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Abstract. The approach presented in this overview paper exploits that
modal logics can be seen to be fragments of first-order logic and deductive
methods can be developed and studied within the framework of first-
order resolution. We focus on a class of extended modal logics very similar
in spirit to propositional dynamic logic and closely related to description
logics. We review and discuss the development of decision procedures for
decidable extended modal logics and look at methods for automatically
generating models.

1 Introduction

Over the last nearly ten years a variety of methods for reasoning with modal
and description logics have been developed, implemented and applied in several
case studies, cf. for example [36,41,46,47,42]. Though the logics involved are
very similar, the reasoning methods used and proof search strategies employed
can differ considerably. Various empirical studies have been undertaken mainly
for basic multi-modal logic or its corresponding description logic ALC. Many of
these studies are competitive in nature or study the effects of various optimi-
sation methodologies on the performance of provers. While such work is vital,
it is only a beginning. From current studies it is difficult to extrapolate general
conclusions for different reasoning methods and different logics not considered in
such studies. The literature on formal logic and proof theory does not give much
guidance either. Particular forms of reasoning methods tend to get favoured
over others, mostly due to ease of presentation, without there being theoretical
or empirical evidence for the practical usefulness of the considered proof meth-
ods. Thus currently it is still difficult to choose between the different methods
and provers; what is lacking is a general body of knowledge which would sup-
port well-judged choices. In the area of automated reasoning for propositional
logics there have been extensive analytical and empirical evaluations of different
proof methods. Similar research developments for modal and description logic
reasoning systems are only starting to get off the ground.

The aim of this paper is to give an overview of some recent advances in the
area. We concentrate on decision procedures developed in the framework of first-
order resolution and focus on translation-based resolution methods for modal
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logics. This means that we take a modal formula, translate it into first-order
logic through the Kripke-semantics, and then apply some variant of resolution
to it. Using the combination of a translation method and resolution has some ob-
vious advantages. Any modal logic which can be embedded into first-order logic
can be treated. The translations are straightforward, and can be performed in
time O(nlogn), so no engineering effort is needed here. For the resolution part,
standard resolution provers can be used, or otherwise they can be used with
small adaptations. Modern resolution provers are among the most sophisticated
and fastest theorem provers available. The translation approach is generic, it can
handle first-order modal logics, undecidable (first-order definable) modal logics,
and combinations of modal and non-modal logics. In all cases soundness and
completeness of the approach is immediate from the soundness and complete-
ness of the translation mapping and the resolution calculus. Resolution provers
provide decision procedures for a large class of (extended) modal logics and de-
scription logics. Often the same refinements that decide modal and description
logics decide also more expressive first-order generalisations such as the guarded
fragment or Maslov’s class K [25, 48].

This survey focusses on the extended modal logic K(,,,)(N,U, ~, ), first con-
sidered in De Nivelle, Hustadt and Schmidt [16], and subsystems thereof as
well as extensions with relational theories. K(,,)(N,U, ~,~) is a PDL-like logic
which permits complex formulae as parameters of the modal operators. This is
useful for application domains in artificial intelligence and computational lin-
guistics. For example, if e denotes the eats relation and p is the set of plants,
then (e)p can be interpreted as denoting the set of plant eaters, while [e]p de-
notes the set of vegetarians, who eat nothing but plant matter.! An expression
which requires complex relational parameters is the set of cheese lovers, given by
(e Al)e A ={=(e A ¢))c, where | denotes the ‘likes’ relation and c¢ is interpreted
as the set of cheeses.?

Formally, K(,,,)(N,U, ~,~) is the multi-modal logic defined over families of
relations closed under intersection, union, complementation and converse. It ex-
tends Boolean modal logic (due to Gargov and Passy [29]) with converse on
relations. K(,,)(N,U, ~,~) is very expressive. It subsumes standard modal logics
such as K, KT, KD, KB, KTB, and K DB, their independent joins, as well as
the basic tense logic K;. Global satisfiability of these logics can be embedded
in K(ymy(N,U, ~,~) and it subsumes modal logics extended with the universal
modality. Logics of philosophical interest such as logics expressing inaccessibil-
ity, sufficiency, or both necessity and sufficiency [30,43,44] can be embedded
in K(m)(mu ~,~). Certain forms of interactions and correspondence proper-
ties, for example, inclusions among relations and symmetry, are covered as well.

! ¢ |= [e]p iff for any vy, such that R.(z,y) we have that y = p. Thus, the meaning of
x = [e]p is ‘everything that = eats is plant matter’.

2 Observe = |= (e A l)c iff = eats and likes (some) cheese. Further, 2 = —(=(e A ¢))c
iff for any y = ¢, both Re(z,y) and R;(x,y) are true. Therefore, cheese lovers are
people who eat and like every cheese.
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K(m)(N,U, 7, ~) subsumes a large class of well-known description logics [16, 34].
It is most closely related to the description logic ALB introduced in [50].

In this paper we focus on first-order logic fragments induced by the standard
relational translation of modal logics. Other translation methods exist (see Sec-
tion 12) but, as yet, it is not known how to treat modal logics with complex
modal parameters within the context of these translation methods.

Regardless as to which translation method is adopted, a crucial decision is
the choice of a suitable refinement of the basic resolution calculus for first-order
logic. Depending on our aims we have various options. Ordering refinements
provide decision procedures for very expressive logics, while if we are interested
in generating models for satisfiable formulae selection-based refinements (or hy-
perresolution) are more natural (Fermiiller et al. [23,22], Leitsch [55], Hustadt
et al [35,50,49,52]). We discuss an ordered resolution decision procedure for a
class of clauses induced by K(,,)(N,U, ~,~) in Section 6. In Section 7 we describe
a refinement which relies solely on the selection of negative literals for certain
extensions of K(,,)(N,U, ). This refinement has the property that for many
modal logics its derivations resemble those of tableau calculi. We consider the
polynomial simulation of single-step prefix tableau by selection-based resolution
in Section 8. Such simulation results do not only say something about the rela-
tive complexity of resolution and tableaux, they can also be exploited to transfer
proof procedures, extra inferences rules, search strategies, simplification criteria
and optimisation techniques between the different approaches. Moreover, the re-
lationship can be exploited for extracting new tableau calculi from resolution in a
more or less automatic way. As a case analysis, in Section 9, we define a semantic
tableau calculus for the logic K(,,)(N,U, ) which is derived from the selection-
based resolution procedure. Soundness, completeness and termination results are
then mere corollaries of corresponding results for the resolution refinement. The
selection-based refinement also has the property that, like tableau-based proce-
dures, it can be used for the automatic construction of models for satisfiable
formulae and the models are finite if the procedure is a decision procedure. This
is the topic of Section 10. In Section 11 we mention automated reasoning tools
that implement the procedures described in this paper.

Before we can proceed to the main part of this paper, namely Sections 6-11,
we need to define the class of logics under consideration, how they translate
to first-order logic and describe the resolution framework. This is done in Sec-
tions 3— 5. Section 2 summarises the notational conventions used in this paper.
The final section mentions some important topics not covered in this paper be-
cause of space limitations.

2 Notational convention

Throughout the notational convention is the following. The letters x,y, z are
reserved for first-order variables, s,t, u, v for terms, a, b for constants, f, g, h for
function symbols, and p, ¢, r for propositional symbols, and P, @, R for predicate
symbols. A is the letter reserved for atoms, L for literals, and C, D for clauses.
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For sets of clauses the letter N is used. The Greek letters ¢, 9, ¢ are reserved for
modal or first-order formulae, and «, 3,y are reserved for relational formulae.

