence is
denoted by e. Now, define X% inductively by:?

X, ={¢|ov eSf(p)} and
xg4 =x3U{o{p/v} |06 € XY, DY € S(OXE)}-

X, is the set of subformulae of ¢ that occur immediately below a O operator. In
general, X3 is the set of subformulae occuring immediately below a O operator in
¢ and formulae induced by O subformulae in the axioms in the sequence a. Note
that the order of the appearance of the axioms in this sequence is essential.

In the remainder of the section we present completeness theorems of the axiomatic
translation for a selection of modal logics. All proofs can be found in Appendices D
to F.

The axiomatic translation of any formula ¢ in K4, KT, KD, KB, Kalt, is deter-
mined by X4 = X1 = Xp = Xo, = X,. That is, 0X 4 is the set of O subformulae
of ¢ for A€ {4,T,D, B, alt, }.

Theorem 5.1 Suppose A € {T,B,D,4,alt1}. Let ¢ be any modal formula and
assume X = {X4} where X4 = X{,. Then, IT¢ () is unsatisfiable in first-order
logic, whenever ¢ is unsatisfiable in KA. The positive shortcut clauses are optional
for completeness.

For each of the axioms the structure of the argument is always the same, but
in detail the proofs can differ significantly depending on the nature of the modal
axiom.

IThe clauses R(z,z) and R(z, f(z)) represent reflexivity and seriality. See the proofs in appendix
for the origin of the clauses R(f(z), z) and R(z, f(x)).
2In general, for multi-modal logics the definition needs to be more complex.
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14 . R. A. Schmidt and U. Hustadt

We can show completeness for the generalised axiom schemas 4" (k > 1) and
alty?"™ (K1, k2 > 0), cf. Figures 1 and 3, and S4 using X¢,.

Theorem 5.2 Suppose A € {47, alt'"}. Let ¢ be any modal formula and as-
sume X = {X4} where X4 = X{. If ¢ is unsatisfiable in KA then () is
unsatisfiable in first-order logic. The positive shortcut clauses are optional for com-
pleteness.

Theorem 5.3 Let ¢ be any modal formula and assume X = {Xr, X4}, where
Xr = X4 = X;,. Then, H§’4((p) is unsatisfiable in first-order logic, whenever ¢ is
unsatisfiable in §4. The positive shortcut clauses are optional for completeness.

Similarly, one can prove that the axiomatic translation using X¢, (with or without
positive shortcut clauses) for each axiom is complete for KTB, KDB and KD/.

From these results, one might be tempted to think that the axiomatic translation
provides a generic and modular approach for translating problem specifications into
first-order logic. Unfortunately, in general the solution is not as smooth as above.
In general, it is not enough to form one instance of the clausal schemas of an axiom
for each O subformula. It might not even be only O subformulae instances that are
required.

A logic of the former kind is K5. For K5, clausal schema instances need to
be formed not only for O subformulae, but also for 00— formulae, where O
is a subformula of the candidate formula. A counter example that the axiomatic
translation is not always complete for O subformula instances alone is the formula
¢ = OOO—g A OOq which is unsatisfiable in K5, but 1% (p), where X = {X¢},
is satisfiable. However, the translation II3(¢) can be refuted if X = {.’{i}, where
DX5, = 0XS, UO-0XS, and hence X7, = X5, U -OX¢,.

Theorem 5.4 Let ¢ be any modal formula and let X = {X5}, where X5 = XJ.
Then, 115 (¢) is unsatisfiable in first-order logic, whenever ¢ is unsatisfiable in K.

The theorem is a consequence of a more general result.

Theorem 5.5 Let ¢ be any modal formula and assume X = {X5~}, where X5= =
X3 If ¢ is unsatisfiable in K5" then II% (¢) is unsatisfiable in first-order logic.

Theorem 5.3 for S4 might lead one to speculate that the principle may be eas-
ily extended to K(,,)A where A contains multiple axiom schemas. But there are
counter examples. While for the logics KB and K/, it is enough to include O sub-
formula instances of the schema clauses, for the logic K4B it is not enough to
instantiate the schema clauses for 4 and B with O subformulae. For example,
5 = -0O-0Op — Op is a theorem in K4B. But H‘;B(ﬂS) is not refutable with
X = {X4,Xp} where X, = Xp = X%, nor with X4 = XZ and Xp = X. A
refutation proof can be found if X4 = X, and Xp = .’{‘;.

Theorem 5.6 Let ¢ be any modal formula and assume X = {¥p, X4}, where
X4 =X, and Xp = X. Then, H;%B(go) is unsatisfiable in first-order logic, whenever
 is unsatisfiable in K/B.
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Theorem 5.7 Let ¢ be any modal formula and assume X = {Xr, Xp, X4}, where
Xp = X4 = X5 and Xp = XL. Then, ITy""" () is unsatisfiable in first-order logic,
whenever ¢ is unsatisfiable in S5.

Thus we can summarise:

Theorem 5.8 (Completeness) For each of the modal logics KA considered in
this section (K4, KT, KD, KB, Kalt1, K4*, Kalt7""*, KT4, KTB, KDB, KD/, K5,
K5, K4B, KT4B) and any modal formula ¢, there is an effectively computable set
X such that (i) ¢ is satisfiable in KA iff IT¢ () is first-order satisfiable. Moreover,
(ii) 112 (¢) can be computed in linear time.

PRrROOF. (i) follows from Theorem 4.2 and the results of this section. (ii) is
evident from Lemma 3.1 and Definition 4.1. [

While the problems with K5 and K4B may give a negative impression of the gen-
erality of the axiomatic translation principle, one should note that they correspond
exactly to the problems one encounters in the development of tableau calculi for
these logics (which use propagation rules). Different from tableaux however the
axiomatic translation principle allows for a systematic approach to solving these
problems by explicit considerations of instance sets.

Finally, we give some completeness results for mixed axiomatic translations.

Theorem 5.9 (Completeness of mixed reduction for S5) Let ¢ be a modal
formula and X = {X4}, where X4 = X,. Then, ¢ is satisfiable in S5 iff Corr({T, B}) A
1% () is satisfiable in first-order logic. The positive shortcut clauses are optional
for completeness.

Theorem 5.10 (Completeness of mixed reductions for KDB, KD/) Let ¢
be a modal formula and assume X = {X 4}, where X 4 = X{, and A € {B, 4}. Then,
¢ is satisfiable in KDA iff Corr({D}) A I3 (p) is satisfiable in first-order logic. The
positive shortcut clauses are optional for completeness.

In each of these cases the translated problem can be generated in linear time.

6. DECIDABILITY

It is not difficult to see that the axiomatic translation reduces modal problems into
decidable fragments of first-order logic, including the two-variable guarded fragment
GF? and the class DL*.

A formula ¢ belongs to GF' if any quantified subformula 1 of ¢ has the form
37 (G(Z,7) A 6(T)) or Vg (G(Z,7) — (7). A GF formula belongs to GF? if it can
be expressed using only two variables.

The class DL* [De Nivelle et al. 2000] is a variation of the class of DL-clauses,
that was introduced in [Hustadt and Schmidt 2000a] with the purpose of handling
expressive description logics. W.l.o.g. it is assumed that all clauses are maximally
split. A maximally split clause C' is a DL*-clause iff the following conditions are
satisfied. (i) All literals are unary, or binary. (ii) There is no nesting of function
symbols. (iii) Every functional term in C' contains all the variables of C. (iv) Every
binary literal (even if it has no functional terms) contains all the variables of C.
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16 . R. A. Schmidt and U. Hustadt

Lemma 6.1 (i) The axiomatic translation of any modal formula is equivalent to a
GF? formula. (ii) The axiomatic translation of any modal formula can be embedded
in the clausal class DL*.

Theorem 6.2 (Decidability) Let L be a propositional modal logic K(,,)A. Then,
L is decidable, whenever the following conditions are satisfied. (i) A is finite. (ii) For
any L-formula ¢, there are effectively computable sets X 4 for each A € A such
that if TI12(p) is satisfiable in first-order logic then ¢ is satisfiable in L, where

X = {:{A}'AGA-

PROOF. By the previous lemma, the decidability of GF? and DL*, and since for
modal logics axiomatic reductions are sound (Theorem 4.2). [

Corollary 6.3 The modal logics considered in the previous section and their fu-
sions are decidable.

PROOF. By the results of the previous section there are complete axiomatic
reductions for the relevant logics, and decidability follows immediately by Theo-
rem 6.2. The generalisation to fusions is not difficult to prove; it can also be con-
cluded from a general preservation theorem for fusions [Kracht and Wolter 1997]. [

For any non-serial and non-functional modal logic L considered in this paper,
it can be inferred from the completeness proofs that the model constructed by
hyperresolution for the axiomatic encoding of an L-formula ¢ is a tree model (cf.
Lemma E.12). This model can be easily mapped into a corresponding modal (tree)
model. In general this model is however not a model of the candidate formula ¢,
but can be viewed as a skeleton model which can be completed with respect to the
appropriate correspondence properties to an L-model of ¢.

Theorem 6.4 (Small model property, model generation) Let L be a non-
serial and non-functional modal logic considered in the previous section or a fusion
of these. If a modal formula ¢ is L-satisfiable then (i) it is satisfiable in a model with
at most 2°(¢) elements, i.e. L has the small model property, and (ii) resolution
can be used to construct an L-model for ¢.

K1,Rk2

(The proof can be found in Appendix G.) For the logics involving D and alt]
the proofs are a bit more involved but we expect the same result to hold for these
logics.

Decidability of extensions of K with the axioms T', B, D, 4, 5, alt; is well-known.
In Gabbay [1975] the decidability of the logics K4*, K5 and Kalty""* was shown
by using a reduction to SwS. It is also well-known that the operation of fusing
normal propositional modal logics preserves decidability. Thus the decidability of
the logics considered is known or follows from known results. As for the small
model property, we believe the small model property of the logics K4, K5 and
Kalt7""* has been open up to now.

We are however not merely interested in decidability and the small model prop-
erty. One of our main interests is the development of practical decision procedures.
Given a finite axiomatisation and a small model property result, a decision proce-
dure can be defined, but not a very useful one. By contrast since the axiomatic
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translation embeds the modal problems into DL* or GF? and since both can be
decided with resolution the following is immediate.

Theorem 6.5 (Decidability by resolution) Resolution based on any refinement
compatible with the ordering >4 defined in [De Nivelle et al. 2000] decides the ax-
iomatic encoding of satisfiability problems in all modal logics satisfying the condi-
tions of Theorem 6.2.

Most modern first-order logic theorem provers implement ordered resolution and
the ordering >4 is standardly available in such theorem provers. Consequently,
these provers immediately provide practical decision procedures for solving the
satisfiability problem of many modal logics. All that needs implementing is the
axiomatic translation of modal problems into first-order logic. This is not difficult.

It should be noted that the result is not true for hyperresolution which is used
in the completeness proofs. With the blocking inference rule introduced in Hus-
tadt and Schmidt [1999c] hyperresolution can however be turned into a decision
procedure for the axiomatic translation of the considered logics.

What about the decidability of reductions using a mix of the standard relational
translation and the axiomatic translation? Here we can state the following general
theorem.

Theorem 6.6 (Decidability for mixed reduction) Let L be a propositional
modal logic K(,,)A and suppose A is partitioned into two sets A" and A”. Then, L
is decidable, whenever the following conditions are satisfied. (i) A is finite. (ii) For
each axiom A in A’, Corr(A) is expressible in DL*. (iii) For any L-formula ¢,
there are effectively computable sets X 4 for each axiom A in A” such that, if
¥ = Corr(A’) A TIR" () is satisfiable in first-order logic then ¢ is satisfiable in L,
where X = {:{A}AGA”-

Moreover, resolution based on any refinement compatible with the ordering >4
decides the satisfiability of ¢ in L.

Correspondence properties expressible in DL* include the Boolean combination
of relational inclusions or equivalences expressed over intersection, union, com-
plementation, converse and positive occurrences of relational composition. For
example, the inclusion R C R™ expresses the symmetry of R, and R C R; R ex-
presses a kind of confluence. In addition, reflexivity, irreflexivity and properties
such as Vzy (R(z,y) — R(z,z)) can be expressed in DL*. More details on rela-
tional properties expressible in DL* can be found in Schmidt and Hustadt [2003].
Theorem 6.6 is also true for GF2. Note however that the logic DL* is more expres-
sive than GF?2, since GF? can be linearly reduced to DL* using standard structural
transformations to clausal form. Since GF? is EXPTIME-complete [Gridel 1999]
and DL* is NEXPTIME-complete, it is probable that no linear reduction exists in
the other direction. The fact that DL* is NEXPTIME-hard follows since Boolean
modal logic is NEXPTIME-complete [Lutz and Sattler 2002] and linearly reduces
to DL* [De Nivelle et al. 2000]. It follows from the results of Lewis [1980] that DL*
is in NEXPTIME and hence NEXPTIME-complete.

