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Introduction

In this talk we will:

Talk about the different use of SAT solvers in Vampire
1 Finite Model Building
2 AVATAR
3 Instance Generation
4 Global Subsumption

Talk about how they could be better!
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Overview

1 Finite Model Building

2 AVATAR

3 Instance Generation

4 Global Subsumption

5 Other Ideas
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Finite Model Building

Newly added to Vampire this year

Just implements existing ideas

Useful for establishing non-theorems i.e. satisfiability checking

Idea: For a domain size n create a ground problem that is satisfiable
if the original problem has a finite model of size n.

The ground literals can be (consistently) named/translated into SAT
variables and the ground problem decided by a SAT solver

We can just check for bigger and bigger values of n
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Preparing the Problem

Definition Introduction. This reduces the size of clauses produced
by flattening. A clause p(f (a, b), g(f (a, b))) becomes p(t1, t2) and
we introduce the definition clauses t1 = f (a, b) and t2 = g(t1)

Flattening. This is necessary for the technique in general. A clause
p(f (a, b), g(f (a, b))) becomes

p(x1, x2) ∨ x1 6= f (x3, x4) ∨ x2 6= g(x1) ∨ x3 6= a ∨ x4 6= b

Splitting. This can reduce the number of variables in clauses
(important later). The clause p(x , y) ∨ q(y , z) is transformed to the
two clauses p(x , y) ∨ s(y) and ¬s(y) ∨ q(y , z).
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The Constraints

Groundings. For each (flattened) clause C [x] and each vector of
domain constants d translate and add C [d]

Functionality. For each function symbol f with arity a, vector of
domain constants d of length a and distinct domain constants d1 and
d2 translate and add f (d) 6= d1 ∨ f (d) 6= d2

Totality. For each function symbol f with arity a and vector of
domain constants d of length a translate and add
f (d) = d1 ∨ . . . ∨ f (d) = dn for (all) the domain constants di

Note the exponential nature of these constraint sets

Reger,G Vampire and SAT Solvers 6 / 30



Symmetry Breaking and Sort Inference

Symmetry Breaking.
I Any model will be symmetrical in ordering of domain constants
I So the SAT solver will be checking the same model multiple times
I We can (partly) break these symmetries by ordering ground terms
I Pick and order n ground terms (include all constants at the front)
I For term ti and domain size n add the clauses

ti 6= dm ∨ t1 = dm−1 ∨ . . . ∨ ti−1 = dm−1

for m ≤ n and if i ≤ n add

ti = d1 ∨ . . . ∨ ti = di

Sort Inference.
I Separate constants and function positions into different distinct sorts
I Under certain conditions we can detect a maximum size for a sort
I This information can render certain constraints redundant
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Importance of the SAT Solver

The majority of time is spent inside the SAT solver

Therefore, making the SAT solver faster can improve this method.

Variable Elimination. As implemented in e.g. MiniSAT. Idea is to
apply all resolutions on a variable to eliminate it. Only do this if it
will reduce the size. Removes pure variables.

I Can help a lot
I Can make things worse
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Anything Else?

Deciding Non-Non-Theorems
I This is a decision procedure for EPR i.e. we stop at n where n is the

number of constants in the problem
I The input can restrict the size of the domain, then we can detect the

absence of a model i.e. X = Y ∨ X = Z means n ≤ 2

Incrementality?
I Idea (from Paradox): use and update single SAT solver
I Requires us to retract totality constraints
I Pros: we only have to generate new stuff, we get learned clauses
I Cons: we lose variable elimination
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AVATAR

A general architecture for proof search based on the idea of splitting

Still relatively new, very exciting, and you will hear about it a lot

Helps Vampire solve a lot of new problems

Allows for exciting new extensions for theory reasoning
I Combine with decision procedures i.e. use a SMT solver
I See VampireZ3 in CASC as a proof of idea
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Splitting: The Necessary Details

Motivation: Reasoning with heavy/long clauses is expensive

The set of clauses S ∪ (C1 ∨ . . . ∨ Cn) where Ci are minimal pairwise
variable-disjoint components is satisfiable if all of S ∪ Ci are

We call Ci a component and say C is splittable if i > 1

In general, Ci is nicer than C1 ∨ . . . ∨ Cn

Therefore, it suffices to explore each of S ∪ Ci separately

To do this we need to
1 Decide which Ci to assert/explore next
2 Backtrack our decision if that branch is unsatisfiable

In AVATAR we use a SAT solver to do this
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AVATAR by Example

Input:

p(a), q(b), ¬p(x) ∨ ¬q(y)

Repeat
I FO: Process new clauses

F split clauses into components

I SAT: Construct model
I FO: Use model (do splitting)

F In FO use clauses with assertions

I FO: Do FO proving
F Assertions must be preserved in

inferences

I Process refutation

FO SAT

Components
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Varying the Architecture

Component Selection.
I What to do with ground literals?
I What to do with unsplittable clauses?

