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Abstract The paper presents a tableau calculus with several refine-
ments for reasoning in the description logic SHOI. The calculus uses
non-standard rules for dealing with TBox statements. Whereas in exist-
ing tableau approaches a fixed rule is used for dealing with TBox state-
ments, we use a dynamically generated set of refined rules. This approach
has become practical because reasoners with flexible sets of rules can be
generated with the tableau prover generation prototype MetTeL. We
also define and investigate variations of the unrestricted blocking mech-
anism in which equality reasoning is realised by ordered rewriting and
the application of the blocking rule is controlled by excluding its applic-
ation to a fixed, finite set of individual terms. Reasoning with the unique
name assumption and excluding ABox individuals from the application
of blocking can be seen as two separate instances of the latter. Experi-
ments show the refinements lead to fewer rule applications and improved
performance.

1 Introduction

There exist various tableau algorithms for reasoning in description logics [2]. In
this paper we present a refinement of the tableau calculus introduced in [12] for
the description logic SHOI. Termination is ensured using a rewriting variant of
the unrestricted blocking rule [19]. A sufficient condition for termination using
unrestricted blocking is the finite model property [19], which SHOI is known
to have [5]. The core tableau rules are in line with a refined tableau calculus
obtained in the tableau synthesis framework [18], but, exploiting the tree model
property of SHOI, transitive roles are accommodated via propagation rules
rather than structural rules.

Labelled tableau approaches allow for a flexible derivation procedure, and
are not limited to logics with a form of tree model property. They are common
for modal and description logics, hybrid logics and various other non-classical
logics, cf. e.g., [6,2,3,4,1].

Different blocking mechanisms have been developed for description logic
tableau algorithms. A common point of these mechanisms is essentially that
they exploit kinds of the tree model property. They compare maximally expan-
ded label sets of concept expressions through the construction of tree-like models.
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For more expressive logics, for example, logics with role inverse and nominals,
back-and-forth traversal of a tree model is required with implicit backtracking
using forms of dynamic blocking [9,10]. These blocking techniques provide strong
termination results but some care is needed to ensure soundness. In [16,19], it
was shown, the description logics ALBO and ALBOid, which do not have the
tree model property, can be decided using a labelled tableau approach enhanced
by the unrestricted blocking mechanism, while many existing blocking mech-
anisms are not sufficient for description logics without a kind of tree-model
property. The unrestricted blocking mechanism ensures weak termination. It is
generic and reverts decisions only when needed, namely, when only contradic-
tions were obtained. While many techniques in the tableau calculus presented
in this paper have similarities with techniques in existing tableau approaches,
there are also significant differences because our tableau calculus is designed to
be proof-confluent and as general as possible. We describe a rewriting variant of
the unrestricted blocking rule, because equality reasoning is realised by ordered
rewriting. In comparison to tableau calculi using essentially standard tableau
rules for equality, as for example [3,16,19], rewriting performs fewer inferences.
That is because essentially equivalent inference steps on equivalent individuals
are avoided. The ordering ensures only the currently smallest individual term in
an equivalence class is present in the current node of the tableau derivation.

While being generic the unrestricted blocking rule creates potentially a large
number of branching points in the derivation. It is thus important to investig-
ate ways of controlling the application of blocking while preserving soundness,
completeness and termination. The number of applications of the blocking rule
can be reduced by imposing additional side conditions or adding premises to the
rule. In this paper we discuss a general technique of controlling the blocking rule
by not applying it to members of an a priori given, finite set of individual terms.
This variant of the blocking rule can be utilised for reasoning in domains with
the unique name assumption, or where for example it is assumed that some of
the given ABox individuals are distinct.

Non-standard in our approach is the use of dynamically generated rules for
statements in the TBox rather than using a fixed rule. These dynamic rules are
rule refinements obtained in accordance with [20]. Using the MetTeL tool [22]
it is easy to generate tableau provers from tableau calculus specifications. This
means there is no need to implement a prover for the new tableau calculi manu-
ally. This enables us to easily generate a prover for a specific knowledge base
based on a calculus with dynamically generated rules. Following this approach we
can build specialised provers for various computer applications using ontologies
as the information backbone.