As a consequence of the previous theorem we can state:
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Corollary 6.7 Ordered resolution decides the mixed reductions of the logics K74,
KDB and KD/ defined in Theorems 5.9 and 5.10.

7. PRACTICAL EXPERIENCE

The attractiveness of the axiomatic translation principle is its amenability for im-
mediate automation. We have developed a prototype implementation in Prolog of
the axiomatic translation. The choice of existing first-order logic provers that can
be used is extensive. In our tests we used VAMPIRE [Riazanov and Voronkov 1999],
DCTP [Letz and Stenz 2001; Stenz 2002], E [Schulz 2002] and (M)spass [Hustadt
and Schmidt 2000b; Weidenbach et al. 2002]. These are among the best first-order
theorem provers currently available. VAMPIRE, E and MSPASS are resolution provers
and support ordered resolution refinements compatible with the ordering >,4, and
in fair mode, all provide decision procedures for the axiomatic translation of all
modal logics which satisfy the general conditions of Theorems 6.2 and 6.6. DCTP is
based on the disconnection calculus. It is not known to be a decision procedure for
the problems used in the test, but performed remarkably well in our experiments.

The problems used in the tests were collected during the period of the investiga-
tion; a selection are from the literature, but most were created for the purpose of
gaining insights into the properties of the axiomatic translation and the simulation
of hyperresolutions proofs using different translation methods. As a consequence
the majority of the problems are small in size; on average the size of the input files
is 4.3 KB and 4.7-19.8 KB for the classical translation and axiomatic translation,
respectively. In total 81 problems were tested in each of the following logics using
both the axiomatic translation and the classical translation. To simplify the subse-
quent presentation of the results, the logics are numbered as indicated in brackets
below.

K4B (0), K42 (1), K4* (2), K4 (3), K5* (4), K5° (5), K5 (6), KB (7),
KD4 (8), KDB (9), KDT (10); KD (11), KT4B (12), KT§ (13), KTB (14),
KT (15), Kalt}" (16), Kalt}? (17), Kalt>"' (18), Kalt>* (19), Kalt; (20)

The graphs in Figures 4 to 7 present a summary of the tests performed with vAM-
PIRE Version 7.0, E Version 0.82, MSPASS Version 1.0.0t.1.3 and DCTP Versions 10.21
and 1.31(EPR).? The tests were run on a Linux PC with a 1.80GHz Pentium 4 CPU
and 512 MB main memory. Each problem was run with a timeout of 200 seconds.

In the first series of graphs (in Figures 4 to 6) the number of problems solved
within this time serves as the measure of comparison. For each prover the graphs
summarise the total number of problems solved and how many of these were satis-
fiable and unsatisfiable. The first two graphs give information of the performance
of the provers in the different logics. The logics are represented by integers 0 to 20
on the z-axis in the order as listed above. The additional points reflect the relative
increase in the total size of the input files for the axiomatic translation. The third

3VAMPIRE settings: -t 200, E settings: -xAuto -tAuto -1 O --tptp-in --resources-info
--cpu-1limit=202 --memory-1limit=192, MSPASS settings: -CNFRenQuant=1 -CNFRenMatch=0
-Select=0 -Splits=-1 -CNFStrSkolem=0 -CNFOptSkolem=0 -Sorts=0 -PGiven=0 -PProblem=0
-TimeLimit=200, DCTP settings: 210. The executables of VAMPIRE, E, DCTP were obtained from
the CASC-2004 Competition website http://www.cs.miami.edu/ " tptp/CASC/J2/.
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graph (in Figures 4 to 6) provides a direct comparison of the classical and axiomatic
translation for all problems. Three points appear in the graph for each of the 21
logics, one for the total number of the 81 problems solved, one for the total number
of satisfiable problems solved and one for the total number of unsatisfiable problems
solved. Each point at coordinate (a,c¢) indicates that a number of problems were
solved, within the timelimit, using the axiomatic translation method, and ¢ using
the classical translation method. More points below the diagonal mean that the
performance for the axiomatic translation method in terms of the number of prob-
lems solved was better than for the classical translation method (and vice versa if
the other way around). In the graphs of Figure 7 the CPU time performance serves
as the measure of the comparison.

On the whole the results show that the performance of the resolution provers
is better on the axiomatic translation than the classical translation, especially for
satisfiable problems and also for logics determined by ‘problematic’ correspondence
properties such as transitivity, Euclideanness and functionality. In particular, on
satisfiable problems the provers are performing better on the axiomatic translation.
For unsatisfiable problems the picture is less uniform however. Looking at Figures 4
to 6, for unsatisfiable problems the performance of the provers are roughly on a
par for the two translation methods, although interestingly for the faster provers
the scale is slightly tipped toward the classical translation method. For the logic
K5 (5) the performance of MSPASS is better for the axiomatic translation, while
the performance of E is the same and the performance of VAMPIRE is better for
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the classical translation. VAMPIRE’s performance on the classical translation is also
slightly better for extensions of K involving instances of the alt{'"™* axiom. The
results for K5% (5) in the left graphs of Figures 4 to 6 suggest that the performance
of the provers is sensitive to the size of the translation. Also noteworthy is that for
K53 the instantiation sets are significantly larger than for the other logics.

The tests with the different versions of DCTP showed that the older version, 10.21,
performs better than the latest release, 1.31(EPR). This behaviour is consistent
with the CASC-2004 theorem prover competition where bcTP 10.21 won the EPR
category. The EPR category includes problems encoding local satisfiability in K or
K ;) using a variation of the optimised function translation method which maps the
problems into the intersection of fluted logic and the Bernays-Schonfinkel class [Hus-
tadt and Schmidt 1999a]. For this translation any resolution or instantiation-based
theorem prover is a decision procedure, including DCTP. Since the problems used in
the experiments here have different properties to the problems in the EPR category,
the outcome of the tests for DCTP are interesting and worth investigating further.

The CPU time results in Figure 7 also show the advantage of the axiomatic
translation approach (right graphs) over the classical translation (left graphs) for
tests performed. For many of problems actually improvements by factors of 10—
10000 are observable, and some problems which are not solvable by the classical
translation approach have now become solvable with the axiomatic method.

All this is interesting, but clearly, more experiments and a more thorough inves-
tigation of the results are needed to get a better understanding for the behaviour
in practice of the axiomatic translation method. Future investigations should also
include tests with the mixed translation approach.

Another possibility as yet untested is the combination of the axiomatic translation
and modal logic or description logic theorem provers. An alternative to using first-
order logic theorem provers, is to use modal logic or description logic theorem
provers. It is not difficult to see, as we outline in the next section, that the axiomatic
translation can be transferred to the level of modal logic or description logic and
combined with a suitable theorem prover for that logic. What is required is either
a description logic prover for ALC that can handle terminological axioms or a
modal theorem prover that can handle multi-modal K(,,) with non-logical axioms,
i.e. global satisfiability (or global validity) in K(,,), or a prover for the logic K,
with the universal modality can be used.

8. OTHER CONSEQUENCES AND RELATED WORK

An EXPTIME upper bound for the complexity of the considered logics or their
fusions is immediate from the reduction to GF2. This bound is not optimal and
can be improved for certain logics. Let L be any of the logics KT, KB, KTB,
Kalt7""*, KD, KDB, or their fusions. One can observe that the axiomatic reduction
is acyclic in the sense of [Georgieva et al. 2002]. That is, an acyclic dependency
relation can be defined over the predicate symbols in the clausal form (obtained by
using structural transformation) and can be extended to an ordering > p on ground
clauses. For any of the logics L this ordering is acyclic and we can show that the
axiomatic translation of L belongs to the class BU of clause sets [Georgieva et al.
2002]. Tt follows from the investigations of classes decidable by hyperresolution in
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Georgieva et al. [2001; 2002] that:

Theorem 8.1 Let L be any of the logics KT, KB, KTB, Kalt7""*, KD, KDB,
or their fusions. Then (i) hyperresolution can decide the satisfiability of ¢ in L,
(ii) hyperresolution can return a Herbrand model which can be transformed into a
modal model if ¢ is L-satisfiable, and (iii) the minimal model generation procedures
described in Georgieva et al. [2001; 2002] can be used to compute all and only
minimal Herbrand models, if ¢ is L-satisfiable.

It is actually possible to show that the resolution procedure described in Georgieva
et al. [2001, §3] decides these logics in polynomial space. In terms of complexity
this is an optimal result because a result of Lutz [1999] for the description logic
ALC with acyclic TBoxes implies:

Theorem 8.2 (Complexity) The computational complexity of the satisfiabil-
ity problem of each of KT, KB, KTB, Kalt7""*, KD, KDB and their fusions is
PSPACE-complete.

For the other modal logics, for example transitive modal logics, the dependency
relationship > p is cyclic because of the presence of the same predicate symbol with
opposite polarity, for example, in the schema clause for 4. However, by using the
axiomatic translation and the ideas of Kracht [2002] optimal space bounds can be
given also for the other logics.

There is a close relationship between hyperresolution and tableau calculi. In Hus-
tadt and Schmidt [2002] and De Nivelle et al. [2000] it is shown how this relationship
can be exploited for systematically developing sound, complete and terminating
tableau proof systems for PDL-like multi-modal logics. The same approach can be
used for extracting tableau rules from the combination of the axiomatic translation
and hyperresolution. The idea is to express a group of hyperresolution inference
steps as a tableau rule. This technique works readily for modal logics which do
not require nested instantiation and where the shortcut clauses of Definition 4.1.(4)
are not needed. The tableau calculi obtained are summarised in Figures 8 and 9.
The symbols s,¢,t" denote constants (or ground terms). (K) represents the rules
(L), (=), (N), (V),(O), (—O). The correspondence between the tableau rules and the
schema clauses is evident if one thinks of a schema clause first as an implication
and then as a rule. The presented calculi coincide exactly with labelled semantic
tableau calculi developed elsewhere, cf. [Goré 1999; Castilho et al. 1997; Massacci
2000]. Thus, the axiomatic translation offers another way of proving the sound-
ness and completeness of these calculi. For the other logics such as K5 and K4B
where the shortcut clauses are used in the completeness proofs for the axiomatic
translation, the tableau calculi obtained in this way include cut rules resulting from
the positive shortcut clauses Qy () V Qyu(x). In all cases the cut rules are ana-
lytic, more specifically, they are applied only over the subformulae of the candidate
formula and the formulae in X of part (3) of Definition 4.1.

As already noted the axiomatic translation can also be interpreted on the modal
level. On the modal level it corresponds to a reduction of the satisfiability of a
modal formula with respect to an extension K(,,)A of K(,,), to global satisfiability
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Fig. 8. Tableau expansion rules
K: (K) KD: (K),(D) KT: (K),(T)
KB: (K),(B) K4: (K),(4) Kalty : (K), (alt1)
KTB: (K),(T),(B)  KDB:(K),(D),(B)  KDj: (K), (D), (4)
S4: (K),(T),(4) K5 (K),(4%) Kalt7V"™? : (K), (alt72"?)

Fig. 9. Tableau calculi

in K(,,), or satisfiability in K{,,) enhanced with the universal modality (which can
be further reduced to local satisfiability in K, [Goranko and Passy 1992]). On
the modal level the axiomatic translation is closely related to the reduction func-
tions introduced independently by Kracht in [1999] and developed further in [2001].
Kracht’s reduction functions are defined differently to the ones implicit in the ax-
iomatic translation, the most important difference being that they do not use new
symbols for subformulae. Kracht has proved a number of results which immediately
carry over to the axiomatic translation. For example, the logics considered in the
present paper satisfy Kracht’s criteria for local interpolation. A modal logic L has
local interpolation, if for every pair ¢ and ¢ of formulae with ¢ Fp, ¢, there is a x
such that var(x) C var(¢)Nvar(v) and ¢ Fr, x as well as x 1, ¢. We can conclude
the following.

Theorem 8.3 (Local interpolation) The modal logics considered in Section 5
and their fusions have local interpolation.

PROOF. For each of the axioms A, II¢(~(¢ — 1)) is satisfiable iff I (¢) U
Hg‘é(ﬂ@/}) is satisfiable. Thus the corresponding reduction function on the modal
level has the same property. It follows that the Kracht-reduction uses splitting
reduction sets, cf. [Kracht 2001]. The result follows then by Theorem 6.8 in [Kracht
2001], since K has local interpolation, and the formulae in X are defined over the
propositional symbols in the candidate formula. Finally, note that fusion preserves
local interpolation [Kracht and Wolter 1997]. O

The axiomatic translation can be used to combine different styles of reasoning
systems. For example, in Hustadt, Dixon et al. [2000] the axiomatic translation
was used in a decision procedure for the join of discrete linear temporal logic with
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subsystems of S5. The system combines temporal resolution for the temporal part
and first-order resolution on the modal part.