What SAT solver to use, and how?
I Our own, MiniSAT, Lingeling
I Setting various options

Minimizing the model.
I Do we need the whole model?
I How does a partial model interact with splitting theory?
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SAT Solver Effects

What is clear:
I The model produced by the SAT solver matters
I Faster SAT solving can help
I Incremental SAT solving can help

What is unclear:
I A lot...
I How important the model is, what a nice model is
I How important partial models are, what kind of partialness
I How much information we should give the SAT solver

Martin will say more today and on Thursday :)
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Instance Generation

Observation: By Hebrand Theorem, if a set of first-order clauses is
unsatisfiable then there is a set of unsatisfiable ground instances that
is also unsatisfiable

The idea of Instance Generation is then as follows
1 Given a set of first-order clauses S
2 Produce ground abstraction S⊥ by mapping vars to fresh constant ⊥
3 If S⊥ is unsatisfiable then S is unsatisfiable
4 Otherwise, attempt to refine the abstraction by adding clauses to S
5 Goto 2

Checking satisfiability of S⊥ can be done by a SAT solver
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Refine the Abstraction?

How can the abstraction be too general?

Consider S = {p(f (x , a)),¬p(f (b, y))}
This gives S⊥ = {p(f (⊥, a)),¬p(f (b,⊥))}
Which is SAT but S is unsatisfiable

To refine the abstraction we add p(f (b, a)) and ¬p(f (b, a))

Note that in the SAT solver p(f (⊥, a)) and p(f (b,⊥)) are just
distinct variables
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The InstGen rule

This refinement is carried out by the InstGen rule:

C ∨ L D ∨ K

(C ∨ L)σ (D ∨ K )σ

where σ = mgu(L,K ) and σ is a proper instantiator of L or K and
both L and K are selected

A literal is selected if it is appears in the model of the SAT solver

This is based on the observation that the conflict that needs to be
resolved by refinement is always between such literals
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In Practice

Instance Generation is applied as a saturation algorithm

This means that we saturate (up to redundancy) the set of clauses
with respect to the InstGen rule

We can use a prolific constant from the problem in groundings

We carry out restarts to reset the model periodically

We use dismatching constraints to remove some redundant inferences

We can combine with superposition by performing superposition proof
search alongside this proof search and importing groundings of
(unconditional) generated clauses into the SAT solver
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Combination with AVATAR?

One possible extension to this setup is to share the SAT solver

Note that SAT variables are components in AVATAR and ground
literals in Instance Generation but all ground literals are components

Only get overlap if we use a constant from the problem for grounding

Further idea, for component C in AVATAR add [C ]→ [Cγ]

This connects non-ground parts of the AVATAR model with the
Instance Generation model
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Global Subsumption: the Ground Case

This is a very effective simplification technique

Let us consider the ground case first...

Assume a set of first order clauses S

Let Sgr be a set of ground clauses implied by S

i.e. instances of clauses in S

The ground clause D ∨ D ′ can be replaced by D in S if Sgr |= D

This is sound as D follows from S and subsumes D ∨ D ′

If D is empty then Sgr is unsatisfiable and so is S
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Global Subsumption: the Non-Ground Case

We can lift this to give the non-ground global subsumption rule:

C ∨ C ′

C

where Sgr |= Cγ for non-empty C ′ and injective substitution γ from
variables in C to fresh constants

For every generated clause C we
1 Let γ = [x1 7→ c1, . . . xn 7→ cn] for xi in C and fresh ci
2 Add Cγ to Sgr
3 Search for a minimal C ′ ⊂ C such that Sgr |= C ′

We do not add more groundings to Sgr as we want this to be cheap

Reger,G Vampire and SAT Solvers 24 / 30



Example

Take the following case:
I C = p(x , y) ∨ r(x)
I S = {p(x , y) ∨ r(x), p(x , x)}

C cannot be reduced. Injectivity is important
I If we do things wrong we can get Sgr = {p(a, b) ∨ r(a), p(a, a)}
I We check {p(a, a) ∨ r(a), p(a, a),¬p(a, a)}
I We have Sgr |= p(a, a) but p(x , y) does not follow from S

If we add p(x , y) to S then C can be reduced
I The correct grounding of S is Sgr = {p(a, b) ∨ r(a), p(a, a), p(a, b)}
I We check {p(a, b) ∨ r(a), p(a, a), p(a, b),¬p(a, b)}
I C can be replaced by p(x , y)

Reger,G Vampire and SAT Solvers 25 / 30



SAT Solver Requirements

As this a simplification technique we want it to be very quick

Therefore, we only perform propagation in the SAT solver

This means that we do not need the full power of the SAT solver

One improvement would be to produce a restricted procedure that
performs propagation only
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Extending to combine with AVATAR?

Currently only reason with unconditional clauses

To reason with conditional clause C | A we need to encode A in the
SAT solver i.e. translate A→ Cγ

Then, when attempting to reduce C | A we
I Assert A for unconditional reduction
I Assert AVATAR model for conditional reduction

F Might need to extend A in reduced clause

Further idea: use this method to attempt to reduce A

Finally, we could share the SAT solver with AVATAR (or Instance
Generation) but as noted above, we may want a restricted solver for
Global Subsumption
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Why the SAT Solver matters... and can we use this?

In AVATAR and Instance Generation the model controls proof search

Idea: use Literal Selection to control the model generated

This requires a concept of nice model for each technique:

I For AVATAR this might be about minimal change or minimality

I For Instance Generation this might be about minimising the number of
possible inferences or, conversely, to select more general inferences first
i.e. those that make others redundant
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Conclusions

SAT solvers can provide powerful mechanisms for implementing
effective techniques inside a first-order saturation prover

But the way we use SAT solvers is not necessarily the same as the
typical SAT usage

Therefore, as well as improving the techniques themselves we can
consider altering the SAT solver to improve performance
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