
Investigating Finite Models of Non-classical

Logics with Relation Algebra and RelView?

Rudolf Berghammer1 and Renate A. Schmidt2

1 Institut für Informatik, Christian-Albrechts-Universität Kiel
Olshausenstraße 40, 24098 Kiel, Germany

rub@informatik.uni-kiel.de
2 School of Computer Science, University of Manchester
Oxford Road, Manchester M13 9PL, United Kingdom

Renate.Schmidt@manchester.ac.uk

Abstract. In computer science, scenarios with interacting agents are of-
ten developed using modal logic. We show how to interpret modal logic
of knowledge in relation algebra. This allows the use of the RelView

tool for the purpose of investigating finite models and for visualizing cer-
tain properties. Our approach is illustrated with the well-known ‘muddy
children’ puzzle using modal logic of knowledge. We also sketch how to
treat other non-classical logics in this way. In particular, we explore our
approach for computational tree logic and illustrate it with the ‘mutual
exclusion’ example.

1 Introduction

For some time now researchers in computer science have been interested in rea-
soning about knowledge in multi-agent systems. Here a group of interacting
agents is given and it is assumed that each agent takes into account not only
facts that are true about the world, but also the knowledge of other agents. Ap-
plications of this scenario can be found in many domains of computer science,
for instance in distributed computing, cryptography, and robotics.

The idea of using modal logic for reasoning about knowledge goes back to
J. Hintikka and has been worked out in great detail, e.g. in the textbooks [9, 12,
19]. The standard semantics of modal logic is based on the agents’ accessibility
relations on a global set of possible worlds. In this paper we adopt an alge-
braic perspective. Relation algebra, and more generally Boolean algebras with
operators, provide natural settings for studying modal logics and other kinds of
non-classical logics, cf. [2, 6, 13, 23] for example. A sufficient framework for in-
terpreting modal logic of knowledge is dynamic algebra [16, 24]. However in this
paper we interpret modal logics in the more expressive setting of heterogeneous
relation algebras with transitive closure (see [22, 25, 26]) and their representation
as Boolean matrices [25]. Representing sets (respectively, predicates on sets) by

? The authors thank Harrie de Swart and the anonymous referees for their comments.
The work was supported by EU COST Action 274 (Tarski).

specific relations, viz. vectors, relation-algebraic specifications can be evaluated
by calculations on Boolean matrices and vectors, and properties of relations can
be verified in this way. Hence, the relation-algebraic manipulation and visualiza-
tion system RelView [1, 20, 4] can be applied for the purpose of model checking
and similar tasks. It turns out that this can be achieved with very little effort
and that the approach can be transferred to other important non-classical log-
ics, which are embeddable into the programming language of RelView, such
as temporal logic which we consider in this paper but also Peirce logic and
description logic.

The case study in this paper explores a novel application of the RelView

tool for which it was not originally designed. The application may be of inter-
est to researchers working in the area of modal logics, since to our knowledge,
there seem to be very few tools available for solving and visualizing computa-
tional problems of finite models in modal logic. One of the uses of RelView

we explore is its use as a finite model checker. However we do not claim any su-
periority of the system over existing implemented model checking systems such
as Mcmas [18] and Verics [14, 15]). Sophisticated model checking tools which
have been developed for computational tree logic, linear temporal logic, and the
process algebra CSP include Spin, Smv, Kronos, Uppall, and Fdr2. Because
of the global approach that RelView takes, it cannot compete directly with
systems based on local evaluations. Nevertheless, the underlying technology of
RelView is based on reduced, ordered BDDs which are fast [17, 3, 20]. Fur-
thermore, the tool has a convenient graphical user interface and provides useful
capabilities for manipulating and displaying relations and graphs. Particularly
attractive in the context of modal logic is the presence of the operator trans

for computing transitive closures in the tool’s programming language. This is
useful for performing finite model reasoning tasks for a modal logic with the
common knowledge operator and also for dynamic logic. Such logics cannot be
handled directly for example by first-order logic theorem provers since the tran-
sitive closure operator and the common knowledge operator are not first-order
definable.

The remainder of the paper is organized as follows. Some basic notions of
modal logic and modal logic of knowledge are recalled in Sections 2 and 3.
Section 4 describes how to interpret modal logic of knowledge in relation algebra
and how then the RelView tool can be used for solving computational problems
on finite models. The application of the approach to the well-known ‘muddy
children’ puzzle is presented in Section 5. This example also demonstrates how
RelView can be used for visualizing models, and solutions of tasks. Our method
can be extended to all non-classical logics, embeddable into the programming
language of RelView. Section 6 features the approach for computational tree
logic and the ‘mutual exclusion’ example in more detail. In Section 7 some further
applications of relation algebra and RelView in the context of modal logic are
considered. Finally, Section 8 concludes with some further remarks about the
approach and the use of RelView.

2 Modal Logic

The language of (propositional) modal logic with multiple modalities is defined
over countably many propositional variables p1, p2, p3, . . ., and finitely many
modalities ♦1, . . . ,♦n, one for each agent 1, . . . , n. A propositional atom is a
propositional variable or the constant > (the symbol for ‘true’) and a modal for-

mula is either a propositional atom or a formula of the form ¬φ, φ ∧ ψ, and ♦iφ.
We define the constant ⊥ (the symbol for ‘false’) and the other propositional
connectives ∨,→, and ↔ as usual, e.g. φ → ψ := ¬φ ∨ ψ. Furthermore, the dual
operator of ♦i is defined by �iφ := ¬♦i¬φ.