The idea of incorporating a theory into the translation of a formula, or eliminating
a relation with special properties by an axiomatic internalisation, is often implicit
in reductions between logics. For example, De Giacomo [1996] embeds CPDL into
PDL by using an axiomatic encoding of the axiom defining the converse operator.
Balbiani and Herzig [1994] and Demri and Goré [1999] respectively embed the
provability logics G and Grz into GF?. Both are second-order modal logics.

There is a (non-obvious) connection to work of Demri and De Nivelle [2003], which
is worth exploring further. Demri and De Nivelle show that modal regular grammar
logics with converse RGL(™) are decidable by reduction to GF2. Demri [2001] has
shown that regular grammar modal logics have a number of nice properties. For
a given modal logic it is however not immediate whether it is in fact an RGL(™)
logic. One first has to find a regular expression which describes the closure of the
relational correspondence properties of the modal logic. In some instances it can be
easily seen that the axiomatic translation is equivalent to the translation of Demri-
De Nivelle. In other instances the connection is not immediate. While we have
shown how to reduce serial modal logics by our method, no regular expressions are
known for relational theories including seriality. In fact, it has been shown by Demri
and Orlowska [1999] that seriality and other existential properties of relations are
not definable by any closure relation operation.

9. CONCLUSIONS

The ideas of the axiomatic translation principle are of interest for various reasons.
On the one hand, of interest to pure modal logic are the results obtained and
their generality. We have shown general results on decidability, the small model
property and the interpolation property and considered some instances of modal
logics for which the results hold, including extensions of basic modal logic with less-
studied generalised axiom schemes. Also of interest are the methods used in this
paper. Our framework departs significantly from the model-theoretic and algebraic
route traditionally followed in modal logic. The paper shows that it is possible to
use proof-theoretic methods for proving results traditionally proved using sophisti-
cated model-theoretic constructions (canonical models, filtrations, etc). By using
methodologies from resolution and first-order logic we showed how it is possible
to directly exploit powerful methods and results available in this framework. A
further advantage are the implemented inference tools and theorem provers which
are immediately available and allowed us to obtain first, very promising practical
experience with only modest implementation effort. In this context the work pro-
vides not only new insight into the ‘nice’ properties of modal logic, but suggests
new ways of developing automated reasoning technologies for modal logics and also
description logics and other related logics like the guarded fragment.

In this paper our investigation was restricted to local satisfiability problems in
modal logics. Most of the results can however be extended to the corresponding
global satisfiability problems. This is the case for all soundness, completeness, de-
cidability and small model property results in this paper. The least obvious are of
course the completeness proofs, however with the ideas of [Hustadt and Schmidt
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1999c¢] the proofs are only slight modifications of the proofs given in this paper. One
can further observe that the global satisfiability problem of all logics which satisfy
the conditions of Theorems 6.2 is EXPTIME-complete provided the axiomatic re-
duction mapping is a polynomial function. For these logics the combination of the
axiomatic translation and ordered resolution provides a decision procedure with
optimal, EXPTIME complexity. Due to space limitations the formal development
of these aspects is left for another paper.

As already indicated in various places this work raises a number of intriguing
questions for further research. An important question of general significance to
the efficiency of proof methods exploiting the axiomatic translation is whether the
size of the axiomatic translation can be improved. The first step is to eliminate
duplicate definitions from the axiomatic translation of the problem. In addition, in
many instances as indicated in Section 5 it is not difficult to see that the shortcut
clauses are redundant and can be omitted, but in some cases they are necessary.
Experience shows that shortcut clauses can improve the performance of a prover,
so omitting shortcut clauses may not always lead to a performance gain. The
impact of smaller instantiation sets is also significant. Are the reductions in this
paper optimal with respect to the sizes of the instantiation sets? What is the
smallest set of instances necessary for the axiomatic translation of a given logic?
Is there a reduction of CPDL to PDL which uses smaller instantiation sets than
the Fischer-Ladner closure? These are important questions which deserve further
investigation. Another question one might ask is: Are all modal logics effectively
reducible to GF? using the principles of the axiomatic translation (or, equivalently,
are all modal logics effectively reducible to the basic modal logic K(,,))? The answer
to this questions is clearly no, because there are undecidable extensions of K,
cf. e.g. [Kracht 1995]. Thus the question should be qualified: Are all decidable
modal logics effectively reducible to GF2, or K(n)? Are there decidable modal
logics which cannot be reduced to GF? or K,y by ideas based on the axiomatic
translation principle?

APPENDIX
A. BASICS OF MODAL LOGIC

The purpose of this section is to review briefly the basic notions of propositional modal
logics. Standard references include [Blackburn et al. 2001; Chellas 1980; Goldblatt 1987;
Hughes and Cresswell 1996].

For reasons of simplicity this paper considers only uni-modal logics. The language is
that of propositional logic plus one unary modal operator O (the box operator). Let V be
a finite set of propositional variables p,q,r,.... A modal formula is either a propositional
atom, i.e. a propositional variable, 1, or a formula of the form —, ) A ¢ and O, where
1 and ¢ denote modal formulae. T, V, —, «> and < are defined as expected. A modal
axiom schema is a modal formula representing the collection of all its instances. A modal
axiom is an instance of a modal axiom schema.

A (normal) modal logic is defined by a set of modal formulae which includes all propo-
sitional tautologies over some modal language and the schema

K d(p—q) — (Op— Og),

and which is closed under modus ponens and the rule of necessitation:
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MP if Fp and F g then Fp—gq
N if Fp then F Op.

K is the weakest modal logic. In general, modal logics are extensions of the logic K with
additional schemas such as those listed in Figure 1. Let A denote a finite set of modal
axiom schemas. By KA we denote the smallest modal logic which contains the schemas
in A. A modal formula ¢ is a theorem of K or its extension iff ¢ can be derived from the
axioms by using the rules of the logic.

The standard semantics of propositional modal logics, known as the Kripke semantics
or possible world semantics, is given in terms of relational structures called frames. A
frame of a modal logic is a pair F = (W, R) of a non-empty set of worlds W and a
binary relation R on W. R is the accessibility relation and determines the truth of modal
formulae in possible worlds. The defining class of frames of a modal logic determines,
and is determined by, a corresponding class of models. A (relational) model is a pair
M = (F,v) of a frame F and a valuation function v. v assigns subsets of W to atomic
propositional variables. The model M is therefore said to be based on the frame F. Truth
in any model M = (W, R, v) and any world = € W is defined inductively by:

M,z Epiff x € v(p) M,z =Y A ¢ iff both M,z =1 and M,z |E ¢
Mz E - it Mz ey M,z =0y iff (z,y) € R implies M,y = 1, for any y € W

A modal formula is valid in a frame iff it is valid in all models based on the frame. The
basic modal logic K is completely determined by the class of all frames (W, R).

Normal modal logics can be studied systematically by considering the classes of frames
they define. In general, these are subclasses of the class of all frames which define the
basic modal logic K. A modal logic KA is said to be sound (respectively complete) with
respect to a class of frames iff for any modal formula ¢, any frame in the class validates
@ if (respectively iff) ¢ is a theorem in KA. A modal logic is said to be complete iff it is
complete with respect to some class of frames. A class of frames comprising of all frames
satisfying a set of first-order conditions is said to be an elementary class.

Except for logics based on McKinsey’s axiom the logics considered in this paper are all
Sahlquist. That is, the logics are axiomatisable with Sahlqvist formulae as axiom schemas.
The class of Sahlqvist formulae is a syntactically defined class of formulae satisfying the
well-known Sahlqvist theorem [Sahlgvist 1975] which says that (i) all Sahlqvist formulae
define first-order conditions on frames and these properties can be effectively computed
(correspondence result), and that (ii) all Sahlqvist formulae are canonical, i.e. valid in
their canonical frames and hence axiomatise completely the classes of frames satisfying
the corresponding first-order properties (completeness result). Figure 1 lists the first-order
correspondence properties satisfied by classes of frames for extensions KA for a selection
of common schemas. However not every modal schema has an equivalent first-order frame
property. For example, the logic KM is not determined by any elementary class of frames.
The formula M is also not canonical.

We use the notational convention by which for example KT/ denotes the smallest ex-
tension of K in which both T" and 4 are schemas. Alternative names for KT/ and KT/B
are 54 and S5. Sometimes logics coincide, for example: KT = KDT, K/B = KB,
S5=KT4B= KD/B= KT5.

By definition, Sf(p) denotes the set of all subformulae of ¢ and SI(X) = {¢|¢ €
Sf(¢), ¢ € X}, where X is a set of formulae.

B. BASICS OF HYPERRESOLUTION AND PARAMODULATION

For easy reference this section recalls the basics of hyperresolution and paramodula-
tion for first-order clause logic. More detailed accounts can be found in [Bachmair and
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Ganzinger 2001] and references such as [Leitsch 1997; Robinson and Voronkov 2001;
Socher-Ambrosius and Johann 1997].

B.1 Notation

First-order variables are denoted by x, y, z, terms are denoted by s, t, u, constants by a, b,
functions by f, g, h, predicate symbols by P,Q, R, atoms by A, B, literals by L, clauses
by C, formulae by ¢, ¢, 1, and sets of clauses by N. As usual the symbols V, A and —
denote logical disjunction, conjunction and negation, respectively.

B.2 Clause logic

A literal is an atomic formula A (a positive literal) or the negation —A of an atomic formula
A (a negative literal). If the predicate symbol of a literal has arity one (two) then we call
this literal a unary literal (binary literal). By definition, in a unary clause (binary clause)
all literals are unary (binary). We regard a clause as a multiset of literals. A multiset
over a set £ is a mapping C from L to the natural numbers. We write L € C if C(L) > 0
for a literal L. A subclause of a clause C' is a sub-multiset of C. We use @) to denote the
empty clause. A positive (negative) clause contains only positive (negative) literals. The
positive (negative) part of a clause C' is the subclause of all positive (negative) literals in
C. A clause which consists of only one literal is called a unit clause. A split component of
a clause CUD is a subclause C such that C' and D do not have any variables in common,
i.e. are variable disjoint. A mazimally split (or variable indecomposable) clause cannot
be partitioned (or split) into subclauses which do not share variables. Two clauses (or
formulae) are said to be variants of each other iff they are equal modulo variable renaming,.
Variant clauses are assumed to be equal.

An ezpression is a term, an atom, a literal or a clause. An expression is called functional
if it contains a constant or a function symbol, and non-functional, otherwise. The set of
all free variables occurring in an expression E, or in a set of expressions N, is denoted as
var(E) or var(N). An expression is called ground if it contains no variables. For sets of
expressions, |N| denotes the cardinality of the set N.

B.3 Hyperresolution with splitting

The hyperresolution calculus is denoted by H. Inferences are computed with the following
expansion rules.

N
NU{C}
provided C is the conclusion of applying one of the inference rules below to premises in V.
NU{C}
N
provided C' is a tautology or IV contains a clause which is a variant of C.
NU {Cl Vv CQ}
Nu{Ci} | NU{Cs}
provided C7 and C3 are variable disjoint.

Deduce:

Delete:

Splitting:

The inference rules of H are the hyperresolution and positive factoring rule.

C1V A C,V A, -B1V...Vv-B,VD
(Ci1V...VCnV D)o

where (i) o is the most general unifier such that A;c = Bjo for every 4, 1 <14 < n, and

(ii) C; V A; and D are positive clauses, for every i, 1 < i < n. The rightmost premise

in the rule is referred to as the negative premise and all other premises are referred to as

positive premises.

Hyperresolution:
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CVAVB
(CV Ao
where o is the most general unifier of A and B, and C is a positive clause.

Positive factoring:

For problems with equality two additional inference rules are included as appropriate.

. C DvVvs=t
Paramodulation: m
where C|\ = s’ and o is the most general unifier of s and s'.
s#s vC

flexivit lution:
Reflexivity resolution o

where o is the most general unifier of s and s’.

By definition the main premise of an inference step is the rightmost premise in the rule
applied.