The paper is based on the workshop paper [12]. Its main contributions are
threefold. First, it presents a labelled tableau calculus for the description logic
SHOI (Section 3). Second, we discuss a general technique of controlling the
blocking rule by disabling its application to individual terms from an a pri-
ori given, finite set (Section 4). This approach can be utilised for reasoning in
domains with the unique name assumption. Third, we use a novel approach for



reasoning with respect to TBox statements (Section 5). Rather than using a fixed
tableau rule for TBox statements, we dynamically generate rules for each state-
ment. These dynamic rules are optimised by atomic rule refinement described
in [20].

The MetTeL tool [22] allows us to automatically generate a prover for a
specific knowledge base based on a calculus with dynamically generated rules.
In order to evaluate the provers that use the tableau calculi with dynamically
generated rules, an experimental comparison between them and provers that
use the fixed tableau rule was undertaken (Section 6). Controlled variants of
unrestricted blocking are also evaluated. Two repositories of existing ontologies
are used as problem sets.

Additionally, we establish the finite model property for SHOI (Section 2).
In [5], the finite model property for SHOI is obtained from a terminating tableau
algorithm. By contrast, our proof of termination in Section 3 takes the reverse
route. In the extended version [13] of this paper we provide an alternative proof
of the finite model property for SHOI by a standard filtration argument that
does not involve any form of tableau reasoning.

The paper is an extended version of the workshop paper [14]. Due to space
limitations all proofs are omitted but can be found in [13].

2 Syntax and semantics of SHOI

The description logic SHOI [11,9] extends the description logic ALC with
singleton concepts, role inverse, transitive roles and role inclusion axioms. Its
language is defined over disjoint sets of atomic concepts, atomic roles and indi-
viduals. The set of individuals is assumed to be finite. C and D denote concepts,
A denotes an atomic concept, R and T denote roles, r denotes an atomic role and
a and b denote individuals. Concepts and roles are built from atomic concepts,
individuals, and atomic roles using the connectives {·} (singleton operator), ¬,
t, and ∃· .· (existential restriction operator), − (role inverse operator) as defined
by these BNFs:

C
def
= A | {a} | ¬C | C t C | ∃R.C and R

def
= r | R−.

The operators >,⊥,u and ∀·.· are defined as usual. We assume that (r−)−
def
= r in

order to simplify the syntax and avoid repetitive occurrences of the role inverse
operator. Further, for every atomic role r, Trans(r) is used to specify that r is
transitive. (The predicate Trans is defined on atomic roles only because, in order
to specify that r− is transitive, it is enough to state that r is transitive.)

A knowledge base consists of an ABox A, a TBox T and an RBox R. A finite
number of concept assertions of the form a : C and role assertions of the form
(a, b) : R constitute the ABox. The hierarchy between concepts are expressed
in the TBox using a finite set of inclusion statements of the form C v D. The
RBox is a finite set of transitivity statements Trans(r) for some atomic roles r
and inclusion statements of the form R v T which are used to express the
hierarchy between roles. Normalisation of the RBox is not assumed.



We define the closure R+ of role inclusions in the RBox R as the smallest
RBox that contains R and satisfies the following two properties: (i) if Q v R ∈
R+ then Q− v R− ∈ R+; (ii) if Q v R,R v T ∈ R+ then Q v T ∈ R+. Given
an RBox R, let R∗ denote the RBox R+ ∪ {R v R | R is a role}.

A SHOI-model I is a tuple I def
= (∆I , ·I), where ∆I is a non-empty domain

of interpretation and ·I is an interpretation function which maps individuals to
elements of ∆I , atomic concepts to subsets of ∆I , and atomic roles to binary
relations over ∆I . The interpretation function extends inductively to all concept
and role expressions as follows.

{a}I def
= {aI} (¬C)I

def
= ∆I \ CI (C tD)I

def
= CI ∪DI

(∃R.C)I
def
= {x | ∃y ∈ CI (x, y) ∈ RI} (R−)I

def
= {(x, y) | (y, x) ∈ RI}

For any expression or statement E, E is true (valid) in the model I is denoted
by I |= E and is defined as follows.

I |= C
def⇐⇒ CI = ∆I I |= a : C

def⇐⇒ aI ∈ CI
I |= R v T def⇐⇒ RI ⊆ T I I |= (a, b) : R

def⇐⇒ (aI , bI) ∈ RI
I |= C v D def⇐⇒ CI ⊆ DI I |= Trans(r)

def⇐⇒ rI is transitive

A concept C is satisfiable in a model I iff CI 6= ∅. A concept is satisfiable in I
with respect to a knowledge base if it is satisfiable in I whenever every statement
of the knowledge base is true in I. That is, C is satisfiable with respect to
(A, T ,R) in I iff CI 6= ∅ provided that I |= E for every E ∈ A ∪ T ∪R.