The standard semantics of modal logic is given by the well-known Kripke

semantics (or possible world semantics). A frame (or relational structure) for
a modal logic is a pair F = (W, {R1, . . . , Rn}), where W is a non-empty set of
worlds and each Ri is a binary relation overW .W is the set of possible worlds (or
states) in which the truth of formulae is evaluated. The Ri are the accessibility
relations which determine the formulae deemed possible by an agent i in a given
world (1 ≤ i ≤ n). A model is a pair M = (F , ι) of a frame F and a valuation
function ι from the set of propositional variables to 2W , where ι(pi) is interpreted
to be the set of worlds in which pi is true. The truth of a modal formula in a
world x of a model M is defined as follows (where the notation Ri(x, y) means
that the elements x and y are related via the relation Ri).

M,x |= >
M,x |= pi :⇐⇒ x ∈ ι(pi)
M,x |= ¬φ :⇐⇒ M,x 6|= φ

M, x |= φ ∧ ψ :⇐⇒ M,x |= φ and M,x |= ψ
M, x |= ♦iφ :⇐⇒ ∃ y ∈W : Ri(x, y) and M, y |= φ

If M,x |= φ we also say that x satisfies φ. A modal formula is valid in a model M
iff the formula is true in every world of M . It is valid in a frame F iff it is valid
in all models based on the frame, i.e. in all models (F , ι).

For the purposes of this paper it suffices to consider modal logic from a seman-
tic perspective. (The reader interested in the axiomatizations of the considered
logics should refer to standard textbooks, e.g. [5, 7, 10, 11].) A modal logic L is
said to be sound (respectively complete) with respect to a class of frames iff for
any modal formula φ, any frame in the class validates φ if (respectively iff) φ
is a theorem in L. A modal logic is said to be complete iff it is complete with
respect to some class of frames.1

The basic multi-modal logic K(m) is complete with respect to the class of all
frames. The table in Figure 1 lists the relation-algebraic correspondence prop-
erties satisfied by classes of frames for extensions of the basic logic K(m). This
means, if L denotes an extension of the basic logic K(m) with a subset of the
common axioms listed in the table then L is a logic (sound and) complete with

1 Note in modal logic the notion of completeness is used differently than in other
logical disciplines.

Axiom Correspondence property

T �ip → p reflexivity I ⊆ Ri

4 �ip → �i�ip transitivity Ri; Ri ⊆ Ri

B ♦i�ip → p symmetry Ri ⊆ Ri
T

D �ip → ♦ip seriality L ⊆ Ri; L
alt1 ♦ip → �ip functionality Ri

T; Ri ⊆ I

5 ♦i�ip → �ip Euclideanness Ri
T; Ri ⊆ Ri

Fig. 1. Modal axioms and their frame correspondence properties

respect to the class of all frames which satisfy each of the corresponding prop-
erties. In the table, I denotes the identity relation and L denotes the universal
relation. Furthermore, R;R denotes the composition of R with itself and RT the
transpose (converse) of R. Other relation-algebraic constructions used in this
paper are the empty relation O, the Boolean constructs R ∪ S (union), R ∩ S
(intersection), R (complement), and the transitive closure R+ :=

⋃
k≥1 R

k of

R. Here we assume powers are defined inductively by R0 := I and Rk+1 := R;Rk

for k ≥ 0.

3 Modal Logic of Knowledge

Modal logic lends itself to formalize informational aspects of agent-based sce-
narios. Consider the language defined in Section 2 in which �iφ, from now on
written Kiφ, is interpreted as ‘the agent i knows that property φ is the case’.
For this reading it is usual to assume that the following axioms of the table in
Figure 1 are valid: T (axiom of true knowledge), 4 (agents are positively intro-
spective) and 5 (agents are negatively introspective). The accessibility relations
Ri associated with the knowledge operators Ki are therefore equivalence rela-
tions on the set of worlds W (because each Ri is reflexive and transitive and
RT

i = RT

i ; I ⊆ RT

i ;Ri ⊆ Ri shows symmetry).
In order to handle the common knowledge of a group of agents two additional

modal operators, EG and CG, are required. Let G denote a finite set of agents.
Then the modal formula EGφ is read to mean that ‘each of the agents in G
knows that φ is the case’, and the modal formula CGφ is read to mean that ‘it
is common knowledge among the group G of agents that φ is the case’. Their
semantics is defined by the following equivalences, where EkGφ is an abbreviation
of the modal formula EG . . . EGφ with k occurrences of the operator EG.

M,x |= EGφ :⇐⇒ ∀ i ∈ G : M,x |= Kiφ
M, x |= CGφ :⇐⇒ ∀ k ≥ 1 : M,x |= EkGφ

If G = {i1, . . . , im}, then we have the following equivalence.

M,x |= EGφ ⇐⇒ M,x |= Ki1φ ∧ . . . ∧ Kimφ

Thus, the formula EGφ is true in a world of a model iff everyone in the group
knows that φ is true. Furthermore, the formula CGφ is true iff everyone in the

group knows that φ is true and everyone in the group knows that everyone in
the group knows that φ is true, and so on. The following three properties are
not difficult to show for any model M and any world x of M . We assume that
R is the union of the accessibility relations Ri for all i ∈ G, i.e. R :=

⋃
i∈GRi.

M,x |= CGφ ⇐⇒ M,x |= EG(φ ∧ EGCGφ)
M,x |= EkGφ ⇐⇒ ∀ y ∈W : Rk(x, y) implies M, y |= φ
M, x |= CGφ ⇐⇒ ∀ y ∈W : R+(x, y) implies M, y |= φ

Distributed knowledge is another concept central to modal logics of knowl-
edge. Here a group of agents can deduce a formula by pooling their knowledge
together. Since this distributed knowledge is not used in the ‘muddy children’
puzzle of Section 5, we omit the technical details and refer to the textbooks
cited in Section 2. Relation algebra does however allow us to model distributed
knowledge by using the same techniques which we apply in the next section to
model the modal logic of common knowledge.

4 Relational Model Checking

The term ‘model checking’ refers to automatic model-based verification ap-
proaches; see e.g., [21, 8]. In the case of modal logic it involves solving tasks
of the following kind. Suppose that M = (F , ι) is a given finite model, where the
frame is F = (W, {R1, . . . , Rn}), and φ is a given modal formula.

