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Games and evolution

Section 6 investigates the use of games in modelling evolution.

The game we will concentrate on is still the Prisoner’s Dilemma game.

We look at tournaments which are played over generations, and
where the population of a new generation depends on what was
successful in the previous round.

We study which strategies can invade others and which are safe from
invasion in different kinds of systems.

We consider different ways of presenting the strategies present in the
system.

Lastly we look at further biological games.
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An ecological tournament
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Indefinitely repeated PD

The space of strategies for the indefinitely repeated Prisoner’s
Dilemma game is huge, and so far it has not been fully explored.

Even if one were to limit oneself merely to strategies which are nice,
forgiving and retaliatory there would be too many of them to take into
account. Just how successful are these strategies?

What one can show is that if w, the probability of playing another
round, is big enough then it pays to be cooperative. Under these
circumstances, TITFORTAT paired with itself is an equilibrium point, but
not a sub-game equilibrium point.

On the downside, ALWAYSD paired with itself also is an equilibrium
point.

We will see how much we can say about this situation.

Andrea Schalk: CS3191 Section 6 – p. 4/57



Indefinitely repeated PD

The space of strategies for the indefinitely repeated Prisoner’s
Dilemma game is huge, and so far it has not been fully explored.

Even if one were to limit oneself merely to strategies which are nice,
forgiving and retaliatory there would be too many of them to take into
account. Just how successful are these strategies?

What one can show is that if w, the probability of playing another
round, is big enough then it pays to be cooperative. Under these
circumstances, TITFORTAT paired with itself is an equilibrium point, but
not a sub-game equilibrium point.

On the downside, ALWAYSD paired with itself also is an equilibrium
point.

We will see how much we can say about this situation.

Andrea Schalk: CS3191 Section 6 – p. 4/57



Indefinitely repeated PD

The space of strategies for the indefinitely repeated Prisoner’s
Dilemma game is huge, and so far it has not been fully explored.

Even if one were to limit oneself merely to strategies which are nice,
forgiving and retaliatory there would be too many of them to take into
account. Just how successful are these strategies?

What one can show is that if w, the probability of playing another
round, is big enough then it pays to be cooperative. Under these
circumstances, TITFORTAT paired with itself is an equilibrium point, but
not a sub-game equilibrium point.

On the downside, ALWAYSD paired with itself also is an equilibrium
point.

We will see how much we can say about this situation.

Andrea Schalk: CS3191 Section 6 – p. 4/57



Indefinitely repeated PD

The space of strategies for the indefinitely repeated Prisoner’s
Dilemma game is huge, and so far it has not been fully explored.

Even if one were to limit oneself merely to strategies which are nice,
forgiving and retaliatory there would be too many of them to take into
account. Just how successful are these strategies?

What one can show is that if w, the probability of playing another
round, is big enough then it pays to be cooperative. Under these
circumstances, TITFORTAT paired with itself is an equilibrium point, but
not a sub-game equilibrium point.

On the downside, ALWAYSD paired with itself also is an equilibrium
point.

We will see how much we can say about this situation.

Andrea Schalk: CS3191 Section 6 – p. 4/57



Indefinitely repeated PD

The space of strategies for the indefinitely repeated Prisoner’s
Dilemma game is huge, and so far it has not been fully explored.

Even if one were to limit oneself merely to strategies which are nice,
forgiving and retaliatory there would be too many of them to take into
account. Just how successful are these strategies?

What one can show is that if w, the probability of playing another
round, is big enough then it pays to be cooperative. Under these
circumstances, TITFORTAT paired with itself is an equilibrium point, but
not a sub-game equilibrium point.

On the downside, ALWAYSD paired with itself also is an equilibrium
point.

We will see how much we can say about this situation.

Andrea Schalk: CS3191 Section 6 – p. 4/57



Evolution

The idea of simulating evolution using games, more specifically, the
indefinitely repeated PD game, is simple:

Assume that there are a number of individuals playing the indefinitely
repeated PD game against each other, each employing some
strategy. After a predefined number of encounters, they have
accumulated a number of points each.

In the next generation, the proportion of each strategy ought to
depend on its success in the previous one. In other words, there
should be more individuals employing successful strategies and
fewer individuals employing unsuccessful ones.

It does not matter much for our model how this works.

• Individuals might learn from mistakes.

• Individuals might imitate more successful others.

• Successful individuals might have more offspring than those who
are struggling.
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Local or global?

There are two different models which are commonly studied when it
comes to modelling evolution.

We can look at a global system, where every individual plays against
every other individual, and every individual can learn from every other
individual.

Alternatively we can look at a local system, where we have a notion
of individuals being neighbours. In such a system individuals play
against their neighbours and learn from their neighbours. These
systems are also known as territorial because of their sense of
location.

There are other variations but they are not usually studied.

We first look at global systems before transferring our insights to local
ones.
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An evolutionary tournament

Armed with the result from his second tournament Axelrod ran an
evolutionary tournament along the lines just described.

He observed that by generation 5 all the lowest ranking 11 entries
were down to half their initial number; mid-ranking ones roughly held
their owns and the top-ranking ones started to grow in number.

By generation 50 the bottom third of strategies had all but
disappeared, most of the middle third had started to shrink in number,
and those in the top third continued to grow.

Note that to survive in the long run, a strategy has to do well against
other successful strategies, since the others are going to die out.

So strategies that live on exploiting non-retaliatory others will do well
initially but run out of victims eventually and then vanish. They are the
victims of their own success!

