◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Selecting the Selection

Giles Reger Martin Suda Andrei Voronkov

University of Manchester

27th June 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Finding Proofs (quickly)

- This talk/paper is about what kind of literal selection improves our chances of finding (quick) solutions
- Based on the Vampire theorem prover
- Quality-Based Selection. Select <u>high-quality</u> literals that lead to the fewest new clauses
- Lookahead Selection. Estimate the number of new children and select the smallest
- **Incomplete Selection.** Drop the completeness condition to remove restrictions on the above heuristic
- Conclusion. A mix of all of these solves the most

Saturation-Based Proof Search

• Saturate a set of clauses with respect to an inference system

- Want to stop clauses space growing too quickly, either
 - Remove what has already been generated (e.g. subsumption)
 - Restrict what is generated in the future (literal selection)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Literal Selection

- Early notion due to Bachmair and Ganzinger
- Use an ordering and selection function to restrict which literals inferences are performed on
 - Select a multi-subset of negative literals in each clause
 - If no selected literals, perform inference on maximal only
 - If selected literals, perform inference on selected literals only
- We consider a more general formulation
- A <u>literal selection strategy</u> is a procedure that assigns to a non-empty clause *C* a <u>non-empty</u> multiset of its literals.
- Not a function (non-deterministic, depend on context)

The Calculus

where, for both inferences, $\theta = mgu(A, A')$ and A is not an equality literal

Superposition

$$\frac{\underline{l} \simeq r}{(\underline{L}[r]_{\rho} \lor C_{1} \lor \underline{C}_{2})\theta} \quad \text{or} \quad \frac{\underline{l} \simeq r}{(\underline{t}[r]_{\rho} \otimes t' \lor C_{2})\theta} \quad \text{or}$$

where $\theta = mgu(l, s)$ and $r\theta \not\geq l\theta$ and, for the left rule L[s] is not an equality literal, and for the right rule \otimes stands either for \simeq or $\not\simeq$ and $t'\theta \not\geq t[s]\theta$

EqualityResolution

EqualityFactoring

$$rac{s
eq t \lor C}{C heta} \; ,$$
where $heta = {
m mgu}(s,t)$

$$\frac{s \simeq t}{(t \neq t' \lor s' \simeq t' \lor C)\theta},$$

where $\theta = mgu(s,s'), t\theta \not\geq s\theta, and t'\theta \not\geq s'\theta$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Completeness

- It is a standard result that arbitrary selection can lead to incompleteness
- Consider

$$p \lor \underline{q} \qquad \underline{p} \lor \neg q \qquad \underline{\neg p} \lor q \qquad \neg p \lor \underline{\neg q}$$

were all selected literals are underlined

- It is unsatisfiable but saturated
- There is also the standard sufficient condition

Select either a negative literal or all maximal literals with respect to \prec

from the completeness proof of Bachmair and Ganzinger

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Observation

- There is a general insight that a slowly growing search space is superior to a faster growing one, provided completeness is not compromised too much
- It follows that the aim of a selection strategy in our setting is to generate the fewest new clauses

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Quality-Based Selection

- We introduce a new notion of selection based on the so-called quality of literals
- A quality preorder on literals l₁ ▷ l₂ means that we would prefer to perform an inference on literal l₁ to l₂
- We want preorders that (heuristically) prefer literals having as few children as possible
- Given a quality preorder ▷ define a selection strategy π_▷ that selects the greatest (highest quality) literal with respect to ▷
- Ties are broken arbitrarily but deterministically

_

Quality Orderings

Unifiability				
$I_1 hdot_{weight} I_2$	$wgt(\mathit{l}_1) > wgt(\mathit{l}_2)$	complex structure		
$l_1 \vartriangleright_{vars} l_2$	$vars(\mathit{l}_1) < vars(\mathit{l}_2)$	$p(f(a), y) \triangleright_{vars} p(f(x), y)$		
$l_1 \vartriangleright_{top} l_2$	$tvar(\mathit{l}_1) < tvar(\mathit{l}_2)$	$p(f(f(x))) arprop_{top} p(x)$		
$l_1 hdot_{dvar} l_2$	$dvar(l_1) < dvar(l_2)$	$p(f(x), f(x)) \rhd_{dvar} p(f(x), f(y))$		

Equality and Polarity				
$L \vartriangleright_{nposeq} s \simeq t$ L not equality	prolific superposition			
$s ot\simeq t arphi_{nposeq} s' \simeq t'$	prolific superposition			
$s \not\simeq t \vartriangleright_{neq} L$ L not equality	equality resolution			
$\neg A ightarrow_{neg} A'$	default			

Completeness

- We complete a selected strategy π_{\rhd} using the following steps
- N are the literals in a clause and M is the maximal subset
 - 1. If $\pi_{\triangleright}(N)$ is negative then select $\pi_{\triangleright}(N)$
 - 2. If $\pi_{\triangleright}(N) \in M$ and all literals in M are positive then select M
 - 3. If *M* contains a negative literal **then** set *N* to be the set of all negative literals in *M* and **goto** 1
 - 4. Remove $\pi_{\triangleright}(N)$ from N and **goto** 1
- The idea is to select the highest quality literal that preserves the completeness condition
- We use both incomplete and complete versions
- Saturation with incompleteness must return Unknown

