
1/32

A Taxonomy for Classifying Runtime
Verification Tools

Ylies Falcone1 Srdan Krstic2

Giles Reger3 Dmitriy Traytel2

1Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, 38000 Grenoble, France

2Institute of Information Security, ETH Zürich, Switzerland

3University of Manchester, Manchester, UK

November 13, 2018

1/32

Authors

2/32

Introduction

Highlights

Taxonomy of RV techniques with (around) 20 features
Categorisation of 20 tools (with 30 more identified)

This Talk
Introduce context and approach taken
Use two tools to take a detailed look at the Taxonomy
Overview the full classification
Discuss some observations and future work

Acknowledgements

Martin Leucker for early discussions on taxonomy & representation.

Working Groups 1 and 2 of COST Action ARVI IC1402

Participants of Dagstuhl seminar 17462.

3/32

Motivation

We have lots of tools (and growing)

What are the key concepts behind them, how do they compare?

Interesting from a practical perspective
What tool should I use?
What tools should I compare to?
How should a competition/challenge be organised?

Interesting from a theoretical perspective
What is the space of exploration?

As a community we’ve talked about this a lot but we’ve been held
back by wanting to get it perfect. Our solution is not perfect but a
good starting point.

4/32

Previous Ideas on Classification

The Standard Online/Offline, Inline/Outline

Online - whilst system running
Offline - after system ran
Inline - embedded in system (somehow)
Outline - separate from system

Other Terms Used
Synchronous vs Asynchronous
Event-triggered vs Time-triggered

All captured by our taxonomy.

5/32

Previous Ideas on Classification

1st RV Competition in 2014

E
.B

artoccietal.

Table 5 Summary of features of the tools

Participating
tool

User-
enabled

Built-
in

Propositional
events

Parametric
events

Automata-
based

Logic-
based

Regular
Expressions-
based

Logical-
time

Real-
time

Own
instru-
mentation

Relies
on
AspectJ

Relies
on another
technique

C
programs

Java
pro-
grams

TracesTime
triggered

Event
triggered

Input requirement specification Instrumentation Monitored systems Monitoring mode

RiTHM ! ! ! ! ! ! ! ! ! ! !
E- ACSL ! ! ! ! ! ! ! !
RTC ! ! ! !
Larva ! ! ! ! ! ! !
jUnitRV ! ! ! ! ! ! ! ! !
JavaMop ! ! ! ! ! ! ! ! ! !
MonPoly ! ! ! ! ! ! ! !
STePr ! ! ! ! !
MarQ ! ! ! ! ! ! ! ! !

M
onitoring

m
ode

T
he

entry
tim

e
triggered

indicates
thatthe

stream
of

observations
from

the
system

is
obtained

through
sam

pling.T
he

entry
eventtriggered

indicates
thatthe

steam
ofobservations

is
obtained

follow
ing

the
execution

ofevents
in

the
system

.

4
B
enchm

arks
for

the
m
onitoring

com
petition

In
this

section,w
e
provide

a
description

of
the

benchm
arks

provided
by

participants.
T
he

benchm
arks

can
be

dow
loaded

by
cloning

the
repos-

itory
and

follow
ing

the
instructions

available
at:

https://gitlab.inria.fr/crv14/benchm
arks.

In
the

follow
ing,

for
each

benchm
ark,

w
e
describe

the
related

program
and

property.

4.1
C
track

4.1.1
M
axim

um
chunk

size
in

D
ropbox

connections

T
his

benchm
ark

is
provided

by
R
iT
H
M

team
.

D
escription

of
the

m
onitored

program
T
he

program
sim

u-
lates

D
ropbox

connections.
T
he

program
uses

the
dataset

described
in

[43]to
run

the
sim

ulation.
D
escription

of
the

property
T
he

property
states

that
for

all
connections,

it
is

alw
ays

the
case

that
chunk

size
(used

to
split

files)
is

less
than

or
equal

to
999,999.