This tournament was won by TITFORTAT, which ended up with a 15%
share of the entire population, fifteen times the number it started with.
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Invaders and collective stability
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No simple answers

Axelrod became intrigued with this situation. How could cooperation
ever develop in a world where it seems advantageous to only have
one’s own well-being in mind?

Like he, we will from now on consider the indefinitely repeated PD
with probability w.

First of all we note that there are no simple answers in this game.

Proposition 6.1 In an indefinitely repeated game of Prisoner’s Dilemma with two
players there is no one best strategy if w is large enough.

In other words whether a strategy does well depends on which other
strategies are present!
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Proof

Assume there was a best strategy.

We first assume that that strategy cooperates on the first move.

If this strategy is played against the ALWAYSD strategy, then the best it
can do after cooperating on the first move is to defect forever,
choosing the greater pay-off P over S.

Its pay-off when playing against ALWAYSD is
S + wP + w2P + · · · = S + wP

1−w
.

ALWAYSD playing against ALWAYSD gets a pay-off of

P + wP + w2P + · · · = P +
wP

1 − w
,

which is higher. Since we have found a better strategy for this
situation, the one we started with can’t have been the best overall.
Now assume that our best strategy defects on the first move. If it
plays the GRUDGE strategy it will get a pay-off of T for the first move,
but forever thereafter, GRUDGE will defect. Hence our strategy will get
pay-off at most T + wP + w2P + · · · = T + wP

1−w
. The ALWAYSC

strategy, on the other hand, when playing against GRUDGE can expect
a pay-off of

R + wR + w2R + · · · = R +
wR

1 − w
.

ALWAYSC is better off than our strategy if

R > T (1 − w) + wP.

Now the latter is bigger than the former provided that w > T−R

T−P
.

Hence if w is larger than this threshold value then we have once again
found a strategy (ALWAYSC) which performs better (against GRUDGE)
than our best strategy. Therefore such a best strategy cannot exist.
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Collective stability

A sensible question is whether any one strategy is vulnerable to
being invaded by another strategy.

In a situation where A is the resident strategy it is vulnerable against
an invader B if B does better against A than A does against itself.

Because if it does so then in the next generation there will be more
copies of B, and they will keep multiplying.

Definition 12 Let P (A, B) be the pay-off that a strategy A receives when playing
indefinitely repeated Prisoner’s Dilemma against a strategy B. We say that a
strategy B can invade a native strategy A if it gets a higher pay-off when playing
against A then A gets when playing against itself, that is if

P (B, A) > P (A, A).

We say that a strategy is collectively stable if it cannot be invaded by any other
strategy.

Collectively stable strategies can maintain themselves as a
population since the can ward off all invaders.
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A collectively stable strategy

Not surprisingly, the strategy which always defects is invulnerable to
invasions.

Proposition 6.2 The ALWAYSD strategy is collectively stable for all w.

The proof of this statement is an exercise.
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What about TITFORTAT?

So what about TITFORTAT? How vulnerable is it against invasions?

In order to outperform the TITFORTAT strategy playing against itself, an
invader has to defect at some stage.

For that defection, the invader will get pay-off T while TITFORTAT has to
make do with pay-off S. On the next move, TITFORTAT will defect itself,
so the invader may get pay-off P or S in that round. In the latter case,
they are level again, although this next round only occurs with
probability w.

It will therefore have to depend on the probability w whether TITFORTAT

is safe from invasions.
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TITFORTAT versus ALWAYSD

How TITFORTAT does fare against an invasion by ALWAYSD.

The play of these two against each other will consist of

• on the first move: cooperation by TITFORTAT and defection by
ALWAYSD;

• on each subsequent move: defection by both sides.

The pay-off for ALWAYSD against
TITFORTAT:

T +
w

1 − w
P.

The pay-off for TITFORTAT

against TITFORTAT:

R

1 − w
.

TITFORTAT can fight of the invasion iff

R

1 − w
≥ T +

w

1 − w
P.

This is true if and only if R ≥ T − wT + wP , which is equivalent to

w ≥
T − R

T − P
.
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TITFORTAT versus an arbitrary invader

If the probability w is large enough then TITFORTAT can fight off all
invasions.

Proposition 6.3 The strategy TITFORTAT is collectively stable provided that the
parameter w is greater than or equal to the maximum of (T − R)/(T − P ) and

(T − R)/(R − S).

So at least a population of TITFORTAT strategies can be stable! The
only requirement of this is that the probability that two individuals
‘meet again’ is sufficiently high. Niceness therefore doesn’t have to
be an impediment!
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Proof

Any strategy that successfully invades a population of TITFORTAT has
to defect at some point, say on move n. After that

• The strategy may defect forever. X

• The strategy may defect k ≥ 0 times thereafter, and then
cooperate.

Given the definition of TITFORTAT that means that from round n to
round n + k + 1, the strategy will accumulate a pay-off of

wn(T + wP + w2P + · · · + wkP + wk+1S),

and thereafter it is in the same situation as before. Now
TITFORTAT’s pay-off when playing against itself over these
n + k + 1 rounds is

wn(R + wR + w2R + · · ·wkR + wk+1R).

We want to see when TITFORTAT gets the higher pay-off, that is
when

T + wP + w2P + · · · + wkP + wk+1S

≤ R + wR + w2R + · · ·wkR + wk+1R.

This is equivalent to

T − R ≤ w(R − P ) + · · · + wk(R − P ) + wk+1(R − S).
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when
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Proof ctd.

We want to show

T − R ≤ w(R − P ) + · · · + wk(R − P ) + wk+1(R − S).

