Pretending to be an SMT Solver with Vampire (and How We Do Instantiation)

Giles Reger ${ }^{1}$, Martin Suda ${ }^{2}$, and Andrei Voronkov ${ }^{1,2}$
${ }^{1}$ School of Computer Science, University of Manchester, UK
${ }^{2}$ TU Wien, Vienna, Austria

SMT 2017 - Heidelberg, July 22, 2017

Introducing Vampire

- Automatic Theorem Prover (ATP) for first-order logic
- Main paradigm: superposition calculus + saturation
- a.k.f.: indexing, incomplete strategies, strategy scheduling

Introducing Vampire

- Automatic Theorem Prover (ATP) for first-order logic
- Main paradigm: superposition calculus + saturation
- a.k.f.: indexing, incomplete strategies, strategy scheduling

Introducing Vampire

- Automatic Theorem Prover (ATP) for first-order logic
- Main paradigm: superposition calculus + saturation
- a.k.f.: indexing, incomplete strategies, strategy scheduling

Reasoning with Theories

- since 2010: progressively adding support for theories
- since 2016: participating in SMT-COMP

Reasoning with quantifiers and theories

Two Dimensions of Complexity

Reasoning with quantifiers and theories

Two Dimensions of Complexity

Reasoning with quantifiers and theories

Two Dimensions of Complexity

Reasoning with quantifiers and theories

Two Dimensions of Complexity

Reasoning with quantifiers and theories

Two Dimensions of Complexity

Reasoning with quantifiers and theories

Two Dimensions of Complexity

Reasoning with quantifiers and theories

Two Dimensions of Complexity

Reasoning with quantifiers and theories

Two Dimensions of Complexity

Outline

(1) A Brief Introduction to Saturation-Based Proving
(2) Theory Reasoning in Vampire
(3) Theory Instantiation and Unification with Abstraction

4 Where We Currently Stand

Theorem Proving Pipeline in One Slide

Standard form of the input:

$$
F \quad:=\left(\text { Axiom }_{1} \wedge \ldots \wedge \text { Axiom }_{n}\right) \rightarrow \text { Conjecture }
$$

Theorem Proving Pipeline in One Slide

Standard form of the input:

$$
F:=\left(\text { Axiom }_{1} \wedge \ldots \wedge \text { Axiom }_{n}\right) \rightarrow \text { Conjecture }
$$

(1) Negate F to seek a refutation:

$$
\neg F:=\text { Axiom }_{1} \wedge \ldots \wedge \text { Axiom }_{n} \wedge \neg \text { Conjecture }
$$

Theorem Proving Pipeline in One Slide

Standard form of the input:

$$
F \quad:=\quad\left(\text { Axiom }_{1} \wedge \ldots \wedge \text { Axiom }_{n}\right) \rightarrow \text { Conjecture }
$$

(1) Negate F to seek a refutation:

$$
\neg F:=\text { Axiom }_{1} \wedge \ldots \wedge \text { Axiom }_{n} \wedge \neg \text { Conjecture }
$$

(2) Preprocess and transform $\neg F$ to clause normal form (CNF)

$$
\mathcal{S}:=\left\{C_{1}, \ldots, C_{n}\right\}
$$

Theorem Proving Pipeline in One Slide

Standard form of the input:

$$
F:=\left(\text { Axiom }_{1} \wedge \ldots \wedge \text { Axiom }_{n}\right) \rightarrow \text { Conjecture }
$$

(1) Negate F to seek a refutation:

$$
\neg F:=\text { Axiom }_{1} \wedge \ldots \wedge \text { Axiom }_{n} \wedge \neg \text { Conjecture }
$$

(2) Preprocess and transform $\neg F$ to clause normal form (CNF)

$$
\mathcal{S}:=\left\{C_{1}, \ldots, C_{n}\right\}
$$

(3) saturate \mathcal{S} with respect to the superposition calculus aiming to derive the obvious contradiction \perp

Saturation $=$ fixed-point computation

Given Clause Algorithm:

- set of active clauses is stored in indexing structures
- passive works like a priority queue
- the process is "explosive" in nature

Controlling the Growth of the Search Space

Superposition rule

where $\theta=\mathrm{mgu}(I, s)$ and $r \theta \nsucceq I \theta$ and, for the left rule $L[s]$ is not an equality literal, and for the right rule \otimes stands either for \simeq or \nsucceq and $t^{\prime} \theta \nsucceq t[s] \theta$

Controlling the Growth of the Search Space

Superposition rule

where $\theta=\mathrm{mgu}(1, s)$ and $r \theta \nsucceq 1 \theta$ and, for the left rule $L[s]$ is not an equality literal, and for the right rule \otimes stands either for \simeq or \nsucceq and $t^{\prime} \theta \nsucceq t[s] \theta$

Saturation up to Redundancy

- redundant clauses can be safely removed
- subsumption - an example reduction:
remove C in the presence of D such that $D \sigma \subset C$

