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Overview of the Course

This course consists of the following sections:

• Introduction. What is a game? Game trees, strategies, matrices,
pay-off functions.

• Small games. Optimal strategies in a game (‘solving games’),
problems, size issues.

• Medium games. Exploring games ‘locally’, minimax algorithm,
alpha-beta algorithm.

• Large games. How game-playing programs work. History of
Chess-playing programs.

• Game models. Games used to model interactions.

• Games and evolution. Games used to model the evolution of
traits.
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About this course

Elements of teaching on this course:

• Lectures.

• Course notes.

• Exercises.

• Examples classes.

• Web page
http://www.cs.man.ac.uk/~schalk/3192/index.html.

• Literature.

• The exam.
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Introduction–Overview

In this section we give an introduction to what we mean in this course
when we talk about games. It is mostly concerned with introducing a
few basic notions, namely those of

• a game tree (required for the formal definition of game);

• a strategy;

• a pay-off function;

• the normal form of a game.
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What is a game?

So, what is a game?

A game gives the rules for the interactions of the participating
entities, the players.
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A game tree
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The nodes in such a
tree are the positions
of the game.

Andrea Schalk: CS3191 Section 1 – p. 7/51



A game tree

X wins

X wins

O wins

XX

X X X

X

X

X X

X X

X

X

X

X

X X X

X X

X X

X X

X

X

X

X

X X

X

X X

X

X

X

X X X

X

X

X

X O

OO

O

OO

O

OO

O

OO

O

OOO

O

O

O

OO

O

OO

OO

X

X

O O

OO

O

O

O

O

OO

O

O

O

O

X to move

X to move

O to move

Draw Draw

X

At each node it has
to be clear whose
turn it is.

Andrea Schalk: CS3191 Section 1 – p. 7/51



A game tree

X wins

X wins

O wins

XX

X X X

X

X

X X

X X

X

X

X

X

X X X

X X

X X

X X

X

X

X

X

X X

X

X X

X

X

X

X X X

X

X

X

X O

OO

O

OO

O

OO

O

OO

O

OOO

O

O

O

OO

O

OO

OO

X

X

O O

OO

O

O

O

O

OO

O

O

O

O

X to move

X to move

O to move

Draw Draw

X

The bottom nodes in
the tree, the leaves,
are the final posi-
tions of the game.
This is where we
note the result.
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Note that different
positions in the tree
can correspond to
the same constella-
tion on the board.
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That is because in
a tree, given a po-
sition we can recon-
struct the path from
the root leading to
it (and thus the play
of the game). An-
other path is shown.
Taking trees instead
of graphs makes our
lives easier.
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Questions about game trees

Question. Let us test the notion of a game tree.

(a) Could you (in principle, don’t mind the size) draw a game tree for
Backgammon, or Snakes-and-Ladders? If not, why not?

(b) Could you draw a game tree for Paper-Stone-Scissors? If not,
why not?

(c) Consider the following simple game between two players:
Player 1 has a coin which he hides under his hand, having first
decided whether it should show head or tail. Player 2 guesses
which of these has been chosen. If she guesses correctly,
Player 1 pays her 1 quid, otherwise she has to pay the same
amount to him. Could you draw a game tree for this game? If not
why not?
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More general games

The following are potential issues that can come up in games for
which our current definition for ‘game tree’ doesn’t really work.

• Chance. A game might contain chance moves.

• Imperfect information. At some time, the players might not know
in which position of the game tree the game currently is.
Examples are card games.

• Simultaneous moves. Our notion of game tree doesn’t seem to
allow for several players to move simultaneously.

We will see how to deal with these issues later. For now we assume
that all our games are of complete (or perfect) information, that is,
each player knows precisely where in the game tree they are.
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Games–definition

Definition 1 A game is given by

• a finite set of players,

• a finite game tree,

• for each node of the tree, a player whose turn it is in that position and

• for each final node and each player a pay-off function. (We will ignore this part
of the definition for the moment.)
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Chomp

Consider the game where two players have a bar of chocolate
consisting of (m × n) squares. The square in the top left corner is
known to be poisonous. The players take turns in making moves, and
a valid move consists of

• choosing a square of chocolate and

• eating all the squares which are in the lower right quadrant
relative to that square (that is, ‘to the right and below’ the chosen
square).

The person who has to eat the poisonous square loses. The resulting
game is known as (m × n)-Chomp.
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(2 × 2)-Chomp

1 to move

1 loses1 loses

2 loses2 loses

1 loses

2 loses

1 loses 1 loses

2 loses 2 loses

2 to move

1 to move

1 to move

2 to move

Question. Which player would you rather be, 1 or 2?
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Games–are they interesting?

Question. What do you think of the games we’ve been looking at?

Do you still think this course is going to be interesting?

What would make the games more exciting, and why aren’t we
looking at those issues?
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Understanding games

We can think of the nodes of the game tree as decision points, where
part of the information we are given is whose decision this is as well
as what their options are.

