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ABSTRACT

We are interested in the computation of ontology extracts based
on forgetting from large ontologies in real-world scenarios. Such
scenarios require nearly all of the terms in the ontology to be forgot-
ten, which poses a significant challenge to forgetting tools. In this
paper we show that modularization and forgetting can be combined
beneficially in order to compute ontology extracts. While a module
is a subset of axioms of a given ontology, the solution of forgetting
(also known as a uniform interpolant) is a compact representation
of the ontology limited to a subset of the signature. The approach
introduced in this paper uses an iterative workflow of four stages:
(i) extension of the given signature and, if needed partitioning,
(ii) modularization, (iii) forgetting, and (iv) evaluation by domain
expert. For modularization we use three kinds of modules: locality-
based, semantic and minimal subsumption modules. For forgetting
three tools are used: Nui, Lethe and Fame. An evaluation on the
SNOMED CT and NCIt ontologies for standard concept name lists
showed that precomputing ontology modules reduces the number
of terms that need to be forgotten. An advantage of the presented
approach is high precision of the computed ontology extracts.
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1 INTRODUCTION

The creation of ontology extracts is an essential operation for the
reuse, creation, evaluation, curation, decomposition, integration
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and general use of ontologies. For example, for reviewing and ana-
lyzing the information relating to the concept kidney_disease (disor-
der), which has more than 1 200 sub-concepts in a medical ontology
such as the SNOMED CT ontology, developers would benefit from
being able to work with an extract that succinctly summarizes all in-
formation in the ontology relating to kidney diseases. SNOMED CT
contains more than 340 000 axioms and about as many concepts
(Jan. 2019 version). Another concrete scenario is a doctor wishing
to find diseases with an inflammatory morphology and a finding
site of kidney structure based on morphologies and/or finding sites.
Instead of querying the ontology as a whole, it would be more effi-
cient to simply query a smaller extract of the ontology containing
sufficiently many axioms to compute the same answer as if it was
computed for the entire ontology.

Ontology modularity has been developed to tackle these chal-
lenges of reuseability and interoperability [5, 12, 16, 18, 30, 39].
Modularization creates a slice of an ontology for an input (seed)
signature. The idea is that all axioms in the ontology are returned
which contain information relevant to the input signature. Among
the different modularization approaches locality-based modulariza-
tion is frequently used to extract subsets of an ontology for further
localized, and often easier, processing with other tools, such as
reasoning, querying, retrieval and ontology mapping [8, 13, 14].
However, empirical investigations [16, 25, 41] in application-close
scenarios involving SNOMED CT have found that graph-based ap-
proaches to modularization have reasonable coverage (71%–96%),
but the obtained extracts are large (17%–51% of the size of the
ontology). While relatively small extracts can be obtained with
locality-based modules, a down-side is lower precision due to the
presence of a large number of symbols in the module outside the
desired signature specified as input.

An alternative method for ontology extraction is forgetting, also
known as uniform interpolation [9, 17, 18, 23, 24, 43], not to be
confused with related notions of interpolation as in, e.g., [35]. For-
getting creates a compact representation of a part of the informa-
tion contained in an ontology that preserves the underlying logical
definitions of the specified terms (the interpolation signature)1 by
hiding the remaining terms. This allows users to focus exactly on
the information they are interested in. (By ‘terms’ we mean con-
cept and role names.) Applications of forgetting include ontology
reuse taking advantage of the potentially much smaller result of
forgetting, predicate hiding concealing confidential terms, logical
difference facilitating ontology versioning, and ontology summary
providing a focused extract facilitating ontology comprehension.

In this paper we refer to ontology extracts computed by forget-
ting as uniform interpolants (UIs). UIs have high precision, but many
of their axioms do not belong to the original ontology because they
1We refer signature as interpolation signature in the rest of the paper.
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are inferred axioms. In contrast, modules contain only axioms from
the original ontology but typically contain many terms outside the
specified interpolation signature.

Because it uses reasoning, forgetting is generally harder than
standard reasoning and modularization. Despite the high compu-
tational complexity there has been recent progress in developing
forgetting methods with feasible performance on small to medium
size ontologies for randomly generated signatures [17, 21, 26, 45, 46].
Current forgetting tools struggle however on large ontologies such
as SNOMED CT for real-world signatures, which tend to be very
small compared with the signature of the whole ontology. The
smaller the interpolation signature, the more work forgetting tools
have in order to compute UIs.

The main contribution of the paper is a novel workflow consisting
of four stages: (a) signature extension, (b) ontology module extraction,
(c) forgetting, and (d) feedback by domain experts, which is evaluated
on the SNOMED CT and NCIt ontologies. Our investigation uses
three different modularization approaches (locality-based, semantic
and minimal subsumption modularization) and three forgetting
tools (Nui, Lethe and Fame).