A derivation in H from a set of clauses NN is a finitely branching, ordered tree T' with
root N and nodes which are sets of clauses. The tree is constructed by applications of the
expansion rules to the leaves. Any branch N(= Ny), Ni,... in a derivation T is called a
closed branch in T iff the clause set |J >0 N; contains the empty clause, otherwise it is
called an open branch. We say a branch B in a derivation tree is complete (with respect
to H) iff no new successor nodes can be added to the branch of B within H, otherwise it
is called an incomplete branch. A derivation is complete iff all of its branches are either
closed or complete. A derivation T is a proof iff every branch N(= Ny), N1,...in it is a
closed branch, otherwise it is called an open derivation.

In general, the calculus H can be enhanced with standard simplification rules such
as subsumption deletion, in fact, it can be enhanced by any simplification rule which is
compatible with a general notion of redundancy [Bachmair and Ganzinger 2001; Bachmair
et al. 1993]. A set N of clauses is saturated up to redundancy with respect to a particular
refinement of resolution if the conclusion of every inference from non-redundant premises
in N is either contained in NV, or else is redundant in N.

A derivation T from N is called fair iff for any branch N(= Np), Ni,... in T, with
limit Noo = ;50 Ng>; Nk, it is the case that each clause C' which can be deduced
from non-redundant premises in N4 is contained in some N;. Intuitively, fairness means
that no non-redundant inferences are delayed indefinitely. For a finite complete branch
N(= No), N1, ... Ny, the limit Ny is equal to N,.

Theorem B.1 (Soundness and completeness of H) Let T be a fair H-derivation from
a set N of clauses. Then: (i) If N(= No), N1,... is a branch with limit N, then Ny is
saturated (up to redundancy). (ii) N is satisfiable if and only if there exists a branch in T
with limit Noo such that N is satisfiable. (iii) N is unsatisfiable if and only if for every
branch N(= No), N1, ... the clause set (J;-, IV; contains the empty clause.

PROOF. A consequence of the completeness of the superposition calculus with split-
ting [Bachmair et al. 1993]. [

In this paper we assume that a hyperresolution inference cannot use a clause C' as a
positive premise if the splitting rule or the factoring rule can be applied to C'. As usual we
make the minimal assumption that no inference rule is applied twice to the same premises
during the derivation. It is not difficult to see that any derivation in H generated according
to these assumptions is fair and therefore sound and complete.

C. PROOFS OF SOUNDNESS

Theorem C.1 (Soundness of IT{) Let L = K(,,)A be an extension of multi-modal
K(m), where A is a finite set of modal formulae. Let ¢ be any L-formula and assume
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Uica X4 is a finite set of L-formulae. If ¢ is L-satisfiable then 1% () is first-order
satisfiable, where X = {X4}4ca.

PROOF. Let M = (W,{Ri}i,v) be an L-model for ¢. Our aim is to construct a first-
order logic model M™ for H?(gp), W.lo.g. we assume that instead of schema clauses,
the corresponding schema formulae are used in the definition of H?(cp). By this we
mean that Ax* (1) in part (2) of Definition 4.1 is not given by a conjunction of schema
clause instances but by the corresponding instances of the formulae obtained by par-
tial rewriting of the axiom A using the semantic definition of the connectives, leaving
just the innermost modalities. For instance, the schema formula for axiom schema 4 is
Va (Qop(x) — Vy (R(z,y) — Qop(v)))-

Now, construct M* = (W, ) from M as follows. For every unary predicate symbol Q,
(i) if ¢ is a propositional symbol p, let Qf) = v(p), (ii) if Y = =@, let Q£¢ = W\Qé,
(iit) if ¥ = ¢ A ¢/, let Quy = Q4N Qg (V) if ¥ =V &, let Qg = Q4 U Qg
(v) if ¢ = Og, let QLy = {w|Vv € W (Ri(w,v) — M,v E @)}, (vi) if ¥ = —0O¢, let
QLos = {w|Iw € W (Ri(w,v) A M,v £ ¢)}. For every binary predicate symbol R; let
RI =R,

Let ¢ be a subformula of ¢. Using these definitions it is not difficult to prove (by
induction on the structure of ¥) that, for any world w € W,

M,w E ¢ iff M* I[z/w] | 7(,z), and (9)
M, w | iff M*, Iz /w] | Qu(z). (10)

Next, consider the definitions introduced by the translation. We want to show that
for any definition Def(¢)) (for any ¢ € Sf™(p)) and any world w € W, M*, I[x/w] |
Def(y). (a) If M,w | ¢ for w € W then M*, I[z/w] & 7(¢,z) and M*, I[z/w] |=
Qy(z), by (9) and (10). (b) For any world w € W such that M,w [~ ¢ we have that
M Iz /w] FE w(y, x) and M*, I[z/w] = Qu(x), also by (9) and (10). (a) and (b) imply
that M™, Iz /w] = Va(Qy(z) < m (¢, x)). Therefore, by the definition of Def(1)) we can
conclude that M*, Ilz/w] = Def(y) in all cases except when ¢ has the form —0O¢. For
the case that ) = =0¢ it remains to show that M*, Iz /w] E V2 (Q-n¢(x) < Que(z)).
This is clearly true by the definition of the interpretation of Q¢ and Q-ge in (v) and (vi)
above.

For definitions of subformulae in X (part (3) of Definition 4.1) the proof is the same.

Finally consider Ax* (1) (in the form of schema formulae) for an arbitrary axiom schema
A € A and an arbitrary ¢ € X4. Ax?(4) is obtained by partially rewriting the axiom
A using the semantic definition of the connectives. This partial rewriting preserves sat-
isfiability equivalence [Ohlbach 1998]. Tt follows therefore that M*, I[Z/W] = Ax™ (),
where T are the variables occurring freely in AXA(’I/)) and w is a sequence of arbitrary
worlds in W.

Since Skolemisation preserves satisfiability equivalence the result is true for the original
definition of TI% (¢) formulated in terms of schema clauses. [

Theorem C.2 (Soundness of mixed reduction) Let L be a propositional modal logic
K(m)A with A a finite set of modal formulae. Suppose A can be partitioned into two sets of
axioms, A" and A", so that all axioms in A’ are first-order definable. Assume [J 4o 0n X4
is a finite set of L-formulae. Let X = {Xa}aca~ and let ¢ be any L-formula. If ¢ is
L-satisfiable then Corr(A’) A H?N(cp) is first-order satisfiable.

PRrROOF. The proof is similar to the proof of the previous theorem. [l
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D. PROOFS OF COMPLETENESS FOR FAMILIAR AXIOMS

For convenience we introduce the following terminology. A positive ground clause consist-
ing only of unary literals is called a state clause, and a positive ground binary unit clause
is called a transition clause.

Theorem D.1 Let ¢ be any modal formula and assume X = {X$}. Then, IIZ(¢p) is
unsatisfiable in first-order logic, whenever ¢ is unsatisfiable in KB.

PROOF. We prove that any H-refutation of (the clausal form of) Corr({B}) A II(p) can
be mapped to an H-refutation of (the clausal form of) I (). The result follows then by
the completeness of the standard translation and the completeness of KB.

Let M = Cls(Corr({B}) A TI(p)) and N = Cls(TI€(¢)). Our aim is to prove that any
H-derivation from M can be mapped to a derivation from N. This is done by a simulation
of each inference step using the classical approach.

The clausal sets M and N are identical, except that whereas M contains the clause
Cls(Corr({B})), i.e. the symmetry clause

-R(z,y) V R(y, z), (11)
N contains instances of the clausal schema for B, i.e.

—R(z,y) V ~Qou(y) V Qu(x),  where O¢ € Sf(yp), (12)

and positive shortcut clauses of the form Q~y(z) V Qu(x) (from (4) of Definition 4.1).

In hyperresolution derivations the empty clause is the conclusion of an inference step
with a negative clause and positive clauses. This means that the empty clause cannot be
derived directly with the symmetry clause (11). Negative clauses have the form —Q -y (z) V
—Qy(z) or Q1 (x). Any negative clause in M is also in N, and vice versa. Important
for the derivation from M of the empty clause are therefore positive premises with unary
predicate symbols. These are state clauses, since all positive premises in H-derivations
from M are ground. As a consequence, it suffices to prove the following:

(PB) If Mo, M,..., My, is a branch in the H-derivation from Mo = M, then it is possible
to construct a branch Ny, N1,..., Ni in an H-derivation starting from Ny = N, for
some k with n > k > 0, and the following are true.

(1) Every state clause in M, occurs also in Nj.
(2) For every transition clause R(s,t) in M, but not in Nj, Nj contains the tran-
sition clause R(t,s).

The proof of (PB) is by induction on the length n of the derivation starting with M,
i.e. using the frame correspondence property.

Base case. If n = 0 then the derivation consists of the single node My = M. Let k=0
and No = N. Clearly (PB) is true since M and N differ only with respect to the theory
clauses and the shortcut clauses they contain.

Inductive step. Suppose that (PB) holds for any derivation from M of length n. We
show that the claim holds also for derivations of length n 4+ 1. The proof is by case
analysis of inferences with a main (i.e. non-positive) premise C' from M,, and conclusion
D in M,,+1. We show the existence of a k¥’ > k and a set Ny, derived from N} by at most
one inference step such that (PB) holds for M,4+1 and Ny-.

Observe C' € Ny, except when C is the symmetry clause (11). This is not difficult to
see. Derivations from M have the property that a main premise C' has three forms: (i) the
clause (11), (ii) a definitional clause, or (iii) C is the premise of a splitting or factoring
step. In case (ii), clearly C € Nj. In case (iii), C is a ground, positive clause and contains
only unary predicate symbols, and hence C' € Ny, by the induction hypothesis.
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Now, we consider the possible forms that inference steps with C' € M,, as main premise
and D € M,4+1 as conclusion might have and construct a corresponding sequence of
inferences producing Ny from Ny, so that property (PB) is true.

Case 1: C'is a definitional clause associated with a Boolean subformula or a =0 subfor-
mula. In all cases the positive premises are state clauses and belong to both M,, and Ny by
the induction hypothesis. D is a state clause. Thus, we let k' = k+1 and N = Ny U{D},
which is obtained by the same inference as M, 11 from M,,. Evidently, the property (PB)
is true for M,,+1 and Ny/.

Case 2: C is a positive ground clause D V D’ and D is the conclusion of applying
splitting or factoring to C. C and D are state clauses. Hence we let k' = k + 1 and
Ny = N U{D}, which is obtained by the same inference as M, 11 from M,. Therefore,
(PB) is true for Mp41 and Ny/.

Case 3: C is the symmetry clause (11) and D is derived with one positive premise R(s, t)
in M,. Then D = R(t,s). (a) Suppose R(s,t) € Ni. Since D € M, is the converse of
a clause in Ny property (PB) holds for My4+1 and Ny/. (b) Suppose R(s,t) ¢ Ni. Then
by the induction hypothesis D = R(t,s) € Ny and the property (PB) holds for M,4+1 and
Nir. In all cases we let k' =k, i.e. Ny = N.

Case 4: C'is a definitional clause associated with a O subformula, i.e. C' = =Qgy(x) V
-R(z,y) V Qu(y). Assume D = Qu(t) is derived with C' and two premises Qgy($)
and R(s,t) in M,. (Since factoring and splitting is applied as early as is possible we
can assume that the state premise is a unit clause and D is a state clause.) By the
induction hypothesis, Quy(s) is also in Ni. (a) If R(s,t) € Ny then we let k' = k + 1
and Ny = Ny U {D}, which is obtained by the same inference as Mpn4+1 from M,. (b) If
R(s,t) ¢ Ny then, by the induction hypothesis, Ni contains the clause R(¢,s). Hence, D
can be derived from Ny using Quy(s), R(¢,s) and the schema clause (12). Therefore, we
can let Ny = Ny U{D} and k' = k+ 1. In both cases it follows that (PB) is true for
Mn+1 and Nk/. D

Theorem D.2 Suppose A € {T,4}. Let ¢ be any modal formula and assume X = {X,}.
Then, H?(go) is unsatisfiable in first-order logic, whenever ¢ is unsatisfiable in KA.

PROOF. The idea of the proof for A = T is exactly the same as in the proof of the
previous theorem. The only difference is that the simulating derivation which we need to
construct satisfies the property:

(PT) If Mo, M,..., M, is a branch in the H-derivation from Mo = M, then it is possible
to construct a branch No, Ni,..., Nr in an H-derivation starting from No = N,
where k£ = n and the following is true.

(1) Every state clause in M, occurs also in Ny.
(2) Every transition clause of the form R(s, f(s)) in M, occurs also in Ng.

Such a derivation is not difficult to construct. The details are therefore omitted.
More interesting is the case for K4. Again the idea of the proof is the same. The
property to be proved is:

(P4) If Mo, My, ..., M, is a branch in the H-derivation from Mo = M, then it is possible
to construct a branch No, N1, ..., N in an H-derivation starting from No = N, for
some k with £ > n, and the following are true.