3 Extended modal logics

The language of K(,,)(N,U, ~,~) is defined over countably many propositional
variables p, pi1,p2,..., and countably many relational variables r,ry,79,.... A
propositional atom is a propositional variable, T or L. A modal formula is either
a propositional atom or a formula of the form —p, ¢ A ¥, ¢ V ¥, (a)p and [a]p
where ¢ is a modal formula and « is a relational formula. A relational formula is
a relational variable or has one of the following forms: a A 3, a V 3, —«, and o™
(converse), where o and (3 are relational formulae. Other connectives are defined
to be abbreviations, for example, ¢ — ¥ = = V 9 or the universal modality is
[u] = [rj V —rj], for some relational variable r;.

The semantics of K(,,)(N,U, 7, ) is defined in terms of relational structures
or frames. A frame is a tuple (W, R) of a non-empty set W (of worlds) and a
mapping R from relational formulae to binary relations over W satisfying:

Rang = Ra N R Rovg = Ry U Rg R-o =R, R,- =R].

Here and in the rest of the paper we prefer to use the notation R, instead of
R(a). The defining class of frames of a modal logic determines, and is determined
by, a corresponding class of models. A model (an interpretation) is given by a
triple M = (W, R, 1), where (W, R) is a frame and ¢ is a mapping from modal
formulae to subsets of W satisfying:

L) =0 uT)=w U=p) = up)
e Ap) =) @) ({e)p) ={a | Ty € W((2,y) € Ra ANy € u(p))}
e V) =up)Uu®)  ulalp) ={z|vye W ((z,y) € Ra —y € up))}.

A modal formula is satisfiable iff an M exists such that for some z in W, z € ().

We also consider logics with fewer relational operations, as well as logics
restricted by relational theories consisting of additional frame properties. A logic
Ky (*1, -+ %&) in-between Ky and Ky, (N, U, ~,~), where the %; are distinct
operations from {N,U, ~,~} (m > 1,0 < i < k < 4), is defined to be the
multi-modal logic defined over relations closed under x, ..., *g. If L is a logic in-
between K,y and K,,)(N,U, ~,~) and A is a set of relational frame properties
then LA denotes the logic characterised by the class of L-frames which satisfy
the conjunction of properties in A.2 Examples of relational frame properties and
the corresponding modal axiom schemas are given in Figure 1.

It is well-known that an implication between relational formulae can be de-
fined by (@ — B3) = [@ A =f]L in Boolean modal logic [70] and therefore also
in Ky (N,U, 7, ~). For example in K,)(N,U, ~,~) the symmetry of the ac-
cessibility relation Ry associated with r; can be specified by r1 — ;. We also

3 Used in a formula A is assumed to represent the conjunction of relational properties.
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Seriality, for D = (r)T : Va3Iy R(z,y)

Reflexivity, for T = [r]p — p: Vz R(z,x)

Symmetry, for B = (r)[r]p — p: VaVy (R(z,y) — R(y,x))

Inclusion, for [ri]p — [r2]p : VaVy (Rz(z,y) — Ri(z,y))

For [rs]p — ([r1]p v [ry Ip) : Vavy (Ri(z,y) A Ra(y, z) — Rs(z,y))

Fig. 1. Some correspondence properties

observe that a modal logic L including relational complementation and one re-
lational conjunction and relational disjunction allows for the definition of the
universal modality. If r is a relational name in the language of the logic L then
the universal modality [u] can be defined by [u]p = [r V =r]p = [=(r A =7)]e.

4 Translation to first-order logic

Modal formulae will be mapped to first-order logic formulae by two transforma-
tions: a translation of the modal formula into first-order logic, in this case, a
semantics-based translation, followed by a structural transformation.

The standard semantics-based translation of K(,,y(N,U, ~,~) into first-order
logic is determined by the definition of the semantics of the logical operators.
For modal formulae the translation is specified by the following.

m(T,z) = m(Ll,z) =1
m(pi, x) = ( ) m(—p, ) = —m(p, z)
m(oxth,x) =7m(p,x) *xm(h,x) for x € {A,V,—, <}

m((a)p,z) =y (1(a,z,9) A7(p,y) (e, x) =y (T(a,2,y) — 7(p,y))

Relational formulae are translated according to the following.

T(Tja$7y) = Rj(xa y) T("CY,.’IJ, y) = "T(O‘a xay) T(av,$7y) = T(Oé, %35)
T(axf,z,y) = 7(a,z,y) x7(B,z,y)  for x € {A,V}

In the translation each propositional or relational variable (p; or r;) is uniquely
associated with a unary or binary predicate variable, denoted by the correspond-
ing capital letter (P; or R;).

By definition, IT maps any modal formula ¢ to 3z w(p, x).

Theorem 1. Let L be a logic in-between K,y and K,)(N,U,~,~) and A a
(possibly empty) set of relational frame properties. For any modal formula ¢, ¢
is satisfiable in LA iff A A II(p) is first-order satisfiable.

The purpose of the structural transformation is to convert the first-order
translation into a more manageable form. Before we describe it formally, we
need to state some definitions of basic notions.
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The polarity of (occurrences of) modal or first-order subformulae is defined
as usual. Any occurrence of a proper subformula of an equivalence has zero
polarity. For occurrences of subformulae not below a ‘-’ symbol, an occurrence
of a subformula has positive polarity if it is one inside the scope of an even
number of (explicit or implicit) negations, and it has negative polarity if it is one
inside the scope of an odd number of negations.

For any first-order formula ¢, if A is the position of a subformula in ¢, then
©|x denotes the subformula of ¢ at position A and @[t — ] is the result of
replacing ¢|y at position A by ¥. The set of all the positions of subformulae of
¢ is denoted by Pos(¢p).

Structural transformation, also referred to as renaming, associates with each
element A of A C Pos(y) a predicate symbol @y and a literal @y (T), where
T = x1,...,%, are the free variables of |y, the symbol @, does not occur in
¢ and two symbols @y and @y are equal only if ¢|y and |y are equivalent
formulae.* Let Defy (¢) = VZ (QA(F) — ¢|x) and Defy (p) = VT (¢|x — QA (T)).
The definition of @y is the formula

Def}f(gp) if | has positive polarity,
Defy(¢) = § Def} (o) if ¢|x has negative polarity,
Def{ (¢) A Def; (¢) otherwise.

The corresponding clauses are called definitional clauses. Now, define Def 4(¢p)
inductively by:

Defy(p) = ¢ and
Def aury () = Def4(¢[Qa(T) — A]) A Def(¢),

where A is maximal in A U {\} with respect to the prefix ordering on positions.
A definitional form of ¢ is Defs(p), where A is a subset of all positions of
subformulae (usually, non-atomic or non-literal subformulae).

Theorem 2 (e.g. [9,71]). Let ¢ be a first-order formula. (i) ¢ is satisfiable
iff DefA(p) is satisfiable, for any A C Pos(p). (i) Def s(¢) can be computed in
linear time.

5 First-order resolution

Basics. The usual definition of clausal logic is assumed. A literal is an atom or
the negation of an atom. The former is said to be a positive literal and the latter
a negative literal. If the predicate symbol of a literal has arity one (two) then
we call this literal a unary literal (binary literal). A clause with one literal is
a unit clause (or unit). If this literal is a unary (binary) literal then the clause
will be called a unary (binary) unit clause. In this paper clauses are assumed

4 In practice, one may want to use the same symbols for variant subformulae, or
subformulae which are obviously equivalent, for example, ¢ V ¥ and ¥ V .
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to be multisets of literals, and will be denoted by P(x) V P(x) V =R(x,y), for
example. The empty clause will be denoted by (. The components in the variable
partition of a clause are called variable-disjoint or split components, that is, split
components do not share variables. A clause which cannot be split further will
be called a mazimally split clause. A positive (resp. negative) clause contains
only positive (resp. negative) literals.

Two formulae or clauses are said to be wariants of each other if they are
equal modulo variable renaming. Variant clauses are assumed to be equal.

We say an expression is functional if it contains a constant or a non-nullary
function symbol. Otherwise it is called non-functional.