Determine whether φ is true in a given world of M (satisfiability in a
given world of a model).

(1)

Determine whether there is a world of M in which φ is true (satisfiability
in a model).

(2)

Determine whether φ is true in all worlds of M (global satisfiabil-
ity/validity in a model).

(3)

Determine the set of all worlds of M in which φ is true.(4)

In this paper, we use relation algebra and the RelView tool to compute the set
of all worlds of M in which φ is true (i.e. to solve task (4)). This immediately
leads to solutions of tasks (1)–(3), too.

Our solution is based on the representation of sets of worlds by so-called
vectors overW . Such vectors are relations with W as the domain and a singleton
set, {•} say, as the range. Since this specific range is irrelevant, in the following
we omit for a vector v the second argument and write v(x) instead of v(x, •). A
vector v over W can be viewed as a Boolean column vector and represents the

set {x ∈ W | v(x)} of worlds.
Suppose we wish to describe an arbitrary modal formula φ via the vector of

worlds in which it is true, that is, we want to compute the vector vφ representing
the set {x ∈ W | M,x |= φ}. We start by defining for the constant > the
vector v> as the universal vector L over W (the universal relation with domain

W and range {•}). Then for each propositional variable p in φ we define a
vector vp representing the set ι(p). Using Boolean vector terminology, the latter
means that we set the x-component of vp to 1 if x ∈ ι(p) and we set it to 0 if
x /∈ ι(p). Due to the first two cases of the definition of truth in Section 2, the
vector v> represents the set {x ∈ W | M,x |= >} and the vector vp represents
the set {x ∈ W | M,x |= p} for every propositional variable p in φ. Based on
these facts, we then obtain the vector vφ which we are looking for by recursively
applying the following properties.

v¬ψ = vψ vψ∧ρ = vψ ∩ vρ v♦iψ = Ri; vψ

The proofs of these equations for arbitrary ψ and ρ use the remaining three cases
of the definition of truth in Section 2 and the definition of relational complement,
intersection, and composition. E.g., v♦iψ = Ri; vψ holds since for all x ∈W

(Ri; vψ)(x) ⇐⇒ ∃ y ∈ W : Ri(x, y) and vψ(y)
⇐⇒ ∃ y ∈ W : Ri(x, y) and M, y |= ψ
⇐⇒ M,x |= ♦iψ.

It is obvious from the above equations, how to get the vectors for the con-
stant ⊥ and the other propositional connectives ∨, → and ↔. A little reflection
yields the vectors for the dual operators Ki (or �i). With the help of the prop-
erties of Section 3 we, finally, obtain the vector-representation for the remaining
modal operators EG and CG, too.

We present only the results for the dual operatorsKi and the common knowl-
edge operators EG, and CG. Here we have:

vKiψ = Ri; vψ vEGψ = (
⋃

i∈G

Ri); vψ vCGψ = (
⋃

i∈G

Ri)+; vψ

A proof of the first equation is

vKiψ = v¬♦i¬ψ = v♦i¬ψ = Ri; v¬ψ = Ri; vψ .

The second equation follows from the calculation

vEGψ = vV

i∈G
Kiψ =

⋂

i∈G

vKiψ =
⋂

i∈G

Ri; vψ =
⋃

i∈G

Ri; vψ = (
⋃

i∈G

Ri); vψ .

A simple induction shows that vEk

G
ψ = (

⋃
i∈GRi)

k; vψ for all k ≥ 1. This
property is used in the following proof of the third equation.

vCGψ =
⋂

k≥1

vEk

G
ψ =

⋂

k≥1

(
⋃

i∈G

Ri)k; vψ =
⋃

k≥1

(
⋃

i∈G

Ri)k; vψ = (
⋃

i∈G

Ri)+; vψ

All the constructs of relation algebra we have used up to now are available in
the programming language of the RelView tool. More specifically, we have the
RelView-operators - for complementation (prefix operator), ^ for transposition

(postfix operator), |, &, and * for union, intersection, and composition (infix
operators), and trans for transitive closure (a pre-defined relational function).
Furthermore, the tool allows for the definition of relational functions by the
user. For instance, the box operators �i can be modelled by the following binary
RelView-function box.

box(S,v) = -(S * -v)

Here S denotes a RelView-relation (a Boolean matrix) and v a RelView-
vector. Consider the modal formula φ defined as follows.

K1p ∧ K1¬K2K1p

In words, the formula φ says that agent 1 knows p and, furthermore, that agent 1
knows that agent 2 does not know agent 1 knows p. The vector-representation vφ

of the set of worlds in which φ is true is computed by RelView as the result of
the evaluation of the expression

box(R1,p) & box(R1,-box(R2,box(R1,p))).

Here it is assumed that the accessibility relations R1, R2 of M and the vector vp

are stored in the tool’s workspace under the names R1, R2, and p.

5 Example: The Muddy Children Puzzle

By way of the well-known ‘muddy children’ puzzle we now illustrate the support
provided by the RelView tool for solving certain problems on finite models of
modal logic. Our description of the puzzle follows [9].

A group of n children play together. A number of them happen to get mud
on their foreheads. Each child can see another child’s forehead but it cannot see
its own forehead. Since no child will tell another child whether it has mud on the
forehead, the puzzle is the following. Can a child know that it has mud on its own

forehead? Obviously, without any extra information the answer is no. But now
the father comes onto the scene. He says for all to hear, that ‘at least one of you
has mud on your forehead’. He then asks the children over and over again: ‘Do
you know whether you have mud on your forehead?’ with the instruction that
the children have to answer the question simultaneously. Suppose the number
of children with mud on their foreheads is k. Then in the first k− 1 rounds, the
father asks the question all children will answer ‘no’. However, in the kth round
exactly the children with muddy foreheads will answer ‘yes’; the remaining will
answer ‘no’.