A central component of the workflow is a signature extension
algorithm developed with input from domain experts, because the
shape and quality of ontology modules and UIs depend heavily
on the input signature. It is unrealistic to expect that users have
theoretical background and modularization/forgetting tool devel-
opers have domain knowledge to be able to provide suitable input
signatures. For our target ontologies there exist standard lists of
concept names , e.g., for SNOMED CT these are called refsets. These
sets support clinicians by facilitating the search for information
on particular, closely related terms. We present an algorithm that
utilizes the ontology and existing refsets for computing suitable
input interpolation signatures. The modules extracted in the second
stage preserve all subsumption queries over the input signature.
We prove that computing a UI from such modules preserves these
queries as well, and is therefore logically equivalent to a UI com-
puted from the original ontology without using modularization.
This shows the correctness of the workflow.

The extracts computed by our workflow have been found to
be useful by domain experts. A crucial enrichment of the user-
defined signature is provided resulting in more comprehensible UIs.
Samples of our UIs for various sizes and all experimental data can
be accessed under http://bit.ly/2JEaraz.

The paper is structured as follows. In Section 2 we describe the
ontologies targeted by our research and recall definitions of basic
notions of description logics. Sections 3 and 4 give background on
ontology modularity and forgetting. Section 5 presents the work-
flow and shows correctness of combining forgetting with modular-
ization. Evaluation results of our method on the SNOMED CT and
NCIt ontologies for real-world scenarios are presented in Section 6.
In Section 7 we discuss reasons for why ontology modules help to
improve the forgetting process and finish with a conclusion.

2 TARGET ONTOLOGIES

The target ontologies of the present research are SNOMED CT and
NCIt.

SNOMED CT2 is a comprehensive and widely-used medical on-
tology covering various clinical specialities and requirements [36,
37]. It provides definitions of standard medical terminologies used
in health records for the purpose of supporting interoperability
between systems used in health care services in several countries.
SNOMED CT is actively managed, curated and distributed by the
International Health Terminology Standards Development Organi-
sation (IHTSDO). The logic profile of SNOMED CT is effectively
an ELH -TBox in a subset of the OWL 2 EL profile. Axioms in
SNOMED CT are represented in OWL 2 expressions.3 The new
property axioms, such as reflexive roles, transitive roles, and role
chains were introduced in July 2018. The acyclic EL-fragment of
SNOMED CT contains more than 99.9% of the original ontology. It
contains more than 349 000 axioms, with the number of axioms in-
creasing by about 10% compared to the version from January 2016.
A challenge of extracting knowledge from SNOMED CT is that
the axioms in SNOMED CT typically contain nested existential
restrictions, which makes reasoning more intricate.

The NCIt4 ontology is a thesaurus of biomedical terminology
covering different cancer-related information [11]. The thesaurus
is updated monthly and provides a range of vocabularies including
cancer terms, a drug dictionary and genetic terms. The latest re-
lease 19.06d includesmore than 200 000 axioms. The DL expressivity
of the NCIt is SH (ALC with role hierarchies and transitive roles),
though more than 99.9 % axioms are formulated in EL. There is
no nesting of existential restrictions in the axioms.

For the evaluation we have reduced SNOMED CT and NCIt to
axioms in the description logic EL. Let NC and NR be mutually
disjoint and countably infinite sets of concept names and role names.
The signature sig(ξ ) is the set of concept and role names occurring
in ξ , where ξ ranges over any syntactic object or ontology. The
sets of EL-concepts C and EL-axioms α are built according to the
grammar rules: C ::= ⊤ | A | C ⊓C | ∃r .C and α ::= C ⊑ C | C ≡ C ,
where A ∈ NC and r ∈ NR, while the sets of ALC-concepts D and
ALC-axioms β are built in accordance with the rules:

D ::= ⊤ | ⊥ | A | D ⊓ D | ∃r .D | D ⊔ D | ¬D | ∀r .D
β ::= D ⊑ D | D ≡ D.

An EL(ALC)-TBox is a finite set of EL(ALC)-axioms. An ELH -
TBox is an EL-TBox additionally allows role inclusion (r ⊑ s). An
ELH r -TBox further allows range restriction.

The semantics is defined as usual [1]. Concepts and roles are
interpreted as sets and binary relations respectively, the Boolean
operators as the corresponding set operations, the existential restric-
tion operator ∃ as the pre-image operation, the inclusion relation
⊑ as the subset relationship and mutual subsumption ≡ as equiva-
lence. The notions of satisfaction of a concept, axiom and TBox as
well as a model and logical consequence are defined as expected.

An L-terminology T is an L-TBox consisting of axioms such
that the left-hand side of an axiom has to be a concept name, and
no concept name occurs more than once on the left-hand side of
an axiom. In this paper, we consider L to range over EL, ELH ,
ELH r , and ALC. A terminology is acyclic if no concept name
is defined in terms of itself. SNOMED CT is acyclic, whereas NCIt
2https://www.snomed.org
3http://snomed.org/owl
4https://ncit.nci.nih.gov
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contains cyclic dependencies. An EL-terminology T is normalised
iff it only contains axioms of the forms A ⊑ C , A ⊑ ∃r .C , and
∃r .C ⊑ A, where A ∈ NC, r ∈ NR and C is an EL-concept.

3 ONTOLOGY MODULARITY

In the area of description logics, a module of an ontology is a sub-
set of the ontology for which answers for queries over the input
signature Σ are the same as those obtained from the ontology. We
consider three types of modules: semantic modules, minimal sub-
sumption modules and locality-based modules.