We proceed by induction over k.

• Base case: k = 0. X

• Induction step:By the condition on w we know that
T −R ≤ w(T −P ) = w(T −R+R−P ) = w(R−P )+w(T −R).But
if the inequality holds for k then we have

w(R − P ) + w(T − R)

≤ w(R − P ) + w(w(R − P ) + · · · + wk(R − P ) + wk+1(R − S))

= w(R − P ) + w2(R − P ) + · · ·wk+1(R − P ) + wk+2(R − S)

which is precisely our inequality for k + 1. X
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Proof

Any strategy that successfully invades a population of TITFORTAT has
to defect at some point, say on move n. After that

• The strategy may defect forever. X

• The strategy may defect k ≥ 0 times thereafter, and then
cooperate. We want to show that

T + wP + w2P + · · · + wkP + wk+1S

≤ R + wR + w2R + · · ·wkR + wk+1R.

This is equivalent to

T−R ≤ w(R−P )+· · ·+wk(R−P )+wk+1(R−S).

X
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Which strategies are stable?

In order for a strategy to be collectively stable it has to react to
defections from the other side. This can be made precise.

Theorem 6.4 A strategy A is collectively stable if and only if it defects when the B’s
cumulative score so far is too great. Specifically, it defects on move n + 1 if the
score of B up to game n exceeds that of A playing n games against itself minus

wn−1(T +
w

1 − w
P ).

There is some flexibility in the concept of being collectively stable. A
strategy typically has a number of points at which it can react to a
defection by the other side. This theorem tells us, however, that it
must react when it falls too far behind.
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Hitting back

However, a strategy cannot afford not to react to a defection by the
other side.

Proposition 6.5 For a nice strategy to be collectively stable it must react in some
way to the very first defection of its playing partner.

Proof. If a nice strategy does not react at all to a defection on, say,
move n then the strategy which defects on move n and cooperates in
every remaining round will exceed its pay-off by wn−1(T − S), and
thus can invade. �

Note that this proposition does not say that the nice strategy must hit
back immediately. TITFORTWOTATS is a strategy which does not satisfy
this criterion and therefore is not collectively stable.

We can see here that Axelrod’s notion of being retaliatory is required
for strategies to be successful.
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Invasions of ALWAYSD?

Our starting point for this was the question whether a nice strategy
like TITFORTAT could be successful in a climate that rewards
selfishness. If we assume that at the start, we only have ALWAYSD
strategies, which are collectively stable, how can nice strategies ever
develop?

What if our assumption that invaders always arrive alone is wrong?

The whole point of nice strategies is that they do better with each
other than ALWAYSD does with itself!

We will now examine the situation that occurs when we assume that
invaders come in clusters.
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Invasion by clusters
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Invasion by clusters

Assume we have a PD game with w = .9 and pay-off matrix

defect cooperate
defect 1 5

cooperate 0 3

The expected number of rounds to be played is 10, so two ALWAYSD
strategies playing against each other can expect 10 points.

A single TITFORTAT strategy introduced in the population can expect 9
points per encounter, and the ALWAYSD strategy it plays against will
get 14 points.

But two TITFORTAT strategies playing against each other can expect 30
points each!

Let us assume that there is a proportion of p TITFORTAT strategies in a
population of ALWAYSDs. The pay-off for TITFORTAT is 30p + 9(1 − p),
whereas for ALWAYSD it is 14p + 10(1 − p).

The former is bigger than the latter if and only if 16p − (1 − p) > 0
which is the case if and only if p > 1/17 ≈ .0588.

In other words, as soon as just 6% of all members of the population
are TITFORTAT it pays to be nice!
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Invasion in territorial systems

So far we have made the assumption that every individual plays with
every other individual.

Alternatively we can assume that every individual only plays with its
neighbours (as long as we introduce a notion of locality—we call
these systems territorial).

In a territorial system, where one strategy might typically have 4 or 8
neighbours, a cluster of TITFORTAT strategies can invade a population
of ALWAYSDs provided that they all have at least one TITFORTAT

neighbour.

Hence in a territorial system a cluster of two TITFORTAT strategies
which are neighbours can invade a system of ALWAYSD strategies!

We will find out more about territorial systems later.
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Nice strategies withstand clusters

We have just seen that ALWAYSD is vulnerable against invasions by
clusters. What about TITFORTAT?

Proposition 6.7 Assume that in our model, any cluster of invaders is small enough
that the majority of the native population will interact only with itself. Then if a nice
strategy is collectively stable it cannot be invaded by a cluster of individuals.

In other words, cooperation can develop in a world of egoism and
take over that world, as long as it is not just single individuals that
appear.

For such a ‘take-over’ it is necessary that the probability w for
interacting with the same individual as well as that of one invader
meeting another p being high enough. Once they have taken over,
nice strategies are fairly resistant against counter-invasions. (Note
that a strategy which is immune against invasion by any one strategy
might still be invaded by a mixture of two or more strategies.)
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Proof

Let A be a nice strategy which is collectively stable, and let B be a
potential invader. Assume that the proportion of Bs among the As
is p.

Then the expected pay-off in one generation for B is
pP (B, B) + (1 − p)P (B, A), whereas that for A is P (A, A). Hence the
expected pay-off for B is larger than that for A if and only if

pP (B, B) + (1 − p)P (B, A) − P (A, A) > 0.

We know that P (B, B) ≤ P (A, A). So at most P (B, B) = P (A, A).