Resolution. Now, we briefly recall the definition of ordered resolution extended
with a selection function from Bachmair et al [4-6]. Derivations are controlled
by an admissible ordering > and a selection function. Basically the idea is that
inferences are restricted to literals maximal under the ordering > while the selec-
tion function is used to override the ordering, and give preference to inferences
with negative literals. A third parameter in our presentation is a normalisation
function NORM.

By definition, an ordering > is admissible, if (i) it is a total, well-founded
ordering on the set of ground literals, (ii) for any atoms A and B, it satisfies:
—A > A, and B > A implies B > —A, and (iii) it is stable under the application
of substitutions. An ordering is said to be liftable if it satisfies (iii). The multiset
extension of > provides an admissible ordering on clauses. A literal L is said to
be (strictly) mazimal with respect to a clause C if for any literal L' in C, L' # L
(L' # L). Let M be a set and >, an arbitrary ordering on M. Assume that
with every literal L we associate a complexity measure ¢y, € M. An ordering is
compatible with a given complexity measure cy on ground literals, if ¢y, >, cp
implies L = L' for any two ground literals L and L'.

A selection function S assigns to each clause a possibly empty set of occur-
rences of negative literals. If C' is a clause, then the literal occurrences in S(C)
are selected. No restrictions are imposed on the selection function. The minimal
requirement for the normalisation function is that NorRM(C) is a clause which
is logically equivalent to C' and NOrRM(C') < C. Many resolution decision proce-
dures rely on condensing (defined below) as the minimal normalisation function.

Let R be the resolution calculus defined by the rules of Figure 2. As is usual
we implicitly assume that the premises of the resolution rule have no common
variables. The premise C' V A; of the resolution rule and premise of the factoring
rule will be referred to as a positive premise, while the premise —As V D of the
resolution rule will be referred to as a negative premise. The literals resolved
upon and factored upon are called eligible literals.

The splitting rule is a rule familiar from DPLL algorithms and tableau calculi.
Instead of trying to refute NU{CV D} one tries to refute NU{C} and NU{D} (or
NU{C} and NU{D,—-C1}, if C is a ground clause). The splitting rule is don’t
know non-deterministic and requires backtracking. However, in the resolution
context splitting can be simulated by introducing a new propositional symbol.
If C' vV D is a clause that can be split into two split components C' and D, then
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Deduce: N if C is a factor or resolvent of
) N U {NorM(C)} premises in N.
NuU{C
Delete: % if C is redundant.
Split: NU{CV D} if C and D are variable-disjoint.

NU{C}| Nu{D}
Resolvents and factors are computed with:

CVvVA —-AsV D
(CvV D)o

Ordered resolution:

provided (i) o is the most general unifier of A; and As, (ii) no literal is selected in C,
and Aio is strictly >-maximal with respect to C'o, and (iii) = Az is either selected, or
—Ag0 is maximal with respect to Do and no literal is selected in D.

CV AV A

Ordered factoring;: CV Ao
1

provided (i) o is the most general unifier of A; and As, and (ii) no literal is selected
in C and Ao is =-maximal with respect to Co.

Fig. 2. The calculus R

it is possible to replace C V D by two clauses C' V ¢, and —¢g V D. ¢ is made
minimal in the ordering >, and —q is selected [14, 75]. In most cases this is easier
to implement than the full splitting rule.

R forms a complete refutation system for clause sets. In general, the calculus
R can be enhanced with standard simplification rules such as tautology deletion
and subsumption deletion, in fact, it can be enhanced by any simplification rule
which is compatible with a general notion of redundancy [5,6]. Essentially, a
ground clause is redundant in a set N with respect to the ordering > if it follows
from smaller instances of clauses in NV, and a non-ground clause is redundant in NV
if all its ground instances are redundant in N. A set N of clauses is saturated up to
redundancy with respect to a particular refinement of resolution if the conclusion
of every inference from non-redundant premises in IV is either contained in N, or
else is redundant in IN. Subsumption and condensing are instances of redundancy
elimination. A clause D subsumes a clause C' iff there exists a substitution o such
that Do C C (strictly speaking, in our framework Do C C has to hold). The
condensation COND(C) of a clause C' is a minimal® multiple factor of C' which
subsumes C'. A clause C' is condensed if there is no proper subclause of C' which
is a factor of C.

A derivation in R from a set of clauses N is a finitely branching, ordered tree
T with root N and nodes which are sets of clauses. The tree is constructed by
applications of the expansion rules to the leaves. We assume that no resolution
or factoring inference is computed twice on the same branch of the derivation.

® Minimality is with respect to the number of literals in the clause.



46 Renate Schmidt and Ullrich Hustadt

Any path N(= Ny), Ny,... in a derivation T is called a closed branch in T iff
the clause set | ;>0 Vj contains the empty clause, otherwise it is called an open
branch. We call a branch B in a derivation tree complete (with respect to R)
iff no new successor nodes can be added to the endpoint of B by R, otherwise
it is called an incomplete branch. A derivation T is a refutation iff every path
N(= Ny), N1,...init is a closed branch, otherwise it is called an open derivation.

A derivation T from N is called fair iff for any path N(= Ny), Ny,...in T,
with limit Neo = ;50 (r>; Nk, it is the case that each clause C' which can
be deduced from non-redundant premises in N, is contained in some N;. Intu-
itively, fairness means that no non-redundant inferences are delayed indefinitely.
For a finite complete branch N(= Np), Ny, ... Ny, the limit N, is equal to N,,.

Theorem 3 ([6]). Let T be a fair R derivation from a set N of clauses. Then:
(i) If N(= Ny), N1,... is a path with limit N, then N is saturated (up to
redundancy). (i) N is satisfiable if and only if there exists a path in T with limit
Noo such that N is satisfiable. (iii) N is unsatisfiable if and only if for every
path N(= Ny), N1, ... the clause set Uj>0 N; contains the empty clause.

It should be noted that inferences with ineligible literals are not unsound,
but are provably redundant. In other words, only inferences with eligible literals
need to be performed for soundness and completeness.

6 Decision procedures using ordered resolution

Many modal logics naturally translate into decidable fragments of first-order
logic. For example the basic modal logic K translates into the two-variable frag-
ment, into the guarded fragment [1], into Maslov’s class K [58], and into fluted
logic [72,73] (cf. [34]). By constructing decision procedures for these decidable
fragments, one obtains generic decision procedures for modal logics and the
corresponding description logics. Resolution decision procedures have been de-
veloped for the guarded fragment [15,25], for Maslov’s class K [48], for fluted
logic [78] and various other classes related to modal logics, see e.g. [22, 34, 45]. In
this paper we consider only the relationship to a fragment of clausal logic based
on the two-variable fragment. The fragment is called DL* [16]. It is a variation of
the class of DL-clauses, that was introduced in [50] with the purpose of handling
expressive description logics.

In order to simplify the definition of the fragment DL* of clausal logic all
clauses are assumed to be maximally split. The notions can be easily adopted
for clauses with more than one split component. A maximally split clause C' is
a DL*-clause iff the following conditions are satisfied.

1. All literals are unary, or binary.

2. There is no nesting of function symbols.

3. Every functional term in C contains all the variables of C. (This condition
implies that if C' contains a functional ground term, then C' is ground.)

4. Every binary literal (even if it has no functional terms) contains all the
variables of C.
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The first-order translation of the modal formula [-r1 A r2](—r1 A r2)p is

vy (~Rai(2,y) A Ra(,y)) — 32 (2 Ri(y, 2) A Ra(y, 2) A P(2))).

The structural transformation results in the set of formulae on the left, while the clausal
form is given on the right. (Here « is used as an abbreviation for —r1 A ra.)