(1) Every state clause in M, occurs also in Nj.
(2) For every transition clause R(s,t) in M, but not in Ny and s # t,
(a) N contains a chain of transition clauses

R(u1,uz), R(uz,us), ..., R(um—1,um), R(tnm, Umt1)
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such that u1 = s and um+1 = t, and
(b) if Qoy(s) € Ny, then Qay(ui) € Ny for every i, 1 <i < m.

Properties (a) and (b) are crucial, for they imply that for any transition clause R(s,t) €
M, that was derived with the transitivity clause

~R*(z,y) V R(z,y), (13)

and is therefore not in Ny, any inference that produces state clauses can be simulated.
The only inference that produces such a state clause is with a O definitional clause. That
is, when {Quu(s), R(s,t)} € M, then an inference with =Qpy(x) V = R(z,y) V Qu(y)
produces Qy(t). What is important about (b) is that Qgy(um) € Nk, when Quy(s) € Ni.
As a consequence Q(t) can be derived with Qpy(tum), R(Um,Um+1) and —Qpy(z) V
“R(z,y) V Qu(y).

The proof of (P4) is by induction on the length n of the derivation starting with M.
The base case, and Cases 1 and 2 of the inductive step (i.e. the simulation of inferences
with a Boolean or a =0 definitional clause, and factoring, and splitting) are as in the proof
of Theorem D.1.

Case 3: C is the transitivity clause (13) and D is derived with two positive premises
in M,. Suppose the positive premises are transition clauses of the form R(s,v), R(v,t).
Then D = R(s,t). Since R(s,t) cannot be derived from Ny, we need to show the existence
of inferences that ensure that the properties of (P4) are true. Property (P4.1) holds
trivially. For property (P/4.2) the derivation from Ny needs to be continued in such a way
that, for any subformula Ot such that Quy(s) is in Ng, there is a clause Qny(v') in Ni
such that v’ is a predecessor of ¢ in Nj. (Then Q(t) can be derived in a subsequent step.)

Suppose Quy(s) € N and {R(s,v),R(v,t)} C Ni. Then, unless Qny(v) does not
already belong to Ny, it can be derived by one hyperresolution inference step using Qny (s),
the clauses R(s,v), and the clausal schema instance =Qgy(x) V = R(z,y) V Quy ().

However it may be that either R(s,v), or R(v,t), or both are not present in Ni. For both
clauses, the induction hypothesis applies. This implies for C' = R(s,v) (or C' = R(v,t))
and C’ € Ny there is a chain of transition clauses

R(wi,w2), R(w2,w3), ..., R(Wp—1, W)y R(Wpr s Winr 1)

in N, for m’ > 2, such that C' = R(w1,wm,/41). Thus we can conclude Ny contains a
chain of transition clauses

R(u1i,u2), R(uz2,u3), ..., R(um—1, Um), R(Um, Um+1) (14)

with m > 2, such that u1 = s and um41 = t. Now, since Qny(s) € Ny and using (14) and
the schema clause

—Qoy(z) V ~R(z,y) V Quy (), where OY € Sf(y), (15)

we can iteratively derive Qny(u1), for each I such that 1 <1 < m. The last clause derived
is Qoy (Um). um is therefore a predecessor of ¢ satisfying the required property.

We have thus shown that a bounded number of H-inferences exist which produce a set
Ny satisfying (P4) for an arbitrary subformula 0.

Case 4: C'is a definitional clause associated with a O subformula, i.e. C' = =Qgy(x) V
-R(z,y) V Qu(y). Assume D is derived with C' and two premises Qpuy(s) and R(s,t)
in M. By the induction hypothesis, Qny(s) is also in Ni. (a) If R(s,t) € Nj then we
let ¥ = k+ 1 and Ny = N U {D}, which is obtained by the same inference as M,+1
from M,. (b) If R(s,t) ¢ Ni then, by the induction hypothesis, N, contains a chain
R(ui,u2), ..., R(um—1, Um), R(tUm, um+1), such that u1 = s and um+1 = t, and Qny(ui) €
Ny for all ¢, 1 < ¢ < m. In particular, Quy(um) € N and R(um,t)(= R(tm, Um+1)) € Ni.
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Hence, D can be derived from N using C. Therefore, we can let Ny = N U {D} and
EF=k+1 0O

Theorem D.3 Let ¢ be any modal formula and assume X = {X$}. Then, II¥(p) is
unsatisfiable in first-order logic, whenever ¢ is unsatisfiable in KD.

PROOF. In this proof we prove the following relationship between the derivations from
M = Cls(Corr({D}) A II(p)) and N = Cls(IIZ (©)): There is a function h from the
Herbrand universe of M to the Herbrand universe of N such that h, homomorphicly
extended to clauses, satsifies that for any state clause C in the derivation from M, the
state clause h(C') occurs in the derivation from N. As a consequence, since the derivation
of the empty clause involves at least one state clause and no theory clause, whenever the
empty clause can be derived at s (involving a premise Q(s)) then the empty clause can
be derived from N at h(s) (involving the premise Q(h(s))). We define the function h
by induction on the length of the derivation from M such that the following property is
true.

(PD) If Mo, M, ..., M, is a branch in the H-derivation from My = M, then it is possible
to construct a branch No, N1, ..., N in an H-derivation starting from No = N, for
some k with 2n > k > n, and the following are true.

(1) For each state clause C' in M, Nj, contains the state clause h(C).
(2) For each transition clause R(s,t) in M,, Ni contains the transition clause

R(h(s), h(t))-

The clausal sets M and N are identical, except that whereas M contains the seriality
clause, i.e.

R(z, f(z)), (16)
N contains instances of the D schema clauses, i.e.
“Qop () V Q-o-p(x)  where Oy € Sf(yp), (17)

and positive shortcut clauses from (4) of Definition 4.1.

Base case. If n = 0 then the derivation consists of the single node My = M. Let k=0
and No = N. M and N both contain one state clause, but no transition clause. W.l.o.g.
suppose the state clause is Q,(a) in both cases, where ¢ is the candidate formula. Let
h(a) = a. Clearly (PD) is true for M and N.

Inductive step. Suppose that the property (PD) is true for any derivation from M of
length n. We show that the claim holds also for derivations of length n + 1. The proof
is by case analysis of inferences with a main (i.e. non-positive) premise C' from M, and
conclusion D in M,+1. We show the existence of a k' > k, a set N/ derived from N}, by
zero or more inference steps, and an extension of the mapping h such that (PD) is true.

Case 1: C'is a definitional clause associated with a Boolean subformula or a =0 subfor-
mula. By the induction hypothesis, in all cases the positive premises are state clauses C’ in
M, which have counterparts, h(C’), in Nj. Thus, we let ¥’ = k+1 and N, = NyU{h(D)},
which is obtained by the same inference as M,11 from M,, and extend the definition of h
so that the correspondence between state clauses, and between transition clauses, is pre-
served.

Case 2: C is a positive ground clause D V D’ and D is the conclusion of applying
splitting or factoring to C. Proceed as in Case 1.

Case 8: Since C' is assumed to be negative but the seriality clause is positive, this case
is vacuous. Inferences with the seriality clause are considered in subcase 4.(b) below.

Case 4: C is a definitional clause associated with a O subformula, i.e. C = =Qgy(z) V
—R(z,y) V Qu(y). Assume D is derived with C, a state clause Qpy(s) and a clause
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R(s,t) in M,. By the induction hypothesis, Qg (h(s)) € Ni. (a) If R(s,t) is a transition
clause, then R(h(s),h(t)) € Ni by the induction hypothesis. Hence let k' = k + 1 and
Ny = Ni U{Qy(h(s))}, which is obtained by the same inference as My y1 from M,,.

(b) If R(s,t) is not a transition clause, then it is the seriality clause and D = Q4 (f(s)).
The simulating inference is the following. First, use Qgy(h(s)) and the schema clause (17)
to derive Q-g-y(h(s)). Then derive Qy(g(h(s))) in one hyperresolution inference step with
one of the definitional clauses associated with =0, namely —Q-g-y(z) V Qu(g(z)).
Hence let ¥ = k + 2 and Ny = Ny U {Q-g-u(h(s)), Qw(g(h(s)))}. Now let h(f(s)) =
g(h(s)). It is not difficult to see that property (PD) is satisfied. [

Inspection of the proofs in this section reveals that the positive shortcut clauses are
not needed for the simulations and may therefore be omitted from the definition of the
axiomatic translation of KB, KT, K4 and KD.

E. PROOFS OF COMPLETENESS FOR GENERALISED AXIOMS
E.1 Completeness for K@ Op — O p

In this section the formula Op — O"Op is denoted by 4 and we assume k > 1.

Theorem E.1 K/" is complete with respect to the class of frames satisfying (the universal
closure of)

~R""H(z,y) V R(z,y). (18)

PROOF. By Sahlqvist’s [1975] Theorem. [

Theorem E.2 (Completeness of H;‘:) Let 4% be the formula Op — O"0Op for a non-
zero positive integer k. Let ¢ be any modal formula and assume X = {¥4~} where OX4~
is the set of O subformulae of . If ¢ is unsatisfiable in K4* then IT% (¢) is unsatisfiable
in first-order logic.

PROOF. Let M = Cls(Corr({4"}) A I(p)) and N = Cls(II% (¢)). Our aim is to
prove that any H-derivation from M can be mapped to a derivation from N. M and
N are identical, except that whereas M contains Cls(Corr({4"})), i.e. the clause (18),
N contains instances of the clausal schema for 47, i.e.

~Qoy(r) V ~R"(z,y) V Qou(y),  where OY € Sf(p), (19)

and positive shortcut clauses from (4) of Definition 4.1. The property we want to prove
is the following:

(P4") If Mo, M,..., M, is a branch in the H-derivation from Mo = M, then it is possible
to construct a branch No, N1, ..., Ny in an H-derivation starting from Ny = N, for
some k with £ > n, and the following are true.

(1) Every state clause in M, occurs also in Nj.
(2) For every transition clause R(s,t) in M, but not in Ny and s # t,
(a) Nj contains a chain of transition clauses

R*(u1,uz2), R"(u2,u3), ..., R (um—1,um), R(wm, Um+1)

such that u1 = s and um4+1 = t, and
(b) if Qoy(s) € Ny, then Qny(ui) € Ny for all 4, 1 <i < m.
Property (P4") does not make sense if s = t, hence the proviso that s # ¢t. Only if the

given set M (and therefore also V) contain clauses of the form R(s,s) can it be that M,
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contains a clause R(s,t) such that s = ¢t. Even then, this clause must have been present
from the outset. This implies that the u; in (P4".2.a) can be taken to be pairwise distinct.

Properties (a) and (b) are important, for they imply that for any transition clause
R(s,t) € M, that was derived with the theory clause (18) (and is therefore not in Ny),
any inference that produces state clauses can be simulated. The only inference with a
transition clause which produces a state clause is with a 0O definitional clause. That
is, when {Quu(s), R(s,t)} € M, then an inference with =Qpy(x) V = R(z,y) V Qu(y)
produces Q4 (t). What is important about (b) is that Quy(um) € Nk, when Qny(s) € Nk.
As a consequence Q(t) can be derived with Qpy(tum), R(tm,uUm+1) and —Qpy(z) V
“R(z,y) V Qu(y)-

Of interest in the proof of (P4") are the cases where C is the theory clause and C is
the definitional clause for 0. The other cases are the same as before and are therefore
omitted.

Case 3: C'is the clause (18) and D is derived with x + 1 positive premises in M,y.
Suppose the positive premises are transition clauses of the form R"(s,v), R(v,t). Then
D = R(s,t). Since R(s,t) cannot be derived from Nj, we need to show the existence
of inferences that ensure that the properties of (P4") are true. Property (P4".1) holds
evidently. For property (P4".2) the derivation from Nj needs to be continued in such a
way that, for any subformula Ot such that Quy(s) is in Ny, there is a clause Qpy (v') in
Ny, such that v is a predecessor of ¢ in Ni. (Then Q(t) could be derived in a subsequent
step.)

Suppose Qo (s) € Ny and U = {R"(s,v), R(v,t)} C Ni. Then, unless Qgy (v) does not
already belong to Ny, it can be derived by one hyperresolution inference step using Qny (s),
the clauses R"(s,v), and the clausal schema instance ~Qgy(z) V 7R (z,y) V Qou(y).