T
he

property
is

form
alized

using
a
fragm

ent
of

first-order
LT

L
[68]

as
follow

s:

∀connection:G
(chunksize(connection

) ≤
999

,999
).

4.1.2
C
hanges

in
the

chunk
size

ofD
ropbox

connections

T
his

benchm
ark

is
provided

by
R
iT
H
M

team
.

D
escription

ofthe
m
onitored

program
T
he

benchm
ark

uses
the

sam
e
program

as
the

one
in

the
benchm

ark
described

in
Sect.4.1.1.
D
escription

of
the

property
T
he

property
states

that
for

all
connections,it

is
alw

ays
the

case
that

w
hen

the
chunk

size
becom

es
strictly

larger
than

10,000,
its

value
eventually

becom
es

less
than

or
equal

to
10,000.T

he
property

is
for-

m
alized

using
a
fragm

entoffirst-orderLT
L
[68]as

follow
s:

∀connection:G
(chunksize

(connection
)
>

10
,000

#⇒
F
chunksize(connection

)≤
10

,000
).

4.1.3
M
axim

um
bandw

idth
ofYoutube

connections

D
escription

of
the

m
onitored

program
T
he

program
sim

-
ulates

Y
outube

connections.
T
he

program
uses

the
dataset

described
in

[85]to
run

the
sim

ulation.

123

6/32

Previous Ideas on Classification

ParTrap paper presented yesterday

Table 1. Comparison of ParTraP with several temporal specification languages

Language Para-
metric

Comp.
values

Quan-
tifica-
tion

Ref.
past
data

Wall-
clock
time

Style

Dwyer’s patterns [13], Propel [22],
LTLf [6], CFLTL [20]

7 n/a n/a n/a 7 decl.

RSL [21], Salt [7], TLTLf [6] 7 n/a n/a n/a 3 decl.
Eagle [2] 3 7 global 7 3 decl.
Stolz’s Param. Prop. [23] 3 7 local 7 7 decl.
FO-LTL+ [14] 3 3 local 7 3 decl.
MFOTL/MONPOLY [5,11] 3 7 global 3 3 decl.
JavaMOP [17] 3 7 global 3 7 mixed
QEA/MarQ [1,19], Mufin [12] 3 7 global 3 7 oper.
Ruler [4], Logfire [15] 3 7 n/a 3 7 oper.
LogScope [3] 3 3 global 7 7 mixed
ParTraP 3 3 local 3 3 decl.

variable in a whole trace, or local, where the quantification domain may only
depend on the current state. The “Ref. past data” column indicates whether it is
possible to use parameters values of past events. We also consider if physical time
(“wall-clock time”) is supported at the language level, in which case specifications
involving timing constraints are easier to express. Finally, the specification style
of a language can be declarative, operational, or mixed between the two and
o�ers the choice to the user. As shown in Table 1, ParTraP supports a unique
combination of these features, motivated by the need for expressiveness.

3 Associated tool set

ParTraP-IDE is a toolset designed to edit and execute the ParTraP language
directly on a set of trace files. Given a set of properties, the tool provides the set
of traces violating them and an explanation of the error causes.

3.1 Architecture

ParTraP-IDE relies on the Eclipse IDE and the XText framework2. Xtext provides
a complete infrastructure including: parser, lexer, typechecker and a compiler
generator. Fig. 2 shows the ParTraP-IDE architecture. Part A presents how
XText generates the toolset. Part B presents the usage of the tool.

This section deals with the tool generation architecture (Part A). The Par-
TraP Language grammar is defined in EBNF (XText’s default grammar lan-
guage). After being parsed, a set of language models is generated (AST metamodel,
Java code and class diagram). These Xtext artifacts are used to configure the lan-
guage editor and to generate a compiler that transforms each ParTraP property
2 https://www.eclipse.org/Xtext

7/32

Previous Ideas on Classification

Taxonomy of Delgado et al. (2004)

Four top-level concepts:

1 Specification - focussing on language, class (e.g. safety) and
abstraction

2 Monitor - instrumentation and placement

3 Event-Handler - kinds of verdicts/results

4 Operational Issues - maturity of tool, target language,
dependencies

Taxonomy was very operational and did not go into much detail on
specification language and notions of placement were high-level.