Many games, such as Chess and Checkers, have game trees which
are far too big to be drawn, or even to be fully held in a computer’s
memory at any given time. We can still play these games, because
their rules tell us the information needed to play them, and the game
tree can be constructed from those. As a result, we only need local
information to know whose turn it is and what their moves are.

Chess, for example, has twenty opening moves for White, and as
many replies for Black. In other words, after only two moves there are
already 20 × 20 = 400 different positions! We will talk about games
with such big game trees later in the course, in Sections 3 and 4.
While all the considerations we make in Section 2 are valid for such
big games, the methods we introduce cannot be applied to them.
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Plays

A play of a game is a path starting at the root of the game tree (that
is, the start position). We say that a play is complete if it leads all the
way to a final position.

Question. How many plays are there for Noughts and Crosses? If
you can’t give the precise number, can you give an upper bound?

The answer to this question depends on whether or not we want to
consider symmetry consideration. A crude upper bound for the
number of plays ignores these. Player 1 has 9 possibilities for placing
his first mark, Player 2 has the remaining 8 squares for her first move,
then Player 1 can choose among any of the remaining 7 fields,
leading to

9 × 8 × · · · × 2 × 1 = 9! = 362880

plays.
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Adding Chance

In order to add the notion of chance moves to our game trees, we
assume that there is somebody (often called Nature) who takes care
of such moves. (Nature is not normally included among the ‘players’
of the game.)

In the game tree, we add nodes where

• it is not the turn of any of the players and

• for each of the branches from such a node there is a label giving
the probability of that move occurring.
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Risk

In the board game Risk players have ‘armies’ which can defend or
conquer territory on a map (which forms the board).

A possibility in the game is to attack another country. Here we
assume the choice is between attacking with one and attacking with
two.

To make it simpler, we assume here that the defender has only one
army to defend the country with.

Both players then roll as many dice as they have armies in the bout
(here, one or two). The result is evaluated as follows:

• The attacker has to roll a higher number than the defender to
win;

• if the number of dice thrown by each side are not the same, then
the ‘best’ throws by the player who has more dice counts.

To keep the size of the game tree reasonable, we assume that
instead of using ordinary dice we use ones which produce the
numbers 1, 2 and 3 only, with equal probability.

We want to find out whether it is better to attack with one or with two
armies.
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Risk

In many ways, the game tree is easier to understand than a
description using words—at least it is unambiguous.

11 22 21 33 32 31

attack with 1 attack with 2

1/3
1/3

1/3 1/3
1/3

1/3

1 3

1 2

1/3
11

11

22

22

21

21

33

33

32

32

31

31

21 2 3

1 2 3 1 2 3 3

1/3

1/3 1/3 1/3

1/3

1/3
1/3

1/3
1/9

2/9

D A A D D D D DA D A A A A A

DD D A A A

D D D D D D

Probabilities for throwing two dice: 1/9 for each branch where the two numbers agree, 2/9 where they differ.

A rolls appr. no. of dice

D rolls one die

A to move
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Risk–Which is better?

We will examine the two branches of the tree separately to find out
whether the Attacker should attack with 1 or with 2 armies.
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Risk–Attack with 1

Attack with 1
1/3

1/3
1/3

1 2

1/3

1 2 3

1 2 3 1 2 3 3

1/3

1/3 1/3 1/3

1/3

1/3
1/3

1/3

D A A D D D D DA

We want to calculate with which probability A will win. For that, we
first have to calculate the probability for each outcome (that is, each
leaf) of the tree. For that, we have to multiply the probabilities along
the path. So every branch has a probability of 1/9. In order to find the
probability for A to win, we have to add the probabilities for all the
paths where A wins. This gives

1/9 + 1/9 + 1/9 = 3/9 = 1/3,

so Attacker wins in 1/3 of all cases.
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Risk–Attack with 2

Attack with 2

11 22 21 33 32 31

1/3
1/3

1/3

1 3

11

11

22

22

21

21

33

33

32

32

31

31

2 A rolls appr. no. of dice

D rolls one die

1/9

2/9

D A A A A A

DD D A A A

D D D D D D

We again calculate the probabilities for the leaves by multiplying the
probabilities along the corresponding paths.

Again, we add up the
probabilities for those occasions where A wins, and get

1/27 + 2/27 + 1/27 + 2/27 + 2/27 + 1/27 + 2/27 + 2/27 = 13/27 ≈ 0.48.

Since this is bigger than 1/3, it is better for Attacker to attack with 2
armies. (And, in fact in general for Risk the chance of winning an
encounter increases with the number of committed armies.)
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2 A rolls appr. no. of dice

D rolls one die

1/9

2/9

D A A A A A

DD D A A A

D D D D D D

We again calculate the probabilities for the leaves by multiplying the
probabilities along the corresponding paths. Again, we add up the
probabilities for those occasions where A wins, and get

1/27 + 2/27 + 1/27 + 2/27 + 2/27 + 1/27 + 2/27 + 2/27 = 13/27 ≈ 0.48.