However it may be that some clauses in U are not present in Nj. For any clause C' € U
such that C’ € Ny, the induction hypothesis applies. In particular, there is a chain of
transition clauses

Rn(wlf ’LUQ), Rn(w% ’LU3), B RK(wm’—lv wm/)7 R(wm’z wm’+1)
in N, for m’ > 2, such that ¢’ = R(w1,w,,11). The number of clauses in every such
chain is d'x + 1 for some integer d’ > 1. Therefore if we take the chain of clauses in U and

replace each clause in U, but not in N, by such a chain of length d;x + 1, which we can
do by the induction hypothesis, then we can conclude:

Lemma E.3 Nj contains a chain of transition clauses
R*(u1,u2), R"(u2,u3), ..., R" (Um—1,Um), R(tm, Um+1) (%)

with m > 2, such that u1 = s and um+1 = t. The length of the chain is dx 4+ 1 for some
integer d > 1.

ProOOF. Rather than giving a formal proof we give an illustration of the essence of the
argument. Suppose the following depicts the chain U = {R"(s,v), R(v,t)}, with length
Kk + 1, where dashed links represent transition clauses not in Ni. Suppose there are j
transition clauses in U but not in N, i.e. there are j dashed links in the following picture.

.—).\ /. L) .—).\ /.—).
Replacing the dashed links Tori;es: T
d 1K d ik
.—».\/N.—/;. e .—).\/N.—/Y>.—>.

~—_—

Each dashed link is replace?i—b§ a chain of transition clauses in N, % (which exist by the
induction hypothesis). Observe that the lengths of each of these chains is d;x + 1. Now
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note that the length of the entire chain is (k + 1) + dik + ... + djk, i.e. ds + 1 for some
integer d > 1. [

Now, since Qny (s) € Nk, using () and the clause schema (19) we can iteratively derive
Quoy(w), for each [ such that 1 < I < m. The last clause derived is Quy(um). um is
therefore a predecessor of ¢ satisfying the required property.

We have thus shown that a bounded number of H-inferences exists which produce a set
Ny satisfying (P4") for an arbitrary subformula 0.

Case 4: C'is a definitional clause associated with a O subformula, i.e. C' = =Qgy(x) V
—R(z,y) V Qu(y). Assume D is derived with C' and two premises Qny(s) and R(s,t)
in M. By the induction hypothesis, Qgy(s) is also in Ny. If R(s,t) € Nj then we let
k' =k+1and Ny = Ny, U{D}, which is obtained by the same inference as My4+1 from M,.

If R(s,t) € Nj then, by the induction hypothesis, Ni contains a chain

R (u1,u2), R™(u2,u3), .., R™ (tm—1, Um), R(Um, Um+1),

such that u; = s and um+1 = ¢, and Qpy(ui) € N for all ¢, 1 <4 < m. In particular,
Quoy(um) € N and R(tum,t)(= R(um,um+1)) € Ni. Hence, D can be derived from Ny
using C. Therefore, we can let Ny = Ny U{D} and k' = k + 1.

Inspection of the proof reveals that the positive shortcut clauses Q~y(x) V Qu(x) are
inessential for the completeness of the axiomatic encoding and may be omitted.

E.2 Completeness for K@ Otp — Ot p

Let alt7*"? be the formula ¢™'Op — O%20p, or equivalently —O0"'—-0Op — O"20O-p, for
some positive integers k1, k2 > 0.

Theorem E.4 Kalt7''"? is complete with respect to the class of frames satisfying the
clause

SR (2 ) v ~R™2 M (2,2) Vy & 2. (20)
PROOF. By Sahlqvist’s [1975] Theorem. [

@ K1,K2
Theorem E.5 (Completeness of H;1 ) Let ¢ be any modal formula and assume

X = {xultfl‘W} where Dxalt’lﬁlv"2 is the set of O subformulae of ¢. If ¢ is unsatisfiable in
altfl’ri2

Kalt7""? then IT, (¢) is unsatisfiable in first-order logic.
a K1,k2
ProOF. Let M = Cls(Corr({alt;*""?}) A II(p)) and N = Cls(H%“1 (¢)). M and
N are identical, except that M contains the clause (20), and N contains instances of the
clausal schema

RN (z,y) V 2Q-ou(y) V 2R™(z,2) V Qo-y(2), (21)

for each Oy € Sf(y), the positive shortcut clauses Q~y(z) V Qy(x), and the definitional
clauses for 00— formulae appearing in the clausal schema instances.

The idea of the proof is the same as before. For simplicity we assume a particular strat-
egy is used in the derivations starting with M. Let Halt;clwz be a procedure based on H
in which the order of the application is the following. Inferences with hyperresolution,
factoring and splitting have highest priority, then inferences with the theory clause (20)
are performed, followed by inferences with the paramodulation rule on state (unary) unit
clauses. Inferences with the paramodulation rule on non-unary unit clauses are not essen-
tial for deriving the empty clause. The rule of reflexivity resolution is not applicable, since
M does not include negative equality literals and no derived clause contains a negative
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occurrence of equality. The strategy of H

by Theorem B.1.
Our goal is to show the following.

altt® 0, Mi,..., M, is a branch in a 1.2 derivation from Mo = M, then

Palt7*"2) If Mo, M M, is ab h i Halt1 derivation fi M, M, th
it is possible to construct a branch No, Ni,. .., Ny in an H-derivation starting
from No = N, for some k, and the following are true.

(1) Every positive ground state clause in M, occurs also in Ni.
(2) For every clause t &~ u in M,, there is a set of clauses

{R"™ (s,v1), R(v1,t), R™(s,v2), R(v2,u)}

in M, N N, with s,v1,v2 ground terms such that Q-gy(v1) € M, N Ng
and t = fogy(v1) for some 9.

alR2 18 fair. Therefore, Halt;ﬁlv*% is complete

The base case and Case 2 are straightforward.

Case 1 and 4: C' is a definitional clause. In all cases the positive premises are unary
units which belong to both M,, and Nj by the induction hypothesis. Thus, we let k¥’ = k+1
and N, = N U{D}, which is obtained by the same inference as My,+1 from M,. Clearly,
this preserves the property (Palt*’"?).

Case 3.1: C'is the clause (20) and the conclusion D is derived with the positive premises
{R"'(s,v1), R(v1,t), R"?"!(s,u)} C M,,. Thus, D = (t ~ u), with t and u ground terms.
Noting that all transition clauses have the form R(v, f(v)) for some Skolem function f
associated with a =01 formula, it is not difficult to verify that there must be a sub-
formula v such that Q-gy(v1) € M, and t = f.gy(v1). By the induction hypothesis:
{R*(s,v1), R(v1,t), R**"!(s,u), Q-gy(v1)} C Ni. Thus we let &' = k and N = Ni.
Clearly, property (Palt7*"?) is preserved.

Since t ~ wu cannot be derived from N it is important to ensure the existence of
inferences from Nj, that produce all (unit) state clauses derivable with equality clauses
from M,,. This is done in the next case.

Case 3.2: C' is a (unit) equality ¢ ~ u. Then ¢ and u are ground terms. Suppose the
other premise has the form Q4(t) and the conclusion is D = Qg4(u). We now describe
how Q4(u) can be derived from Nj. By the induction hypothesis there is a ground term s
which satisfies the property (Palt;*"?.2). Le. there is a subset

M = {Rﬁl (val)’ R(Ul’t)vRKZ (8702)7R(v2vu)7QﬁDdl(vl)}

of M,, and t = f_py(v1), for some 7. By the induction hypothesis, M’ C Nj. Hence, the
following clauses can be derived from Ny:

Q-y(t) using the appropriate definitional clause for Q-gy
Qo-v(v2) using the clausal schema (21)
Q- (u) using the definitional clause for Qg-y, and R(v2, u)

The link between D = Q4(u) and Q-y(u) is: Either (i) ¢ is a subformula of —¢) which
does not occur below a modal operator in =), or (ii) there is a clause Qpy(v2) in M, and
¢ is a subformula of ¥ which does not occur below a modal operator in ¥. In the case (i),
Qo (u) can be derived from N using Q- (u) and Boolean definitional clauses. In the case
(ii), Qo (u) can be derived using Qgy(v2) and R(ve2,u). Then Q4(u) can be derived from
Ni, using Qg (u) and Boolean definitional clauses.

The lengths of the subderivations described above are in all cases bounded. [

Inspection of the proof reveals that the positive shortcut clauses are superfluous for
K1,R2

completeness proof and may be omitted from the definition of the translation for Kalt
The next section considers logics where shortcut clauses appear to be essential.
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E.3 Completeness for K@ Otop — Op

Let 5" = &"0Op — Op, or equivalently, ~0%—-0Op — Op, where x > 1. The clausal schema
for 5 used in the axiomatic encoding is

—R(2,y) V ~Qoy(y) V Qoy (). (22)

Theorem E.6 K5" is complete with respect to the class of frames satisfying (the universal
closure of)

—R*(z,y) V = R(z,2) V R(y, 2). (23)

PROOF. By Sahlqvist’s [1975] Theorem. [

Lemma E.7 Let N be a set of clauses including

1. Qo (x) V 2 R(z,y) V Q-y(y) definitional clause for Qg
2. Quo-u(z)V Q-g-u(z) shortcut between O—1 and ~O—
3. Qy(z) V Q-y(x) shortcut between ¢ and —

If {R(s,t),Qu(t)} C N then Q-g-y(s) can be derived in two steps.

PRrOOF. Using 1, 2, and R(s,t) we can derive Q-g-y(s) V Q-y(t). Q-g-y(s) is then a
hyperresolvent with 3 and Q(t). O

Lemma E.8 Let N be a set of clauses including

1. =Qy(x) V 2Q-y(x) shortcut between ¢ and —)
2. 7Quy(x) V 2 R(z,y) V Qu(y) definitional clause for Qg
3. Qoy(x) V Q-ny(z) shortcut between 0O and —O%

(
If {R(s,1t),Q-y(t)} C N then Q-gy(s) can be derived in two inference steps.

PRrROOF. First, use 2, 3, and R(s,t) to derive Q-qy(s) V Qy(t). Resolving this clause
and Q- (¢) with 1 produces Q-qy(s). O

Lemma E.9 X2 = xS ulJi ) 0'-0%¢.

PrOOF. Not difficult, if we note 0X% = 0XxS U, 0'-0xS. O

Lemma E.10 Let ¢ be any modal formula and let N = Cls(II3 (¢)) be the clausal form
of the axiomatic encoding with respect to X = Z{f, . Let Ni be an endpoint of a derivation
from N by H.

(1) For any 1 < i < &, suppose {R'(s,t),Qay(t)} C Ni. Then (i) Q_gi_gy(s) can be
derived in 2¢ inference steps. (ii) If ¢ = k then Quy(s) can be derived in one inference
step.

(2) If {R"(s,t),Q-oy(s)} C Ni then Q-gy(t) can be derived in two inference steps.

(3) If {Q-or-nw(s)} C Ni then Qny(s) can be derived in 2k + 1 inference steps.

(4) Suppose {R'(s,u), R(u,t), Q_qi_g,(s)} € N where 1 < i < k, and s and u occur
on a path of length x. Then (i) Q-nr-nw(u) can be derived in O(k) inference steps, and
(ii) Qoy(u) can be derived in O(k) further inference steps.
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PROOF. (1.i) The derivation of Q_gi_5,(s) with R'(s,t) and Qgy(t) uses the deriva-
tions in Lemmas E.7 and E.8.

(1.ii) To derive Qny(s) with R"(s,t) and Quu(t), use the clausal schema instance for
5".

For (2), use the clauses

1. Quy(y) V =R (z,9) V Quoy () clausal schema instance
2. Qoy(x)V Q-pu(x) shortcut between Oy and —O%y
3. “Quoy(x) V 7Q -y () shortcut between Oy and —O%y
to derive
4. Q-oy(t) V Quy(s) using 1, 2, R(s,t)
5. Qﬁﬂw(t) uSing 37 47 Qﬁﬂw(s)'
For (3), use the definitional clauses for Q-gr-noy, @-gr-1-gy» - - -, @-o-0¢, Which have

the form (1 <i < k)

“Q-gi-oy(2) V R(z, fi(z))
_‘Qﬁuiﬁuw(x) \ Quiﬁnw(fi(x))

(where f; is abbreviating notation for f_i_g,) together with the clauses of the form

Qui-gy(T) V Q_gigy () shortcut between 0°—0¢ and —-0'—0¢
to derive the following clauses in sequence

R(s, fx(s)),  Qor-ou(fe(s))
R(fx(s), fa-1(fa(5)),  Qop_y-ou(fu-1(Fs())),

Ul fuls) ) i Sul) D) Qooou(io fuls) 2.

Now derive Qny () as in (1) with the transition clauses.