8/32

Previous Ideas on Classification

To meet these needs, we based the taxonomy on common
elements of monitoring systems: specification language,
monitor, and event-handler. In addition to these elements,
the taxonomy considers operational issues, such as the type
of programs targeted by the monitoring system, platform
dependencies, and level of maturity of the tool. Fig. 2 shows
the taxonomy.

3.1 Specification Language

The Specification-Language branch of the taxonomy as shown

in Fig. 2 classifies the language that is used in a tool to

define monitored properties, the abstraction level of the

specification, and the expressiveness of the language

(property type and level of monitoring).

DELGADO ET AL.: A TAXONOMY AND CATALOG OF RUNTIME SOFTWARE-FAULT MONITORING TOOLS 861

Fig. 2. Runtime monitoring taxonomy.

9/32

Previous Ideas on Classification

abstraction, i.e., at the package level, and then augments the
program with more detailed properties at the subprogram
and statement level. The event handler notifies the user
when a violation occurs. An interface provides the user
with options, including suppression of annotations, display
of the executing program, and display of the program text
around where the violation occurred.

5.3 Anna Consistency Checking System

The Anna Consistency Checking System (Anna CCS) [67]
allows users to annotate an Ada program with properties
written in Anna, an Ada extension for specifying properties.
Anna CCS generates a checking function corresponding to
each subtype annotation. A subtype annotation defines a
property that must hold throughout the scope of the type
definition. Calls to the checking functions are inserted at
places where inconsistencies with respect to the annotation
can arise (e.g., assignment statements, procedure-call
statements, and type conversions). Anna CCS uses checking
tasks that perform consistency checks concurrently with the
execution of the underlying program. When encountering
annotation inconsistencies, the event-handler can ignore the
inconsistencies, report the inconsistencies, or terminate the
program based on the specification.

5.4 Annotation PreProcessor (APP)

Annotation PreProcessor (APP) [62] translates an annotated
C program into an equivalent C program with embedded

assertion checks. An APP assertion specifies a property that
applies to some state of a computation. The focus is on
assertions on function interfaces and bodies. APP recog-
nizes four assertion constructs: assume (specifies a pre-
condition on a function), promise (specifies a postcondition
on a function), return (specifies a constraint on the return
value of a function), and assert (specifies a constraint on an
intermediate state of a function). The programmer manually
inserts assertions at points in the program where checks
should occur. The compiler preprocessor pass is used to
instrument the application. Assume, promise, and return
are module-level monitoring directives. Assert is a state-
ment-level directive. The programmer has the option to
attach a severity level and specify a response to violated
constraints. The severity level indicates the relative im-
portance of an assertion and determines whether or not the
assertion will be checked at runtime. APP supports
specification of a response to a violation.

5.5 BEE++

BEE++ [7] is an object-oriented application framework for
the dynamic analysis of distributed programs written in C
or C++. It views execution of a distributed program as a
stream of events. The monitor, referred to as an event
interpreter, supports specification of high-level events from
low-level events by way of inheritance. A sensor provides a
placeholder for an event that is either user-defined or
predefined by BEE++. When a sensor is encountered, or

864 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 12, DECEMBER 2004

TABLE 1
Monitors Classified According to the Specification Language Branch of the Taxonomy

10/32

Previous Ideas on Classification

Teaching Runtime Verification by Martin Leucker (2015)Taxonomy

runtime
verification

trace

finite

finite non-
completed

infinite

integration

inline

outline

stage

online

offline

interference

invasive

non-invasive

steering

activepassive

monitoring

input/ output
behavior

state
sequence

event
sequence

application
area

safety
checking

security

information
collection

performance
evaluation

M. Leucker 18. November 2013 5/38

11/32

Methodology (counter-example guided refinement)