The termination result in the next section for our tableau calculus for SHOI
relies on the finite model property of the logic.

Theorem 1 (Finite model property of SHOI [5,13]). If a concept C is
satisfiable with respect to a knowledge base (A, T ,R) in a SHOI-model then it
is satisfiable with respect to (A, T ,R) in a finite SHOI-model.

3 Tableau calculus TabSHOI

The language of the tableau calculus is an extension of the language of SHOI
with equality formulae and individual terms used as labels. The set of (indi-
vidual) terms s is defined inductively by the grammar rule s

def
= a | f(s,R,C),

where a denotes any individual, C any concept, R any role, and f is a (fixed)
function symbol. Terms which are not ABox individuals can be viewed as be-
ing Skolem terms. Formulae in the tableau language are ABox assertions over
individual terms, and equalities of terms. More precisely, tableau formulae are
defined by the grammar rule E

def
= s : C | (s, t) : R | s ≈ t, where s and t are

individual terms, C is a concept and R is a role.

We extend the interpretation of SHOI to the tableau language as follows. For
every SHOI interpretation I, let the interpretation fI in I of the function f



be an arbitrary function that maps triples (x, ρ, χ) with x ∈ ∆I , ρ ⊆ (∆I)2,
χ ⊆ ∆I to elements of ∆I . The semantics of tableau formulae is specified by:

(f(a,R,C))
I def

= fI(aI , RI , CI), I |= s : C
def⇐⇒ sI ∈ CI ,

I |= s ≈ t def⇐⇒ sI = tI , I |= (s, t) : R
def⇐⇒ (sI , tI) ∈ RI .

Since the interpretations of the formulae s ≈ t, s : {t} and t : {s} coincide, we
refer to them as equalities, and to formulae of the form s : ¬{t} as inequalities.

Having defined the tableau language, next we give a general description
of how tableau derivations are constructed and define important notions of
tableaux. Let Tab denote a tableau calculus comprising of a set of inference
rules. A derivation or tableau for Tab is a finitely branching, ordered tree whose
nodes are annotated by sets of tableau formulae. Assuming that C is the input
concept to be tested for satisfiability with respect to a knowledge base (A, T ,R),
the root node of the tableau is the set {a : C}∪A, where a denotes a fresh indi-
vidual and A is the ABox. Successor nodes are constructed in accordance with
a set of inference rules in the calculus. The inference rules have the general form

X0

X1 | . . . | Xn
(side-condition),

where X0 is the set of premises and the Xi are the sets of conclusions. If n = 0,
the rule is called closure rule and written X0/⊥.

If a rule of the calculus is applicable to a leaf node of the tableau with a
matching substitution µ, and it is applied to the leaf node, then the tableau is
extended by attaching to the leaf node n child nodes annotated with N ∪Xiµ
for i = 1, . . . n, respectively. In order to avoid redundancies we stipulate that
a rule application to a leaf node annotated with N is redundant if there is a
conclusion set Xi for some i = 1, . . . n of the rule such that Xiµ ⊆ N , where µ
is the matching substitution. This ensures rules are not applied more than once
to the same sets of formulae.

A branch in the tableau is a maximal path from the root of the tableau to a
leaf node. If a closure rule has been applied in a branch then the branch is said
to be closed. If a branch is not closed, it is called open. A tableau is closed if all
its branches are closed. A branch is fully expanded if no more rules are applicable
to its leaf node modulo redundancy. We call a tableau fully expanded iff all its
branches are fully expanded. We denote by Tab(A, T ,R, C) a fully expanded
tableau constructed using the calculus Tab for the input concept C (to be tested
for satisfiability) and the knowledge base (A, T ,R).

We use equality reasoning for individual terms to achieve termination for the
calculus. Equality reasoning can be provided in various ways. One is to supply
special tableau rules for reasoning modulo equalities within the branch in a
similar way as it is done in [3,16,19]. Another is to use ordered term rewriting.
Ordered rewriting is more efficient for handling equal individuals because it
allows to reduce the number of tableau formulae in the current branch. Since
all individual terms in any tableau derivation are ground, we are dealing with a
special case of rewriting, namely, ground rewriting.