This puzzle can be modelled and solved within the modal logic of knowledge
defined in Section 3. The common knowledge operator CG is particularly crucial
for the solution.

As a concrete example of the ‘muddy children’ puzzle, in the following we
elaborate an instance of the problem with three children. The possible states

0 0 0
1 0 0
0 0 1
0 1 0
1 0 1
1 1 0
0 1 1
1 1 1

0
0

0
1

0
0

0
0

1
0

1
0

1
0

1
1

1
0

0
1

1
1

1
1

0 0 0
1 0 0
0 0 1
0 1 0
1 0 1
1 1 0
0 1 1
1 1 1

0
0

0
1

0
0

0
0

1
0

1
0

1
0

1
1

1
0

0
1

1
1

1
1

0 0 0
1 0 0
0 0 1
0 1 0
1 0 1
1 1 0
0 1 1
1 1 1

0
0

0
1

0
0

0
0

1
0

1
0

1
0

1
1

1
0

0
1

1
1

1
1

R1 R2 R3

Fig. 2. The accessibility relations in the case of three children

(worlds) of the model are given by triples of 0’s and 1’s, where (s1, s2, s3) is the
state in which child i has mud on its forehead iff si = 1 and is clean iff si = 0
(1 ≤ i ≤ 3). The model, hence, consists of 8 states representing all combinations
of associating 0 or 1 with the three children. Let us now consider what each
child knows in a given state. For instance, in the state (1, 0, 1) child 1 sees the
foreheads of child 2 and child 3 but not its own, it therefore knows that child 2
does not have a muddy forehead but child 3 does. Initially the child does not
know if its own head is muddy. Hence, (0, 0, 1) and (1, 0, 1) are the only possible
successor states of the state (1, 0, 1) with respect to the accessibility relation R1.
Similar considerations apply to the other children and states.

The three pictures in Figure 2 show the accessibility relations R1, R2, and
R3. This is how RelView displays the relations as Boolean matrices (with
labeled rows and columns). A black square in the matrix Ri means that the
corresponding states are related via this relation and a white square means that
they are not related. E.g., the above considerations on the knowledge of child 1
in the state (1, 0, 1) correspond to the two black squares in the fifth row of R1.

Suppose that the relation R is the union of the three accessibility relations
R1, R2, and R3. In Figure 3 it is shown how the RelView tool displays the
irreflexive part R∩ I of R as a labelled graph. This graph is the disjoint union of
three subgraphs. These correspond to the possibilities of child 1 (boldface arcs),
child 2 (dotted arcs), and child 3 (remaining arcs), but neglecting all self-loops.
(We have omitted the self-loops in order to avoid cluttering in the graph.)

Now, we assume the propositional variable pi, 1 ≤ i ≤ 3, denotes that ‘child i
has mud on its forehead’. Then RelView depicts the vector vpi

representing
the set ι(pi) as a Boolean column vector as in Figure 4, where we have again
used the tool’s labeling mechanism to enhance understandability.

The three accessibility relations and these three vectors (Figures 2 and 4) pro-
vide a complete specification of the modelM which we use as input to RelView.
We assume that these are stored in the tool’s workspace under the names R1, R2,
R3 and p1, p2, p3. Furthermore, we use the relational function box of Section 3.

In order to determine satisfiability of a formula φ in a state or set of states
all that is required is to let RelView evaluate the expression corresponding
to φ, since this returns the set of worlds/states in which the formula is true as

0 0 0
1

1 0 0
2

0 0 1
3

0 1 0
4

1 0 1
5

1 1 0
6

0 1 1
7

1 1 1
8

Fig. 3. Graphical representation of the accessibility relations

a vector. As first examples consider the following two statements.

M,x |= ¬K1(p1 ∨ p2) M,x |= K1(p2 ∨ K3p1)

The formula on the left says that child 1 does not know whether it or child 2 is
muddy and the formula on the right says that child 1 knows that child 2 is muddy
or that child 3 knows that child 1 is muddy. The RelView-expressions represent-
ing the modal formulae ¬K1(p1 ∨ p2) and K1(p2 ∨ K3p1) are -box(R1,p1| p2)

respectively box(R1,p2| box(R3,p1)). Evaluating these two expressions with
the tool yields the vectors in Figure 5.

The labelling of the rows is as in Figure 4. Hence, the interpretation of the
vectors is that ¬K1(p1 ∨ p2) is true in the states (0, 0, 0), (1, 0, 0), (0, 0, 1) and
(1, 0, 1) and K1(p2 ∨ K3p1) is true in all states except (0, 0, 0), (1, 0, 0), (0, 0, 1)
and (1, 0, 1). As a consequence, the statement

M,x |= K1(p1 ∨ p2) ↔ K1(p2 ∨ K3p1)

0 0 0
1 0 0
0 0 1
0 1 0
1 0 1
1 1 0
0 1 1
1 1 1

0 0 0
1 0 0
0 0 1
0 1 0
1 0 1
1 1 0
0 1 1
1 1 1

0 0 0
1 0 0
0 0 1
0 1 0
1 0 1
1 1 0
0 1 1
1 1 1

p1 p2 p3

Fig. 4. The vectors for ‘child i has mud on its forehead’

t1 = -box(R1,p1|p2) t2 = box(R1,p2|box(R3,p1)) (t1|t2)&(-t1|-t2)

Fig. 5. Satisfiability of t1 = ¬K1(p1 ∨ p2), t2 = K1(p2 ∨ K3p1) and ¬t1 ↔ t2

is true for all states x of the model M , which menas that its formula is valid
in M . This can be easily determined with the aid of RelView by evaluating
the expression (t1| t2)& (-t1| -t2) (i.e. ¬t1 ↔ t2) where t1 and t2 denote
¬K1(p1 ∨ p2) and K1(p2 ∨ K3p1), respectively. This produces the universal
vector which confirms that the equivalence is valid. In words, the equivalence
says that child 1 knows that itself or child 2 is muddy iff it knows that either
child 2 is muddy or that child 3 knows that child 1 is muddy.