Controlling the Growth of the Search Space

Superposition rule

where $\theta=\mathrm{mgu}(1, s)$ and $r \theta \nsucceq 1 \theta$ and, for the left rule $L[s]$ is not an equality literal, and for the right rule \otimes stands either for \simeq or \nsucceq and $t^{\prime} \theta \nsucceq t[s] \theta$

Saturation up to Redundancy

- redundant clauses can be safely removed
- subsumption - an example reduction:
remove C in the presence of D such that $D \sigma \subset C$

Completeness considerations

Outline

(1) A Brief Introduction to Saturation-Based Proving
(2) Theory Reasoning in Vampire

3 Theory Instantiation and Unification with Abstraction

4 Where We Currently Stand

Basic Support for Theories

- Normalization of interpreted operations, e.g.

$$
t_{1} \geq t_{2} \rightsquigarrow \neg\left(t_{1}<t_{2}\right) \quad a-b \rightsquigarrow a+(-b)
$$

- Evaluation of ground interpreted terms, e.g.

$$
f(1+2) \rightsquigarrow f(3) \quad f(x+0) \rightsquigarrow f(x) \quad 1+2<4 \rightsquigarrow \text { true }
$$

- Balancing interpreted literals, e.g.

$$
4=2 \times(x+1) \rightsquigarrow(4 \operatorname{div} 2)-1=x \rightsquigarrow x=1
$$

- Interpreted operations treated specially by ordering

Adding Theory Axioms

$$
\begin{array}{cc}
x+(y+z)=(x+y)+z & x+0=x \\
x+y=y+x & -(x+y)=(-x+-y) \\
--x=x & x+(-x)=0 \\
x * 0=0 & x *(y * z)=(x * y) * z \\
x * 1=x & x * y=y * x \\
(x * y)+(x * z)=x *(y+z) & \neg(x<y) \vee \neg(y<z) \vee \neg(x<z) \\
x<y \vee y<x \vee x=y & \neg(x<y) \vee \neg(y<x+1) \\
\neg(x<y) \vee x+z<y+z & \neg(x<x) \\
x<y \vee y<x+1 \text { (for ints) } & x=0 \vee(y * x) / x=y \text { (for reals) }
\end{array}
$$

- a handcrafted set
- subsets added based on the signature
- ongoing research on how to tame them [IWIL17]

AVATAR modulo Theories

The AVATAR architecture [Voronkov14]

- modern architecture of first-order theorem provers
- combines saturation with SAT-solving
- efficient realization of the clause splitting rule

$$
\forall x, z, w \cdot \underbrace{s(x) \vee \neg r(x, z)}_{\text {share } x \text { and } z} \vee \underbrace{\neg q(w)}_{\text {is disjoint }}
$$

- "propositional essence" of the problem delegated to SAT solver

AVATAR modulo Theories

The AVATAR architecture [Voronkov14]

- modern architecture of first-order theorem provers
- combines saturation with SAT-solving
- efficient realization of the clause splitting rule

$$
\forall x, z, w \cdot \underbrace{s(x) \vee \neg r(x, z)}_{\text {share } x \text { and } z} \vee \underbrace{\neg q(w)}_{\text {is disjoint }}
$$

- "propositional essence" of the problem delegated to SAT solver

AVATAR modulo Theories

- use an SMT solver instead of the SAT solver
- sub-problems considered are ground-theory-consistent
- implemented in Vampire using Z3

One Slightly Imprecise View of AVATAR

One Slightly Imprecise View of AVATAR

... and please remember: Vampire is the boss here!

Outline

(1) A Brief Introduction to Saturation-Based Proving

(2) Theory Reasoning in Vampire
(3) Theory Instantiation and Unification with Abstraction

4 Where We Currently Stand
\qquad $\equiv \quad \square Q \propto$

Does Vampire Need Instantiation?

Example

Consider the conjecture $(\exists x)(x+x \simeq 2)$ negated and clausified to

$$
x+x \not \approx 2
$$

It takes Vampire 15 s to solve using theory axioms deriving lemmas such as

$$
x+1 \simeq y+1 \vee y+1 \leq x \vee x+1 \leq y
$$

Does Vampire Need Instantiation?

Example

Consider the conjecture $(\exists x)(x+x \simeq 2)$ negated and clausified to

$$
x+x \nsucceq 2
$$

It takes Vampire 15 s to solve using theory axioms deriving lemmas such as

$$
x+1 \simeq y+1 \vee y+1 \leq x \vee x+1 \leq y
$$

Heuristic instantiation would help, but normally any instance of a clause is immediately subsumed by the original!

Does Vampire Need Instantiation?

Example

Consider the conjecture $(\exists x)(x+x \simeq 2)$ negated and clausified to

$$
x+x \nsucceq 2
$$

It takes Vampire 15 s to solve using theory axioms deriving lemmas such as

$$
x+1 \simeq y+1 \vee y+1 \leq x \vee x+1 \leq y
$$

Heuristic instantiation would help, but normally any instance of a clause is immediately subsumed by the original!

