
1/19

Pretending to be an SMT Solver with Vampire
(and How We Do Instantiation)

Giles Reger1, Martin Suda2, and Andrei Voronkov1,2

1School of Computer Science, University of Manchester, UK
2TU Wien, Vienna, Austria

SMT 2017 – Heidelberg, July 22, 2017

1/19

Introducing Vampire

Automatic Theorem Prover (ATP) for first-order logic
Main paradigm: superposition calculus + saturation
a.k.f.: indexing, incomplete strategies, strategy scheduling

Reasoning with Theories
since 2010: progressively adding support for theories
since 2016: participating in SMT-COMP

1/19

Introducing Vampire

Automatic Theorem Prover (ATP) for first-order logic
Main paradigm: superposition calculus + saturation
a.k.f.: indexing, incomplete strategies, strategy scheduling

Reasoning with Theories
since 2010: progressively adding support for theories
since 2016: participating in SMT-COMP

1/19

Introducing Vampire

Automatic Theorem Prover (ATP) for first-order logic
Main paradigm: superposition calculus + saturation
a.k.f.: indexing, incomplete strategies, strategy scheduling

Reasoning with Theories
since 2010: progressively adding support for theories
since 2016: participating in SMT-COMP

2/19

Reasoning with quantifiers and theories

Two Dimensions of Complexity

∀∃

Z/R: +− ∗/
select/store

gnd

2/19

Reasoning with quantifiers and theories

Two Dimensions of Complexity

∀∃

Z/R: +− ∗/
select/store

gnd

ATP

2/19

Reasoning with quantifiers and theories

Two Dimensions of Complexity

∀∃

Z/R: +− ∗/
select/store

gnd

ATP

SMT

2/19

Reasoning with quantifiers and theories

Two Dimensions of Complexity

∀∃

Z/R: +− ∗/
select/store

gnd

ATP

SMT

E
SPASS
VAMPIRE
...

CVC4
veriT
Z3
...

2/19

Reasoning with quantifiers and theories

Two Dimensions of Complexity

∀∃

Z/R: +− ∗/
select/store

gnd

ATP

SMT

2/19

Reasoning with quantifiers and theories

Two Dimensions of Complexity

SMT

∀∃

Z/R: +− ∗/

Instantiation
...

select/store

gnd

ATP

2/19

Reasoning with quantifiers and theories

Two Dimensions of Complexity

SMT

∀∃

Z/R: +− ∗/

ATP

Instantiation
...

theory axioms
...

select/store

gnd

2/19

Reasoning with quantifiers and theories

Two Dimensions of Complexity

SMT

∀∃

Z/R: +− ∗/

ATP

Instantiation
...

theory axioms
...

select/store

gnd

?

3/19

Outline

1 A Brief Introduction to Saturation-Based Proving

2 Theory Reasoning in Vampire

3 Theory Instantiation and Unification with Abstraction

4 Where We Currently Stand

4/19

Theorem Proving Pipeline in One Slide

Standard form of the input:

F := (Axiom1 ∧ . . . ∧ Axiomn)→ Conjecture

1 Negate F to seek a refutation:

¬F := Axiom1 ∧ . . . ∧ Axiomn ∧ ¬Conjecture

2 Preprocess and transform ¬F to clause normal form (CNF)

S := {C1, . . . ,Cn}

3 saturate S with respect to the superposition calculus

aiming to derive the obvious contradiction ⊥

4/19

Theorem Proving Pipeline in One Slide

Standard form of the input:

F := (Axiom1 ∧ . . . ∧ Axiomn)→ Conjecture

1 Negate F to seek a refutation:

¬F := Axiom1 ∧ . . . ∧ Axiomn ∧ ¬Conjecture

2 Preprocess and transform ¬F to clause normal form (CNF)

S := {C1, . . . ,Cn}

3 saturate S with respect to the superposition calculus

aiming to derive the obvious contradiction ⊥

4/19

Theorem Proving Pipeline in One Slide

Standard form of the input:

F := (Axiom1 ∧ . . . ∧ Axiomn)→ Conjecture

1 Negate F to seek a refutation:

¬F := Axiom1 ∧ . . . ∧ Axiomn ∧ ¬Conjecture

2 Preprocess and transform ¬F to clause normal form (CNF)

S := {C1, . . . ,Cn}

3 saturate S with respect to the superposition calculus

aiming to derive the obvious contradiction ⊥

4/19

Theorem Proving Pipeline in One Slide

Standard form of the input:

F := (Axiom1 ∧ . . . ∧ Axiomn)→ Conjecture

1 Negate F to seek a refutation:

¬F := Axiom1 ∧ . . . ∧ Axiomn ∧ ¬Conjecture

2 Preprocess and transform ¬F to clause normal form (CNF)

S := {C1, . . . ,Cn}

3 saturate S with respect to the superposition calculus

aiming to derive the obvious contradiction ⊥

5/19

Saturation = fixed-point computation

Given Clause Algorithm:

Active b Passive

U
n
p
ro
ce
ss
ed

set of active clauses is stored in indexing structures
passive works like a priority queue
the process is “explosive” in nature

6/19

Controlling the Growth of the Search Space

Superposition rule

l ' r ∨ C1 L[s]p ∨ C2

(L[r]p ∨ C1 ∨ C2)θ
or

l ' r ∨ C1 t[s]p ⊗ t′ ∨ C2

(t[r]p ⊗ t′ ∨ C1 ∨ C2)θ
,

where θ = mgu(l , s) and rθ 6� lθ and, for the left rule L[s] is not an equality
literal, and for the right rule ⊗ stands either for ' or 6' and t′θ 6� t[s]θ

Saturation up to Redundancy
redundant clauses can be safely removed
subsumption - an example reduction:

remove C in the presence of D such that Dσ ⊂ C

Completeness considerations

6/19

Controlling the Growth of the Search Space

Superposition rule

l ' r ∨ C1 L[s]p ∨ C2

(L[r]p ∨ C1 ∨ C2)θ
or

l ' r ∨ C1 t[s]p ⊗ t′ ∨ C2

(t[r]p ⊗ t′ ∨ C1 ∨ C2)θ
,

where θ = mgu(l , s) and rθ 6� lθ and, for the left rule L[s] is not an equality
literal, and for the right rule ⊗ stands either for ' or 6' and t′θ 6� t[s]θ

Saturation up to Redundancy
redundant clauses can be safely removed
subsumption - an example reduction:

remove C in the presence of D such that Dσ ⊂ C

Completeness considerations

6/19

Controlling the Growth of the Search Space

Superposition rule

l ' r ∨ C1 L[s]p ∨ C2

(L[r]p ∨ C1 ∨ C2)θ
or

l ' r ∨ C1 t[s]p ⊗ t′ ∨ C2

(t[r]p ⊗ t′ ∨ C1 ∨ C2)θ
,

where θ = mgu(l , s) and rθ 6� lθ and, for the left rule L[s] is not an equality
literal, and for the right rule ⊗ stands either for ' or 6' and t′θ 6� t[s]θ

Saturation up to Redundancy
redundant clauses can be safely removed
subsumption - an example reduction:

remove C in the presence of D such that Dσ ⊂ C

Completeness considerations

7/19

Outline

1 A Brief Introduction to Saturation-Based Proving

2 Theory Reasoning in Vampire

3 Theory Instantiation and Unification with Abstraction

4 Where We Currently Stand

8/19

Basic Support for Theories

Normalization of interpreted operations, e.g.

t1 ≥ t2 ¬(t1 < t2) a− b a+ (−b)

Evaluation of ground interpreted terms, e.g.

f (1+ 2) f (3) f (x + 0) f (x) 1+ 2 < 4 true

Balancing interpreted literals, e.g.

4 = 2× (x + 1) (4 div 2)− 1 = x x = 1

Interpreted operations treated specially by ordering

9/19

Adding Theory Axioms

x + (y + z) = (x + y) + z x + 0 = x
x + y = y + x −(x + y) = (−x +−y)
−− x = x x + (−x) = 0
x ∗ 0 = 0 x ∗ (y ∗ z) = (x ∗ y) ∗ z
x ∗ 1 = x x ∗ y = y ∗ x

(x ∗ y) + (x ∗ z) = x ∗ (y + z) ¬(x < y) ∨ ¬(y < z) ∨ ¬(x < z)
x < y ∨ y < x ∨ x = y ¬(x < y) ∨ ¬(y < x + 1)
¬(x < y) ∨ x + z < y + z ¬(x < x)

x < y ∨ y < x + 1 (for ints) x = 0 ∨ (y ∗ x)/x = y (for reals)

a handcrafted set
subsets added based on the signature
ongoing research on how to tame them [IWIL17]

10/19

AVATAR modulo Theories

The AVATAR architecture [Voronkov14]

modern architecture of first-order theorem provers
combines saturation with SAT-solving
efficient realization of the clause splitting rule

∀x , z ,w . s(x) ∨ ¬r(x , z)︸ ︷︷ ︸
share x and z

∨ ¬q(w)︸ ︷︷ ︸
is disjoint

“propositional essence” of the problem delegated to SAT solver

AVATAR modulo Theories
use an SMT solver instead of the SAT solver
sub-problems considered are ground-theory-consistent
implemented in Vampire using Z3