For (4.i), first assume the beginning of the path through s and w is s. Thus, assume
the path is represented by R"(s,w). Then use (2) to get Q_gi_g,(w). Now propagate
Q-or-oy to u by repeatedly using Lemma E.8. Second, assume the beginning of the path
through s and u is a predecessor v of s. Then propagate Q_p;_p, to v using Lemma E.7
where i < j < k. If the path is represented by R"(v,w) then, again use (2) to get
Q-pi-op(w). Thus we can get Q-g=-ny(u) by repeatedly using Lemma E.8.

(4.ii) is a consequence of (i) and (3).

Inspection reveals that the clauses used in all of the above derivations are present
in N. O

Fork relatives. Let N be a clause set. We say s is a (n,m)-fork relative of t in N
(n,m > 0) iff N includes a subset

F = {R(uo,u1),...,R(tun-1,un)} U{R(vo,v1),..., R(Vm-1,Um)}

of transition clauses such that wo = vo, un = s and v,, = t. The set F is called an
(n,m)-fork relating s and t. The root of the fork is the state uo. The path from uo to
s is called the s-branch and the path from wo to t is called the t-branch. The difference
value d of F is defined to be the difference between the length of the t-branch and the
s-branch in F', modulo &, in particular, m mod x = (n + d) mod k.
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(3.1 P
s
o/ //
N
t
(1,2) . . .

Fig. 10. Admissible (n, m)-forks relating s and ¢ for 53

For example, if {R(s,s), R(t,t"), R(u,v), R(v,s), R(v,t)} € N then s is a (0,0)-fork
relative of itself, ¢ is a (0, 1)-fork relative of ', s is a (1,1)-fork relative of ¢ (via the
root v), but also a (2,2)-fork relative (via the root u), and s is both a (1, 2)-fork relative
and a (2, 3)-fork relative of ¢'.

Admissible fork for 5. If F C N is an (n, m)-fork relating s and ¢ and the following
is satisfied then we say F' is a fork admissible for 5".

(1) mmod k = (n+ 1) mod k, i.e. the difference value of F' is one.

(2) s is not a predecessor of ¢.
(3) t has an immediate predecessor u.
(4) There is a path through « and the root of F' whose length is divisible by k.

Suppose k = 3. Figure 10 gives examples of admissible forks of two elements s and ¢ for
53. The immediate predecessor world u of ¢ is indicated by o. The fat arrows represent the
fork, while the other arrows represent additional links which form part of the path through
the root of the fork and the immediate predecessor of ¢, as required by condition (4). No
proper subgraph of one of the depicted graphs can be an admissible 5% forks relating s
and .

Lemma E.11 Let ¢ be any modal formula and let N = Cls(T13 (¢)) be the clausal
form of the axiomatic encoding with respect to X = %f;. Let Ny be the endpoint of a
partial derivation from N by H. Let s be a (n,m)-fork relative of ¢ in Ny and suppose
Quow(s) € Ni. Then Qpy(u) can be derived from Ny if the fork is admissible and u is the
immediate predecessor of t.

Proor. Using Lemma E.10.(1) it is not difficult to see that Q_gi_,(v) can be derived
for some i, 1 < ¢ < K, where v denotes the root of the fork. Using Lemmas E.10.(2)
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and E.10.(4.i1) we can now show that Qgy(u) can be derived. Clearly the total number
of inference steps involved is always finitely bounded. [

Gluing together forks. For the purposes of the completeness proof we need to glue
together admissible forks to build particular subframes of models of N. First, we establish
that all models of N are tree models.

Lemma E.12 Let ¢ be any modal formula and let N = Cls(IIx(¢)) be the clausal form
of the axiomatic encoding with respect to some X. All Herbrand models of N generated
by H are tree models.

PRrOOF. Each transition clause in any H-derivation has the form R(s, f(s)). So, f(s)
can be interpreted as an R-successor of s. Furthermore, f(s) is not an R-successor of any
t # s and for each term f(s) there is a literal R(s, f(s)) that can be derived. [

Lemma E.13 Let U be a set of transition clauses determining a tree structure. Suppose
F C U is an (n, m)-fork relating s and ¢t and v is the root of F.. Let d be the difference
value of F'.

(1) Then the extension F’ = {R!(u,v)} UF, for any i > 1, is an (n +14, m -+ i)-fork of s
and t and the difference value of F’ is d. Further, if F is admissible then F’ is admissible.

(2) If R'(t,w) € U then s is an (n, m + i)-fork relative of w and the difference value of
the fork is (d + ) mod k.

(3) If R*(u,s) € U then u is a fork relative of ¢ and the difference value of the fork is
(d +7) mod k.

(4) If F' C U is an (n',m')-fork relating u and s with difference value d’ then F U F’
is a fork relating u and t with difference value (d + d’) mod k.

(5) Fis an (m,n)-fork relating ¢ and s, and the difference value is (—d) mod k.

(6) If R'(s,u) € U then t is a fork relative of u and the difference value of the fork is
(—d + %) mod k.

(7) If F' C U is an (n',m')-fork relating s and u with difference value d’ then FF U F’
is a fork relating ¢ and u with difference value (—d + d’) mod .

ProOF. (1) Not difficult.

(2) w is a successor of ¢, hence the result follows easily.

(3) If s has no predecessor in F then the result is clear. Suppose s has a predecessor
s’ such that R‘(s’,s). Then it follows that u and s’ coincide, for otherwise U does not
determine a tree structure. Then w is an (n—1, m)-fork relative of ¢ and hence the difference
value of the fork is d + i. Finally suppose the root v of F is such that R*"™(v,s) (i > n).
Then u is a predecessor of v such that R*~™(u,v). Hence u is a (0, m+ (i —n))-fork relative
of ¢. The difference value is (d 4 ¢) mod &, which is equal to m + (i — n) mod .

(4) If m’ = n then, since U is a tree structure, the s-branch of F' and the s-branch of
F’ coincide. Thus the union F” of the u-branch of F and the t-branch of F’ is a fork
relating u and ¢. Then F” is an (n’,m)-fork relating « and ¢ with F” C F U F’. Hence
FUF'is also an (n', m)-fork relating v and ¢. It is not difficult to see that the difference
value of F” and FU F' is (d + d') mod k.

If m" > n then the s-branch of F is a suffix of the s-branch of F’. By (1), the fork
relating s and ¢ via the root of F' is a (n + (m’ —n), m + (m’ — n))-fork with difference
value d. Now argue as for the previous case.

The case that n > m’ is analogous.

(5) Not difficult.
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(6) Use (5) and (2).
(7) The argument is similar as for (4), except that the orientation of F' is different. [

Theorem E.14 (Completeness of 113 ) Let ¢ be any modal formula and assume X =
{Xs5~} where X5 = Z{f:. If ¢ is unsatisfiable in K5° then II% (o) is unsatisfiable in
first-order logic.

PROOF. Suppose M = Cls(Corr({5"}) A II(¢)) and N = Cls(II} (¢)). Our goal is to
show the following.

(P5™) If Mo, M, ..., M, is a branch in an H-derivation from Mo = M, then it is possible
to construct a branch No, N1, ..., Ni in an H-derivation starting from Ny = N, for
some k, and the following are true.

(1) Every state clause in M, occurs also in Ny.

(2) For every clause R(s,t) in M, but not in Ny, there is an admissible fork F'
relating s and ¢, and if Qpy(s) € Ni, then Qpy(u) € Ni where u is the
immediate predecessor of t in F'.

The base case, Case 1 and Case 3 are the same as in the proof of Theorem D.1.
Case 3: C is the clause (23) and D is derived with positive premises in M,,. Suppose
the positive premises are

V ={R"(v,s), R(v,t)}.

Then D = R(s,t). Observe R(s,t) cannot be derived from Nj,. We show the existence
of inferences that ensure that the properties of (P5%) are true. Property (P5".1) holds
trivially by the induction hypothesis. For property (P5%.2) the derivation from Nj needs
to be continued in such a way that, if Qny(s) is an arbitrary unit in N which is associated
with a O formula, then there is a clause Qpy(v') in Ny such that v’ is a predecessor of ¢
in Nk.

Not all of the clauses in V need to be present in Ni. Suppose U is any subset of V,
U C Ni but (V —U)N N, = 0. We need to show that ¢ has an immediate predecessor v’
such that Qpy(v') € Ni.

The case that U = V is easiest. L.e. suppose {Quy(s), R"(v,s), R(v,t)} C Ni. Then
s is a (k, 1)-fork relative of ¢. It follows from Lemma E.11 that it is possible to derive
Quoy (v). Therefore let Ny be the result of this derivation from N, with &’ > k. Evidently,
property (P5%.2) is true for Ny .

Suppose U is a proper subset of V. For each R(u,w) in V but absent from U, by
the induction hypothesis there is an admissible fork relating v and w. In particular, the
difference value is one. Making use of Lemmas E.13.(2), E.13.(3) and E.13.(4) we can
show that there is a fork F’ relating v (the root) and s in Nj. The difference value of F’
is (k-1) mod x = 0. Now, suppose R(v,t) € Ni then by Lemma E.13.(6) there is a fork F
relating s and ¢ with difference value one. If on the other hand R(v,t) € Ny, then there
is a fork F” C Ny, relating v and ¢ with difference value one. Now use Lemma E.13.(7)
to conclude there is a fork F' relating s and ¢ with difference value one. Ignoring the
property (4) of the definition of admissibility, in both cases F' is admissible.

Clearly, if F is admissible and if v’ is the immediate predecessor of ¢ in F then by
Lemma E.11 it is possible to derive Qpy(v'). Then we can let Ny be the endpoint of the
derivation of Qqy (v') from Nj.

Therefore, it remains to prove for F' that there is a path through v’ and the root of F
whose length is divisible by . This can be done by inspection.

Case 4: C is a definitional clause associated with a O subformula, i.e. C = =Qgy(z) V
-R(z,y) V Qu(y). Assume D is derived with C' and two premises Qpny(s) and R(s,t)
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in M,. By the induction hypothesis, Qg (s) is also in Ny. If R(s,t) € Ni then we let
k' =k+1and Ny = Ny, U{D}, which is obtained by the same inference as My+1 from M,.

If R(s,t) € N, then, by the induction hypothesis, N contains a fork F relating s and ¢
such that ¢ has an immediate predecessor u and Qpy(u) € Ni. Since R(u,t) € Nk, D can
be derived from N using C. Therefore, we can let N = Ni U {D} and K=k+1. 0O

Notice that shortcut clauses were used in Lemmas E.7, E.8 and E.10.

F. PROOFS OF COMPLETENESS FOR COMBINATIONS OF AXIOMS
F.1 Combinations of T', B and 4

Theorem F.1 Let ¢ be any modal formula and assume X = {X7, X4}, where X7 = X4 =
X;,. Then, H?(cp) is unsatisfiable in first-order logic, whenever ¢ is unsatisfiable in S4.

PRrROOF. The proof is a simple combination of the proofs for 7" and 4 in Theorem D.2.
The property to be proved is the same as (P4). The positive shortcut clauses are not
essential. [

Theorem F.2 Let ¢ be any modal formula and assume X = {X7,Xp}, where Xr =
Xp = X5. Then, [T (p) is unsatisfiable in first-order logic, whenever ¢ is unsatisfiable in
KTB.

PRrROOF. The proof is a simple combination of the proofs for 7" and B (Theorems D.2
and D.1). The property to be proved is the same as (PB). The positive shortcut clauses
are not essential. [

Theorem F.3 Let ¢ be any modal formula and assume X = {X4,Xp}, where X4 =
X, and Xp = %:1,. Then, H‘;E’B(go) is unsatisfiable in first-order logic, whenever ¢ is
unsatisfiable in K/B.

PROOF. By simulation of the corresponding modal reduction of Kracht [2001] on the
first-order level. [

Theorem F.4 Let ¢ be any modal formula and assume X = {Xr, Xp, X4}, where X1 =
X4 = XS and Xp = X}. Then, L *? () is unsatisfiable in first-order logic, whenever ¢
is unsatisfiable in S5.

PROOF. By simulation of the modal reduction of [Kracht 2001]. [

In the argument of the last two proofs the positive shortcut clauses are needed for simu-
lating applications of the modus ponens rule. This means a separate argument is required
to show cut elimination. However, the example K4 B F 5 can be used to show that positive
shortcut clauses are in fact essential for the completeness of both H;%B and H§’4‘B.

F.2 Combinations involving D

Theorem F.5 Let ¢ be any modal formula and assume X = {¥p,Xp}, where Xp =
Xp = X_,. Then, I3 (¢) is unsatisfiable in first-order logic, whenever ¢ is unsatisfiable
in KDB.