In that case the above is equivalent to

(p − 1)P (A, A) + (1 − p)P (B, A) = (1 − p)
(

P (B, A) − P (A, A)
)

> 0,

which is equivalent to

P (B, A) > P (A, A).

But that is the condition that B cannot invade A.
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Territorial systems

Because territorial systems work on a different basis we have to
revisit the notions we created for our ‘global’ systems.

We say that a strategy can territorially invade a population consisting
of another strategy if, eventually, every location in the territory holds
an individual employing the new strategy. We say that a strategy is
territorially stable if it cannot be territorially invaded.

It turns out that quite a few of our conclusions for the evolutionary
systems where each individual interacts with each other individual
carry over to the territorial system.
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Stability

It turns out that the two notions of stability are related.

Proposition 6.8 If a strategy is collectively stable then it is territorially stable.

Proof. A strategy can only survive in the territorial system if there is an
individual in the next generation which carries it on. But that will only
be the case if it is more successful against the native strategy than
that strategy is against itself, which is precisely the condition for it
being able to invade a population consisting entirely of that native
strategy. �
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Example of a territorial system

Here is a system
where

w = .3,
T = 56,
R = 29,

P = 6 and
S = 0.

Each strategy had four
neighbours.

The simulation started
with a single ALWAYSD

invader in the centre of
a system of TITFORTAT.
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Example of a territorial system

Here is a system
where

w = .3,
T = 56,
R = 29,

P = 6 and
S = 0.

Each strategy had four
neighbours.

The simulation started
with a single ALWAYSD

invader in the centre of
a system of TITFORTAT. Generation 19

Andrea Schalk: CS3191 Section 6 – p. 29/57



Territorial system with tournament strats

Axelrod decided to try a territorial tournament with the strategies
submitted to the second tournament. He picked an (18 × 14) grid with
four representatives each. Every strategy had four neighbours. This
is a typical final state.

44

41

1 (TitForTat)

52

9

17

4

6

3

7

31 (Nydegger)

The numbers identifying 

the strategies give their

rank in the (second) tournmanet.

• Not all surviving strategies did well in the tournament;

• not all strategies that did well in the tournament survive;

• most surviving strategies form clusters;

• all surviving rules are nice.

NYDEGGER did extremely well, despite the fact that it only finished 31st
in the tournament proper: On average, it had 40 copies.
Whenever a copy of NYDEGGER has one ‘apologetic’ neighbour it will
do considerably better than all of its other neighbours. Thus it
converts a number of strategies to its own ideas.
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TITFORTAT did well in all the simulations, on average increasing its
numbers from 4 to 17.

NYDEGGER did extremely well, despite the fact
that it only finished 31st in the tournament proper: On average, it had
40 copies.
Whenever a copy of NYDEGGER has one ‘apologetic’ neighbour it will
do considerably better than all of its other neighbours. Thus it
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Andrea Schalk: CS3191 Section 6 – p. 30/57



Territorial system with tournament strats

44

41

1 (TitForTat)

52

9

17

4

6

3

7

31 (Nydegger)

The numbers identifying 

the strategies give their

rank in the (second) tournmanet.

NYDEGGER did extremely well, despite the fact that it only finished 31st
in the tournament proper: On average, it had 40 copies.

Whenever a copy of NYDEGGER has one ‘apologetic’ neighbour it will
do considerably better than all of its other neighbours. Thus it
converts a number of strategies to its own ideas.

Andrea Schalk: CS3191 Section 6 – p. 30/57



Territorial system with tournament strats

44

41

1 (TitForTat)

52

9

17

4

6

3

7

31 (Nydegger)

The numbers identifying 

the strategies give their

rank in the (second) tournmanet.

NYDEGGER did extremely well, despite the fact that it only finished 31st
in the tournament proper: On average, it had 40 copies.
Which strategies do well? Once all strategies are nice, no more
change will occur. So those that do well are the ones that are best at
exploiting the original population!

Whenever a copy of NYDEGGER has
one ‘apologetic’ neighbour it will do considerably better than all of its
other neighbours. Thus it converts a number of strategies to its own
ideas.
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NYDEGGER did extremely well, despite the fact that it only finished 31st
in the tournament proper: On average, it had 40 copies.
NYDEGGER is a complicated strategy which makes a number of
case-distinctions based on the previous three rounds. It is nice.
When the other side defects NYDEGGER sometimes gets it strategy to
‘apologize’ by cooperating while NYDEGGER defects.

Whenever a copy
of NYDEGGER has one ‘apologetic’ neighbour it will do considerably
better than all of its other neighbours. Thus it converts a number of
strategies to its own ideas.
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What does it all say?

What do Axelrod’s simulations tell us about cooperation, and its
evolution?

Many people have argued that this set-up is not very realistic when it
comes to describing real-world phenomena:

• The strategies present at the start are a somewhat eclectic mix,

• there is no notion of ‘misunderstanding’ or ‘error’,

• no mutations are present to change the environment.

On the plus side, Axelrod has provided us with an interesting new
approach with promising results. Many people have now taken up the
idea and applied them to more realistic frameworks.

