
1/19

What is a Trace? A Runtime Verification
Perspective

Giles Reger1 Klaus Havelund2

1University of Manchester, Manchester, UK

2Jet Propulsion Laboratory, California Inst. of Technology, USA

ISoLa 2016 – Corfu, October 12, 2016



2/19

Runtime Verification Perspective

The Picture



3/19

Where’s the Trace?

Specification

Traces as models i.e. structures that satisfy properties
Different levels of semantics, commonly trace semantics
May not be (fully) formalised
Different kinds of models (data, time)

Instrumentation
Defined as a set of instrumentation points
Instrumentation can be separate and automatic (e.g. AOP)
Instrumentation can be manual
Domain dependent (Java, C, Erlang, Python, Hardware)

Log File

May need to map information in log file to events
Might contain a lot of other information
May be spread between many files



4/19

The Logical Divide

Two Camps Divided

Specification
Language
Formal and
Abstract
Neat and Tidy

Instrumentation
Log Files
Hacky and
Concrete
Often Messy

Two extremes (nobody is wrong, nobody is right)

Design a nice abstract specification language, implement a
monitoring algorithm and add some instrumentation
Start with the instrumentation, design a monitoring algorithm that
does something sensible, realise we have a specification language



5/19

Why do we care?

Tool Interoperability

Can tools operate on the same log files?
Can tools interface with the same instrumentation?
If not, can we translate log files or update instrumentation?
How do we compare tools?

Tool Applicability

Traces exist in other places, can we apply readily apply RV there?
What do we need in a trace for RV?

Theoretical Relationships

Question of relationship between specification languages needs
formal and common notions of trace. . .



6/19

The Remainder of this Talk

Three Questions
Status: What kinds of traces do we have?
Contents: What goes in a trace?
Format: How should we record log files?



7/19

Traces as Models

Dimensions

Finite (complete or prefix)
Quantitative or qualitative notion of time
Single or multiple events per time point
Data carrying events or propositional
Declared or universal alphabet
Time as data or inbuilt with pointwise or continious semantics
Non-event based structures i.e. interpreted functions

Formal Structures
Alphabet of event names Σ, trace is a finite sequence over Σ

Parametric events include data parameters i.e. a(2, 3), leads to
parametric traces, also similar notion of data words
Timed words (pair events with time), signal function (R+ → 2Σ)
Structured data (spatio-temporal logics, structured events (XML))



8/19

Instrumentation Methods

For Java
AOP: AspectJ, Disl
JVMTI (Agents)
Reflection (e.g. JUnitRV)
Java-MaC

For C/C++

AOP: RMOR, AspectC++, InterAspect
Rewriting (E-ASCL, RiTHM)

For Other Software
Dtrace
Erlang tracing, more recently AOP

For Hardware

Bus sniffing (e.g. BusMOP) is inherently event-triggered
Directly access registers/signals as circuit, sample-based



9/19

Instrumentation Discussion

Is Instrumentation part of RV?

Where does the monitor end and instrumentation start?
Clearly, instrumentation is a research activity but should it affect the
design of monitoring algorithms?

Suggestion: Monitor Interface

Introduce a standard interface between monitor and instrumentation
The interface defines the trace
Advantage: introduces layer of abstraction that separates concerns,
allows for better re-usability of tools/benchmarks
Disadvantages: difficult to perform optimisations such as inlining
and distribution of monitoring, assumes monitor is Outline



10/19

Other Sources of Traces

Who else talks about traces?
Web servers
Databases
System logging

Can we view those traces as our traces?
The problem of dealing with traces not recorded for RV
Often these traces are incomplete, how do we deal with this?
Traces may come from part way through a continuous run, how do
we deal with bootstrapping i.e. we don’t know the past



11/19

What goes in a trace?

What goes in an event?

Event name (usually, necessary?)
Time-stamp (optionally)
Data parameters (optionally)

Ordered or named? e.g. (2, 5) vs [x = 2, y = 5]
Typed? Do they support operations?
Structured? Do we know the structure?
Defining equality between data values

How are they organised?

A (partial) ordering between events

What else do we need?
Potentially need to give other information such as the alphabet or
domains of quantification separately
Sampling rate or data about uncertainty
Contextual information such as garbage collection



12/19

Tool Format : BeepBeep

Example
<trace>
<message>
<timestamp>1464984222599</timestamp>
<characters>
<character>

<id>0</id>
<status>FALLER</status>
<position>

<x>50.166668</x>
<y>38.025</y>

</position>
<velocity>

<x>0.16666667</x>
<y>0.025000002</y>

</velocity>
</character>
...

Highlights

XML with some predefined tags
Specification language defined over XML events



13/19

Tool Format : OCLR-Check

Example
<?xml version="1.0" encoding="ASCII"?>
<trace:Trace

xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:trace="http://www.svv.lu/offline/trace/Trace">

<traceElements index="1" event="//@events.0">
<timestamp value="1"/>

</traceElements>
<traceElements index="2" event="//@events.1">

<timestamp value="2"/>
</traceElements>
...