The next example involves the common knowledge operator CG. Consider
the following statement.

M,x |= C{1,2,3}(p2 → K1p2)

Because vCGψ = (
⋃
i∈GRi)

+; vψ (see Section 4) and the definition of impli-
cation in terms of negation and disjunction, the RelView-expression for the
formula C{1,2,3}(p2 → K1p2) is

box(trans(R1| R2| R3),-p2| box(R1,p2)).

The RelView result for this expression is the universal vector, which means
that the formula C{1,2,3}(p2 → K1p2) holds in all the worlds of the model M
under consideration. Indeed, as is easy to verify, in this model it is common
knowledge of all children that, if child 2 is muddy then child 1 knows this.

The above illustrates that RelView has two modes for displaying relations:
graph representations and matrix representations. Graph representations are
particularly well suited for visualization. RelView allows for the edges and
nodes of graphs to be distinctively marked. For example, different edge styles
can be used as in Figure 3 to specify designated (sub)relations and the nodes
can be labelled. Matrix representations are in general less well-suited for visu-
alization, but provide efficient representations of graphs and are easy to process
by relation-algebraic (matrix) operations. In addition, certain properties have
natural illustrations in matrices. E.g., it is easy to recognize at one glance from
the matrices representing R1, R2 and R3 that all three relations are reflexive
and symmetric (because each matrix includes the diagonal, the identity rela-
tion, and is a mirror image in the diagonal). Also validity of a formula in the
model is immediately recognizable when the evaluation returns a vector with all
squares marked.

6 Treatment of Other Non-classical Logics

Until now, we have shown how to interpret modal logic of knowledge in relation
algebra and how then the RelView tool can be used for investigating finite
models of this logic, for visualizing them and for computing solutions to certain
computational tasks. This method can be extended to all non-classical logics,
embeddable into the programming language of RelView. Prominent examples
are logics such as linear-time logic LTL, Hennessy-Milner logic HML, the modal
µ-calculus, and the computational tree logic CTL. These are used in computer
science for describing properties of computer systems, and model checking for
these logics can then serve as a verification method.

In all the logics we have just mentioned some modalities are specified via
fixed point constructions. This is no problem for RelView. Far from it! Its
programming language allows to formulation of while-loops. These can be used
immediately to compute extremal fixed points of monotone functions f on finite
lattices as limit of the finite ascending chain 0 ≤ f(0) ≤ f(f(0)) ≤ . . . in the
case of the least fixed point (0 is the least element of the lattice) and of the finite
descending chain 1 ≥ f(1) ≥ f(f(1)) ≥ . . . in the case of the greatest fixed point
(1 is the greatest element of the lattice), respectively.

In the following, we consider computational tree logic CTL in more detail.
Formulae of this logic are constructed using the propositional atoms and connec-
tives of modal logic as introduced in Section 2 and the specific operators AX, EX,
AU, EU, AF, EF, AG, and EG. The meaning of the operators AX (respectively
EX) is the same as the meaning of the �-modality (respectively the ♦-modality)
in classical modal logic. Hence, if we use again vφ as vector representation of the
set {M,x |= φ} we obtain the relation-algebraic specifications

vAX (φ) = R; vφ vEX (φ) = R; vφ,

where R is the transition relation of the model M . A formula of the form
AU (φ, ψ) holds in a state x if for all computation paths x1, x2, x3, . . . begin-
ning with x(= x1) we have that ψ holds in some future state xi and φ holds
for all states xj , j < i. Furthermore, a formula EU (φ, ψ) holds in a state x
if there exists a computation path x1, x2, x3, . . . beginning with x(= x1) such
that ψ holds in some future state xi and φ holds in all states xj , j < i. Formally
these properties can be described by least fixed point constructions (cf. [21]).
These yield the following vector representations, where again R is the transition
relation of the model M .

vAU (φ,ψ) = µf where f(w) = vψ ∪ (vφ ∩ R; w ∩ R; L)
vEU (φ,ψ) = µg where g(w) = vψ ∪ (vφ ∩R;w)

The remaining four operators can be reduced to AU and EU . We have AF (ϕ) :=
AU (>, ϕ), EF (ϕ) := EU (>, ϕ), AG(ϕ) := ¬EF (¬ϕ), and EG(ϕ) := ¬AF (¬ϕ)
(see e.g., [21]). From these definitions we obtain the corresponding vector repre-
sentations as follows:

vAF (ϕ) = vAU (>,ϕ)

vEF (ϕ) = vEU (>,ϕ)

vAG(ϕ) = vEF (¬ϕ)

vEG(ϕ) = vAF (¬ϕ)

AX(R,p) = -(R * -p).

AU(R,p,q)

DECL w, v

BEG w = O(p);

v = q | (p & -(R * -w) & R * L(p));

WHILE -eq(w,v) DO

w = v;

v = q | (p & -(R * -v) & R * L(p)) OD

RETURN w

END.

AF(R,p) = AU(R,L(p),p).

Fig. 6. Programs to compute AX, AU, AF.

A RelView-implementation of CTL essentially consists of RelView-prog-
rams for the operators of this logic. The code in Figure 6 shows the programs
for the three operators AX, AU, and AF as they arise from the above vector
representations. Guided by this code the reader should have no difficulties to
obtain the RelView-programs for the remaining five CTL-operators EX, EU,
EF, AG, and EG from the corresponding vector representations.

We have experimented with a RelView-implementation of CTL using stan-
dard examples from the literature. One of them is the ‘mutual exclusion’ of two
processes P1 and P2. In the textbook [12] this example is modelled by a tran-
sition system in two ways and in each case some important properties (such as
safety and liveness) are verified using CTL. The remainder of this section treats
the first attempt of [12] with the aid of RelView.