Since this is bigger than 1/3, it is better for Attacker to attack with 2
armies. (And, in fact in general for Risk the chance of winning an
encounter increases with the number of committed armies.)
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Adding imperfect information

In order to describe card games, for example, we need to have a way
of incorporating the idea of imperfect information into game trees.

The idea behind this is very simple: For each player, whenever it is
his turn, we need to mark in the game tree which positions that player
cannot distinguish between.

But for this to make sense, the options for the player whose turn it is
have to be the same for all the positions he might think he is in.

Question. Why do we make that a requirement?
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Paper-Stone-Scissors

At a signal, two players simultaneously hold out their right hand in
one of three ways, indicating whether they have chosen paper, stone
or scissors. Paper beats stone beats scissors beats paper.

We can draw a game tree for this kind of game by

• assuming that one player, say Player 1, moves first and that

• Player 2 does not know which move Player 1 has chosen.

In other words, we can cover simultaneous moves by using imperfect
information.
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Paper-Stone-Scissors

At a signal, two players simultaneously hold out their right hand in
one of three ways, indicating whether they have chosen paper, stone
or scissors. Paper beats stone beats scissors beats paper.

Player 1 has the choice between three moves.

Player 2 cannot
distinguish between those. Player 2 has three choices for each of
these positions, but they are the same in each case. We mark the
winner for each possible play.
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At a signal, two players simultaneously hold out their right hand in
one of three ways, indicating whether they have chosen paper, stone
or scissors. Paper beats stone beats scissors beats paper.
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Player 2

WinnerD 1 D 12 21 D2

Player 1 has the choice between three moves. Player 2 cannot
distinguish between those. Player 2 has three choices for each of
these positions, but they are the same in each case. We mark the
winner for each possible play.
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Games: Addition to definition

Here is a reminder of our definition of game.

Definition 1 A game is given by

• a finite set of players,

• a finite game tree,

• for each node of the tree, a player whose turn it is in that position and

• for each final node and each player a pay-off function. (We will ignore this part
of the definition for the moment.)

.

As additional information, it is possible to indicate groups of nodes, so
called information sets, that one player cannot distinguish between.
The nodes have to have the property that

• for all the nodes in an information set it is the same player’s turn,
and he is the one who cannot distinguish between them and

• the moves from one of the nodes in the information set are
indistinguishable from the moves from any other such node.
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Strategies

In every-day language, people often use the term ‘strategy’ when
they mean ‘a general plan to proceed’. For our purposes, we will be
looking at a much stricter notion. Assume we are a player in some
game.

Slogan: A strategy is a list of instructions which tells me which move
to make in any position I may find myself in when it is my turn.

So this is stricter than having just a ‘plan’. However, I do not need to
make a decision for positions that I cannot reach (typically because of
earlier choices I have made).

Note that nothing in this notion of strategy says that I have to follow
some sort of principle! In particular I am allowed to choose different
moves to make in positions which look the same on the board, but
have different histories.
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Example: Strategy on (2 × 2)-Chomp

Here is an example for a strategy for Player 1 in (2 × 2)-Chomp.

It is
Player 1’s turn at the start, so he has to choose a move. It is
Player 2’s turn next, so Player 1 must allow for all of her possibilities.
Again, Player 1 must make a choice for each position he might be in
after 2 moves. And finally, Player 2’s last potential move has to be
accounted for.
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In the notes, the same strategy is displayed something like this.
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Example

Question. How many possible outcomes (final positions) does
playing in accord with this strategy have?

How many are
advantageous to Player 1?

2 loses2 loses
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2 to move
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Strategies: towards a definition

Closer inspection shows that a strategy can be described as subtree
of the game tree satisfying the following conditions. Assume we have
chosen a player for whom we want to give a strategy. Then we can
build a subtree, starting from the root, where when we reach a new
node,

• if it is the chosen player’s turn, precisely one of the available
moves is chosen;

• if it is not the chosen player’s turn, all available moves are
chosen.

Note that we do not worry about positions we can never reach!

Also note that we force a strategy to make a choice of a move if it is
the chosen player’s turn—we do not allow ‘give up by refusing to
make a move’. If we want giving up to be an option, we have to make
it a move in the game tree.
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Strategies: definition

We can turn this observation into a definition.

Definition 2 A strategy for player X is a subtree of a game tree which satisfies the
following conditions.

• It is rooted at the root of the game tree;

• whenever it is player X ’s turn at a node that belongs to the subtree, exactly
one of the available moves (and so exactly one successor node) belongs to the
subtree;

• whenever it is not player X ’s turn at a node that belongs to the subtree, all of
the available moves (and so all successor nodes) belong to the subtree.

• For all nodes in the same information set for Player X , the move chosen by the
strategy is the same.
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• For all nodes in the same information set for Player X , the move chosen by the
strategy is the same.