Semantic modules are logic-based modules whose formalization
uses the model-theoretic inseparability relation ≡Σ [15, 16]. Two
general TBoxes T1 and T2 are Σ-inseparable, written T1 ≡Σ T2, if
{ IΣ | I |= T1 } = { I|Σ | I |= T2 }. Three different semantic
modules exist:

Definition 3.1 (Semantic modules [15, 16]). Let T be an L-TBox
and let Σ be a signature. ThenM ⊆ T is

• a plain Σ-module of T ifM ≡Σ T ,
• a self-contained Σ-module of T if M ≡Σ∪sig(M) T , and
• a depleting Σ-module of T if T\M ≡Σ∪sig(M) ∅.

When a depleting module for a signature is being removed from
an ontology, the remaining ontology states nothing about the sig-
nature and the additional symbols that are contained in the de-
pleting module. In the case of ELI-TBoxes (with inverse roles),
the notions of self-contained Σ-module and depleting Σ-module
coincide, if T does not contain trivial concept definitions (cf. The-
orem 29 [16]). The MEX system5 extracts minimal depleting and
self-contained semantic modules from ontologies formulated as
ELI-terminologies [16].

The recently introduced (minimal) subsumptionmodules preserve
subsumption queries [4, 7, 19].

Definition 3.2 (Subsumption modules [7]). Let T be an L-TBox
and let Σ be a signature. A subsetM ofT is called anL-subsumption
module of T w.r.t. Σ iff for all L-inclusions α with sig(α) ⊆ Σ it
holds that T |= α iff M |= α . M is called a minimal subsumption
module of T w.r.t. Σ iff for anyM ′ ⊊ M,M ′ is not a subsumption
module of T w.r.t. Σ.

Evaluation has shown that minimal subsumption modules are
generally much smaller than semantic modules [7]. However, de-
ciding the preservation of subsumption queries can be expensive.
For ELH r -terminologies the algorithm for computing minimal
subsumption modules runs in exponential time.

Approximate modules, such as modules based on syntactic local-
ity [12], modules extracted via Datalog reasoning [33] and reach-
ability modules [32] can be computed efficiently. In the present
research we have used syntactic locality-based modularization for
which polynomial time algorithms exist. There are three different
types of syntactic locality-based modules, i.e., bottom (⊥), top (⊤)
and star (⋆) modules [12]. The latter combines the two former no-
tions by iterative and exhaustive application. In our evaluation we
used star modularization available as part of the OWL API. Star
modules tend to be smaller than their bottom and top counter-
parts and still preserve all entailments over concept names and role
names in Σ.
5https://cgi.csc.liv.ac.uk/~konev/software/

Proposition 3.3 ([15, 34]). Let T be an L-TBox and let Σ be a
signature. Additionally, letMS be a semantic module andM⋆ a star
module of T w.r.t. Σ. Then for all L-inclusions α with sig(α) ⊆ Σ, it
holds that T |= α iff MS |= α and T |= α iffM⋆ |= α .

In the remainder of the paper, we denote star modules, semantic
modules, minimal subsumption modules byM⋆,MS andM⊑ .

4 UNIFORM INTERPOLATION

Theoretical investigations of uniform interpolation and forgetting
for ontologies include [17, 18, 20, 21, 26–29, 31, 45, 46]. Deciding
the existence of a uniform interpolant is 2ExpTime-complete for
ALC-TBoxes, however a uniform interpolant does not always ex-
ist in EL- and ALC-TBoxes [16]. On the other hand, a uniform
interpolant always exists for DL-Lite ontologies [18]. Deciding
the existence of uniform interpolants of EL-ontologies, such as
SNOMED CT, is ExpTime-complete [28]. In the worst case, the
size of uniform interpolants is triple exponential in the size of the
input [31]. Despite the high computational complexity of the prob-
lem there are approaches to computing uniform interpolants for
light-weight description logics EL [27, 28, 31] and DL-Lite on-
tologies [43]. The system Nui computes EL-uniform interpolants
for EL-ontologies [17]. For description logics extending ALC

various algorithms for uniform interpolation and forgetting have
been developed (either using a resolution-based approach or an
Ackermann-based approach) [20, 21, 26, 45, 46]. Performance eval-
uations of the Lethe6 and Fame7 tools have shown good perfor-
mance on medium size ontologies, both in terms of runtime and
success rates [22, 44]. Different to Nui, which computes UIs directly
using a generation approach, Lethe computes UIs by forgetting
concept and role names not in the input signature. Because the
problem is not generally solvable for ALC, the UIs are expressed
in an extended language using fresh definer symbols to finitely
represent infinite UIs, which can arise when there are cyclic de-
pendencies over the forgetting symbols [20, 21]. Fame has been
developed to handle large ontologies [44], but the solutions are
under-approximations, because they are generally weaker than
UIs. Nui computes precise UIs, but target ontologies are limited to
ELH r -terminologies.

For ontology extraction we use the notion of uniform interpo-
lation (or deductive forgetting) [17, 29] rather than semantic for-
getting [10, 42], because solutions must be in the same language as
the input ontology. Tools based on a semantic forgetting approach
tend to compute solutions in a more expressive logic, which would
not be satisfactory for modellers in the present use case.