3 Qa)(a)p(@) Qlal(arp(@)”

Yz (Qa)(a)p(7) — “Qla(a)p(T) V 2Qa(,9)" V Qayp(¥)
Yy (Qa(,y) = Qayp(¥))) ﬂQ<a>p(w) V Qalz, f(x))"

Vi (Qayp () — Yy (Qa(z,y) A P(y))) ayp() V P(f(x))”

Vay (Qa(,y) — (Ri(z,y) A Ra(z,y))) ﬂQa(fL” y)" vV oRi(z,y)"
Vay (-Ri(z,y) A R2(2,9)) — Qal2,y))  —Qa(w,y)" V Ra(z,y)"
Rl(‘rv ) _‘R2($7y) 4 Qa(xvy)*

Fig. 3. A sample transformation of a modal logic formula to DL*

Examples of DL*-clauses include ground clauses, and the following.

=Qo(z) V Q1(7) V =Q2(x) Qo(z) V ~Ro(z,y) V Q1(y)
—Qo(w) V Q1(f(z)) Ro(z,y) V ~Ri(y,z) V Ra(z,y)
ﬁ620(‘1‘) ﬁ‘Ro(f(aj)wqg) RO(‘T7:‘/) \ ﬁRl(w7 f(l'7:l/)) \ RQ(f(xvy)vy)

The clauses Ro(z,y) V Ro(z, f(x)), Qo(z,z,z) V Q1(f(f(x))) and Ro(x,z) V
Ry (x,y) do not belong to the class of DL*-clauses. The clause Qo(z) V Q1(a)
does not belong to DL*, since it is not maximally split.

Theorem 4 ([16,50]). Over a finite signature® there are only finitely many
mazximally split DL*-clauses (modulo variable renaming).

The proof can be obtained by first observing that there is a fixed upper bound
for the maximal number of variables in a clause. Then there are only a finite
number of possible literals. Because every clause is a subset of the set of possible
literals, there is a finite set of possible clauses.

Theorem 5 ([16]). The number of possible DL*-clauses is bounded by 22“5),
where [ is of order slog(s) and s is the size of the signature.

The reduction of modal formulae to sets of DL*-clauses makes use of a struc-
tural transformation introducing new names for subformulae corresponding to
non-atomic subexpressions of the original modal formula [16, 50]. The reduction
is illustrated in Figure 3. It is not difficult to verify that the generated clauses
are all DL* clauses. In general, it can be proved that:

5 The supply of function symbols and predicate symbols is finite, while there are
possibly infinite but countably many variables.
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Theorem 6 ([16]). Let ¢’ be a first-order formula that results from transla-
tion of a modal formula ¢ in Ky, (N,U, ~,~). Bvery clause in the clausal nor-
mal form of Def 4(¢’) is a DL*-clause, where A = {\ | there is a non-atomic
subexpression @|x of ¢ and ¢'|x = I (p|x)}.

In order to decide the class DL*, we use the following ordering which is similar
to the recursive path ordering. First we define an order >, on terms: s >4 t if
s is deeper than ¢, and every variable that occurs in ¢, occurs deeper in s. Then
we define P(s1,...,8,) = Q(t1,...,tm) as {s1,...,8,} > {t1,...,t,,}. Here
>mul iy the multiset extension of >4 . So we have P(f(x)) = P(a), P(z) and
P(z,y) = Q(z), but not P(f(x)) = P(f(a)). The ordering >, originates from
Fermiiller et al. [23]. The selection function S does not select any negative literal
in ::jmy clause. We denote this particular instance of the resolution calculus R by
R,

In the example in Figure 3 the maximal literals are marked with *. These
are the literals that can potentially be resolved or factored upon.

In order to prove that the procedure R’ is indeed a decision procedure we
have to show that it is complete, and terminating. The completeness follows from
Theorem 3. Termination is a consequence of Theorem 4, and the fact that the
restriction derives only clauses that are within DL*, or splittable clauses with
split components in DL* (cf. [45,50]).

Theorem 7. Let L be a logic in-between K,y and Ky, (N,U, ~,~). Let A be
a finite set of relational properties expressible in DL*. Let N be the clausal form
of A N DefAll(p), where ¢ is any modal formula in L and A is defined as
in. Theorem 6. Then: (i) Any derivation from N in R (up to redundancy)
terminates in double exponential time. (ii) ¢ is unsatisfiable in L iff there is a
refutation of N in R°.

Relational properties expressible in DL* include the Boolean combination of
relational inclusions or equivalences expressed over intersection, union, comple-
mentation and converse. Moreover, reflexivity and irreflexivity can be expressed
in DL*. Tt is usually the case that when studying modal decidability problems
by analysing the decidability of related clausal classes one comes to realise that
stronger results are possible than initially anticipated. For instance, it is not
difficult to see that modal and relational formulae with positive occurrences of
relational composition can also be embedded into the class DL*. This means that
Theorem 7 can be strengthened. Let K,,)(N,U, ~,~,1,;?°) denote the multi-
modal logic in which relational formulae may also have the forms: o]y (domain
restriction), and « ;3 (composition), but the latter may occur positively only
(that is, occur in the scope of an even number of explicit and implicit negation
symbols). The semantics of the new operators are defined (as expected) by:

Raje ={(2,y) | (x,y) € Ra ANz € 1(9)}, and
Ra;p = Ra; Rp = {(,y) [ 32 ((z,2) € Ra A (2,y) € Rp)}.

Observe that the range restriction of a relation can be represented in terms of
domain restriction and converse, by (a~1¢)~.
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Det [B]p — (v)p VaIy (Rs(z,y) A Ry (2,y))

Sym ()[Blp —p VaVy (Ra(z,y) — Rs(y, x))

Gr [Blp — [alp Vavy (Ra(z,y) — Ra(z,y))
Conf ()[B]p — (v)p VaVy (Ra(z,y) — 3z (Ra(x,2) A Rp(z,y)))

Fig. 4. Modal axioms and their correspondence properties

Theorem 8. Let L be a logic in-between K,y and K,y (N,U, 7, ~,1,;P%). Let
A be a finite set of relational properties expressible in DL*. Let N be the clausal
form of A N DefsI1(p), where ¢ is any modal formula in L and A is defined
as in Theorem 6. Then: (i) Any derwation from N in R (up to redundancy)
terminates in double exponential time. (ii) ¢ is unsatisfiable in L iff there is a
refutation of N in R°.

This theorem cannot be strengthened further by removing the restriction on
compositions. From the undecidability result of the equational theory of Boolean
algebras with composition in [54] it follows that allowing arbitrary occurrences
of composition leads to undecidability.

Theorem 9. The satisfiability problem in every logic in-between K,y (N, U, ~, ;)
and K,y (N,U, 7,~,1,;) is undecidable.

Theorem 10. Every logic in-between K(,)(N,U, ) and Ky (N,U, 7,~,1) is
NEXPTIME-complete.

Proof. A consequence of the NEXPTIME-completeness of the satisfiability of
Boolean modal logic and FO? formulae [37, 56].

From Theorem 8 we can obtain some decidability results for propositional
modal logics. In the following let «, 8 and  denote either a relational variable or
a relational formula built from relational variables using disjunction and compo-
sition. Let X' be a set modal formulae in the language of multi-modal K{,,) and
let K(,,)2 be the extension of K(,,) closed under the formulae in X. For exam-
ple, the axiom schema listed in Figure 4 determine classes of logics considered
in Catach [12] and Baldoni [7].

Theorem 11. Let X' be any finite set of instances of formulae in Figure 4, and
let A¥ be the set of associated first-order properties as specified in Figure 4.
Then: For any modal formula ¢, ¢ is satisfiable in KX iff A¥ A II(p) is
first-order satisfiable.