A lesson to take away: If individuals tend to imitate their successful
neighbours, it really pays to be outstandingly successful under at
least some circumstances (because that generates converts), even if
one’s average performance is below that of the average of the entire
population.
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Beyond Axelrod
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Beyond Axelrod

Since Axelrod’s trail-breaking work in the eighties, a lot more has
been done. Approaches we will consider at least briefly are

• strategies that can learn;

• strategies that allow error via making use of probabilistic events;

• strategies based on finite state machines.
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Learning strategies

One approach to strategies that can learn is to assume they have a
probability with which they cooperate, and change that probability
based on what has happened previously. For the strategy n-PAVLOV,
Pn, the probability that it

repeats its current actions

• increases by 1/n if it
received pay-off R;

• decreases by 2/n if it
received pay-off S;

• decreases by 1/n if it
received pay-off P ;

• increases by 2/n if it re-
ceived pay-off T .

cooperates (p) changes to

• p + 1/n if it received
pay-off R;

• p − 2/n if it received
pay-off S;

• p + 1/n if it received
pay-off P ;

• p − 2/n if it received pay-
off T .

1-PAVLOV will on the next move

• cooperate if both parties chose the same move in the current
round;

• defect if both parties chose different moves in the current round.
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Learning strategies

For the strategy n-PAVLOV, Pn, the probability that it

repeats its current actions

• increases by 1/n if it
received pay-off R;
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1-PAVLOV will
on the next move
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The behaviour of Pavlovian strategies

The PAVLOV family of strategies can be viewed as learning from the
experience they make.

Because the the result of the previous round is treated as a stimulus,
this form of learning fits into Skinner’s operant conditioning model for
learning.

This is also a model which is deemed realistic when it comes to
describing animal learning.

When paired with a responsive strategy, the various PAVLOV strategies
eventually reach a state where they cooperate almost exclusively.

It can take such a strategy a fairly long time to learn to cooperate
when paired with another Pavlovian strategy or TITFORTAT.

They typically outperform TITFORTAT against versions of the RANDOM

strategy, provided the probability for cooperation is at least 1/2.
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Cycling populations

One criticism levelled against Axelrod’s work is that he made no
attempt to find a realistic initial population. He also did not allow for
mutations of strategies.

In a world where almost all strategies are nice, a mutation leading to
ALWAYSC would be able to survive.

But once there are ALWAYSC strategies present, other mutants which
exploit their generous behaviour might establish themselves (such as
ALWAYSD).

This suggests that such a population should go through cycles,
whereas in Axelrod’s world, all populations become stable eventually.
(This is due to his lack of making true chance experiments and not
allowing mutations.)
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Reactive strategies

Two biologies, Nowak and Sigmund, decided to work with reactive
strategies. Such a strategy R(r, p, q) will

• cooperate on the first move with probability r;

• cooperate with probability p if the other player cooperated in the
previous round;

• cooperate with probability q if the other player defected in the
previous round.

Question. Can you find any of our known strategies among the
reactive ones?

ALWAYSD is R(0, 0, 0). TITFORTAT is R(1, 1, 0). ALWAYSC is R(1, 1, 1).

The generous version of TITFORTAT, known as GENTITFORTAT has
r = p = 1, but rather than cooperating with probability 0 when the
other side has defected last, it will cooperate with probability

min{1 −
T − R

R − S
,
R − P

T − P
}.
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Noise

In order to model error Nowak and Sigmund did not allow strategies
where p and q were equal to 0 or 1.

Their idea is that no being is that perfect!

The idea is that in the real world, people (or animals) might misread
somebody, give out the wrong signals, or otherwise have problems
communicating.

Andrea Schalk: CS3191 Section 6 – p. 38/57



Noise

In order to model error Nowak and Sigmund did not allow strategies
where p and q were equal to 0 or 1.

Their idea is that no being is that perfect!

The idea is that in the real world, people (or animals) might misread
somebody, give out the wrong signals, or otherwise have problems
communicating.

Andrea Schalk: CS3191 Section 6 – p. 38/57



Noise

In order to model error Nowak and Sigmund did not allow strategies
where p and q were equal to 0 or 1.

Their idea is that no being is that perfect!

The idea is that in the real world, people (or animals) might misread
somebody, give out the wrong signals, or otherwise have problems
communicating.

Andrea Schalk: CS3191 Section 6 – p. 38/57



The world of reactive strategies

Nowak and Sigmund seeded their population with a random selection
of these strategies.

Most of the time the strategies that do well are those closest to
ALWAYSD, that is, strategies for which p and q are close to 0.

However, if there is at least one TITFORTAT-like strategy in the initial
population then everything changes:

At the start, this strategies (and its copies) struggles to survive. The
ALWAYSD-like strategies live on the strategies for which both p and q
are relatively large. But over time, these ‘victim’ strategies vanish,
and then TITFORTAT-like strategies start growing in number at the cost
of the ALWAYSD strategies.

Once the exploiters have gone, GENTITFORTAT takes over, and then
evolution stops. Nowak and Sigmund concluded that while TITFORTAT

is vital for cooperation to evolve, persistent patterns of cooperation in
the real world are more likely to be due to GENTITFORTAT.
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More complicated strategies

Nowak and Sigmund then ran a second series of simulations, with a
wider class of strategies. They decided to allow four random values to
describe a strategy, p1, p2, p3, and p4 so that it would be possible to
take the strategy’s own last move into account and not just the other
player’s.

A strategy S(p1, p2, p3, p4) will cooperate on the next move with

• probability p1 if in the current round, both players cooperated;

• probability p2 if in the current round, it cooperated while the other
side defected;

• probability p3 if in the current round, it defected while the other
side cooperated;

• probability p4 if in the current round, both sides defected.

TITFORTAT is S(1, 0, 1, 0), and all reactive strategies in general are still
represented: they are the ones with

p1 = p3 and p2 = p4.
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Modelling mutation

They took an initial population of strategies all playing S(.5, .5, .5, .5).

Every 100 generations a small number of randomly chosen mutants
was introduced, where the probabilities p1 to p4 were changed. They
used the proportional evolutionary model rather than the territorial
one.