Definition 4.1 (Uniform Interpolation). Let T be an L-TBox and
let Σ be a signature. A finite setU of L-inclusions is an L-uniform
interpolant (UI) of T for Σ if the following conditions are satisfied:
(i) sig(U) ⊆ Σ, and (ii) for every L-inclusion α with sig(α) ⊆ Σ,
T |= α iff U |= α .

The following example from SNOMED CT illustrates the appli-
cation of forgetting. To simplify the presentation, we abbreviate
concept names as follows:

6http://www.cs.man.ac.uk/~koopmanp/lethe/
7http://www.cs.man.ac.uk/~schmidt/sf-fame/
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Figure 1:Workflow for computing UIs for the adjustment Σ∗

of the signature Σ

A Drug_interaction_with_drug (finding)
A1 Drug_interaction (finding)
A2 Drug_or_medicament (substance)
B Substance (substance)
X Adverse_drug_interaction_with_drug (disorder)
Y Adverse_drug_interaction (disorder)
r Associated_with (attribute)

Let T = {A ⊑ A1, A2 ⊑ B, X ⊑ Y ⊓ A ⊓ ∃r .A2} be a description
logic TBox and let Σ1 = {A1,X } and Σ2 = {A1,B,X , r } be two sets
of terms of interest. Then, U = {X ⊑ A1} is a uniform interpolant
of T for Σ1, whereas the set containing also the axiom X ⊑ ∃r .B
is a uniform interpolant of T for the larger signature Σ2. The star
module of T for Σ1 is {A ⊑ A1, X ⊑ Y ⊓A⊓∃r .A2}, which contains
concept names A,A2,Y and role name r that are not in Σ1.

5 WORKFLOW

In this section, we present a workflow for forgetting in real-world
scenarios, as shown in Figure 1, which includes the following stages:
signature adjustment, ontology modularity, forgetting, and evalua-
tion and feedback from a domain expert.

5.1 Signature Adjustment

Real-world signatures are typically (a) a selection of a few specific
concept names that the user is interested in, and (b) a list of concept
names already in use in the domain (a refset), or provided by a
domain expert. To account for the different types of signatures, we
present two signature adjustment methods: signature extension
and signature partition.

Signature Extension. Previous evaluations of modularization and
forgetting tools on ontologies typically involved the use of random
signatures, genuine seed signatures [41], or directly used subsets
of ontologies [16]. These signatures do not reflect real-world sce-
narios of how users or developers would use modules and uniform
interpolants of the SNOMED CT ontology.

The evaluation in [7] has shown that minimal subsumption mod-
ules for small random signatures are often empty. For instance, a
user interested in ‘anticipatory care medication’ or ‘heart structure’
may use a signature consisting of these terms to extract modules
from SNOMED CT only to discover that the module is empty. This
can also happen for star and semantic modules. Applied to refsets
of concept names the forgetting tools yield mere taxonomies, which
could be computed more efficiently using the dedicated ELK tool.8

8https://www.cs.ox.ac.uk/isg/tools/ELK/

Algorithm 1 Signature-Extension(T , Σ, n, d)
Input: Normalised Terminology T , signature Σ, no. of iterations n,
role depth d
Output: Σ+d
1: Σ+d B NC ∩ sig(T ) ∩ Σ

2: while n > 0 do
3: for A ⊑ C ∈ T with A ∈ Σ+d do

4: if roleDepth(C) ≤ d then

5: Σ+d B Σ+d ∪ sig(C)
6: end if

7: end for

8: n:=n-1
9: end while

Algorithm 2 Signature-Partitioning(T , Σ)
Input: Terminology T , Signature Σ
Output: extended signatures Σ+1 , ..., Σ

+
n

1: M⋆ := ExtractStarModule(Σ,T)

2: H ′ := Reduce(Σ,Classify(M⋆))

3: ⟨H ′
1 , ...,H

′
n⟩ := Partition(H ′)

4: for i ∈ {1, ...,n} do
5: Σi := sig(H ′

i )

6: Σ+i := Signature-Extension(M⋆, Σi )
7: end for

We have found that more informative UIs can be obtained if the
input signature is extended with roles and their target concepts up
to a certain nesting from the definitions of input terms. The solution
proposed in this paper is to use the axioms of the ontology for
enriching the user defined signature in order to obtainmore relevant
extracts from the ontology. In practice the question arises which
axioms to choose and how (and how much) a signature should be
extended. Based on discussions with developers from IHTSDO, we
propose Algorithm 1 for signature extension. The algorithm uses
the function roleDepth(C) mapping an EL-concept C to a positive
integer which is recursively defined as:

roleDepth(C) :=


0 C ∈ NC;
max(roleDepth(D), roleDepth(E)) C = D ⊓ E;
1 + roleDepth(D) C = ∃r .D.

In the algorithm, for every axiom A ⊑ C in T , where A is a
concept name in Σ+d , the right-hand side C is included in Σ+d if the
role depth ofC is at most d . The maximal role depth of any concept
description occurring in SNOMED CT is 2. For ontologies other
than SNOMED CT, Algorithm 1 can be adjusted by modifying the
iteration number n and role depth according to domain experts’
suggestions. After evaluation of the extended signature and the UI,
further adjustments can be made and the process iterated until a
suitable UI is obtained. According to our experiments and discus-
sions with domain experts at IHTSDO, for the SNOMED CT setting
n = 1 and d = 2 is sufficient.