(⊥):
s : ¬C, s : C

⊥ (¬¬):
s : ¬¬C
s : C

(∃):
s : ∃R.C

f(s,R,C) : C, (s, f(s,R,C)) : R
(t):

s : C tD

s : C | s : D

(¬∃):
s : ¬∃T.C, (s, t) : R

t : ¬C (R v T ∈ R∗) (¬t):
s : ¬(C tD)

s : ¬C, s : ¬D
(¬∃−):

s : ¬∃T−.C, (t, s) : R

t : ¬C (R v T ∈ R∗) (−):
(s, t) : R−

(t, s) : R

(tr):
s : ¬∃T.C, (s, t) : R

t : ¬∃R.C
(R v T ∈ R∗, Trans(R) ∈ R) (id1):

s : C

s : {s}

(tr−):
s : ¬∃T−.C, (t, s) : R

t : ¬∃R−.C (R v T ∈ R∗, Trans(R) ∈ R) (id2):
s : ¬{t}
t : {t}

(TBox):
s : {s}

s : (¬C tD)
(C v D ∈ T ) (id3):

(s, t) : R

s : {s}, t : {t}
(RBox):

(s, t) : R

(s, t) : T
(R v T ∈ R+) (≈):

s : {t}
s ≈ t

(s 6= t)

Figure 1. The tableau calculus TabSHOI

In this paper, a rewrite system R is a binary relation on the set of all indi-
vidual terms and consists of rewrite rules which are pairs of individual terms. In
order to handle equalities, we orient each equality formula appearing in the cur-
rent branch according to a special, strict partial ordering � on individual terms.
We denote by s → t a rewrite rule (s, t) in which s � t. Thus, if an equality
formula s ≈ t appears in a node of a branch then either s→ t or t→ s is added
as a rewrite rule to the rewrite system of the branch.

Our tableau calculus TabSHOI for the description logic SHOI is given in
Figure 1. The (⊥) rule is the closure rule. The (¬¬) rule removes occurrences
of double negation on concepts. The (t) and (¬t) rules are standard rules for
handling concept disjunctions. Given a tableau formula s : ∃R.C, the (∃) rule
introduces Skolem term f(s,R,C), as an R-successor of s (instead of introdu-
cing a fresh individual as might be done in other presentations). Using Skolem
terms has many advantages that outweigh drawbacks and perceived inconveni-
ences. In our setting, Skolem terms provide a convenient technical device to
keep track of the order in which witnesses for existential quantification were
introduced and record dependency on other witnesses. Such dependencies are
then used to stop redundant rule applications when combined with term rewrit-
ing. In systems not using Skolem terms this information is typically captured
by an ordering on individual constants. In addition, in combination with block-
ing there is no need to redo inference steps with existential extent that have
already been performed or resurrect phantom concepts. That is because when
rewriting happening on terms, we also rewrite their dependent Skolem terms and
consequently some applications of the (∃) rule become redundant. For example,
rewriting of the term f(i, R,C) to i causes terms such as f(f(i, R,C), R, C) and
f(f(f(i, R,C), R, C), R, C), which may appear in formulae in a branch, to be



rewritten to i. There is also no need for status variables to keep track of whether
individual constants are active or phantom in the deduction process.

The (¬∃) rule is equivalent to the standard rule for universally restricted
concepts. The (¬∃−) rule allows the backward propagation of concepts along
inverted links. The (−) rule inverts a given link. The (tr) rule propagates negated
existential concept restriction along a transitive link, while the (tr−) rule does
the same for inverse occurrences of transitive roles.

Equalities of the form s : {s} are tautologies, which are used in our calculus
as domain predicates for keeping track of the terms that have been introduced
to a branch. This is achieved with the three rules (id1), (id2) and (id3).

The (≈) rule is a special rule adding, what we call, a rewrite trigger s ≈ t
to the branch. Let � be any reduction ordering on the set of individuals in the
branch. The addition of any tableau formula s ≈ t to a set N of formulae, which
annotates a leaf tableau node, immediately triggers the following rewrite process.
Suppose that s � t (the case t � s is symmetrical). Then, s → t is added to
a rewrite system R associated with the current tableau branch. The tableau is
extended by attaching one child node to the current leaf node. The child node
is annotated by the set N ′ obtained by rewriting all the tableau formulae in N
with respect to the rewrite system R. In particular, this means that, in N ′ every
term s is replaced by a term u such that s

∗→u with respect to R.
For each concept inclusion C v D of the TBox, the (TBox) rule propagates

the concept ¬C t D to every label occurring on the branch. The (RBox) rule
propagates a link of a role into its super role according to the closure R+ of the
given RBoxR. In Section 5 we replace the (TBox) rule by dynamically generated
rules.