Proof. By noting that disjunction and composition in the relational parameters
of the modal operators can be normalised away, it is not difficult to see that
all formulae in Figure 4 are Sahlqvist formulae. Using the SCAN algorithm [24]
one can prove the properties associated with the modal formulae in Figure 4
are in fact their correspondence properties. Thus, the theorem follows from the
well-known Sahlqvist Theorem [76].
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This theorem is also an easy consequence of a more general theorem by Cat-
ach [12].

Theorem 12. Let X' be any finite set of instances of formulae in Figure 4, with
the restriction that in each case « is a relational formula built from relational
variables and disjunction only, while B and -y denote either a relational vari-
able or a relational formula built from relational variables using disjunction and
composition. Then, the satisfiability problem in K, X' is decidable, and it can
be decided by a resolution procedure based on the translation into DL* and any
ordering refinement compatible with > 4.

Proof. The restriction that « is a relational formula built from relational dis-
junction only ensures that relational composition occurs only positively in the
first-order correspondence properties for the axioms in Y. This implies all cor-
respondence properties can be formulated in DL*. The result then follows by
Theorem 7.

Finally, we observe that decidability is preserved if a relational property 1
in the theory A for a logic in-between K,y and K,)(N,U, 7,~,1,;?°) may
also include binary literals of the form (—)R(z,x) or (—)R(y,y), if x and y
are the two universally quantified variables in the property . An example is
Vay (Ri(x,y) — Ra(z,z) V Rs(y,y)). Although the clausal form is not an DL*
clause it can easily be transformed into a set of DL* clauses using the renaming
techniques used in Hustadt and Schmidt [48] for deciding Maslov’s dual class K
by ordered resolution.

7 Decision procedures using selection-based resolution

K(;,)(N,U,~) and logics below it have the property that they can be decided
by a refinement of resolution which is defined solely by a selection function of
negative literals [16, 50]. The transformation to clausal form is based on the stan-
dard translation and we use the same structural transformation as described in
Section 4, except that Def 4 introduces the same symbol for variant subformulae
with the same polarity. For simplicity it is assumed that ¢ is in negation normal
form, that is, in every subformula of the form —), v is a propositional vari-
able. As a consequence all occurrences of non-atomic subformulae of ¢’ with one
free variable have positive polarity. This means that Def (') = Def{ (¢) for
the positions \ associated with these occurrences. But subformulae correspond-
ing to relational formulae (subformulae with two free variables) can occur both
positively and negatively. For these Def 4 introduces one symbol for all variant
occurrences of subformulae corresponding to non-atomic relational subformulae
with positive polarity and a different symbol for all variant occurrences with
negative polarity. For example, Def 4, maps [a](a)p with & = r1 A 72 to the
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P(a)
—Qy(x)" v —Pi(x)" if ¢ = —p;
=Qu(z)" vV P(z) [V P(x)] if ¥ = g1 A[V] p2
~Qu ()" V =R(z,y)" [V P(y)] if ¢ = [a]¢ [ = [a] L]
=Qu(x)" vV P(f(z)) .
~Qula)" VR, f(x)) o=l
=Q% (z,y)T V R(z,y) [V R(z, )] if @ = B1 A[V] B2 has pos. polarity
(

Q(z,y) V Rz, y)" [V Rz, y)"] if & = 1 A[V] B2 has neg. polarity

Fig. 5. Schematic clausal forms for K,,)(N,U, )

conjunction of the following formulae.

3z Qjaj(a)p(7)
Yz (Qlay(ayp(®) = VY (Qn(2,y) = Quayp(¥)))
Vo (Qayp(2) — Jy (QL(x,y) A P(y)))

Vay (Qh(x,y) — (Ri(x,y) A Ra(x,y)))

Vay (Ri(z,y) A Ra(z,y)) — Qu(x,y))-

The symbol Q7 (resp. QF) is associated with the negative (resp. positive) oc-
currence of a.
Subsequently, introduced predicate symbols are denoted by @y and Q% or
., where @), represents an occurrence of a modal subformula ¢ and Q2 (Q7)
represents a positive (negative) occurrence of a relational subformula a. Let

P(s) denote some literal in {P;(s), Qy(s)}sy, and let
R(s,t) denote some literal in {R;(s,t), R;(t,s), Q%™ (s,t), Q2™ (t,8)};.a-

Note two occurrences of P(s) or R(s,t) need not be identical. For example,
“Qy(xz) V Pi(xz) V Qy(z) is an instance of ~Qqy(z) V P(z) V P(z), while
“Qy(x) V R;j(y,x) V Qy(y) and —Qy(z) V =Q%(z,y) V Q(y) are instances of
~Qy(7) V -R(z,y) V P(y).

All input clauses have one of the forms described in Figure 5 [16,50]. The
literals marked with T are selected in the clauses by the specific selection function
we use.

The calculus is based on maximal selection of negative literals. This means
the selection function selects exactly the set of all negative literals in any non-
positive clause. An ordering refinement is optional. In this case, the ordered
resolution rule of R can be replaced by the following rule.

Resolution with maximal selection:

CyVA - CoVAy —Appr V...V =As, VD
(C1V...VC,V D)o
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provided for any 1 < i < n, (i) o is the most general unifier of 4; and A, ,,
(ii) C; vV A; and D are positive clauses, (iii) no A; occurs in Cy, and (iv) A;, = A, 44
are selected. The negative premise is =A,41 V ... V = Ag, V D and the other
premises are the positive premises. The literals A; and A,; are the eligible
luterals.

Let R™ be the calculus based on maximal selection and no ordering. This
means the rules are the above resolution rule, positive unordered factoring and
splitting. The normalisation function is not needed (but could of course be added
without losing completeness), that is, we assume NORM is the identity mapping.
For simplification tautology deletion is used. All derivations in R™P are generated
by strategies in which no application of the resolution or factoring with identical
premises and identical consequence may occur twice on the same path in any
derivation. In addition, deletion rules, splitting, and the deduction rules are
applied in this order, except that splitting is not applied to clauses which contain
a selected literal.

As all non-unit clauses of a typical input set contain a selected literal all
definitional clauses can only be used as negative premises of resolution steps.
To begin with there is only one candidate for a positive premise, namely, the
ground unit clause Q,(a) representing the input formula ¢. Inferences with such
ground unary unit clauses produce ground clauses consisting of positive literals
only, which will be split into ground unit clauses.

Lemma 1 ([50]). Mazimally split (non-empty) inferred clauses have one of two
forms: P(s), or R(s, f(s)), where s is a ground term.

In general, s will be a nested non-constant functional ground term, which is typ-
ically avoided in resolution decision procedures based on an ordering refinement,
because in most situations nesting causes unbounded computations. However,
it can be shown that for the class of clauses under consideration any derived
clause is smaller than its positive parent clauses with respect to a well-founded
ordering which reflects the structure of the formula.

Theorem 13 ([50]). Let L be a logic in-between K,y and K,)(N,U,~). Let
¢ be any L-formula and let N be the clausal form of Def sl (). Then: (i) Any

RMYP_derivation from N terminates. (ii) ¢ is unsatisfiable in L iff there is a
refutation of N by R™P.

Theorem 14 ([16]). For any logic in-between K,y and K,y (N,U,~), the
space complexity for testing the satisfiability of a modal formulae ¢ with RhvP
is bounded by O(nd™), where n is the number of symbols in @, d is the number
of different diamond subformulae in o, and m is the modal depth of .

Formulae in K(,,)(N,U, ) translate by IT into the guarded fragment, while
there are formulae in K(,,)(N,U, ~,~) which do not [16]. It is not difficult to see

" By definition the modal depth of a formula ¢ is the maximal nesting of modal oper-
ators (a) or [a] in .
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that formulae in K(,,)(N, U, «) are in fact translated into the subfragment GF'1~,
introduced by Lutz, Sattler and Tobies [57]. In contrast to the guarded fragment,
GF1~ permits the development of PSPACE decision procedures [31,57]. Under
the assumption that either (i) there is a bound on the arity of predicate symbols
in GF1~ formulae, or (ii) that each subformula of a GFI~ formula has a bounded
number of free variables, the satisfiability problem of GF1~ is the same as for
K(my [57]. Thus, we can conclude:

Theorem 15. The computational complexity of the satisfiability problem of any
modal logic in-between K,y and K,y (N,U,~) is PSPACE-complete.