10/19

AVATAR modulo Theories

The AVATAR architecture [Voronkov14]

modern architecture of first-order theorem provers
combines saturation with SAT-solving
efficient realization of the clause splitting rule

∀x , z ,w . s(x) ∨ ¬r(x , z)︸ ︷︷ ︸
share x and z

∨ ¬q(w)︸ ︷︷ ︸
is disjoint

“propositional essence” of the problem delegated to SAT solver

AVATAR modulo Theories
use an SMT solver instead of the SAT solver
sub-problems considered are ground-theory-consistent
implemented in Vampire using Z3

11/19

One Slightly Imprecise View of AVATAR

Vampire
SMT Solver

CDCL SAT Solver

Core

Theory Solver
for BitVectors

Theory Solver
for Arithmetic

Theory Solver
for Uninterpreted
Functions

Quantifier
Instantiation

Incremental Theory Solver
for Quantified Formulas

. . . and please remember: Vampire is the boss here!

11/19

One Slightly Imprecise View of AVATAR

Vampire
SMT Solver

CDCL SAT Solver

Core

Theory Solver
for BitVectors

Theory Solver
for Arithmetic

Theory Solver
for Uninterpreted
Functions

Quantifier
Instantiation

Incremental Theory Solver
for Quantified Formulas

. . . and please remember: Vampire is the boss here!

12/19

Outline

1 A Brief Introduction to Saturation-Based Proving

2 Theory Reasoning in Vampire

3 Theory Instantiation and Unification with Abstraction

4 Where We Currently Stand

13/19

Does Vampire Need Instantiation?

Example

Consider the conjecture (∃x)(x + x ' 2) negated and clausified to

x + x 6' 2.

It takes Vampire 15 s to solve using theory axioms deriving lemmas
such as

x + 1 ' y + 1 ∨ y + 1 ≤ x ∨ x + 1 ≤ y .

Heuristic instantiation would help, but normally any instance
of a clause is immediately subsumed by the original!

Recall the abstraction rule

L[t] ∨ C =⇒ x 6' t ∨ L[x] ∨ C ,

where L is a theory literal, t a non-theory term, and x fresh.

13/19

Does Vampire Need Instantiation?

Example

Consider the conjecture (∃x)(x + x ' 2) negated and clausified to

x + x 6' 2.

It takes Vampire 15 s to solve using theory axioms deriving lemmas
such as

x + 1 ' y + 1 ∨ y + 1 ≤ x ∨ x + 1 ≤ y .

Heuristic instantiation would help, but normally any instance
of a clause is immediately subsumed by the original!

Recall the abstraction rule

L[t] ∨ C =⇒ x 6' t ∨ L[x] ∨ C ,

where L is a theory literal, t a non-theory term, and x fresh.

13/19

Does Vampire Need Instantiation?

Example

Consider the conjecture (∃x)(x + x ' 2) negated and clausified to

x + x 6' 2.

It takes Vampire 15 s to solve using theory axioms deriving lemmas
such as

x + 1 ' y + 1 ∨ y + 1 ≤ x ∨ x + 1 ≤ y .

Heuristic instantiation would help, but normally any instance
of a clause is immediately subsumed by the original!

Recall the abstraction rule

L[t] ∨ C =⇒ x 6' t ∨ L[x] ∨ C ,

where L is a theory literal, t a non-theory term, and x fresh.

14/19

The Theory Instantiation

Instantiation which makes some theory literals immediately false

As an inference rule
C

(D[x])θ
TheoryInst

where T [x]→ D[x] is a (partial) abstraction of C and θ a
substitution such thatT [x]θ is valid in the underlying theory

Implementation:
Abstract relevant literals
Collect relevant pure theory literals L1, . . . , Ln

Run an SMT solver on T [x] = ¬L1 ∧ . . . ∧ ¬Ln
If the SMT solver returns a model, transform it into a
substitution θ and produce an instance

14/19

The Theory Instantiation

Instantiation which makes some theory literals immediately false

As an inference rule
C

(D[x])θ
TheoryInst

where T [x]→ D[x] is a (partial) abstraction of C and θ a
substitution such thatT [x]θ is valid in the underlying theory

Implementation:
Abstract relevant literals
Collect relevant pure theory literals L1, . . . , Ln

Run an SMT solver on T [x] = ¬L1 ∧ . . . ∧ ¬Ln
If the SMT solver returns a model, transform it into a
substitution θ and produce an instance