It is not difficult to see that each rule of TabSHOI preserves satisfiability.
Consequently we can state:

Theorem 2 (Soundness). The tableau calculus TabSHOI is sound for SHOI.
That is, if a concept C is satisfiable with respect to the knowledge base (A, T ,R)
then any fully expanded TabSHOI-tableau for (A, T ,R, C) has an open branch.

A tableau calculus Tab is complete iff for every knowledge base (A, T ,R)
and every concept C if C is unsatisfiable with respect to (A, T ,R) then there is
a closed tableau Tab(A, T ,R, C). In order to prove completeness of TabSHOI ,
we prove its constructive completeness, which implies completeness. A tableau
calculus Tab is constructively complete if for every open branch in any fully
expanded tableau Tab(A, T ,R, C) there is a model that validates the knowledge
base (A, T ,R) and satisfies C.

Theorem 3 (Completeness). TabSHOI is a (constructively) complete tableau
calculus for the description logic SHOI.

A form of blocking or loop-checking is necessary in order to ensure termin-
ation. We achieve termination by incorporating a variation of the unrestricted
blocking mechanism described in [16] into the tableau calculus. In [16] equality
reasoning is realised by tableau equality rules, whereas in this paper ordered



rewriting is used. We therefore adapt the unrestricted blocking rule from [16] as
follows:

(ub):
s : {s}, t : {t}
s ≈ t | s : ¬{t}

(s 6= t).

In order to achieve termination the following condition must hold.

Termination condition: In every open branch there is some node from which
point onward before any application of the (∃) rule, all possible applications
of the (ub) rule have been performed.

The (ub) rule is applicable to any pair of distinct individual terms that are
used as labels in the current leaf node. When it is applied, two tableau successor
nodes are created. In the left node, s ≈ t acts as a trigger which induces rewriting
modulo derived equalities. In the right node, s : ¬{t} indicates that s and t are
not equal. The blocking is reversible, because, when no models can be found in
the left branch, reversion is performed through standard backtracking.

Let TabSHOI(ub) be the calculus consisting of all the rules of TabSHOI
and the (ub) rule. Since, the (ub) rule is sound, and TabSHOI is sound and
(constructively) complete (Theorem 3), we get:

Theorem 4. TabSHOI(ub) is a sound and (constructively) complete for SHOI.

Based on [17,19] it can be shown that adding the rewriting version of un-
restricted blocking to a sound and constructively complete, ground semantic
tableau calculus ensures termination, if the logic has the finite model property.
A tableau calculus Tab is (weakly) terminating iff for any finite set N , every
closed tableau Tab(N) is finite and every open tableau Tab(N) has a finite open
branch [18]. A procedure based on a tableau calculus is fair if any inference that
is possible is performed eventually [19].

Theorem 5 (Termination). Any fair procedure based on the tableau calculus
TabSHOI(ub) is terminating for satisfiability in SHOI.

As branch selection fairness is particularly important, this provides a weak ter-
mination result and means that in an implementation breadth-first search or the
more efficient depth-first iterative deepening search gives a decision procedure.
Mainstream description logic tableau algorithms with less eager blocking con-
ditions are strongly terminating. We expect to be able to show termination for
algorithms based on TabSHOI(ub) using depth-first left-to-right search as well.

Theorem 6 (Decidability). Any fair procedure based on the tableau calculus
TabSHOI(ub) and satisfying the termination condition is a decision procedure
for SHOI and its sublogics.

4 Controlling the application of blocking using (ubnoS)

The (ub) rule may potentially create a large number of branching points in the
derivation, as it is applicable to all pairs of individual terms in the branch. The



situation is worse if the knowledge base contains a large number of individu-
als and ∃-expressions. Also if the input concept is unsatisfiable with respect to
the knowledge base then no blocking inference steps are needed. However not
blocking is not an option, as it is not known in advance if a problem is un-
satisfiable or not. Examples show without blocking, it is not possible to avoid
infinite branches. It is thus important to find ways of controlling the application
of blocking without loosing termination. We may reduce the number of applica-
tions of the (ub) rule, and reduce the search space by imposing appropriate side
conditions on the application of the blocking rule. Ideal are side-conditions, and
additional premises, that maximise the chance of constructing a finite model
without the need for backtracking. It is however not possible to know which
identification of individual terms will aid the discovery of a finite model quickly.
It is clear that systematic approaches for selecting individual terms to identify
are needed, and different approaches display different performances.