Andrea Schalk: CS3191 Section 1 – p. 30/51



Different strategies

How many strategies are there for Player 1 in (2 × 2)-Chomp?

What
are they?

1 loses1 loses

2 loses2 loses

1 loses

2 loses

1 loses 1 loses

2 loses 2 loses

2 to move

1 to move

1 to move

2 to move

Player 1 chooses the right-most move. But that means there are
further choices down the line! Two decision points with two choices
each, that gives 2 × 2 = 4 strategies.

That makes seven strategies altogether.
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Different strategies

How many strategies are there for Player 1 in (2 × 2)-Chomp? What
are they?

If we remember that Player 1 starts the game and they then move
alternatingly, we can think of the game tree for (2× 2)-Chomp like this:

Player 1 chooses the right-most move. But that means there are
further choices down the line! Two decision points with two choices
each, that gives 2 × 2 = 4 strategies.

That makes seven strategies altogether.
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How many strategies are there for Player 1 in (2 × 2)-Chomp? What
are they?

Player 1 chooses the left-most move.

Player 1 chooses the right-most
move. But that means there are further choices down the line! Two
decision points with two choices each, that gives 2× 2 = 4 strategies.

That makes seven strategies altogether.
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Different strategies

How many strategies are there for Player 1 in (2 × 2)-Chomp? What
are they?

Player 1 chooses the second move from the left.

Player 1 chooses
the right-most move. But that means there are further choices down
the line! Two decision points with two choices each, that gives
2 × 2 = 4 strategies.

That makes seven strategies altogether.

Andrea Schalk: CS3191 Section 1 – p. 31/51



Different strategies

How many strategies are there for Player 1 in (2 × 2)-Chomp? What
are they?

Player 1 chooses the third move from the left.

Player 1 chooses the
right-most move. But that means there are further choices down the
line! Two decision points with two choices each, that gives 2 × 2 = 4
strategies.

That makes seven strategies altogether.
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How many strategies are there for Player 1 in (2 × 2)-Chomp? What
are they?

Player 1 chooses the right-most move. But that means there are
further choices down the line! Two decision points with two choices
each, that gives 2 × 2 = 4 strategies.

That makes seven strategies altogether.
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Strategies and imperfect information.

Recall that in our definition of strategy, we stipulated that for all nodes
in the same information set for Player X, the move chosen by the
strategy is the same.

This is because Player X is not allowed to make decisions in his
strategy based on information which he doesn’t have.

We consider strategies for Player 2 of Paper-Stone-Scissors.
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Recall that in our definition of strategy, we stipulated that for all nodes
in the same information set for Player X, the move chosen by the
strategy is the same.

This is because Player X is not allowed to make decisions in his
strategy based on information which he doesn’t have.

We consider strategies for Player 2 of Paper-Stone-Scissors.

P R S

P R S

P PR RS S

Player 1

Player 2

WinnerD 1 D 12 21 D2
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Strategies and imperfect information.

Recall that in our definition of strategy, we stipulated that for all nodes
in the same information set for Player X, the move chosen by the
strategy is the same.

This is because Player X is not allowed to make decisions in his
strategy based on information which he doesn’t have.

We consider strategies for Player 2 of Paper-Stone-Scissors. Player 2
might decide to show P for paper. She will have to do that for all the
nodes in her information set.

P R S

P R S

P PR RS S

Player 1

Player 2

WinnerD 1 D 12 21 D2
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Recall that in our definition of strategy, we stipulated that for all nodes
in the same information set for Player X, the move chosen by the
strategy is the same.

This is because Player X is not allowed to make decisions in his
strategy based on information which he doesn’t have.

We consider strategies for Player 2 of Paper-Stone-Scissors.
Similarly she may decide to show R for stone.
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Strategies and imperfect information.

Recall that in our definition of strategy, we stipulated that for all nodes
in the same information set for Player X, the move chosen by the
strategy is the same.

This is because Player X is not allowed to make decisions in his
strategy based on information which he doesn’t have.

We consider strategies for Player 2 of Paper-Stone-Scissors. Lastly
she may choose to show S for scissors.

P R S

P R S

P PR RS S

Player 1

Player 2

WinnerD 1 D 12 21 D2
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Strategies and imperfect information.

These are all the strategies for Player 2 in
Paper-Stone-Scissors.Again they show that Player 2 cannot use
information she does not have; her moves for two nodes in the same
information set are the same.

P R S

P R S

P PR RS S

D 1 D 12 21 D2

P R S

P R S

P PR RS S

D 1 D 12 21 D2

P R S

P R S

P PR RS S

D 1 D 12 21 D2

So she has the same choices as Player 1, preserving the symmetry
of the game as it is defined informally. So we really have not changed
the game by using via a game tree.
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Generating all strategies

Let’s assume we are given a game tree t and are trying to generate
all strategies for Player X. This can be done recursively. (Note that
when the game is not of perfect information then the following
considerations have to be changed accordingly.)