In [31] it is shown that R™P can be implemented as a modification of the main
procedure of a standard (saturation based) first-order theorem prover with split-
ting (e.g. SPASS) to provide a space optimal decision procedure for GFI1~. A
direct consequence is the following.

Theorem 16. R™ can be turned into a polynomial space resolution decision
procedure for logics in-between K,y and Ky (N, U,~).

So far in this section we have considered only logics with empty relational
theory. It is natural to try and strengthen the results obtained. We might ask
whether the results can be generalised, and if it is indeed possible, to try and
determine for which theories the above results can be generalised. Generalisations
of Theorem 13 have been considered in [16,50]. We quote here a generalised
theorem established in [16].

Theorem 17 ([16]). Let L be a logic in-between K,y and Kn)(N,U,~). Let
A be a finite R™P-saturated set of clauses consisting of two kinds of split com-
ponents.

1. Clauses with at most two free variables, which are built from finitely many
binary predicate symbols R;, no function symbols, and containing at least one
guard literal (that is, this literal is negative and includes all the variables of
the clause).

2. Clauses built from one variable, finitely many function symbols (including
constants), and finitely many binary predicate symbols R;, with the restric-
tion that (a) the argument multisets of all non-ground literals coincide, and
(b) each literal which contains a constant is ground.

Suppose ¢ is an L-formula and N is the clausal form of DefsIl(p). Then:
(i) Any R™P-derivation from N U A terminates. (ii) ¢ is unsatisfiable in LA
iff there is a refutation of N U A by R™P.

Relational frame properties covered by this result include reflexivity, irreflex-
ivity, seriality, symmetry, inclusions among relations, for example, Ry C Ry or
Ry C (R; NR3), as well as, for example, Vz3y - R(z,y), VIy (R(z,y) V R(y, x)),
or Yoy (R(z,y) — R(z,x)). Of the properties in Figure 4 the properties Det,
Sym and Gr are covered, provided that the relational parameters «, 3 and =y are
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formed from relational variables and disjunction. Thus, familiar logics covered
by the above results include KT, KD, KB, KT B, and K DB, but also the basic
tense logic K.

The results of this section also cover the corresponding description logics,
for example, the basic description logic ALC possibly extended with role con-
junction, role disjunction and inverse roles. Acyclic TBox statements, and both
concept and role ABox statements are also in the scope of the last theorem.

8 Simulating tableaux

Selection refinements of resolution (and hyperresolution) are closely related to
standard modal tableau calculi and description logic systems [16, 22, 49, 50, 52].
In this section we investigate simulation relationships between the selection-
based resolution procedure R™P and Massacci’s single-step prefixed tableau cal-
culi [59].

There are three notions of simulation [16]: polynomial simulation of deriva-
tions, polynomial simulation of search, and step-wise simulation. By definition,
a proof system A p-simulates (polynomially simulates) derivations of a proof
system B iff there is a function g, computable in polynomial time, which maps
derivations in B for any given formula ¢, to derivations in A for ¢. A system A
p-simulates search of a system B iff there is a polynomial function g such that
for any formula ¢, g maps derivations from ¢ in A to derivations from ¢ in B5.
The first notion generalises the notion of p-simulation found in [13], who are only
concerned with the p-simulation of proofs (that is, successful derivations leading
to a proof). Simulation of search is a relationship in the opposite direction. It
implies that A does not perform any inference steps for which no corresponding
inference steps exist in B. To show that .4 p-simulates proofs or derivations of B
it is sufficient to prove that for every formula ¢ and every derivation Dp of ¢ in
B, there exists a derivation D 4 of ¢ in A such that the number of applications
of inference rules in D 4 is polynomially bounded by the number of applications
of inference rules in Dg. This can be achieved by showing that there exists a
number n such that each application of an inference rule in D4 corresponds
to at most n applications of inference rules in Dg. It follows that the length
of derivation Dpg is polynomially bounded by the length of D 4. This is known
as a step-wise simulation of B by A [20]. Note that a step-wise simulation is
independent of whether the considered derivations are proofs or not.

The single-step prefixed tableau calculi of Massacci [59] for subsystems of
S5 are defined by Figures 6 and 7. The basic entities are formulae labelled with
prefixes. A labelled (prefixed) formula has the form o : ¢, where o is a sequence
of positive integers and ¢ is a modal formula. o represents a world in which ¢ is
true. Tableau derivations in the single-step prefixed tableau calculi have a tree
structure and begin with the formula, 1 : ¢ in the root node. Successor nodes
are then constructed by the application of the expansion rules in Figure 6. The
prefixes in the expansion rules, except for o.n of the (<$)-rule, are assumed to be
present on the current branch.
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o, 0 Y oY NP oYV o
W1 NG e M To:0
() Znofj with o.n new to the current branch

o0y o0y o0y
(D)J.n:dJ (D)U:<>1/J (T) o

o.n Oy o 0Oy ~ oo 0y
(B) o (4) on: Oy (4%) o: 0Oy

g om0y l.n: 0Oy
(4 o.n.m : Oy (5) 1:00v

Fig. 6. Single step prefixed tableau expansion rules for subsystems of S5.

K: (K) K5: (K),(4),(4%),(5)  KD5: (K),(D),(47),(4%),(5)
KD : (K), (D) KDB: (K),(D),(B) KB4: (K),(B),(4),(4")
KT: (K),(T)  KD4: (K),(D),(4) K45: (K),(4),(4"), (4%
KB: (K),(B) KTB: (K),(T),(B) K D45 : (K), (D), (4), (47), (4%)
K4: (K),(4) sS4 (K),(T),(4) S5 (K),(T), (4),(47)

Fig. 7. Tableau calculi for subsystems of S5. (K) denotes the sequence of rules

(L), (A), (), (©), (O).

Theorem 18 ([59]). Let ¥ C {D,T, B,4,5}. A formula ¢ is satisfiable in a
logic KX iff a tableau containing a branch B can be constructed by the tableau
calculus for KX such that B does not contain the falsum and further rule appli-
cations are redundant.

Theorem 19 ([52]). Let ¥ C {D, T, B,4,5}. There is a p-simulation of single
step prefiz tableau derivations for KX using R™P.

The proof exploits the step-wise simulation of tableau inference steps by
resolution inference steps where the theories are given by the clausal form of the
conjunction of the first-order correspondence properties of the axioms. For the
modal logics KX with X' C {D, T, B} simulation in the other direction can also
be proved.

Theorem 20 ([52]). R™ p-simulates search in single step prefiz tableaus for
KY with ¥ C {D,T, B}.

This is a consequence of a near bisimulation between the tableau derivations and
R™P derivations for the logics under consideration. If factoring rules are added
to the single step prefix tableau calculus then this calculus can also p-simulate
R™P derivations.
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Because R™P does not terminate in the presence of the transitivity clause or
Euclideanness, Theorem 20 does not extend to transitive and Euclidean modal
logics. For 4 and 5 termination in single step prefixed tableaux is ensured by a
loop checking mechanism [59]. Once a loop is detected in a branch no further
rules are applied. In R™P further inference steps will be performed. To prevent
this we would have to provide a means by which the resolution procedure can
recognise the redundancy of further inference steps. This can be realised with a
blocking inference rule, used in [49], which has an effect similar to loop checking.
Using soft typing described in [27] might provide an alternative solution.