The following theorem holds for arbitrary restrictions of the (ub) rule.

Theorem 7 (Soundness and completeness). The (ub) rule constrained by
any additional premises or side-conditions is sound. TabSHOI extended with
such a constrained rule is thus sound and constructively complete for SHOI.

In this section we introduce a general technique for controlling the application
of the (ub) rule. One possible way of controlling the (ub) rule is to find individual
terms whose identification is known not to be essential for termination. It could
also be that the domain of application dictates that certain individuals cannot
be equal. For example, a subset of the ABox individuals may be assumed to be
uniquely named.

Let us assume it is possible to specify a finite set S of individual terms
which we want to exclude from blocking or know their blocking is not essential.
Consider the following variation of the (ub) rule.

(ubnoS):
s : {s}, t : {t}
s ≈ t | s : ¬{t}

(t 6∈ S, s 6= t)

In contrast to the unrestricted blocking rule, the rule is applicable to a pair of
distinct terms s and t if at least one of them does not belong to S. In other
words, the rule is not applied to two terms if both belong to S. This means the
rule is not symmetric with respect to s and t, but this is not essential. One can
however consider a symmetric variant of the rule where s and t are both required
to be outside of S. Although the application of the symmetric rule is even more
restricted, Theorem 8 below remains true.

Let TabSHOI(ubnoS) be the calculus consisting of all the rules of TabSHOI
and the (ubnoS) rule.

Theorem 8. Let S be a finite set of individual terms. Then TabSHOI(ubnoS)
is sound, complete and terminating for SHOI.

Replacing the (ub) rule with the (ubnoS) rule, the calculus remains sound
and complete, since the (ubnoS) rule is a sound rule. However, preservation of



termination needs to be formally proved. This can be done by showing that there
exists a finite open branch for any satisfiable concept C when constructing the
complete tableau using TabSHOI(ubnoS). Since the existence of an open branch is
ensured by soundness, we just need to show there is a finite open branch. This can
be shown by constructing a finite, fully expanded and open branch, with the use
of a model branch built for the given concept using TabSHOI(ub). Guided by the
model branch, a finite fully expanded branch for the same concept is constructed
by TabSHOI(ubnoS). During the construction, an association function is used to
limit the possible selection of branches to the ones that mimic the model branch.
The association function is formed using the instances of the blocking rule which
are no longer applicable. The complete proof of a generic variant of this theorem
for arbitrary description logics is presented in [13].

Different variations of the (ubnoS) rule can be introduced based on how S
is chosen. Possible criteria for choosing members of S are syntactic criteria, for
example, individual terms that are not used as labels for any ∃-expressions.

Also, the (ubnoS) rule can be used for reasoning modulo an implicit unique
name assumption for a finite subset of the individuals. This is expected to be
more efficient than adding explicit inequality assertions to the input set to ensure
unique name assumption, which may cause a drop in performance by increasing
the overhead for premise selection. Let Si be a finite set of individual terms which
are assumed to be uniquely named. For each set Si, an instance of the (ubnoS)
rule should be introduced. An ontology which contains national identification
numbers of people as well as student identification numbers, is a good example
for this case. None of the national identification numbers (represented by indi-
viduals) should be identifiable, equally no student identification numbers should
refer to the same person. But a national identification number and a student
identification number can refer to the same person.

In our setting, ABox individuals are not excluded from being blocked as in
many description logic tableau systems and the blocking rule is applicable to
the pairs of ABox individuals. So, we may form a set S using all the ABox
individuals. Then, similar to [8], no terms from S are identified which were not
created during the derivation. For this case individuals in S need to be specified
to be smallest with respect to the reduction ordering ≺ and this instance of
the (ubnoS) rule needs to be used.

(ubnoABox):
s : {s}, t : {t}
s ≈ t | s : ¬{t}

(t is not an ABox individual , s 6= t)

5 Refined tableau calculus

In this section we refine the calculus TabSHOI presented in Section 3. The idea
of the refinement is that the (TBox) rule is replaced by dynamically generated
and refined tableau rules.