• There are no moves:

• The first move is Player X ’s:He has an accord-
ing number of choices (m1 to mn). After that
move is made, we get a new game tree, one of
t1 to tn, and Player X can now use any of his
strategies for the game following his chosen
first move. Giving a strategy for t amounts to
choosing one of mi and then one of the strate-
gies on ti.

• The first move is not Player X ’s: Player X has
to choose a strategy in every possible subtree,
t1 to tn, since he has to prepare an answer
for every of the possible first moves. Giving a
strategy amounts to choosing one strategy for
each of the ti.

Note that this does account for chance moves.
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Let’s assume we are given a game tree t and are trying to generate
all strategies for Player X. This can be done recursively.

• There are no moves:
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Counting all strategies

Let’s assume we are are now trying to count all strategies for
Player X for game t. This can also be done recursively, with the
number of strategies for Player X on game t being denoted by NX(t).
(Note that when the game is not of perfect information then once
again the following considerations have to be changed accordingly.)

• There are no moves:

• The first move is Player X ’s: He has an ac-
cording number of choices (m1 to mn). After
that move is made, we get a new game tree,
one of t1 to tn, and Player X can now use any
of his strategies for the game following his cho-
sen first move. Then

NX(t) = NX(t1) + NX(t2) + · · · + NX(tn).

• The first move is not Player X ’s: Player X has
to choose a strategy in every possible subtree,
t1 to tn, since he has to prepare an answer for
every of the possible first moves. Then

NX(t) = NX(t1) × NX(t2) × · · · × NX(tn).
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• There are no moves:

• The first move is Player X ’s:

• The first move is not Player X ’s: Player X has
to choose a strategy in every possible subtree,
t1 to tn, since he has to prepare an answer for
every of the possible first moves. Then

NX(t) = NX(t1) × NX(t2) × · · · × NX(tn).

t1 t2 tn

m1

m2

mn

t

Andrea Schalk: CS3191 Section 1 – p. 35/51



Playing games via strategies

Once we know all the strategies for all the players of a game we can
simplify playing it considerably.

We just let every player choose one of his or her available strategies.

We then go through the game tree as follows: For every node we
reach, starting with the root, we ask the player whose turn it is which
move his or her strategy chooses. If there are no chance moves then
we thus follow a uniquely determined path through the tree ending at
a leaf. That leaf gives us the outcome of playing all these strategies
against each other.

If there are chance moves involved, then we get several paths ending
in several leaves, together with a probability for each leaf that it will
occur. The probability for a leaf to occur is calculated by multiplying
the probabilities occuring along the unique path leading to it. The
probabilites for all the possible leaves will add up to one.
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Playing strategies against each other

We have a look at an example to show how playing one strategy
against another works.

Here is a strategy for (2 × 2)-Chomp for
Player 1. And here is a strategy for the same game for Player 2. And
here they are together. The outcome of playing the one against the

other is immediately obvious.

1 loses

2 loses 2 loses 2 loses

1 loses 1 loses 1 loses 1 loses

2 loses
2 loses

2 to move

1 to move

1 to move

2 to move
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Why bother?

You might rightly argue that playing games in this way is a very boring
thing to do! Everybody picks a strategy and then we arrive at the
outcome. Where’s all the fun gone?

Playing games like this indeed isn’t any fun. However, it is a very
useful point of view to take if one is trying to analyse a game.

It does have, however, one great disadvantage: It can only be applied
if the game is small enough so that one can indeed determine all
strategies for all the players.

This is quite hopeless for games like Chess and Go, or even
Checkers, simply because the game tree is far too big to hold in a
computer.

Hence when we talk about small games we mean games which are
amenable to an analysis via strategies. They will keep us busy for
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Games via strategies

We take the idea of presenting games via their strategies to its logical
conclusion.

In Paper-Stone-Scissors, Player 1 and 2 have three choices each
which we can encode as follows. We record the result as

• 1: win for Player 1

• 2: win for Player 2

• D: draw.

2
P R S

P D 1 2
1 R 2 D 1

S 1 2 D

Games given likes this are known as matrix games.
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Question

Question. How would you give a matrix version of our miniature Risk
game?
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Games via strategies–chance

The problem with matrix games as we’ve described them so far is
that as soon as elements as chance are involved, we don’t get a
unique result from playing strategies against each other.

However, if all our outcomes are given as numbers then we can
calculate an expected number as the outcome of playing one strategy
against another.

If, for each player and each outcome of the game, we have a number
to indicate what the outcome means for this player, then we can turn
every game into a matrix.
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11 22 21 33 32 31
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1/3
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1/3 1/3
1/3

1/3

1 3

1 2

1/3
11
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22

22

21

21

33

33

32

32

31

31

21 2 3

1 2 3 1 2 3 3

A rolls appr. no. of dice

D rolls one die

A to move

1/3

1/3 1/3 1/3

1/3

1/3
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1/3
1/9

2/9

D A A D D D D DA D A A A A A
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D D D D D D
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Pay-off functions

It is for this reason that our definition of ‘game’ talks about something
called a ‘pay-off function’.