Another Observation

- If we are trying to select the literals that will lead to the fewest new clauses then why not compute this
- Let children(C, I) be the number of children of clause C if literal I is selected in C
- This leads to a new quality preorder where we minimise this value

 $l_1 \triangleright_{lmin} l_2$ iff children $(C, l_1) < \text{children}(C, l_2)$

• We can also try maximising this value (expecting it to be bad)

 $l_1 \triangleright_{lmax} l_2$ iff children $(C, l_1) >$ children (C, l_2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Given-Clause Algorithm and Term Indexing

- The set of active clauses is stored in indexing structures
- Allow for efficient computation of unifying and matching literals/terms
- Roughly, an indexing structure for each inference

Estimating Children

- Let $\mathcal{T}_1, \ldots, \mathcal{T}_n$ be a set of term indexes
- An estimate for children(C, I) can then be given by

```
estimate(I) = \sum_{i=1}^{n} |\mathcal{T}_{i}[I]|.
```

- Step through indices in a fail-fast fashion
- This is an over-estimate
 - Side conditions are not checked
 - Children may not necessarily survive retention tests

but checking such things would be too expensive

- This can be extended to inferences that do not rely on inferences e.g. equality resolution
- Select literals in given clause when it is chosen

Lookahead Selection

Experiments

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Completeness

- As comparing literals is now much more expensive we modify the previous approach
- If there are no negative literals then select all maximal literals
- If there is a single maximal positive literal choose between all
- Otherwise choose between all negative literals

Experiment

- Used 23 selection strategies implemented in Vampire
- Ran on 11,107 problems
 - non-trivial problems from FOF and CNF TPTP 6.3.0
 - Trivial means having a rating 0
 - Excluded unit equality problems
- Used default strategy with
 - Time limit of 10 seconds
 - Age-Weight ratio of 1:5
 - Try with splitting (AVATAR) on and off
- Ran using StarExec

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The Selection Strategies (Vampire)

- Selection 0 selects everything
- Selection 1 selects all maximal
- Six selection strategies based on quality preorders

• And their complete versions 10* e.g. 1002

The Selection Strategies (Other)

SPASS Inspired

- 20: off. Select all maximal
- 22: always. Select negative with max weight, otherwise 20
- 21: several. Select unique maximal, otherwise 22
- E Inspired. Always falls back to selecting all maximal
 - 30: <u>neg.</u> Select all negative
 - 31: var. Select a negative equality between variables
 - 32: small. Select negative with minimal weight
 - 33: diff. Select neg that max diff of weight of lhs and rhs
 - 34: ground. Select negative ground with max difference
 - 35: optimal. 34 and fallback to 33

Adaptations are approximate as E's notion of term weight differs

Selection Functions

Ranking the Selections

selection	#solved	%total	#unique	u-score	#child (s.o./all)
1011	4718	83.9	156	563.6	4.2 / 9.9
1010	4461	79.3	31	384.1	9.4 / 14.6
11	4333	77.0	26	354.7	6.5 / 13.6
1002	4327	76.9	62	396.1	8.7 / 15.4
10	4226	75.1	8	283.3	9.9 / 14.5
30	3559	63.3	3	204.9	16.6 / 28.8
32	3538	62.9	5	209.8	6.3 / 19.9
0	3362	59.8	8	203.1	35.8 / 48.7
12	3308	58.8	3	183.4	14.0 / 24.5
1012	2532	45.0	5	146.1	13.9 / 30.8

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Splitting Effect (AVATAR off)

selection	#solved	%total	#unique	u-score	#child (s.o./all)
1010	4289	80.0	64	379.8	9.3 / 17.0
1011	4255	79.4	104	412.7	8.5 / 15.0
1002	4207	78.5	45	356.2	7.5 / 18.5
11	4121	76.9	25	292.9	12.1 / 25.7
10	4116	76.8	9	251.7	13.1 / 21.2
32	3482	65.0	2	188.5	7.8 / 31.9
20	3479	64.9	0	182.2	21.7 / 33.3
12	3313	61.8	6	173.8	25.0 / 33.9
0	3279	61.2	24	206.4	59.2 / 83.1
1012	2403	44.8	7	126.7	17.9 / 36.4

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Satisfiable Problems

AVATAR on (total 287)					
selection	#solved	%total	#unique	u-score	
33	248	86.4	0	24.5	
22	247	86.0	0	24.1	
11	246	85.7	0	23.4	
32	241	83.9	1	23.8	
1	238	82.9	0	21.6	
AVATAR off (total 207)					
selection	#solved	%total	#unique	u-score	
11	195	94.2	0	16.7	
4	191	92.2	0	17.1	
3	190	91.7	0	16.9	
32	184	88.8	0	14.7	
35	183	88.4	0	14.6	

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Impact on Portfolio Solving

selection	Problems solved only using this selection		
	All	Problems solved only by Vampire	
11	151	118	
1011	78	62	
1	62	58	
10	55	41	
lookahead	278	216	
non-lookahead	502	377	
complete	824	691	
incomplete	229	169	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary

- Literal Selection matters (see previous slide)
- The heuristic of minimising the number of children seems to work well
- Lookahead selection does a very good job at keeping the clause search space small
- Different (quality-based) heuristics for selection give needed variance
- Dropping completeness can help solve more