After 10 million generations, 90% of all simulations had reached a
state of steady mutual cooperation.

But in only 8.3% of these was the dominating strategy TITFORTAT or
GENTITFORTAT.

In the remaining ones it was strategies close to S(1, 0, 0, 1) which
flourished. But this is precisely the strategy 1-PAVLOV!

This strategy makes it hard for strategies like ALWAYSD to gain a
foothold.
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But in only 8.3% of these was the dominating strategy TITFORTAT or
GENTITFORTAT.

In the remaining ones it was strategies close to S(1, 0, 0, 1) which
flourished. But this is precisely the strategy 1-PAVLOV!

This strategy stays with its previous decision if it received the higher
of the two pay-offs available (that is T (over R) and P (over S)).
Otherwise it changes its mind in the next move.

This strategy makes it
hard for strategies like ALWAYSD to gain a foothold.
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This strategy had been disparagingly called ‘simpleton’ by Rapoport
and others: It cooperates with ALWAYSD on every other move, and
against TITFORTAT it can be locked into a sequence where it receives
repeating pay-offs of T , P , S.

This strategy makes it hard for
strategies like ALWAYSD to gain a foothold.
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Finite state machines

Other researchers decided to explore simulations where all strategies
are represented by finite state machines.

Linster conducted a
tournament with all strategies which can be expressed using such
automata with two states.

No single strategy dominated Linster’s populations. The GRUDGE

strategy did best on average—this could not do well in Nowak and
Sigmund’s world because defections caused by noise would make it
defect forever.

Other strategies which did well were TITFORTAT, 1-PAVLOV, ALWAYSC and
S(0, 1, 1, 0).

His results suggest that there may be stable mixes of strategies.

Andrea Schalk: CS3191 Section 6 – p. 42/57



Finite state machines

Other researchers decided to explore simulations where all strategies
are represented by finite state machines.

Here is TITFORTAT as such a machine

C D

D

C

D
C

Linster conducted a tournament with all strategies which can be
expressed using such automata with two states.

No single strategy dominated Linster’s populations. The GRUDGE

strategy did best on average—this could not do well in Nowak and
Sigmund’s world because defections caused by noise would make it
defect forever.

Other strategies which did well were TITFORTAT, 1-PAVLOV, ALWAYSC and
S(0, 1, 1, 0).

His results suggest that there may be stable mixes of strategies.

Andrea Schalk: CS3191 Section 6 – p. 42/57



Finite state machines

Other researchers decided to explore simulations where all strategies
are represented by finite state machines. Linster conducted a
tournament with all strategies which can be expressed using such
automata with two states.

No single strategy dominated Linster’s populations. The GRUDGE

strategy did best on average—this could not do well in Nowak and
Sigmund’s world because defections caused by noise would make it
defect forever.

Other strategies which did well were TITFORTAT, 1-PAVLOV, ALWAYSC and
S(0, 1, 1, 0).

His results suggest that there may be stable mixes of strategies.

Andrea Schalk: CS3191 Section 6 – p. 42/57



Finite state machines

Other researchers decided to explore simulations where all strategies
are represented by finite state machines. Linster conducted a
tournament with all strategies which can be expressed using such
automata with two states. There are several ways of encoding
ALWAYSC and ALWAYSD, and so there are only 22 different strategies in
this world.

No single strategy dominated Linster’s populations. The GRUDGE

strategy did best on average—this could not do well in Nowak and
Sigmund’s world because defections caused by noise would make it
defect forever.

Other strategies which did well were TITFORTAT, 1-PAVLOV, ALWAYSC and
S(0, 1, 1, 0).

His results suggest that there may be stable mixes of strategies.

Andrea Schalk: CS3191 Section 6 – p. 42/57



Finite state machines

Other researchers decided to explore simulations where all strategies
are represented by finite state machines. Linster conducted a
tournament with all strategies which can be expressed using such
automata with two states. He conducted tournaments with mutations
(which were very rare), sometimes with invasion forces where as
much as 1% of the population could consist of invaders.

No single strategy dominated Linster’s populations. The GRUDGE

strategy did best on average—this could not do well in Nowak and
Sigmund’s world because defections caused by noise would make it
defect forever.

Other strategies which did well were TITFORTAT, 1-PAVLOV, ALWAYSC and
S(0, 1, 1, 0).

His results suggest that there may be stable mixes of strategies.

Andrea Schalk: CS3191 Section 6 – p. 42/57



Finite state machines

Other researchers decided to explore simulations where all strategies
are represented by finite state machines. Linster conducted a
tournament with all strategies which can be expressed using such
automata with two states.

No single strategy dominated Linster’s populations.

The GRUDGE

strategy did best on average—this could not do well in Nowak and
Sigmund’s world because defections caused by noise would make it
defect forever.

Other strategies which did well were TITFORTAT, 1-PAVLOV, ALWAYSC and
S(0, 1, 1, 0).

His results suggest that there may be stable mixes of strategies.

Andrea Schalk: CS3191 Section 6 – p. 42/57



Finite state machines

Other researchers decided to explore simulations where all strategies
are represented by finite state machines. Linster conducted a
tournament with all strategies which can be expressed using such
automata with two states.

No single strategy dominated Linster’s populations. The GRUDGE

strategy did best on average—this could not do well in Nowak and
Sigmund’s world because defections caused by noise would make it
defect forever.

Other strategies which did well were TITFORTAT, 1-PAVLOV, ALWAYSC and
S(0, 1, 1, 0).