Similar simulation results can be obtained for other forms of modal tableau
calculi, including caluli with implicit or explicit accessibility relation and analytic
modal KE tableaux, e.g. [46,59], or even sequent proof systems. Simulation
results of tableau calculi for description logics by resolution can be found in
Hustadt and Schmidt [49, 50].

9 Developing tableaux via resolution

In general, resolution (refutation) proofs for the first-order translation of a modal
formula have little resemblance to proofs in the modal source logic. This is be-
cause the modal form is usually lost during the transformation to clausal form
and subsequent deduction. It is therefore difficult to translate first-order resolu-
tion proofs back into modal proofs. By using a different translation method, for
example, translation methods based on the functional translation where acces-
sibility is encoded in terms of paths [3,40,69], this problem can be reduced and
eliminated for certain logics, cf. [11,17]. A solution to the problem of backward
translation of resolution proofs is provided by the structural translation used in
Section 7 and 8, and the tableau simulating resolution refinement R™P [52]. Tt
makes it easy to convert resolution proofs into tableau style (or natural deduction
style) modal proofs.

Taking this idea a step further, the approach using R™P can be exploited
for systematically developing sound and complete tableau proof systems. For
instance, De Nivelle et al [16] show how a tableau system for K,,)(N,U, ) can
be extracted from the resolution method described in Section 7. The idea is to
express a R™P resolution inference step by a tableau rule, or if this is not possible,
as is the case for conjunctive subformulae, to express a group of R™P resolution
inference steps as a tableau rule.

A tableau is a finitely branching tree whose nodes are sets of labelled formulae.
Given that ¢ is a formula to be tested for satisfiability the root node is the set
{a : ¢}. Successor nodes are constructed in accordance with a set of expansion

rules. A rule ﬁ fires for a selected formula F' in a node if F' is an instance

] Xn
of the numerator X, or more generally, F' together with other formulae in the
node are instances of the formulae in X. n successor nodes are created which
contain the formulae of the current node and the appropriate instances of X;. It

is assumed that no rule is applied twice to the same instance of the numerator.
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Fig. 8. Tableau expansion rules for K,,)(N,U, ). For the rules (~1), (A7) and (V)
the side conditions are that the formulae in the denumerator, i.e. ™, a A f or a V 3,
occur as subformulae of the parameter v of a box formula s : [y]y on the current
branch.

Assume that ¢ is a formula in negation normal form. Recall, the inference in
R™P starts with an inference with the only positive clause Qy(a). Accordingly,
the root of the tableau is given by {a : ¢}. Subsequent R™P inference steps can be
translated more or less directly into the tableau expansion rules listed in Figure 8
(for details see [16]). The rules for K(,,)(N, U, «) include the clash rule (L), seven
‘elimination’ rules (A), (V), (<), (Q), (~), (A"), and (V") for positive occurrences
of subformulae, and three ‘introduction’ rules (v~r), (A7) and (V7) for negative
occurrences of subformulae. The side conditions for the introduction rules ensure
that formulae are not introduced unnecessarily. Conjunction and disjunction are
assumed to be associative and commutative operations. Only the disjunction
rules are don’t know nondeterministic and require the use of backtracking. For
any logic L in-between K(,,) and K, (N,U, ) the expansion rules are given by
appropriate subsets.

Unnecessary duplication and superfluous inferences can be kept to a min-
imum by adopting a notion of redundancy which is in the spirit of Bachmair
and Ganzinger [4]. A labelled formula F' is redundant in a node if the node
contains labelled formulae Fy, ..., F, (for n > 0) which are smaller than F' and
Er (Fi A ... A F,) — F. In this context a formula 1 is smaller than a formula
¢ if ¢ is a subformula of ¢, but a more general definition based on an admis-
sible ordering in the sense of [4,5] may be chosen. The application of a rule is
redundant if its premise(s) or its conclusion(s) is (are) redundant in the current
node. For example, for any s, s : T is redundant, and if a node includes s : ¥
and s : ¢ V ¢, then the (V) rule need not be applied, and no new branches are
introduced.

Theorem 21 ([16]). A formula ¢ is satisfiable in Ky (N, U,~) iff a tableau
containing a branch B can be constructed with the rules of Figure 8 such that B
does not contain falsum (s : L for some s) and each rule application is redundant.
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Corollary 1 ([16]). The appropriate subsets of the rules from Figure 8 provide
sound, complete and terminating tableaw calculi for logics in-between K(,,) and
K(m) (ma U, v)'

10 Generating Herbrand models

A problem closely related to the satisfiability problem is the problem of generat-
ing (counter-)models. It is well-known that hyperresolution can be employed with
dual purpose, namely, as a reasoning method and a Herbrand model builder [22].
Thus, in this section we briefly discuss the use of R™P as a procedure for auto-
matically constructing Herbrand models for extended modal logics. The results
are actually consequences of properties of classes of range restricted clause sets.
A clause C' is said to be range restricted iff the set of variables of the positive
part of C' is a subset of the set of variables of the negative part of C'. A clause
set is range restricted iff it contains only range restricted clauses. This means
that a positive clause is range restricted only if it is a ground clause.

A Herbrand interpretation is a set of ground atoms. By definition a ground
atom A is true in an interpretation H iff A € H and it is false in H iff A ¢ H,
T is true in all interpretations and L is false in all interpretations. A literal —A
is true in H iff A is false in H. A conjunction of two ground atoms A and B is
true in an interpretation H iff both A and B are true in H and respectively, a
disjunction of ground atoms is true in H iff at least one of A or B is true in the
interpretation. A clause C is true in H iff for all ground substitutions o there
is a literal L in C'o which is true in H. A set N of clauses is true in H iff all
clauses in N are true in H. If a set N of clauses is true in an interpretation H
then H is referred to as a Herbrand model of N.

For range restricted clause sets the procedure RMP implicitly generates Her-
brand models [10, 31, 35]. For a class of solvable range restricted clauses, if RMP
terminates on a clause set N without having produced a refutation then a model
can be extracted from any complete, open branch in the derivation. The model
is given by the set of ground unit clauses in the limit of the branch, i.e. the
clause set at the leaf of the branch.

Theorem 22 ([52]). Let N be the clausal form of a K(,)(N,U,~) formula ¢
(as defined in Section 7), and let No, be the limit of an arbitrary branch B in
a R™ derivation tree with root N. Let [B] be the set of positive ground unit

clauses in Neo. If No does not contain the empty clause, then [B] is a finite
(Herbrand) model of N.

Now a modal model M = (W, R, ) can be easily constructed from [B] for
. Essentially, the set of worlds is defined by the set of ground terms occurring
in [B]. The interpretation of relational formulae is determined by the set of R;
literals in [B]. For any R;, if R;(s,t) is in [B] then (s,t) € R,,, which can be ex-
tended to a homomorphism for complex relational formulae. The interpretation
of modal formulae can be defined similarly. For any unary literal P;(s) (resp.
Qy(s)) in [B], s € t(pi) (resp. s € t(v)), that is, p; (resp. ¥) is true in the world
s. This is homomorphically extended as expected. Consequently:
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Theorem 23 ([16,52]). Let L and A be as in Theorem 17. For any modal
formula satisfiable in LA a finite modal model can be effectively constructed on

the basis of R™P.

Corollary 2 ([16,52]). Let L and A be as in Theorem 17. Then, LA has the
finite model property.

These results extend also to methods closely related to R™ such as the
tableau calculus introduced in the previous section. For example:

Corollary 3 ([16]). If L is a logic in-between K,y and Ky, (N,U,~), and ¢
18 satisfiable in L then a finite modal model can be effectively constructed on the
basis of the tableau calculus for L given by the appropriate subset of rules from
Figure 8.

Besides hyperresolution there exist a number of other methods for creating
Herbrand models, or representations of Herbrand models. For references see
Fermiiller et al [22, §4.2]. It would be worth studying the application of these
methods to translations of modal logics.