Definition 1 A game is given by

• a finite set of players,

• a finite game tree,

• for each node of the tree, a player whose turn it is in that position and

• for each final node and each player a pay-off function.
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Example

Assume that for Paper-Stone-Scissors the loser pays the winner one
(pound, point, chocolate bar), and the pay-off is 0 for both if the game
ends in a draw. Then the pay-offs for this game for Player 1 are as
follows.

The pay-offs for Player 2 can be given similarly. Or we can
combine the two matrices into one.

2
P R S

P (0, 0) (1,−1) (−1, 1)

1 R (−1, 1) (0, 0) (1,−1)

S (1,−1) (−1, 1) (0, 0)

We say that a game for two players is in normal form when it is given
via a matrix with real numbers as entries.

Question. What would happen if there were more than 2 players?
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Example

Assume that for Paper-Stone-Scissors the loser pays the winner one
(pound, point, chocolate bar), and the pay-off is 0 for both if the game
ends in a draw. Then the pay-offs for this game for Player 1 are as
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P 0 1 −1

1 R −1 0 1

S 1 −1 0

2
P R S

P 0 −1 1

1 R 1 0 −1

S −1 1 0

Note that if we add the entries in the left hand table to the
corresponding ones in the right hand table we get a table consisting
entirely of 0s. This is because all payments to Player 1 are pay-outs
by Player 2 and vice versa.
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Zero-sum games

It turns out that games with this property are important enough to
deserve their own name.

Definition 3 A game is a zero-sum game if for each final position the pay-offs for all
players add up to 0.

We can view such games as closed systems.

Zero-sum games with two players are particularly easy to describe: If
we give the pay-off function for one player, we just have to multiply it
with −1 to get the pay-off function for the other player.

Hence in such a case it is sufficient to give just the one matrix, which
normally is that for Player 1. In fact, whenever we give a game by just
such a matrix, the implicit assumption is that we are describing a
2-person zero-sum game.
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Non zero-sum games

There are plenty of games which are not zero-sum.

Question. Do you know any interesting zero-sum or non zero-sum
games?

Card games played for points usually are not zero-sum games (and if
you want to turn a series of such as something where you play for
money you typically have to do something like turning differences in
score into money).

Battle games are another example: Defeating somebody else’s
forces does not mean that one gets these forces as assets somehow.

Games played in a casino typically aren’t zero-sum either—the
casino takes a cut which the players never see again.

Some of the most interesting games are non zero-sum. We will see
plenty of examples in this course, in particular since most of the
known techniques do not work as well for these kinds of games.
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Example

We now consider how to incorporate chance into turning a game into
its matrix form.

Consider the following game between two players. Player 1 rolls a a
three-faced die. If he throws 1 he pays two units to Player 2. If he
throws 2 or 3, Player 2 has a choice. She can either choose to pay
one unit to Player 1 (she stops the game) or she can throw the die. If
she repeats Player 1’s throw, he has to pay her two units. Otherwise
she pays him one unit. The game tree is given below, with the pay-off
being given for Player 1.

1 2 3

1 throws die

2 to move

1 2 3 1 2 3

1 1 1 1

TS S T

11

1

3

1

3

1

3
1

3

1

3

1

3

1

3

1

3 1

3

-2

-2 -2
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throws 2 or 3, Player 2 has a choice. She can either choose to pay
one unit to Player 1 (she stops the game) or she can throw the die. If
she repeats Player 1’s throw, he has to pay her two units. Otherwise
she pays him one unit. The game tree is given below, with the pay-off
being given for Player 1.
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Player 1 has only one strategy (he never gets a choice). Player 2 has
four strategies (she can choose to throw the die or not, and is allowed
to make that dependent on Player 1’s throw). We can encode her
strategies by saying what she will do when Player 1 throws a 2, and
what she will do when Player 1 throws a 3, stop (S) or throw the die
(T ). So S|T means that she will stop if he throws a 2, but throw if he
throws a 3. The matrix will look something like this:

Question. Which player would you rather be in this game?
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Player 1 has only one strategy. Player 2 has four strategies. We can
encode her strategies by saying what she will do when Player 1
throws a 2, and what she will do when Player 1 throws a 3, stop (S) or
throw the die (T ). So S|T means that she will stop if he throws a 2,
but throw if he throws a 3. The matrix will look something like this:

2
S|S S|T T |S T |T

1

Question. Which player would you rather be in this game?
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What are the expected pay-offs for the outcome of these strategies?

Question. Which player would you rather be in this game?
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S|S S|T T |S T |T
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What are the expected pay-offs for the outcome of these strategies?
Case S|S. For each of the possible outcomes of playing this strategy,
take the probability that it will occur and multiply it with the pay-off,
then add all these up.