Signature Partition. Manual inspection is harder in large UIs for
large refsets. To obtain a smaller number of closely related concept
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and role names, we devised Algorithm 2 performing signature
partitioning. The algorithm helps focusing the signature down to a
few sets of highly related terms.

Algorithm 2 uses the function ExtractStarModule(Σ,T) in Line 1,
which is provided by the OWL API9 for computing star modules.
Even though the function accepts general TBoxes T formulated
in OWL 2, we only use it as a convenient way to compute the
star module M⋆ of SNOMED CT. The function Classify(M⋆) in
Line 2 then calls the ELK reasoner to classify M⋆. Subsequently,
we reduce the computed class hierarchy to the symbols in the in-
put signature. We obtain a classification H ′ of the concept names
in the input signature. The method Partition(H ′) in Line 3 sepa-
rates the class hierarchy into several unrelated parts. Viewing a
class hierarchy as a directed graph, this can be implemented by
computing the connected components of the graph. Then we par-
tition H ′ by identifying different sets H ′

i of concept inclusions
such that every pair of concept names from the same set H ′

i are
connected via a chain of concept inclusions from H ′

i , and every
pair of concept names taken from different sets H ′

i and H ′
j with

i , j are not connected in this sense. This results in n disjoint sub-
hierarchies:H1, . . . ,Hn . The loop from Line 4-6, first computes the
signature Σi of hierarchy H ′

i and then extends Σi to Σ+i using the
function Signature-Extension(M⋆, Σi ) presented in Algorithm 1.

5.2 Modularity Meets Forgetting

In this section, we first compare the notions of locality-based mod-
ules [12], semantic modules [16] and minimal subsumption mod-
ules [6, 7]. We then show the correctness of our workflow, i.e.,
doing forgetting on these modules is logically equivalent to doing
forgetting on the original ontology.

The following example illustrates the difference between the
three module notions. To simplify the presentation, we use the
concept names A, A1, A2, B, X and Y to abbreviate SNOMED CT
concept names as follows:

A Mesoblastic_nephroma
A1 Neoplasm_uncertain_whether_benign_or_malignant
A2 Complex_mixed_AND/OR_stromal_neoplasm
B Neoplasm
X Neoplasm_and/or_hamartoma
Y Tumor

Let Σ = {A,B} and T = {α1,α2,α3,α4}, where α1 B A ⊑ A1 ⊓A2,
α2 B A1 ⊑ B, α3 B A2 ⊑ B and α4 B B ⊑ X . There are two
minimal subsumption modules of T w.r.t. Σ: {α1,α2} and {α1,α3}.
Neither {α1,α2} nor {α1,α3} is sufficient to preserve the entailment
A ⊑ B that only uses symbols in Σ. The semantic module and star
module of T w.r.t. Σ are each {α1,α2,α3}.

For T ′ = {α1,α2,α3,α5} with α5 B B ≡ Y ,10 the star module
w.r.t. Σ is T ′ itself. However, the minimal subsumption modules
and semantic module of T ′ w.r.t. Σ coincide with corresponding
those of T , respectively. (End of example)

The minimal depleting module of an ELI-terminology w.r.t. Σ
is always a subset of the respective star module w.r.t. Σ [16]. A star

9http://owlapi.sourceforge.net/
10Neoplasm (B) and Tumor (Y ) are treated as synonyms in SNOMED CT and share
the same identifier. In order to illustrate the difference between semantic modules and
star module, we add α5 in this example.

module coincides with a minimal depleting module when the termi-
nology contains no concept definitions (cf. Proposition 38 in [16]).
Different to the notion of semantic modules, which is defined in
terms of a model-theoretic inseparability relation, the notion of a
subsumption module is defined in terms of entailment queries. It
was shown that a minimal subsumption module is contained in the
respective semantic module [2].

Both semantic modules and star modules, each yield a unique
subset of a given TBox w.r.t. a signature. On the other hand, there
may exist several, up to exponentially many, minimal subsumption
modules of T for a signature (cf. Example 6 in [7]).

As computing uniform interpolants is a difficult task especially
for large ontologies, the size and complexity of the input ontology
directly influences the computation time. Instead of computing
uniform interpolants on the whole ontology, the idea we follow
in this paper is that speed up can be achieved by computing uni-
form interpolants from ontology modules. The required correctness
guarantee is provided by:

Proposition 5.1. Let T be an L-TBox and let Σ be a signature.
IfU is a uniform interpolant ofM⊑ (MS orM⋆) for Σ, thenU is a
uniform interpolant of T for Σ.