11 Mechanisation

There are a number of first-order theorem provers that implement the Bachmair-
Ganzinger framework of resolution and equality reasoning. These include the
state-of-the-art theorem provers: E [80,81], SATURATE [28], spass [82,83] and
VAMPIRE [74]. The theorem prover OTTER [60] also implements ordered resolu-
tion and hyperresolution. These provers are sophisticated programs which have
been developed over many years. Of these provers, SPASS forms the basis of the
theorem prover MSPASS which has been used to study the practical properties
of R4 and R™P for automating modal logic reasoning and simulating tableau
procedures [47,51-53, 77]. These studies have been mainly for basic multi-modal
logic. Furthermore, with one exception, a variation of the optimised functional
translation method was used, since MSPASS has shown better performance for
the optimised functional translation method compared to the relational transla-
tion method on the benchmark problems used in the studies. However, according
to current knowledge the practical scope of the optimised functional translation
method is limited to modal logics with K or KD modalities.

The main difference between SPASS and MSPASS is that MSPASS accepts also
modal logic, description logic and relational formulae as input. Modal formu-
lae and description logic formulae are built from a vocabulary of propositional
symbols of two disjoint types, namely, propositional (Boolean or concept) and
relational (role). The repertoire of logical constructs includes: (i) the standard
Boolean operators on both propositional and relational formulae, (ii) multiple
modal operators, permitting complex relational parameters, i.e. (_) and [], as
well as the domain and range operators, (iii) the relational operators, compo-
sition, relative sum, converse, identity, diversity, and (iv) the test operator of
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PDL, domain restriction and range restriction. MSPASS supports non-logical ax-
ioms which are true in every possible worlds (that is, global satisfiability, or
generalised concept or role terminological axioms for description logics). In addi-
tion, it is possible to specify additional frame properties, or any other first-order
restrictions on the translated formulae.

Among the mentioned theorem provers the following features make (M)SPASS
the most flexible and well-suited theorem prover for reasoning within extended
modal logics and description logics. (M)SPASS includes an advanced converter
of first-order logic formulae into clausal form. Special features of the converter
include optimised Skolemisation, strong Skolemisation, and an improved imple-
mentation of renaming [64]. (M)SPASS supports splitting and branch condensing
(branch condensing resembles branch pruning or backjumping). Ordered infer-
ence, splitting, and condensing are of particular importance concerning the per-
formance for satisfiable formulae, and for randomly generated formulae, unit
propagation and branch condensing are important as well.

Mechanisation of the approaches described in this paper is not difficult. All
that is needed is to select a correct set of flag settings to turn MSPASS into
implementations of a particular combination of a translation, and R or R"P.

Although MsPAsS does not provide a decision procedure for all the modal
logics one might be interested in, for example, PDL or graded modal logic
are not supported, an attractive feature of MSPASS is the possibility to specify
arbitrary first-order theories. Anything which can be encoded into first-order
logic with equality can be expressed with MspPASS. This allows for its use as
a flexible tool for the investigation of combinations of interacting non-classical
logics or description logics, which have not been been studied in depth before,
and which may not have been anticipated by the implementors. In this context
it is useful that, on termination, MSPASS does not only produce a ‘yes’/‘no’
answer, but it also outputs a proof or a saturated set of clauses (depending on
whether input problem is unsatisfiable or satisfiable). A finite saturated set of
clauses provides a characterisation of a class of models for the input problem.
In the case R™P is used the generated ground clauses define a Herbrand model
(whenever all clauses are range-restricted).

12 Topics not covered

The combination of translation and first-order inference methods provides a
powerful and versatile approach for studying and mechanising reasoning, model
generation and other aspects of modal logic. Due to space restrictions we had
to be selective in our choice of topics covered in this overview. Some important
topics omitted in this overview include the following.

Non-standard translation approaches. Non-standard translation methods include
reductions derived from the functional semantics of normal modal logics with un-
parameterised modalities, namely the functional translation [3,40, 65], the opti-
mised functional translation [40, 69, 84] and the semi-functional translation [62].
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In addition, a tree layered translation was introduced by Areces et al [2] for
basic modal logic. It is not difficult to see that methods based on this transla-
tion can be simulated with the optimised functional translation method. Sur-
veys of the different translation methods of modal logics and other non-classical
logics are [66—68]. The above mentioned non-standard translation approaches
are all implemented in MSPASS [51]. Experience shows that the performance of
first-order theorem provers is best when a variation of the optimised functional
translation can be used [47].

A recent development is the introduction in [79] of a translation principle,
called the aziomatic translation principle, which promises to make it easier to
develop inference calculi and automated decision procedures for extensions of the
modal logic K(,,y with modal axioms. The axiomatic translation reduces propo-
sitional modal logics with relational background theories, including triangular
properties such as transitivity, Euclideanness and functionality, not covered in
this paper, into the two-variable guarded fragment. In [79] it is shown that any
resolution procedure based on R decides the satisfiability problem of modal
logics for which the axiomatic translation can be shown to be complete. These in-
clude the logics K4, KT, KD, KB, Kalt, K5, K4B, KT4B, and their fusions,
as well as extensions of K with certain generalised axioms. Another reduction to
first-order logic of interest is due to Demri and De Nivelle [18]. They show that a
certain class of modal logics, the class of regular grammar logics with converse,
are decidable by reduction to the two-variable guarded fragment.

Deciding modal logics with transitive modalities. To decide extensions of K4
another possibility besides using the axiomatic translation is to use the semi-
functional translation method in combination with ordered resolution [45]. Rather
than modifying the translation function, the approach of Ganzinger et al [26]
modifies the calculus and use ordered chaining rules for transitive relations. Both
these approaches provide decision procedures for the logics K4, S4 and K D4.

Mechanising correspondence theory. Computing the first-order correspondence
property, if it exists, for a modal formula amounts to the elimination of the uni-
versal monadic second-order quantifiers expressing the validity in a frame of that
formula or, equivalently, the elimination of the existential monadic second-order
quantifiers expressing the satisfiability of the formula. One of the best known
algorithms for elimination of existential second-order quantifiers is SCAN, devel-
oped by Ohlbach and Gabbay [24]. The SCAN algorithm is based on constraint
resolution and was implemented by Engel [21] as an extension of the OTTER the-
orem prover. The SCAN algorithm is known to be sound, meaning that whenever
the algorithm terminates successfully the resulting formula is equivalent to the
original formula. Unfortunately, it is provably impossible for such a reduction
(by SCAN or any other method) to be always successful, even if there is a simpler
equivalent formula for a second-order logic formula. However, even though SCAN
cannot be complete in this general sense, SCAN has been shown to be useful
for computing first-order frame correspondents for modal axiom schemata. It
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is known that SCAN can compute the frame correspondence properties for very
many well-known axioms such as T, 4, 5, etcetera.

SCAN is not the only quantifier elimination algorithm, though to date it is
the only algorithm based on resolution. Another algorithm is the DLS algorithm,
due to Doherty, Lukaszewicz and Szalas [19] which is also suitable for comput-
ing modal correspondence properties. The DLS algorithm was implemented by
Gustafsson [38]. Both scAN and the DLS algorithm can be used remotely. An
overview of these and other quantifier elimination algorithms is [63].

Generating minimal Herbrand models. In general Herbrand models are not
unique and can be large. Therefore there is a need for generating minimal mod-
els. There are various approaches to generating minimal Herbrand models with
hyperresolution [8,10,39,61]. With a moderate extension of R™ it is possible
to guarantee the generation of all and only minimal Herbrand models for any
modal and description logics reducible to a decidable class of range restricted
clauses. This follows from [10] and recent investigations of GFI~ and the class
BU [31-33]. An alternative approach proposed in [31-33] uses a variant of a local
minimality test developed for propositional logic.
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