In the first step, all the atomic concepts in the TBox T are equi-satisfiably
replaced by constant concepts and the parametric (TBox) rule is represented
as a set of tableau rules for each C v D ∈ T . That is, rather than one rule



schema for all statements, a set of rules, one for each statement, is present in
the calculus. The following rule is generated for each statement C v D from the
TBox T .

s : {s}
s : ¬C | s : D

Subsequently, this rule is transformed to an equivalent rule where the disjunctive
normal forms of the negation normal forms of ¬C and D are split into branches of
the rule. For example, for the TBox statement HorseuBaby v Foal, the following
rule is obtained.

s : {s}
s : ¬Horse | s : ¬Baby | s : Foal

Notice that all the atomic concepts in the generated rules are constants and they
can only match with themselves. The benefit of such a replacement of the (TBox)
rule by a set of rules is the possibility of refining the rules. This allows to reduce
the branching factor of the rules, while preserving soundness and (constructive)
completeness, by using atomic rule refinement introduced in [20]. Atomic rule
refinement is a special case of general rule refinement which was introduced
in [18]. Under the atomic rule refinement, all conclusions of a rule that are of
the form s : ¬A, where A is an atomic concept or a singleton, are moved to
the premise of the rule as s : A. For example, the rule for the TBox statement
Horse u Baby v Foal is refined to the following rule.

s : Horse, s : Baby

s : Foal

In the second step, we apply atomic rule refinement to all the rules obtained
from the TBox statements. Consequently there are fewer branches in the con-
clusions and additional premises are added that limit the application of the
rules. (Similar refinements on instances of the (RBox) rule are possible for more
expressive logics with negated role assertions.)

Let Tabdyn,TSHOI(ub) denote the calculus which consists of the refined generated
tableau rules from the TBox T and all rules of TabSHOI except the (TBox) rule.
That is, for each statement C v D ∈ T a corresponding tableau rule is generated
and refined according to atomic rule refinement. Soundness and completeness of
Tabdyn,TSHOI(ub) is a direct consequence of the results in [20].

Theorem 9. Tabdyn,TSHOI(ub) is sound, constructively complete and terminating
tableau calculus for reasoning in SHOIwith respect to a knowledge base (A, T ,R)
with a fixed TBox T .

6 Implementation and experimental results

In order to analyse the practical benefit of atomic rule refinement and the
(ubnoS) rule, two experiments were designed. MetTeL version 2.0-487 was used



to generate provers based on variants of TabSHOI(ub) and Tabdyn,TSHOI(ub) for
various ontologies. MetTeL generates Java code for a tableau prover from the
specification of the syntax of a logic and the specification of a tableau calculus.1

By default, the tableau provers generated with MetTeL use a depth-first left-
to-right search strategy. While specifying the specification of tableau calculus,
appropriate rule priorities were assigned to ensure the fairness of the expansion
strategy and hence guarantee termination. The generated provers were used with
no modification in this experiment. For simplicity of implementation, instead of
the propagation rules (tr) and (tr−) standard transitivity rules were used in the
calculi. We indicate the variations by the superscript +.

In order to embrace an extensive range of problems with varying input sizes
and expressivity, the experiment used the TONES ontology repository [23] and
the corpus of OWL DL ontologies from [15]. The complete repositories of 874
ontologies were downloaded. A translator using the OWL API [7] was developed
to prepare appropriate input for MetTeL. Each ontology was converted into
three forms with the translator. The first form provided input to Fact++ [24]
which was then used to validate the translation and outputs of the provers.
The second form were translations of the ontology so that we could check its
consistency with a prover generated by MetTeL using Tab+SHOI(ub) as the
tableau specification. The third form was used in two ways. First, it was used
to produce a tableau specification for Tab+,dyn,T

SHOI (ub) containing the dynamic
rules generated from the ontology. Second, the remaining ontology axioms were
translated so that the prover generated using the specification of Tab+,dyn,T

SHOI (ub)
could check its consistency. Inputs prepared for both provers were then used
with a results file from Fact++ to produce additional problem sets. One of the
results files produced by Fact++ contains the class hierarchy of the ontology.
For a randomly picked subsumption relation C v D in the hierarchy and a
fresh individual s, s : C and s : D were added to the input file to form an
additional satisfiable input, and respectively s : C and s : ¬D were added to
form an additional unsatisfiable input. This experiment was aimed at evaluating
the effect on reasoning performance when using Tab+,dyn,T

SHOI (ub) in comparison to
Tab+SHOI(ub). This means we checked the consistency of the input but omitted
checking satisfiability of all concepts and calculating concept hierarchies.