We assume six propositional variables. For i ∈ {1, 2} the variable ni denotes
that the process Pi is in a non-critical section, the variable ti denotes that Pi
tries to enter a critical section, and the variable ci denotes that Pi is in a critical
section. Based on these variables, a protocol for managing the admission to a
critical section is given by a transition relation R on a set of states and a valu-
ation of the propositional variables. A RelView-description of the protocol is
presented in the Figures 7 and 8. Figure 7 shows the transition relation R on the

R n1 n2 t1 t2 c1 c2

Fig. 7. Relational model of a mutual exclusion protocol

Fig. 8. Graphical representation of a mutual exclusion protocol

protocol’s states as a Boolean matrix R and the valuation of the propositional
variables as six Boolean vectors n1, n2, t1, t2, c1, and c2. The graph repre-
sentation of the model is shown in Figure 8. In this picture a node corresponds
to a state and the labels of a node indicate which propositional variables are
defined to be true in the corresponding state. E.g., the first node corresponds
to the initial state where both processes are in a non-critical section and the
second node corresponds to the state where P1 tries to enter a critical section
and P2 remains in a non-critical section. Usually, the initial state of a transition
system is indicated as a node with an incoming arrow without a source. Since in
RelView such ‘partial arrows’ are not possible, we have drawn the initial node
as a black circle.

Having the RelView-description of the protocol at hand, we have used the
tool to verify fundamental properties of the protocol. For example, safety, live-
ness, and that a process can always request to enter a critical section are de-
scribed by the following three CTL-formulae.

safety: AG(¬(c1 ∧ c2))
liveness: AG(t1 → AF (c1))
non-blocking: AG(n1 → EX (t1))

If we evaluate the three corresponding RelView-expressions AG(R,-(c1 & c2)),
AG(R,-t1 | AF(R,c1)), and AG(R,-n1 | EX(R,t1)), we obtain in the first case
and the third case the 8×1 universal vector and in the second case the 8×1 empty
vector. This means that the properties of safety and non-blocking are satisfied in
every state but liveness is satisfied in no state. This conclusion is in agreement
with the results of [12].

7 Further Uses of RelView

Suppose q is a propositional variable in a modal formula φ and suppose the
valuations ι(p) of all propositional variables p in φ with the exception of q are

defined in M . A problem which we might be interested in is the following:

Compute a valuation ι(q) to q so that φ is satisfiable in a world of M .(5)

Task (5) may be generalized to an optimization problem as follows:

Compute a valuation ι(q) for q so that φ is satisfiable in a maximal
number of worlds of M .

(6)

A solution to the first problem is possible by applying the ‘is-member-of’ relation
between W and the powerset 2W . The ‘is-member-of’ relation ε relates a world
x and a set of worlds X iff x ∈ X . It is available in RelView via a pre-defined
relational function called epsi. Problem (6), the generalization, can also be
solved with RelView. The solution uses besides the ‘is-member-of’ relation also
the ‘size-comparison’ relation on 2W , and the vector-representation of greatest
elements with respect to a quasi-order. The ‘size-comparison’ relation relates two
sets X and Y iff |X | ≤ |Y | and can be computed via a call of the pre-defined
function cardrel.

In an array-like implementation of relations the memory consumption of the
‘is-member-of’ relation and the ‘size-comparison’ relation is exponential in the
size of the base set. However, BDDs allow a very efficient implementation of these
two relations. In [17] for the ‘is-member-of’ relation a BDD-implementation is
developed that uses O(n) BDD-nodes and [20] presents for the ‘size-comparison’
relation a BDD-implementation with O(n2) BDD-nodes. In both cases n is the
number of elements of the base set, i.e., the cardinality of the set of worlds W
in our case.

To give an impression of how to solve problem (5) by means of RelView,
we consider the formula ¬K1(p1 ∨ p2) of Section 5 and replace the propositional
variable p2 by the (uninterpreted) propositional variable q. We assume again that
the relation R1 is as shown in Figure 2 and that the propositional variable p1

denotes ‘child 1 has mud on its forehead’, i.e., the vector representation vp1 of
ι(p1) is as shown in Figure 4. Then RelView computes exactly 240 possible
valuations ι(q) for q such that the modal formula

¬K1(p1 ∨ q)

becomes true in a world of the model M with relation R1 and valuation func-
tion ι. The key to obtaining this result is the relation Q between the set of
worlds W and the powerset 2W , defined by

Q := R1; vp1 ; L ∪ ε .

This definition implies that for all x ∈ W and X ∈ 2W we have that Q(x,X)
iff X = ι(q) implies M,x |= ¬K1(p1 ∨ q). In matrix terminology this means: If
ι(q) is represented by column c of ε, then {x ∈ W | M,x |= ¬K1(p1 ∨ q)} is
represented by the same column of Q. Hence, the vector QT; L (defined over 2W)
represents the 240 solutions of problem (5) with inputs ¬K1(p1 ∨ q), R1, and

ι(p1). A column-wise description of these solutions is ε; inj (QT; L)
T

, where the

Fig. 9. Valuations not leading to satisfiability of ¬K1(p1 ∨ q)

relational function inj computes the injective mapping generated by a vector.
(If the vector v over X represents the subset Y of X , then inj(v) is the relation
between Y and X such that inj(v)(x, y) iff x = y.) This standard technique
for representing sets of subsets is explained in, e.g. [3, 4]. In our example it
yields a 8 × 240 RelView-matrix, which is too large to be presented here.
Therefore, we show in Figure 9 a much smaller RelView-matrix that column-
wisely represents the non-solutions, i.e., the 16 valuations ι(q) for q which do
not lead to satisfiability. For example, from the last column of this picture we
see that no world of M satisfies the formula ¬K1(p1 ∨ q) if ι defines the variable
q to be true in all worlds of M .