Proof. Let U be a uniform interpolant of M⊑ (MS or M⋆)
for Σ. Then sig(U) ⊆ Σ by Definition 4.1. To show that, in each
case,U is a uniform interpolant of T , we show thatU preserves
the Σ-entailments of T . Let α be an L-inclusion with sig(α) ⊆ Σ.
We show that the following are equivalent: (i) U |= α ; (ii) M |=

α ; and (iii) T |= α , where M ranges over M⊑ , MS and M⋆.
The equivalence of (i) and (ii) holds by Definition 4.1, and the
equivalence of (ii) and (iii) holds by Definition 3.2 for M =M⊑ ,
and it follows from Proposition 3.3 forM =MS andM =M⋆. □

The use of star modularization has already been explored in the
implementation of Lethe.

6 EVALUATION

The goal of the evaluation was to measure the performance of the
workflow in terms of success rate and computation time for the dif-
ferent modularization and forgetting tools. We used the OWL API,
the Mex tool and the tool in [7] to compute star modules, semantic
modules and minimal subsumption modules. To perform forgetting
we used Nui, Fame and Lethe. The experiments with Fame and
Lethe were conducted on machines equipped with Intel Xeon CPU
E5-2640 v3 running at 2.60GHz with 32GB of RAM. As Nui ran
only on 32 bit architectures, its experiments were run on machines
equipped with Intel Xeon 4 Duo CPU at 2.50 GHz and 64GiB of RAM.
The timeout was set to 1 hour.11 We were interested in preserving
EL-inclusions for SNOMED CT and NCIt.

Note that in interpreting the results of the tables one should take
into account that Nui computes UIs which are formulated in EL,
whereas the target logic of Lethe and Fame is ALC. The results
are therefore not directly comparable.

11If a forgetting tool terminated normally within the timeout, we counted this as a
successful run. Our experiments showed that success rates barely increased once the
timeout increased to more than 1 hour. We therefore limited the timeout to 1 hour.

http://owlapi.sourceforge.net/


Tool Fame Lethe Nui

|Σ∗ ∩ NC | No. of Sig Success Rate (%) Med. Time of Forgetting Success Rate (%) Med. Time of Forgetting Success Rate (%) Med. Time of Forgetting
M⋆ MS M⊑ M⋆ MS M⊑ M⋆ MS M⊑ M⋆ MS M⊑ M⋆ MS M⊑ M⋆ MS M⊑

[0, 150] 110 75.45 89.09 94.54 0.28 0.28 0.27 92.73 100.00 100.00 1.29 1.11 0.96 97.27 99.09 100.00 0.01 0.01 0.01
[150, 300] 13 38.46 46.15 76.92 3 600.00 3 600.00 13.51 61.54 84.62 92.31 9.72 4.10 3.22 100.00 100.00 100.00 0.09 0.04 0.02

[300, 116 865] 42 4.76 11.90 14.28 3 600.00 3 600.00 3 600.00 14.29 26.20 28.61 3 600.00 3 600.00 3 600.00 61.90 78.57 84.62 59.05 20.84 16.10

Table 1: Success rate and median computation time (s) of computing UIs using NHS refsets as signatures by Fame, Lethe and Nui on SNOMED CT

Tool Fame Lethe Nui

T M⋆ MS M⊑ M⋆ MS M⊑ M⋆ MS M⊑

Min. 0.10 0.14 0.16 1.45 0.61 0.59 0.03 0.02 0.02
Max. 3 600.00 3 600.00 3 600.00 3 600.00 19.23 1.79 0.14 0.08 0.04
Avg. 2 880.04 960.21 480.23 1 870.11 2.50 0.99 0.05 0.04 0.03
Med. 3 600.00 0.22 0.20 2 194.69 1.24 0.88 0.05 0.04 0.03
Succ.(%) 21.42 78.57 92.86 50.00 100.00 100.00 100.00 100.00 100.00

Table 2: Computation time (s) of computing UIs from different modules of

SNOMED CT by Fame, Lethe and Nui using 14 signatures obtained as exten-

sions of the ERA refset

Tool Fame Lethe Nui

T M⋆ MS M⊑ M⋆ MS M⊑ M⋆ MS M⊑

Min. 0.12 0.13 0.13 0.62 0.61 0.56 0.03 0.01 0.02
Max. 3 600.00 3 600.00 0.98 31.68 24.39 1.97 0.14 0.08 0.04
Avg. 527.07 88.07 0.30 4.24 1.68 0.86 0.05 0.03 0.03
Med. 0.33 0.21 0.25 1.59 0.74 0.85 0.05 0.03 0.03
Succ.(%) 85.37 97.56 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 3: Computation time (s) of UIs on different modules of NCIt by Fame,

Lethe and Nui

Tool Fame Lethe Nui

T M⋆ MS M⊑ M⋆ MS M⊑ M⋆ MS M⊑

Min. 0 0 0 0 0 0 0 0 0
Max. 210 231 232 95 95 93 101 101 103
Avg. 32.94 35.77 48.65 18.46 15.70 18.26 20.18 20.18 22.98
Med. 25.00 23.00 28.00 12.00 10.00 12.00 13.00 13.00 14.50

Table 4: Sizes of UIs from different modules by Fame, Lethe and Nui on

the NCIt ontology

6.1 SNOMED CT

The evaluation was performed on the EL fragment of SNOMED CT
(version Jan 2016), obtained by removing 129 axioms not in EL and
20 GCI axioms of the form C ⊑ A. We used two sets of real-world
signatures, NHS refsets12 and ERA refsets, as inputs.