</trace>

Highlights

Traces are propositional
Comes with a Schema



14/19

Tool Format : MonPoly

Example
@946686924
mgr_S (Alice,Kevin)
@946688989
mgr_S (Bob,Lucy)
@946690031
mgr_S (Charlie,Mary)
@946691392
mgr_S (Dave,Neil)
@946693111
mgr_S (Eve,Otto)
publish (Thomas,16)
approve (Eve,500)
@946693131
mgr_S (Felix,Peter)
publish (Ruby,149)
approve (Charlie,159)

Highlights

Timestamp declarations separate time points
Events within a time point are unordered
Parameters given as ordered list



15/19

Competition format: CSV

Example

command, x, y
move, 3, 4
draw, 0, 4
move, 0, 0
draw, 3, 4

Highlights

Single line per event
Optionally use a header to define column names
Very efficient parsing

Disadvantages

How do we represent variable data values
Cannot easily represent structured data or metadata



15/19

Competition format: CSV

Example

event, map, collection, iterator
updateMap, 6750210, ,
createColl,6750210, 2081191879,
createIter, , 2081191879, 910091170
useIter, , , 910091170
updateMap, 1183888521, ,

Highlights

Single line per event
Optionally use a header to define column names
Very efficient parsing

Disadvantages

How do we represent variable data values
Cannot easily represent structured data or metadata



15/19

Competition format: CSV

Example

updateMap, 6750210
createColl, 6750210, 2081191879
createIter, 2081191879, 910091170
useIter, 910091170
updateMap, 6750210

Highlights

Single line per event
Optionally use a header to define column names
Very efficient parsing

Disadvantages

How do we represent variable data values
Cannot easily represent structured data or metadata



15/19

Competition format: CSV

Example

updateMap, map, 6750210
createColl, map, 6750210, collection, 2081191879
createIter, collection, 2081191879, iterator, 910091170
useIter, iterator, 910091170
updateMap, map, 6750210

Highlights

Single line per event
Optionally use a header to define column names
Very efficient parsing

Disadvantages

How do we represent variable data values
Cannot easily represent structured data or metadata



16/19

Competition format: XML

Example
<log>

<event >
<name>createColl</name>
<field>

<name>map</name>
<value>6750210</value>

</field>
<field>

<name>collection</name>
<value>2081191879</value>

</field>
</event>

</log>

Highlights

Lots of structure via tags
Can include metadata in tags



16/19

Competition format: XML

Example
<log>

<event timestamp="1462810918">
<name>createColl</name>
<field>

<name>map</name>
<value>6750210</value>

</field>
<field>

<name>collection</name>
<value>2081191879</value>

</field>
</event>

</log>

Highlights

Lots of structure via tags
Can include metadata in tags



16/19

Competition format: XML

Example

<log>
<event>

<name>createColl</name>
<value>6750210</value>
<value>2081191879</value>

</event>
</log>

Highlights

Lots of structure via tags
Can include metadata in tags
Disadvantage: very verbose, even when compacted
Can validate against schema



17/19

Competition format: JSON

Example

[
{

"createColl" : {
"map" : "6750210",
"collection" : "2081191879"

}
}

]

Highlights

Stores attribute-value pairs and arrays
More concise than XML
Can use arrays to model positional arguments



17/19

Competition format: JSON

Example

[
{"updateMap" : ["6750210"]},
{"createColl" : ["6750210", "2081191879"]},
{"createIter" : ["2081191879", "910091170"]},
{"useIter" : ["910091170"]},
{"updateMap" : ["6750210"]}

]

Highlights

Stores attribute-value pairs and arrays
More concise than XML
Can use arrays to model positional arguments



18/19

What format should we use?

From three to. . . three
Probably JSON

I prefer the condensed version but don’t know the implications for
structured data

But CSV covers most use cases and is easy to work with
I would prefer the no-header, unnamed version with separate
alphabet information

I’m not a fan of XML but other people are
So probably all three!!

Another disadvantage of CSV

In the 1st competition MonPoly had to translate their multiple events per
time-point format using time-point (tp) and time-stamp (ts) fields. . . !

event, tp, ts, c, t, a
trans, 0, 32, 1797, 14581, 176
trans, 1, 32, 4187, 23430, 2144
trans, 2, 32, 1662, 46471, 2486



19/19

Summary

A trace is a trace
Like Brexit is Brexit, a trace is a trace!
Practically, we want similar notions for interoperability
Theoretically, we want similar notions to compare languages

More Challenges

Concurrent and Distributed Systems
Rolling logs
Uncertainty


	The Question
	Status
	Contents
	Format