We have also used RelView to solve problem (6) for the same three inputs
¬K1(p1 ∨ q), R1, and ι(p1). The system computes that exactly 16 of the 240
solutions of problem (5) maximize the number of worlds which satisfy the for-
mula, there is only one such maximal set of worlds, and its cardinality is 4. The
16 solutions of problem (6) are column-wisely described by the 8× 16 matrix of
Figure 10. E.g., the last column of this matrix states that ¬K1(p1 ∨ q) is true in
a maximal number of worlds if q is true in 〈1, 0, 0〉, 〈1, 0, 1〉, 〈1, 1, 0〉, and 〈1, 1, 1〉.
The only 4 worlds which satisfy ¬K1(p1 ∨ q), if ι(q) is one of the 16 solutions
of problem (6), are 〈1, 0, 0〉, 〈1, 0, 1〉, 〈1, 1, 0〉, and 〈1, 1, 1〉. This property follows
from the RelView-vector of Figure 10.

Like the solutions (respectively non-solutions) of problem (5) for the inputs
¬K1(p1 ∨ q), R1, and ι(p1), also the solutions of problem (6) can be specified
by simple relation-algebraic expressions. Crucial to the solution is the vector

v := ge(C, syq(ε,Q); L)

Fig. 10. Maximum satisfiability of ¬K1(p1 ∨ q)

over the powerset 2W that represents the set of all maximal subsets X of W such
that M,x |= ¬K1(p1 ∨ q) holds for all x ∈ X . In this definition the relations Q
and ε are as above, C denotes the ‘size-comparison’ relation on 2W , and the
relational functions

ge(R,w) = w ∩ R
T

;w syq(R,S) = RT; S ∩ R
T

;S

compute the vector of the greatest elements of the vector w with respect to the
quasi-orderR and the symmetric quotient of R and S, respectively. In the present
case the column-wise description ε; inj(v)T of the maximal subsets consists of
only one column and coincides with the vector of Figure 10. From it we obtain
the vector representation of the set of 16 valuations leading to the only maximal
subset2 {〈1, 0, 0〉, 〈1, 0, 1〉, 〈1, 1, 0〉, 〈1, 1, 1〉} via the vector syq(Q, ε; inj(v)

T
) over

2W , and the 8 × 16 matrix of Figure 10, finally, is exactly the column-wise
description of this set of valuations.

So far we have used RelView only for computing sets of worlds or for solving
related tasks. But the application domain of the system is larger. For example,
the tool can also be used for the following important task:

Determine whether a relation R in a given finite frame possesses certain
properties.

(7)

The kinds of properties RelView can express and handle are rather general. In
particular, these are all properties which can be written as Boolean combina-
tions of inclusions between relation-algebraic expressions. This includes all the
correspondence properties of Section 2 (reflexivity of a relation R, transitivity or
R, etc), and also properties such as irreflexivity (I ⊆ R) and acyclicity (R+ ⊆ I)
as well as Boolean combinations of these. For example, R is an equivalence re-
lation iff it satisfies the conjunction of the first three correspondence properties
of Section 2. In the syntax of the RelView tool a corresponding evaluation test
looks as follows:

incl(I(R),R) & incl(R*R,R) & incl(R,R^).

Let us consider a last application. For a given finite frame F with set of
worlds W and a closure system3 C ⊆ 2W×W of relations (like the Euclidean or
the transitive relations), the RelView tool very often allows us to solve the
following task:

Compute the corresponding closure operator cl : 2W×W → 2W×W , de-
fined by cl(R) =

⋂
{S ∈ C | R ⊆ S}.

(8)

The condition which is to be fulfilled is that the conjunction of S ∈ C and
R ⊆ S is equivalent to f(S) ⊆ S, with f being a monotone function on the

2 In words, this vector marks exactly the 16 columns of Q each of which represent a
set of worlds with the maximal cardinality 4.

3 A subset C of a powerset 2X is a closure system on X if
T

Y ∈ C for all Y ⊆ C.

euclid(R)

DECL S, fS

BEG S = O(R);

fS = R;

WHILE -eq(S,fS) DO

S = fS;

fS = R | fS^ * fS OD

RETURN S

END.

Fig. 11. Program to compute the Euclidean closure of a relation R

set 2W×W of all relations over W . In this case cl(R) coincides with the least
fixed point µf of the function f , due to Tarski’s fixed point theorem [27]. The
frame F is finite. Hence f is even ∪-continuous and we get the representation
µf =

⋃
i≥0 f

i(O), where the chain O ⊆ f(O) ⊆ f 2(O) ⊆ . . . eventually becomes
stationary. To give an example, the Euclidean closure of a relation R is computed
by the RelView-program euclid of Figure 11, because obviously a relation S
is Euclidean (i.e.,ST;S ⊆ S) and contains R iff R ∪ ST;S ⊆ S.

Finally, it is worth mentioning that RelView has some file input/output
interfaces. Especially ASCII formatted files can be used to exchange data with
other systems.

8 Concluding Remarks

Based on the interpretation of non-classical logics in relation algebra, in this
paper we have shown how the RelView tool can be used for investigating
finite models of such logics and for visualizing them and solutions of certain
computational tasks. Modal logic of knowledge and computational tree logic
have been treated in detail and illustrated with two well-known examples, viz.
the ‘muddy children’ puzzle and a ‘mutual exclusion’ protocol.

We believe that the attraction of RelView in respect to the applications we
have discussed in this paper lies in its flexibility, the concise form of its programs,
and the various possibilities for manipulation, testing, and visualization. Because
of these properties it is an excellent tool for prototyping, experimenting, and
for university teaching. It can be programmed to handle different logics and
perform typical tasks on them while avoiding unnecessary overhead. We found
it very attractive to use RelView also for producing good examples. Concerning
teaching, its visualization possibilities can be used to demonstrate the meaning
of logical operators and formulae for example.