The developed translator successfully translated 628 ontologies and each
prover was executed on 2480 inputs with a timeout of 100 seconds. The com-
parison was done by measuring the execution time of the prover. The results of
the comparison of Tab+SHOI(ub) and Tab+,dyn,T

SHOI (ub) are presented in Table 1.
For the set of results with timeout, when a prover did not return any answer
within 100 seconds, 100 seconds were used in the calculation of the average in
time. While for the set of results without timeout, if one of the provers under
comparison required more than 100 seconds, that input is not included in the
results. The results show that the generated provers based on the refined tableau
calculus were faster for unsatisfiable inputs. Inspection showed this was mainly

1 More information about how to generate a tableau prover using MetTeL is available
in [21].



With timeout Without timeout

Input count Tab+
SHOI(ub) Tab+,dyn,T

SHOI (ub) count Tab+
SHOI(ub) Tab+,dyn,T

SHOI (ub)
Ontology
consistency 628 27.627 43.094 346 0.951 1.049

Satisfiable
inputs 924 60.847 65.999 180 13.447 0.869

Unsatisfiable
inputs 928 21.521 3.643 760 5.053 1.841

Table 1. Average run times in seconds for Tab+
SHOI(ub) and Tab+,dyn,T

SHOI (ub)

With timeout Without timeout

Input count (ub) (ubnoABox) count (ub) (ubnoABox)
Ontology
consistency 628 43.094 35.893 346 1.049 1.025

Satisfiable
inputs 924 65.999 56.300 180 0.869 0.661

Unsatisfiable
inputs 928 3.643 3.635 760 1.841 1.832

Table 2. Average run times in seconds for Tab+,dyn,T
SHOI (ub) and Tab+,dyn,T

SHOI (ubnoABox)

a consequence of having additional closure rules. These closure rules were re-
finements of dynamically generated rules from TBox statements where all the
conclusions have been turned into premises in a rule. The scatter plot on the left
of Figure 2 gives a more differentiated picture of the performance. On average we
observed a 22% drop in memory use for satisfiable inputs and a 74% drop for un-
satisfiable inputs when using Tab+,dyn,T

SHOI (ub) in comparison to Tab+SHOI(ub). As
expected, the performance of the systems were not comparable with Fact++.

Moreover, an experiment to compare the performance of Tab+,dyn,T
SHOI (ub) and

Tab+,dyn,T
SHOI (ubnoABox), using the same inputs as before, was designed. Since it is

not yet possible to express rules such as the (ubnoS) rule in the MetTeL rule

specification language, we generated a prover for the tableau calculus Tab+,dyn,T
SHOI

without any blocking mechanism. Then, code implementing the (ubnoABox) rule
was manually added to the generated Java code. In order to have a fair compar-
ison, the prover for the (ub) rule was also created by manually adding code im-
plementing the (ub) rule. The results of the comparison are presented in Table 2
and on the right in Figure 2.

The experimental results show using the (ubnoABox) rule had a small benefit
in most cases, but there was a group of satisfiable problems not solved using the
(ub) rule within the timeout that could be solved under 10 seconds when using
the (ubnoABox) rule. A closer analysis of some of the problems suggested this was
because they implicitly force the unique name assumption for a large number of
ABox individuals.

7 Concluding remarks

A tableau decision procedure for the description logic SHOI was presented
in this paper. A refined version of the tableau calculus in [12] was presented



Figure 2. Scatter plots of Tab+
SHOI(ub) vs. Tab+,dyn,T

SHOI (ub) and Tab+,dyn,T
SHOI (ub) vs.

Tab+,dyn,T
SHOI (ubnoABox)

which uses dynamically generated tableau rules when reasoning with respect to
a knowledge base. Following a rule refinement technique in [20] the generated
tableau rules were refined leading to a smaller search space. We investigated a
controlled variant of the unrestricted blocking rule not applied to members of
an a priori defined, finite set. This variant can be utilised for scenarios such as
reasoning under unique name assumption.

A comparison was done between the provers generated using the tableau
calculus with dynamically generated tableau rules, and a prover with the fixed
rule for dealing with TBox statements. The results showed the former is more
optimised especially for unsatisfiable inputs. The analysis of the reduction in the
branching points and complexity is left as future work.

Other future plans include studying the relationship between properties of a
logic and minimally required blocking criteria. That is, expressing side conditions
that can be used to control the unrestricted blocking rule to be applied as little
as possible. This should be done without endangering termination. Expressing
existing blocking mechanisms as variants of unrestricted blocking mechanism, is
also one of our future plans. Using these results, we hope to be able to provide
uniform explanations and implementations of blocking mechanisms in tableau
provers.
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