Question. Which player would you rather be in this game?
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S|S S|T T |S T |T
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What are the expected pay-offs for the outcome of these strategies?
Case S|S. For each of the possible outcomes of playing this strategy,
take the probability that it will occur and multiply it with the pay-off,
then add all these up. Hence we get

(1/3 × (−2)) + (1/3 × 1) + (1/3 × 1) = 0.

Question. Which player would you rather be in this game?
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What are the expected pay-offs for the outcome of these strategies?
Case S|T .

(1/3×(−2))+(1/3×1)+(1/9×1)+(1/9×1)+(1/9×(−2)) = −3/9 = −1/3.

Question. Which player would you rather be in this game?
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What are the expected pay-offs for the outcome of these strategies?
Case T |S. This is a symmetric variation of case S|T , and the pay-off
is the same.

Question. Which player would you rather be in this game?
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What are the expected pay-offs for the outcome of these strategies?
Case T |T .

(1/3 × (−2)) + (1/9 × 1) + (1/9 × 1) + (1/9 × (−2))+

(1/9 × 1) + (1/9 × 1) + (1/9 × (−2))

= −2/3.

Question. Which player would you rather be in this game?
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Question. Which player would you rather be in this game?
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A result

We are now ready to state and prove the only result of this
introductory section.

Theorem 1.1 Consider a game with two players, 1 and 2, of perfect information
without chance, which can only have three different outcomes: Player 1 wins,
Player 2 wins, or they draw. Then one of the following must be true.

(i) Player 1 has a strategy which allows him always to win;

(ii) Player 2 has a strategy which allows him always to win;

(iii) Player 1 and Player 2 both have strategies which ensure that they will not lose
(which means that either side can enforce a draw).

If a player has a strategy which allows him to always win, no matter
what the other player does, we call that strategy a winning strategy.
Then we can restate the theorem by saying that in such a game, it is
the case that either one of the players has a winning strategy or that
they can both enforce a draw.
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Proof

Induction over the height of the game tree.

Induction step.

t1 t2

m1

m2

t

tk

mk

l1 l2 lk

Let t be a tree of height n+1. Assume
the first move is made by Player 1. The
following cases can arise.
There is a tree labelled 1.
There is no tree labelled 1, but one la-
belled 0.
All trees are labelled −1.
The case where Player 2 makes the
first move is analogous.
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Proof

Induction over the height of the game tree.

Base case: The height is 0. Then the result must be stated with the
only node, win for Player 1, win for Player 2 or draw, and the Theorem
is obviously true.
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Proof

Induction over the height of the game tree.

Induction hypothesis: We can label the root of a game tree of height
at most n with a number which indicates which case occurs. We use
1 if Player 1 can force a win, −1 if Player 2 can force a win and 0 if
both sides can enforce a draw.

Induction step.
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Proof

Induction over the height of the game tree.
Induction step.

t1 t2

m1

m2

t

tk

mk

l1 l2 lk

Let t be a tree of height n + 1. By
the induction hypothesis we can label
the roots of the game trees reached by
making a first move of t with a number
(say li for tree ti) as follows:

• it bears label li = 1 if Player 1
wins the game rooted there;

• it bears label li = −1 if Player 2
wins the game rooted there;

• it bears label li = 0 if both sides
can enforce a draw in the game
rooted there.

Assume the first move is made by
Player 1. The following cases can
arise.
There is a tree labelled 1.
There is no tree labelled 1, but one la-
belled 0.
All trees are labelled −1.
The case where Player 2 makes the
first move is analogous.
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Proof

Induction over the height of the game tree.
Induction step.

t1 t2

m1

m2

t

tk

mk

l1 l2 lk

Let t be a tree of height n+1. Assume
the first move is made by Player 1. The
following cases can arise.
There is a tree labelled 1. So there
is a 1 ≤ i ≤ k with li = 1. Then by
making move mi Player 1 can ensure
that he will win the subsequent game
ti (because he has a winning strategy
there), and thus the overall game t.
Hence t gets label 1.

There is no tree labelled 1, but one la-
belled 0.
All trees are labelled −1.
The case where Player 2 makes the
first move is analogous.
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Proof

Induction over the height of the game tree.
Induction step.

t1 t2

m1

m2

t

tk

mk

l1 l2 lk

Let t be a tree of height n+1. Assume
the first move is made by Player 1. The
following cases can arise.
There is a tree labelled 1.
There is no tree labelled 1, but one
labelled 0. So li ≤ 0 is true for all
1 ≤ i ≤ n and li = 0 for one partic-
ular i. Then by making the first move
mi Player 1 transforms the game into
ti, where he can ensure a draw.

All trees are labelled −1.
The case where Player 2 makes the
first move is analogous.
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Proof

Induction over the height of the game tree.
Induction step.

t1 t2

m1

m2

t

tk

mk

l1 l2 lk

Let t be a tree of height n+1. Assume
the first move is made by Player 1. The
following cases can arise.
There is a tree labelled 1.
There is no tree labelled 1, but one
labelled 0. So li ≤ 0 is true for all
1 ≤ i ≤ n and li = 0 for one partic-
ular i. Then by making the first move
mi Player 1 transforms the game into
ti, where he can ensure a draw. But
the fact that all the trees have a label
of at most 0 means that Player 2 can
enforce at least a draw in all games
t1, . . . , tk, and thus in the game t no
matter what Player 1’s first move is. So
t gets label 0.