NHS refsets. The NHS refsets were provided by the National
Health Service (NHS) in the UK. Their purpose is described in
http://bit.ly/2k7AtsK. After discussion with domain experts, we
performed the experiments by using extended signatures (Σ+2 ,n = 1,
d = 2). In total, we obtained 165 signatures of concept names all
contained in the SNOMED CT ontology. The signatures consisted
of 2–116 865 concept names and 0–33 role names. We separated the
signatures into three different groups according to the number of
concept names they contained. For each signature we computed
the three types of modules, their precision rate and the UIs for each
forgetting tool. As definition of the precision rate of a moduleM
w.r.t. a signature Σ we used:

Precision(M, Σ) := |(Σ ∩ sig(M)) ∪ {⊤}|/|sig(M)|,

which is a slight adaptation from [25] with ⊤ added in the numera-
tor since every individual is an instance of the ⊤ concept.

The results show that the average precision rate of the star
modules, semantic modules and minimal subsumption modules
w.r.t. the signatures were around 72%, 71% and 78%, respectively. In
contrast, the precision rate of UIs is 100% (cf. Definition 4.1) unless
definers occur in the result. In the case of Lethe the results for
seven UIs obtained from star modules contained definer symbols.
This was also the case for one of the results computed for the
12https://isd.digital.nhs.uk/trud3/user/guest/group/0/pack/40

semantic and minimal subsumption module. There were no such
cases for the ERA refset and NCIt evaluation.

As shown in Table 1, for computing UIs on small signatures
containing less than 150 concept names, running the forgetting tools
on precomputed minimal subsumption modules made it possible
to compute UIs within 1 hour with a success rate13 of 100% for
Lethe andNui. Precomputing semantic modules is also competitive
for such small signatures. The success rates dropped rapidly with
increasing signature size due to quickly growing ontology modules
for signatures containing more than 300 concept names. This effect
can be observed for Fame and Lethe, and to a lesser extend for
Nui. The median times of forgetting reported in this section are
median values for all three types of modules and do not include
the time for extracting modules. If forgetting was not completed
within the timeout, the forgetting time of this run was taken to
be 1 hour. Where the success rate was less than 50% the median
computation time was therefore taken to be 1 hour. We see it took
less time for all tools to forget symbols from minimal subsumption
modules than from semantic modules and star modules.

ERA refset. For the second part of the evaluation, we used the Eu-
ropean Renal Association (ERA) refset of symbols from SNOMEDCT,
which has been provided by IHTSDO. The ERA refset contains a
list of primary renal diseases, designed for use in renal centres and
registries [40]. We first obtained 14 small disjoint signatures by
partitioning the ERA refset. Next, we applied Algorithm 1 to extend
these signatures in order to relate symbols in the ERA refset with
symbols representing diseases, body structure, role names, etc. The
resulting signatures consisted of 5–40 concept names and 0–8 role
names. For each of the 14 signatures, we computed the three differ-
ent modules of SNOMED CT. These modules together with their
respective producing signatures were then taken as input for the
systems Fame, Lethe andNui to compute UIs. The times to compute
UIs are summarized in Table 2 in terms of the minimal, maximal,
average, and median time for all runs, including successful and
unsuccessful cases. The basis for the success rate was the successful
cases that finished within a timeout of 1 hour. It becomes evident in

13If a tool terminated within 1 hour, we counted it as a successful run.

http://bit.ly/2k7AtsK
https://isd.digital.nhs.uk/trud3/user/guest/group/0/pack/40


#sigNC
(M⋆) #sigNC

(MS ) #sigNC
(M⊑)

Min. 7 6 6
Max. 319 172 95
Avg. 97.9 47.1 24.4
Med. 96.0 41.0 14.5

Table 5: No. of concept names in

different modules of SNOMED CT

#sigNR
(M⋆) #sigNR

(MS ) #sigNR
(M⊑)

Min. 0 0 0
Max. 17 15 8
Avg. 5.0 4.0 3.5
Med. 4.0 3.5 3.5

Table 6: No. of role names in differ-

ent modules of SNOMED CT

#M⋆ #MS #M⊑

Min. 6 2 2
Max. 304 158 64
Avg. 92.7 41.8 14.8
Med. 91.0 38.0 6.5

Table 7: No. of axioms in different

modules of SNOMED CT

#U⋆ #US #U⊑

Min. (2) 2 2
Max. (20) 40 42
Avg. (8.71) 10.43 10.14
Med. (7.0) 7.5 6.5

Table 8: No. of axioms in UIs of

Lethe for modules in Table 7

Table 2 that precomputing semantic modules and minimal subsump-
tion modules considerably reduced the computation time and, thus,
increased the success rate of computing UIs for Lethe and Nui to
100%. In particular in the case of minimal subsumption modules,
the UI for any signature could be computed within 1.79 seconds by
Lethe for all signatures. Contrast this with the fact that the success
rate was only 21.42% for Fame when combined with star modules.

We need to keep in mind however that computing minimal sub-
sumption modules is computationally more expensive. The time
needed to compute the minimal subsumption modules for the 14 sig-
natures ranged from 1 to 939 seconds, whereas semantic modules
and star modules were computed in less than 5 seconds.