His results suggest that there may be stable mixes of strategies.

Andrea Schalk: CS3191 Section 6 – p. 42/57



Finite state machines

Other researchers decided to explore simulations where all strategies
are represented by finite state machines. Linster conducted a
tournament with all strategies which can be expressed using such
automata with two states.

No single strategy dominated Linster’s populations. The GRUDGE

strategy did best on average—this could not do well in Nowak and
Sigmund’s world because defections caused by noise would make it
defect forever.

Other strategies which did well were TITFORTAT, 1-PAVLOV, ALWAYSC and
S(0, 1, 1, 0).

His results suggest that there may be stable mixes of strategies.

Andrea Schalk: CS3191 Section 6 – p. 42/57



Finite state machines

Other researchers decided to explore simulations where all strategies
are represented by finite state machines. Linster conducted a
tournament with all strategies which can be expressed using such
automata with two states.

No single strategy dominated Linster’s populations. The GRUDGE

strategy did best on average—this could not do well in Nowak and
Sigmund’s world because defections caused by noise would make it
defect forever.

Other strategies which did well were TITFORTAT, 1-PAVLOV, ALWAYSC and
S(0, 1, 1, 0).

His results suggest that there may be stable mixes of strategies.

Andrea Schalk: CS3191 Section 6 – p. 42/57



Use of simulations

All the results we have just looked at rely vitally on the use of
simulations.

The underlying models are too complicated to obtain any results by
purely theoretic means, so simulations are the only method that
works in practice.

Such results have to be taken with a grain of salt in that there are a
number of possible errors that may occur when implementing them.

It is therefore always a good idea to test the simulation on simple
situations where the theory can predict the outcome.

This provides a connection between computer science, and areas
where the simulations come from, such as sociology, biology or the
political sciences.
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More biological games

There are many other games that play a role in biology. One example
is the Hawk-Dove game.

This is an attempt by biologists to explain behaviour such as ritual
fighting, which very rarely damages one of the contestants.

Take two male stags fighting for a group of females. They start with a
prolonged roaring match, followed by a parallel walk, followed by a
direct contest of strength where the two interlock antlers and push
against each other. At any time, one of them (usually the intruder)
can turn away and break off the fight.

Why does not one of the stags attack the other during the ‘parallel
walk’ phase, where the flank of the opponent makes an enticing
target? Such an aggressive stag might well have advantages if all
other stags would retreat under such an assault.To explain this and a
number of similar phenomena, consider a game where there are two
strategies, the HAWK and the DOVE strategy.

The DOVE strategy will pretend that it is willing to fight, but when the
situation gets serious it will retreat.

The HAWK, on the other hand, will keep fighting until either it is too
severely injured to continue or until the opponent retreats.
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The Hawk-Dove game

Let us assume that the contestants in this game are fighting for some
‘gain in fitness’ G.

If a HAWK meets a DOVE then the DOVE runs away and the HAWK gets a
pay-off of G.

If HAWK meets HAWK, then a serious fight will ensue. That will reduce
the loser’s fitness by C. If either HAWK has a .5 chance of winning, the
pay-off is (G − C)/2 for each of them.

If two DOVES meet each other they may pretend to fight for a long time,
which costs L. So the winner gets G − L, and the loser −L. If again
each side has a .5 chance of winning, the expected pay-off is
(G − 2L)/2.

This symmetric game can be described by the following matrix giving
the pay-off for Player 1.

HAWK DOVE

HAWK (G − C)/2 G

DOVE 0 (G − 2L)/2
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The Hawk-Dove game continued

HAWK DOVE

HAWK (G − C)/2 G

DOVE 0 (G − 2L)/2

It is assumed that L is much smaller than C.

The fewer HAWKS there are the better the chance of meeting a DOVE,
and the better HAWKS do on average.

Here is a specific example. Let G = 50, C = 100 and L = 10 (points).
This is the resulting pay-off matrix.

HAWK DOVE

HAWK −25 50

DOVE 0 15
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Extreme populations

HAWK DOVE

HAWK −25 50

DOVE 0 15

In a population consisting entirely of DOVES, on average the score
from a contest is 15.

If a mutant HAWK turns up he will meet a DOVE in every contest gaining
50 points. This is much better than a DOVE manages, and therefore
the HAWK genes will spread quite rapidly, leading to an increase in the
number of HAWKS.

In a population consisting entirely of HAWKS the average pay-off from a
contest is −25! A single DOVE in such a population is at an advantage:
While it loses all its fights, it at least gets an average pay-off of 0 as
opposed to −25. This would lead to an increase of the number of
DOVES.
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Stable populations?

HAWK DOVE

HAWK −25 50

DOVE 0 15

In a population with a proportion of p DOVES and (1 − p) HAWKS, the
average pay-off of one contest
for a DOVE is

p
G − 2L

2
= 15p,

and that for a HAWK

pG+(1−p)
G − C

2
= 50p−25(1−p) = 75p−25.

In a balanced population, neither is at an advantage and these are
equal. This happens precisely when

15p = 75p − 25, which is true if and only if p = 5/12.

A population with 5/12 DOVES and 7/12 HAWKS is stable, and the
average pay-off for an individual is 75/12 = 6.25.

Note that if everybody agreed to be a DOVE, there would be a much
higher pay-off per contest for the individual, and thus for the entire
population! But such a population wouldn’t be stable.
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Mixed strategy stable populations

HAWK DOVE

HAWK −25 50

DOVE 0 15

A mixed population is not the only way of reaching a stable
population.