PRrROOF. The proof can be seen to a combination of the proofs of Theorems D.1 and D.3.
As in the proof of Theorem D.3 the proof is by an induction over derivations from the set
M = Cls(Corr({D, B}) A II(p)) exhibiting that it is possible to construct a simulating
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derivation from N = Cls(IT2""(p)) and a function h from state clauses in the first deriva-
tion to state clauses in the second derivation. Suppose f is the Skolem function of the
seriality clause. The property to be proved is:

(PDB) If My, M, ..., My, is abranch in the H-derivation from Mo = M, then it is possible
to construct a branch No, Ni,..., Nt in an H-derivation starting from No = N,
for some k with 2n > k > n, and the following are true.

(1) For each state clause C in M, Nj contains the state clause h(C).

(2) For each transition clause of the form R(s, g(s)) in M, (where g denotes f
or another Skolem function), R(h(s),h(g(s))) is in N.

(3) For every transition clause R(s,t) in My, if R(h(s),h(t)) is not in Ng, then
Ny, contains the transition clause R(h(t), h(s)).

(4) For every ground term f(s) in My, h(f(s)) = g(h(s)) for some Skolem func-
tion g in N.

The theory clauses of M are the seriality clause and the symmetry clause. Their H-closure
will contain in addition the clause (we call this clause the converse seriality clause):

R(f(z),x). (24)

The base case and Cases 1 and 2 are the same as in Theorem D.3. Cases 3 and 4 are
modifications of the relevant cases in Theorems D.1 and D.3.

Case 3: C is the symmetry clause. There are three possibilities. (a) D is derived
with the seriality clause, i.e. D is the converse seriality clause (24). (b) D is derived
with the converse seriality clause, i.e. D is the seriality clause. (c) D is derived with
a transition clause R(s,t), i.e. D = R(t,s). In the first two cases property (PDB) is
trivially true since neither the seriality clause nor its converse can be derived from N and
neither are transition clauses. In the third case, we proceed similar as in the proof of
Theorem D.1. (c.i) Suppose {R(h(s),h(t)), h(D)} C Ni. Then there is nothing to prove.
(c.ii) Suppose R(h(s),h(t)) € Ni but h(D) &€ Nj. Since h(D) is the converse of a clause in
N, the property (PDB) holds. (c.iii) Suppose R(h(s),h(t)) € Nik. Then by the induction
hypothesis h(D) = R(h(t),h(s)) € Ny and the property (PDB) holds. In all cases let
k' =k and Ny, = Ny.

Case 4: C'is a O definitional clause ~“Qgy (z) V 7 R(z,y) V Qu(y). Assume D is derived
with C, a state clause Qpy(s) and a clause R(s,t) in M,. By the induction hypothesis,
Quoy(h(s)) € Ni. (a) If R(s,t) is a transition clause and it has the form R(s, g(s)), then
D = Qy(g(s)) and by the induction hypothesis R(h(s), h(g(s))) € Ni. Hencelet k' = k+1
and N = N, U {Qy(h(g(s)))}, which is obtained by the same inference as M,11 from
My,

(b) If R(s,t) is a transition clause but does not have the form R(s,g(s)). Then, R(s,t)
has the form R(g(s),s) and R(h(g(s)),h(s)) & Ni. D is the clause Qy(s). By the induc-
tion hypothesis R(h(s),h(g(s))) € Ni,. Hence, Qy(h(s)) can be derived from Nj using
Quw(h(g(s))), R(h(s),h(g(s))) and the B schema clause instance " R(z,y) V Qg (y) V
Q. (7). Therefore, let Ny = N U {Qy(h(s))} and k' =k + 1.

(c) Suppose R(s,t) is the seriality clause and D = Qu(f(s)). Use Quy(h(s)) and the
D schema clause instance =Qny(z) V Q-g-y(z) to derive Q-g-y(h(s)). Then derive
Qv (g(h(s))) in one hyperresolution inference step with the first of the definitional clauses
associated with —~O-). Hence let k' = k+2 and Ny = Ny U{Q-g-v(h(s)), Qv (g(h(s)))}.
Now let h(f(s)) = g(h(s)).

(d) Suppose R(s,t) is the converse seriality clause. For an inference to be possible it
must be that s = f(t) and D = Qy(t). Qoy(h(f(t))) € Ni and by the induction hypothesis
h(f(t)) = g(h(t)) for some Skolem function g in N. Le. Quy(g(h(t))) € Ni. It follows
that there is an Q-g-¢(h(t)) in Nk leading directly or indirectly to the derivation of the
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clause Quy(g(h(t))) € Ni via an inference between Q-g-¢(h(t)) and the first existential
definitional clause. With the second existential definitional clause the transition clause
R(h(t),g(h(t))) can be derived if it is not already in Ni. Now use the B schema clause
instance to derive Qy(h(t)). Hence let k' = k + 1 or k' = k + 2 as appropriate and
Ny = Ne U{R(h(t), g(h(1))), Qu(h(t))}.

In each case the property (PDB) is satisfied. [

Theorem F.6 Let ¢ be any modal formula and assume X = {Xp, X4}, where Xp =
X4 = X{,. Then, ¢ (y) is unsatisfiable in first-order logic, whenever ¢ is unsatisfiable in
KDJ.

PRrROOF. The idea of the proof is as for Theorems D.3 and F.5 incorporating ingredients
of the proof of Theorem D.2. Using a function h between state clauses of the derivations,
the proof shows that the existence of a refutation preserving mapping of derivations from
the set M = Cls(Corr({D,4}) A TI(y)) to derivations from the set N = Cls(ITZ"*(¢)).
The property to be proved is the following.

(PD4) If Mg, Ma, ..., M, is a branch in the H-derivation from My = M, then it is possible
to construct a branch Ny, Ni,..., Nx in an H-derivation starting from No = N,
for some k, and the following are true.

(1) For each state clause C' in M,,, Nj, contains the state clause h(C).

(2) For every transition clause R(s,t) in M, with s # ¢, if R(h(s), h(t)) is not in
N, then
(a) Nj contains a chain of transition clauses

R(u1,uz2), R(uz,us), ..., R(um—1,um), R(wm, Um+t1)

such that u1 = h(s) and um+1 = h(t), and

(b) if Qoy(h(s)) € Nk, then Qny(us) € Ny for every 4, 1 <i < m.

(c) If t = f'(v) where f is the Skolem function of the seriality clause then
h(t) = g(um) for some Skolem function g in N.

Observe that the transition clauses derivable from N have the form R(s, g(s)). The closure
of the theory clauses of M, namely the seriality clause and the transitivity clause, are
clauses of the form R(z, f'(x)). The transition clauses derivable from M but not from N
include clauses of the form R(s, f(t)) as well as R(s,g(t)) where s and ¢t do not need to
be identical.

The base case and Cases 1 and 2 of the inductive step are the same as in Theorem D.3.
We therefore consider only the remaining cases without giving every detail.

Case 3: C is the transitivity clause. (a) Suppose the positive premises are transition
clauses of the form R(s,v), R(v,t). Then D = R(s,t). (a.i) Suppose Quny(h(s)) € N and
{R(h(s),h(v)), R(h(v),h(t))} C Ni. Then, unless Quy(h(v)) does not already belong to
N, it can be derived by one hyperresolution inference step using Qg (h(s)), the clause
R(h(s),h(v)), and the appropriate schema 4 clause instance.

(a.ii) Suppose one of R(h(s),h(v)) or R(h(v),h(t)), or both, are not in Ni. It is not
difficult to see that using the induction hypothesis there must be a chain

R(u1i,u2), R(uz2,us), ..., R(Um—1, Um), R(Um, Um+1) (25)

of transition clauses in Ni with m > 2, such that ui = h(s) and um+1 = h(t). Now, if
Quoy(h(s)) € Ny we can iteratively derive Quy (u), for each [ such that 1 <1 < m using
the appropriate schema 4 clause instance. This shows that it possible to generate a set
Ny in boundedly many steps and satisfies the desired properties.

(b) Suppose the positive premises of an inference step with the transitivity clause
are a transition clause R(s,v) and a clause R(x, f'(x)). In addition suppose that D =
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R(v, f'(v)). Then either (b.i) R(h(s),h(v)) belongs to Ny, or (b.ii) there is a chain (25)
of transition clauses in Ny with m > 2, such that ui = h(s) and um+1 = h(v). Since (b.i)
can be regarded as a subcase of the case (b.ii) we consider (b.ii) only. If Qg (h(s)) € Ni
then by induction Qny(h(um)) € Ni which can be propagated with the schema 4 clause
so that we get Qpy(h(v)). Consecutively apply the schema D clause and the two existen-
tial definitional clause for =O0-% to obtain R(um, g(um) and Qy(g(um)). Therefore, let
R(f'(v)) = g(um) and verify that (PD4) holds for the appropriate Ny .

(¢) Suppose the positive premises of an inference step with a clause R(z, f'(z)) and a
transition clause R(s,v) such that s is unifiable with f'(z). Then proceed in a similar
vain as in (b).

(d) If the positive premises are both of the form R(z, f'(z)) then the property is (PD4)
is vacuously true.

Case 4: C'is a O definitional clause =Qgy(z) V —R(z,y) V Qu(y). Assume D is
derived with C, a state clause Quy(s) and a clause R(s,t) in M,. By the induction
hypothesis, Quy(h(s)) € Ni. (a) R(s,t) is a transition clause and R(h(s),h(t)) € Ny.
Then D = Qy(t). Let ¥’ = k+ 1 and Ny = Ny U {h(D)}, which is obtained by the same
inference as M,41 from M,,.

(b) R(s,t) is a transition clause and R(h(s),h(t)) € Ni. Then D = Q(t). By the
induction hypothesis, N contains a chain R(u1,u2),..., R(um—1,Um), R(Um, Um+1), such
that u1 = h(s) and wm++1 = h(t), and Qgy(ui) € Ny for all 4, 1 < ¢ < m. In particular,
Quoy(um) € Ni and R(um, h(t)) € Ni. Hence, h(D) can be derived from N}, using C.

(c) R(s,t) is not a transition clause. Then it must be a clause of the form R(x, f'(z)) and
D = Qu(f'(s)). Now use Quy(h(s)) and the D schema clause to derive first Q-g-y (h(s)),
and then R(h(s), g(h(s)) with the existential definitional clause, and finally Q(g(h(s)))
with C. Let h(f'(s)) = g(h(s)) and N/ is the extension of N with the clauses just
derived.

In each case the property (PD4) is satisfied. [

Inspection reveals that the positive shortcut clauses are inessential for proving the com-
pleteness of the reductions.
F.3 Mixed reductions

Theorem F.7 Let ¢ be any modal formula and assume X = {X4}, where X4 = X{,. Then,
Corr({T, B}) A TI%(p) is unsatisfiable in first-order logic, whenever ¢ is unsatisfiable in
S5.

PROOF. By an argument similar to that used in the proof of Theorem D.2. [

Theorem F.8 Let ¢ be any modal formula and assume X = {X 4}, where X4 = X{, and
A € {B,4}. Then, Corr({D}) A II{(p) is unsatisfiable in first-order logic, whenever ¢ is
unsatisfiable in KDA.

PROOF. The proofs are similar to (and easier than) those of Theorems F.5 and F.6. [

G. PROOF OF SMALL MODEL PROPERTY, MODEL GENERATION

Theorem G.1 Let L be a non-serial and non-functional modal logic considered in Sec-
tion 5 or a fusion of these. If a modal formula ¢ is L-satisfiable then (i) it is satisfiable in a
model with at most 2°U¢D elements, i.e. L has the small model property, and (ii) resolution
can be used to construct an L-model for .

ProOOF. Let I be the Herbrand model defined by the ground unit clauses on an open
branch in a H-derivation for the axiomatic translation of ¢. This model is only a skeleton
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model and the idea of the proof is to show that it can be expanded into a model I’ such that
I C I’ and I’ is a model of the classical translation of ¢. For the logics we consider I’ can
be constructed by completing I, considered as a set of positive, ground unit clauses, with
respect to the frame correspondence properties of L. The completion can be done with
H. Since the correspondence properties in Corr(A) reduce to range-restricted, function-
free and equality-free clauses, the completion process only adds transition clauses which
are ground and do not contain new Skolem terms. We need to prove that the modal
model corresponding to I’ is indeed a standard L-model for ¢. The case analyses in these
proofs is analogous to the case analyses in the proofs of the completeness of the axiomatic
translation for L, even though the argument goes in the opposite direction.

Since the Skolem terms occurring in I and I’ are the same, the modal models corre-
sponding to I and I’ have the same number of states. The number of Skolem terms in I is
bounded by 200l Finally prove that the small model property is preserved when fusing
the logics, or use [Kracht and Wolter 1997]. It is also routine to prove that the generation
of I’ for fusions of modal logics can be done in the way described above. [
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