All trees are labelled −1.
The case where Player 2 makes the
first move is analogous.
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Proof

Induction over the height of the game tree.
Induction step.

t1 t2

m1

m2

t

tk

mk

l1 l2 lk

Let t be a tree of height n+1. Assume
the first move is made by Player 1. The
following cases can arise.
There is a tree labelled 1.
There is no tree labelled 1, but one la-
belled 0.
All trees are labelled −1. Then no
matter which first move mi Player 1
makes, Player 2 can enforce a win in
the subsequent game ti. Hence she
can enforce a win in t and it gets la-
bel −1.

The case where Player 2 makes the
first move is analogous.
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Proof

Induction over the height of the game tree.
Induction step.

t1 t2

m1

m2

t

tk

mk

l1 l2 lk

Let t be a tree of height n+1. Assume
the first move is made by Player 1. The
following cases can arise.
There is a tree labelled 1.
There is no tree labelled 1, but one la-
belled 0.
All trees are labelled −1.
The case where Player 2 makes the
first move is analogous.

Andrea Schalk: CS3191 Section 1 – p. 50/51



Summary of Section 1

• Games can be represented using a game tree.

• Elements of chance are then modelled by having a player
(sometimes called Nature), with probabilities labelling such
moves. Incomplete information is modelled by including in the
game tree information about any nodes which cannot be
distinguished by the player about to move.

• The pay-off function for a player assigns a value to each of the
possible outcomes (final positions) possible in the game.

• A strategy for a player is a complete game plan for that player.

• Small games have an alternative description via a matrices
which show the pay-off for each player depending on the
strategies chosen by all the players. A game given in this way is
known to be in normal form.

• In 2-player games of perfect information without chance either
one of the players can force a win, or they can both force a draw.

Andrea Schalk: CS3191 Section 1 – p. 51/51



Summary of Section 1

• Games can be represented using a game tree.

• Elements of chance are then modelled by having a player
(sometimes called Nature), with probabilities labelling such
moves. Incomplete information is modelled by including in the
game tree information about any nodes which cannot be
distinguished by the player about to move.

• The pay-off function for a player assigns a value to each of the
possible outcomes (final positions) possible in the game.

• A strategy for a player is a complete game plan for that player.

• Small games have an alternative description via a matrices
which show the pay-off for each player depending on the
strategies chosen by all the players. A game given in this way is
known to be in normal form.

• In 2-player games of perfect information without chance either
one of the players can force a win, or they can both force a draw.

Andrea Schalk: CS3191 Section 1 – p. 51/51



Summary of Section 1

• Games can be represented using a game tree.

• Elements of chance are then modelled by having a player
(sometimes called Nature), with probabilities labelling such
moves. Incomplete information is modelled by including in the
game tree information about any nodes which cannot be
distinguished by the player about to move.

• The pay-off function for a player assigns a value to each of the
possible outcomes (final positions) possible in the game.

• A strategy for a player is a complete game plan for that player.

• Small games have an alternative description via a matrices
which show the pay-off for each player depending on the
strategies chosen by all the players. A game given in this way is
known to be in normal form.

• In 2-player games of perfect information without chance either
one of the players can force a win, or they can both force a draw.

Andrea Schalk: CS3191 Section 1 – p. 51/51



Summary of Section 1

• Games can be represented using a game tree.

• Elements of chance are then modelled by having a player
(sometimes called Nature), with probabilities labelling such
moves. Incomplete information is modelled by including in the
game tree information about any nodes which cannot be
distinguished by the player about to move.

• The pay-off function for a player assigns a value to each of the
possible outcomes (final positions) possible in the game.

• A strategy for a player is a complete game plan for that player.

• Small games have an alternative description via a matrices
which show the pay-off for each player depending on the
strategies chosen by all the players. A game given in this way is
known to be in normal form.

• In 2-player games of perfect information without chance either
one of the players can force a win, or they can both force a draw.

Andrea Schalk: CS3191 Section 1 – p. 51/51
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• Games can be represented using a game tree.

• Elements of chance are then modelled by having a player
(sometimes called Nature), with probabilities labelling such
moves. Incomplete information is modelled by including in the
game tree information about any nodes which cannot be
distinguished by the player about to move.

• The pay-off function for a player assigns a value to each of the
possible outcomes (final positions) possible in the game.

• A strategy for a player is a complete game plan for that player.

• Small games have an alternative description via a matrices
which show the pay-off for each player depending on the
strategies chosen by all the players. Larger games have too
many strategies for all of them to be listed. A game given in this
way is known to be in normal form.

• In 2-player games of perfect information without chance either
one of the players can force a win, or they can both force a draw.
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