To illustrate this point, consider the picture in Figure 12. It explains the
meaning of the AF-operator of the logic CTL. The squares denote the states
where a certain property, p say, holds and the black vertices (including the
squares) denote the states x such that for all computation paths x1, x2, . . . be-
ginning in x somewhere along the path p holds. Visualization is of particular

Fig. 12. Visualization of the meaning of the AF-operator

importance when combined with the evaluation of RelView-expressions in a
stepwise fashion. All this can help students, and even be key to their fully un-
derstanding of an advanced concept.

References

1. R. Behnke, R. Berghammer, E. Meyer, and P. Schneider. RelView - A system
for calculating with relations and relational programming. In E. Astesiano, editor,
Fundamental Approaches to Software Engineering, volume 1382 of LNCS, pages
318–321. Springer, Berlin, 1998.

2. R. Berghammer, P. Kempf, G. Schmidt, T. Ströhlein. Relational algebra and
logic of programs. In H. Andréka, J.D. Monk, and I. Németi, editors, Algebraic

Logic, volume 54 of Colloq. Math. Soc. J. Bolyai, pages 37–58. North-Holland,
Amsterdam, 1991.

3. R. Berghammer, B. Leoniuk, and U. Milanese. Implementation of relational algebra
using binary decision diagrams. In H. de Swart, editor, Relational Methods in

Computer Science, volume 2561 of LNCS, pages 241–257. Springer, Berlin, 2002.
4. R. Berghammer, F. Neumann. RelView – An OBDD-based Computer Algebra

system for relations. In V.G. Gansha, E.W. Mayr, and E.V. Vorozhtsov, editors,
Computer Algebra in Scientific Computing , volume 3718 of LNCS, pages 40–51.
Springer, Berlin, 2005.

5. P. Blackburn, M. de Rijke, and V. Venema. Modal Logic. Cambridge Univ. Press,
Cambridge, 2001.

6. C. Brink, K. Britz, and R. A. Schmidt. Peirce algebras. Formal Aspects of Com-

puting, 6(3):339–358, 1994.
7. B. F. Chellas. Modal Logic: An Introduction. Cambridge Univ. Press, Cambridge,

1980.
8. E. Clarke, O. Grumberg and D. Peled. Modal Checking. MIT Press, Cambridge,

2000.
9. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about knowledge.

MIT Press, Cambridge, 1995.

10. R. Goldblatt. Logics of Time and Computation, volume 7 of CSLI Lecture Notes.
Chicago Univ. Press, Chicago, 1987.

11. G. E. Hughes and M. J. Cresswell. A New Introduction to Modal Logic. Routledge,
London, 1996.

12. M. Huth and M. Ryan. Logic in Computer Science. Modelling and Reasoning About

Systems. Cambridge Univ. Press, Cambridge, 2000.
13. B. Jónsson and A. Tarski. Boolean algebras with operators, Part I. American

Journal of Mathematics, 73:891–939, 1951.
14. W. Nabialek, A. Niewiadomski, W. Penczek, A. Polrola, and M. Szreter. Verics

2004: A model checker for real time and multi-agent systems. In Proc. Interna-

tional Workshop on Concurrency, Specification, and Programming, volume 170 of
Informatik-Berichte, pages 88-99, Humbold Universität Berlin, 2004.

15. M. Kacprzak, A. Lomusico, A. Niewiadomski, M. Szreter, W. Penczek, and F. Rai-
mondi. Comparing BDD and SAT based techniques for model checking Chaum’s
Dining Cryptographers protocol. To appear in Fundamenta Informaticae, 2006.

16. D. Kozen. A representation theorem for models of ∗-free PDL. In J. de Bakker
and J. van Leeuwen, editors, Automata, Languages and Programming, volume 85
of LNCS, pages 351–362. Springer, Berlin, 1980.

17. B. Leoniuk. ROBDD-based implementation of relational algebra with applications
(in German). Ph.D. thesis, Institut für Informatik und Praktische Mathematik,
Universität Kiel, 2001.

18. A. Lomuscio and F. Raimondi. Mcmas: a tool for verifying multi-agent systems. In
H. Hermanns and J. Palsberg, editors, Tools and Algorithms for the Aonstruction

and Symposium of Systems, volume 3920 of LNCS, pages 450–454. Springer, Berlin,
2006.

19. J.-J. Ch. Meyer and W. van der Hoek. Epistemic Logic for AI and Computer

Science. Cambridge Univ. Press, Cambridge, 1995.
20. U. Milanese. On the implementation of a ROBDD-based tool for the manipulation

and visualization of relations (in German). Ph.D. thesis, Institut für Informatik
und Praktische Mathematik, Universität Kiel, 2003.

21. M. Müller-Olm, D. Schmidt, B. Steffen. Model-checking: A tutorial introduction.
In A. Cortesi and G. Filé, editors, Static Analysis Symposium 1999, volume 1694
of LNCS, pages 330–354. Springer, Berlin, 1999.

22. K. C. Ng and A. Tarski. Relation algebras with transitive closure, abstract 742-
02-09. Notices Amer. Math. Soc., A29–A30, 1977.

23. E. Orlowska. Relational formalisation of nonclassical logics. In C. Brink, W. Kahl,
and G. Schmidt, editors, Relational Methods in Computer Science, Advances in
Computing, pages 90–105. Springer, Wien, 1997.

24. V. R. Pratt. Dynamic algebras: Examples, constructions, applications. Technical
Report MIT/LCS/TM-138, MIT Laboratory for Computer Science, 1979.

25. G. Schmidt and T. Ströhlein. Relations and Graphs. Discrete Mathematics for

Computer Scientists. Springer, Berlin, 1993.
26. A. Tarski. On the calculus of relations. J. Symbolic Logic, 6(3):73–89, 1941.
27. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific

J. Math., 5:285–309, 1955.