14/19

The Theory Instantiation

Instantiation which makes some theory literals immediately false

As an inference rule
C

(D[x])θ
TheoryInst

where T [x]→ D[x] is a (partial) abstraction of C and θ a
substitution such thatT [x]θ is valid in the underlying theory

Implementation:
Abstract relevant literals
Collect relevant pure theory literals L1, . . . , Ln

Run an SMT solver on T [x] = ¬L1 ∧ . . . ∧ ¬Ln
If the SMT solver returns a model, transform it into a
substitution θ and produce an instance

14/19

The Theory Instantiation

Instantiation which makes some theory literals immediately false

As an inference rule
C

(D[x])θ
TheoryInst

where T [x]→ D[x] is a (partial) abstraction of C and θ a
substitution such thatT [x]θ is valid in the underlying theory

Implementation:
Abstract relevant literals
Collect relevant pure theory literals L1, . . . , Ln

Run an SMT solver on T [x] = ¬L1 ∧ . . . ∧ ¬Ln
If the SMT solver returns a model, transform it into a
substitution θ and produce an instance

15/19

Unification with Abstraction

Example
Consider two clauses

r(14y) ¬r(x2 + 49) ∨ p(x)

We could fully abstract them to obtain:

r(u) ∨ u 6' 14y ¬r(v) ∨ v 6' x2 + 49 ∨ p(x),

then resolve to get

u 6' 14y ∨ u 6' x2 + 49 ∨ p(x)

Finally, Theory Instantiation could produce

p(7)

15/19

Unification with Abstraction

Example
Consider two clauses

r(14y) ¬r(x2 + 49) ∨ p(x)

We could fully abstract them to obtain:

r(u) ∨ u 6' 14y ¬r(v) ∨ v 6' x2 + 49 ∨ p(x),

then resolve to get

u 6' 14y ∨ u 6' x2 + 49 ∨ p(x)

Finally, Theory Instantiation could produce

p(7)

15/19

Unification with Abstraction

Example
Consider two clauses

r(14y) ¬r(x2 + 49) ∨ p(x)

We could fully abstract them to obtain:

r(u) ∨ u 6' 14y ¬r(v) ∨ v 6' x2 + 49 ∨ p(x),

then resolve to get

u 6' 14y ∨ u 6' x2 + 49 ∨ p(x)

Finally, Theory Instantiation could produce

p(7)

15/19

Unification with Abstraction

Example
Consider two clauses

r(14y) ¬r(x2 + 49) ∨ p(x)

We could fully abstract them to obtain:

r(u) ∨ u 6' 14y ¬r(v) ∨ v 6' x2 + 49 ∨ p(x),

then resolve to get

u 6' 14y ∨ u 6' x2 + 49 ∨ p(x)

Finally, Theory Instantiation could produce

p(7)

16/19

Unification with Abstraction

Explicit abstraction may be harmful:
fully abstracted clauses are typically much longer
abstraction destroys ground literals
theory part requires special treatment

Instead of full abstraction . . .
incorporate the abstraction process into unification
thus abstractions are “on demand” and lazy
implemented by extending the substitution tree indexing

16/19

Unification with Abstraction

Explicit abstraction may be harmful:
fully abstracted clauses are typically much longer
abstraction destroys ground literals
theory part requires special treatment

Instead of full abstraction . . .
incorporate the abstraction process into unification
thus abstractions are “on demand” and lazy
implemented by extending the substitution tree indexing

17/19

Outline

1 A Brief Introduction to Saturation-Based Proving

2 Theory Reasoning in Vampire

3 Theory Instantiation and Unification with Abstraction

4 Where We Currently Stand

18/19

SMT-COMP 2017 results – ∀∃ problems

Logic Vampire VeriT CVC4 Z3
ALIA 36 27 42 42
AUFDTLIA 624 - 728 -
AUFLIA 3 2 3 2
AUFLIRA 19778 19316 19766 19849
AUFNIRA 1072 - 1052 1031
LIA 229 170 388 388
LRA 1092 - 2048 2208
NIA 5 - 9 13
NRA 3803 - 3776 3805
UF 4317 3242 4125 2846
UFDT 2283 - 2503 -
UFDTLIA 75 - 73 -
UFIDL 55 55 60 59
UFLIA 7559 7518 7687 7221
UFLRA 10 10 11 12
UFNIA 2561 - 2189 2197

19/19

Conclusion

Thank you for your attention!

	A Brief Introduction to Saturation-Based Proving
	Theory Reasoning in Vampire
	Theory Instantiation and Unification with Abstraction
	Where We Currently Stand