We could interpret the game as one where the pure
strategies are the HAWK and DOVE strategy, but where each contestant
picks a mixed strategy for himself.

Question. Which population of mixed strategies might be stable?

It turns out that a stable population, that is an equilibrium point for the
game is given by everybody adopting the mixed strategy (7/12, 5/12).

This correspondence between stable populations and mixed strategy
equilibrium points only works in the situation where the game is
symmetric and there are only two strategies for each player.

We can use Proposition 2.4 to prove that the former gives rise to the
latter, but we do not prove the converse.
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Equilibria and stability

Since this game is symmetric, an optimal strategy for Player 1 is also
optimal for Player 2, which is why we only had to solve one equation.

This means that (7/12, 5/12) is the best response to itself.

Clearly in a population consisting entirely of such optimal strategies,
every invader will do worse against these than they do against
themselves, and therefore such a population cannot be invaded.

However, if there are more than two strategies around (and contests
are on a one-on-one basis) then this changes.

Also among biologists the idea that an invader would have to
outperform the resident strategy to succeed is not geenerally
accepted. They do not consider the equilibrium point as a truly stable
situation: Strategies which perform as well against the resident
strategy as that strategy does against itself might still spread.
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More strategies: RETALIATOR

The RETALIATOR starts by behaving similar to a DOVE, but when
attacked (by a HAWK, for example), it retaliates.

Hence it behaves like a HAWK when paired with a HAWK, and like a
DOVE when paired with a DOVE.

HAWK DOVE RETALIATOR

HAWK (G − C)/2 G (G − C)/2

DOVE 0 (G − 2L)/2 (G − 2L)/2

RETALIATOR (G − C)/2 (G − 2L)/2 (G − 2L)/2

If L = 0 in this game, then the only stable population is a mixture of
HAWKS and DOVES, without any RETALIATORS.
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More strategies: BULLY

We add a fourth strategy, BULLY, which behaves like a HAWK until it is
seriously attacked (by a HAWK, for example) in which case it turns into
a DOVE.

There is no stable population at all for this game, so the system
oscillates.

So there is nothing in the mathematical theory which says that such a
game has to have a stable form!
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Change of RETALIATOR

HAWK DOVE RETALIATOR

HAWK (G − C)/2 G (G − C)/2

DOVE 0 (G − 2L)/2 (G − 2L)/2

RETALIATOR (G − C)/2 (G − 2L)/2 (G − 2L)/2

Question. What happens if we remove all HAWKS from this system?

In the absence of a HAWK, RETALIATOR and DOVE are indistinguishable.
We can fix this by assuming that when paired with a DOVE, there is a
slight chance that RETALIATOR may find out that escalating the fight will
win it. It then seems only fair to assume that a HAWK has an
advantage when paired with a RETALIATOR since it will escalate first.

HAWK DOVE RETALIATOR

HAWK (G − C)/2 G (G − C + E)/2

DOVE 0 G/2 (G − E)/2

RETALIATOR (G − C − E)/2 (G + E)/2 G/2
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Stable populations for three strategies

HAWK DOVE RETALIATOR

HAWK (G − C)/2 G (G − C + E)/2

DOVE 0 G/2 (G − E)/2

RETALIATOR (G − C − E)/2 (G + E)/2 G/2

This game has two stable populations, one consisting entirely of
RETALIATORS and one consisting of a mixture of HAWKS and DOVES.

We will not work any of these out in detail; they are just meant to give
an idea of the variety of situations that are possible with this setup.
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Yet more biological games

There are other strategies one might add to this game, and there are
different games that describe slightly different situations.

In particular when the potential gain G is small, contests often
become asymmetric: The two contestants do not fight on equal
grounds, for example because one is an intruder and the other on
home territory.

In such fights there typically is a considerable advantage for the
home side. This seems sensible, because the home side knows the
territory in question, and there are good reasons for striving to be a
resident. This makes fights a lot shorter, and thus less costly, and
gives a ‘natural’ solution, namely a stable population.

However there’s a type of Mexican social spider which, when
disturbed tries to find a new hiding place. If it darts into a crevice
occupied by another spider the occupant will leave and seek a new
place for itself.
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In particular when the potential gain G is small, contests often
become asymmetric: The two contestants do not fight on equal
grounds, for example because one is an intruder and the other on
home territory.

A certain kind of butterfly, for example, seeks out sunny spots in the
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intruder gives up very quickly.
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Summary of Section 6

• The indefinitely repeated PD can be used to model evolution.
There is no single best strategy if w is large enough.

• The core concept is collective stability, that is, being safe from
invasions.

• Nice strategies have to react to the first defection of a playing
partner to be collectively stable.

• Invasion becomes easier for nice strategies if they invade in
clusters, but nice collectively stable strategies are safe from
invasions.

• We can model localized interaction in territorial system.

• Beyond Axelrod, people have introduced noise and simple
learning.

• There are other games such as the Hawk-Dove game that are
used in biology to explain the point of balance of stable
populations.
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• The core concept is collective stability, that is, being safe from
invasions.
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• Nice strategies have to react to the first defection of a playing
partner to be collectively stable.
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invasions. In many ways, TITFORTAT is as successful a strategy as
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invasions.
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partner to be collectively stable.

• Invasion becomes easier for nice strategies if they invade in
clusters, but nice collectively stable strategies are safe from
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• We can model localized interaction in territorial system.

• Beyond Axelrod, people have introduced noise and simple
learning (with probabilistic strategies or finite state machines).

• There are other games such as the Hawk-Dove game that are
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