Recall the abstraction rule

$$
L[t] \vee C \Longrightarrow x \neq t \vee L[x] \vee C
$$

where L is a theory literal, t a non-theory term, and x fresh.

The Theory Instantiation

Instantiation which makes some theory literals immediately false

The Theory Instantiation

Instantiation which makes some theory literals immediately false

As an inference rule

$$
\frac{C}{(D[\mathrm{x}]) \theta} \text { TheoryInst }
$$

where $T[\mathrm{x}] \rightarrow D[\mathrm{x}]$ is a (partial) abstraction of C and θ a substitution such that $T[\mathrm{x}] \theta$ is valid in the underlying theory

The Theory Instantiation

Instantiation which makes some theory literals immediately false

As an inference rule

$$
\frac{C}{(D[\mathrm{x}]) \theta} \text { TheoryInst }
$$

where $T[\mathrm{x}] \rightarrow D[\mathrm{x}]$ is a (partial) abstraction of C and θ a substitution such that $T[\mathrm{x}] \theta$ is valid in the underlying theory

Implementation:

- Abstract relevant literals
- Collect relevant pure theory literals L_{1}, \ldots, L_{n}
- Run an SMT solver on $T[\mathrm{x}]=\neg L_{1} \wedge \ldots \wedge \neg L_{n}$
- If the SMT solver returns a model, transform it into a substitution θ and produce an instance

The Theory Instantiation

Instantiation which makes some theory literals immediately false

As an inference rule

$$
\frac{C}{(D[\mathrm{x}]) \theta} \text { TheoryInst }
$$

where $T[\mathrm{x}] \rightarrow D[\mathrm{x}]$ is a (partial) abstraction of C and θ a substitution such that $T[\mathrm{x}] \theta$ is valid in the underlying theory

Implementation:

- Abstract relevant literals
- Collect relevant pure theory literals L_{1}, \ldots, L_{n}
- Run an SMT solver on $T[\mathrm{x}]=\neg L_{1} \wedge \ldots \wedge \neg L_{n}$
- If the SMT solver returns a model, transform it into a substitution θ and produce an instance

Unification with Abstraction

Example

Consider two clauses

$$
r(14 y) \quad \neg r\left(x^{2}+49\right) \vee p(x)
$$

Unification with Abstraction

Example

Consider two clauses

$$
r(14 y) \quad \neg r\left(x^{2}+49\right) \vee p(x)
$$

We could fully abstract them to obtain:

$$
r(u) \vee u \nsim 14 y \quad \neg r(v) \vee v \nsim x^{2}+49 \vee p(x),
$$

Unification with Abstraction

Example

Consider two clauses

$$
r(14 y) \quad \neg r\left(x^{2}+49\right) \vee p(x)
$$

We could fully abstract them to obtain:

$$
r(u) \vee u \nsim 14 y \quad \neg r(v) \vee v \nsim x^{2}+49 \vee p(x),
$$

then resolve to get

$$
u \nsucceq 14 y \vee u \nsucceq x^{2}+49 \vee p(x)
$$

Unification with Abstraction

Example

Consider two clauses

$$
r(14 y) \quad \neg r\left(x^{2}+49\right) \vee p(x)
$$

We could fully abstract them to obtain:

$$
r(u) \vee u \nsim 14 y \quad \neg r(v) \vee v \nsim x^{2}+49 \vee p(x),
$$

then resolve to get

$$
u \nsucceq 14 y \vee u \nsucceq x^{2}+49 \vee p(x)
$$

Finally, Theory Instantiation could produce

$$
p(7)
$$

Unification with Abstraction

Explicit abstraction may be harmful:

- fully abstracted clauses are typically much longer
- abstraction destroys ground literals
- theory part requires special treatment

Unification with Abstraction

Explicit abstraction may be harmful:

- fully abstracted clauses are typically much longer
- abstraction destroys ground literals
- theory part requires special treatment

Instead of full abstraction

- incorporate the abstraction process into unification
- thus abstractions are "on demand" and lazy
- implemented by extending the substitution tree indexing

Outline

（1）A Brief Introduction to Saturation－Based Proving
（2）Theory Reasoning in Vampire
（3）Theory Instantiation and Unification with Abstraction

4 Where We Currently Stand

SMT-COMP 2017 results - $\forall \exists$ problems

Logic	Vampire	VeriT	CVC4	Z3
ALIA	36	27	42	42
AUFDTLIA	624	-	728	-
AUFLIA	3	2	3	2
AUFLIRA	19778	19316	19766	19849
AUFNIRA	1072	-	1052	1031
LIA	229	170	388	388
LRA	1092	-	2048	2208
NIA	5	-	9	13
NRA	3803	-	3776	3805
UF	4317	3242	4125	2846
UFDT	2283	-	2503	-
UFDTLIA	75	-	73	-
UFIDL	55	55	60	59
UFLIA	7559	7518	7687	7221
UFLRA	10	10	11	12
UFNIA	2561	-	2189	2197

Conclusion

Thank you for your attention!