The success rate of computing UIs from star modules is at most
50% for Fame and Lethe. Using semantic modules instead increases
the success rate to 100% for Lethe, but only to about 79% for Fame,
cf. last row of Table 2. Hence, depending on the timeout, the use of
minimal subsumption modules can enable the computation of UIs.

6.2 NCIt Ontology

We also undertook an evaluation on the acyclic EL fragment of
NCIt ontology containing around 150 000 axioms. The real-world
signatures used were the sets of drugs approved by the Food and
Drug Administration (FDA) for 41 types of cancers, consisting of
2–162 concept names and 0–17 role names. The experimental setup
was similar to that for SNOMED CT.

The computation times of forgetting are shown in Table 3. For
star modules, semantic modules and minimal subsumption mod-
ules the average precision rates were around 49%, 62% and 85%.
As the NCIt ontology was 50% smaller and less complicated than
SNOMED CT (the latter contains nested existential restriction) in
most cases the success rates were higher than in the experiments in
Section 6.1. In general, computing UIs was faster on minimal sub-
sumption modules, especially for Lethe and Fame. Table 4 shows
the size of UIs that were computed by the three tools applied to
the three types of modules of NCIt. They were almost the same for
Lethe and Nui, while the results were about 50% larger for Fame.
Lethe performs denormalisation, making UIs more user-friendly.

7 DISCUSSION

It was found that neither Nui, Fame nor Lethe could compute
UIs on SNOMED CT and NCIt ontologies without precomputing
ontology modules in real-world signatures with less than 35% of
the symbols in the ontology. In most unsuccessful cases, Fame
and Lethe did not terminate within a reasonable amount of time,
whereas Nui ran out of memory. The results in Section 6 show that
precomputing minimal subsumption and semantic modules can
considerably speed up the process of computing ontology extracts,
especially for the tools Fame and Lethe. The results, when using the
workflow, suggest forgetting on a semantic module should be tried

first as it was the fastest configuration for cases where forgetting
succeeds. Otherwise, forgetting on a minimal subsumption module
could be tried, with which forgetting may be successful but which
may take longer to extract.

In the rest of the section, we analyse the reasons why mod-
ule extraction techniques can help to optimize forgetting tools
by analyzing the detailed statistics (Table 5–8) of the ERA refset
experiments of computing UIs on SNOMED CT.

Smaller Module. Table 7 shows that, on average, the size (number of
axioms) of minimal subsumption modules were more than 2 times
smaller than semantic modules, and 5 times smaller than star mod-
ules (even 13 times smaller than star modules according to median
value). Thus more precise, smaller modules make forgetting easier.

Fewer Symbols to Forget. As can be seen in Table 5, the number of
concept names that occur in minimal subsumption modules was
53% and 25% of those in semantic modules and star modules on
average. As the interpolation signaturewas the same for all modules,
forgetting on subsumption modules has a lot fewer concept names
to forget, and similarly for semantic modules. Although forgetting
role names is more difficult than forgetting concept names, the
number of role names did not varymuch on average for the different
modules, cf. Table 6.

Special Role ‘RoleGroup’. In SNOMED CT, a special role name,
called ‘RoleGroup’, maintains correct inferences and semantic mean-
ing for complex concept expressions related to, e.g., multiple sites
and morphologies [38]. The presence of ‘RoleGroup’ comes with
nested existential expression. We found that nested existential ex-
pressions made forgetting harder. However, inspection has revealed
that semantic modules, especially minimal subsumption modules,
had considerably fewer axioms containing ‘RoleGroup’.

Size of UIs. Table 8 shows the sizes of Lethe’s UIs14 in the ex-
periment with ERA refset. The values in brackets are computed
only over successful cases. The UIs for semantic and minimal sub-
sumption modules were similar in size. Comparing Tables 7 and 8,
in this experiment the UI sizes were close to the sizes of minimal
subsumption modules and considerably smaller than semantic mod-
ules. This is much better than the worst-case upper bound suggests.
However, very large UIs were obtained in the experiments with
NHS refsets where the signatures were much larger. This aspect
deserves further investitigation.

8 CONCLUSION AND FUTUREWORK

Ontology development for applications such as clinical data an-
alytics needs to be facilitated by automated tools. The goal is to
create ontology abstractions of large ontologies that only involve
the terms of interest to the developer or end-user. Despite the fact
14The size of a UI was the number of axioms contained in the UI.



that ontology modules tend to exhibit low precision rates and cur-
rent forgetting tools have difficulties when applied directly to large
ontologies for very small signatures, we show the two approaches
can be successfully combined. Our method provides a feasible ap-
proach with high precision to compute uniform interpolants for
realistic, small-sized signatures of prominent, large ontologies. In
future work, we expect to further explore other signature adjust-
ment algorithms, and evaluate the quality of the obtained modules
and uniform interpolants with domain experts. To make better use
of current module extraction and uniform interpolation techniques
in real-world situation, we will update current module extraction
and forgetting techniques according to feedback from domain ex-
perts. Besides, the algorithms for computing minimal subsumption
modules and semantic modules are expected to be updated in order
to deal with more expressive ontologies.
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