0. Starting point from discussions/brain-storm

1. Attempt to classify tools

2. If issues with taxonomy GOTO 1

3. Attempt to concisely present and explain taxonomy

4. If issues with taxonomy GOTO 1

12/32

Our Taxonomy: The Big Picture

Runtime
Verification

application
area

analysis

debugging

software
& system

engineering

information
collection

failure
prevention
& reaction

testing

deployment

placement

architecture

stage

instrumentation

reaction active

passive

monitor

generation execution

decision
procedure

interference

invasive

non-invasive

specification

explicit

implicit

system
model

trace

role

evaluation

information

13/32

Two Tools

To help us explore the taxonomy we’ll look at how two tools are
classified with respect to it.

MarQ [Reger et al]

Monitoring at runtime with QEA, based on parametric-trace slicing.
The tool is implemented in Java and can read in trace files or being
called at runtime, usually but not necessarily, by AspectJ.

Monpoly [Basin et al]

Monitors metric first-order temporal logic (MFOTL) and introduced
in the context of checking compliance of log files/event-streams.
Now being used in the context of Big Data monitoring.

14/32

Specification

A specification indicates the intended system behavior (property),
that is what one wants to check on the system behavior.

A specification exists within the context of a general system model
i.e., the abstraction of the system being specified.

A specification can be implicit or explicit

For explicit specifications we care about properties of the
specification language, including the structure of models (traces) in
that language

15/32

Specification

15/32

Specification

15/32

Specification

15/32

Specification

15/32

Specification

15/32

Specification

15/32

Specification

15/32

Specification

16/32

Monitor

A monitor is a main component of a runtime verification framework.

In the previous sentence there was lots of discussion between a
main and the main

A monitor implements a decision procedure which produces the
expected output (defined by the specification language)

At this point let us point out that our taxonomy does not
(currently) capture non-hierarchical relationships between concepts

17/32

Monitor

17/32

Monitor

17/32

Monitor

17/32

Monitor

18/32

Deployment

By deployment, we refer to how the monitor is effectively
implemented, organized, how it retrieves the information from the
system, and when it does so.

It became clear that there is not a general completely precise
agreement between the exact meaning of online/offline and
inline/outline - concepts that have been with us for over a decade.

19/32

Deployment

19/32

Deployment

19/32

Deployment

19/32

Deployment

19/32

Deployment

19/32

Deployment

19/32

Deployment

19/32

Deployment

20/32

Trace

The notion of trace appears in two places in a runtime verification
framework and this distinction is captured by the role concept.

By observed trace we refer to the object extracted from the
monitored system and examined by the monitor.

Conversely the trace model is the mathematical object forming part
of the semantics of the specification formalism.

21/32

Trace

21/32

Trace

21/32

Trace

21/32

Trace

21/32

Trace

21/32

Trace

22/32

Reaction

By reaction, we refer to how the monitor affects the execution of
the system; this can be passive or active.

Reaction is said to be passive when the monitor does not influence
or minimally influences the initial execution of the program.

Reaction is said to be active when the monitor affects the
execution of the monitored system.

23/32

Reaction

23/32

Reaction

23/32

Reaction

24/32

Interference

he interference part of the taxonomy characterizes monitoring
frameworks as invasive or non-invasive.

In absolute, a non-invasive monitoring framework being impossible
(observer effect), this duality corresponds more in reality to a
spectrum.

This part of the taxonomy is heavily related to other parts but we
have not yet captured this or expanded this spectrum.

25/32

Application Area

Often an important part of what defines an RV tool.

Although some RV tools are developed to be agnostic there use has
usually been within a set of domains.

Can heavily influence other parts e.g. kinds of properties,
deployment restrictions, instrumentation techniques.

We do not provide a list of possible domains but do give some
examples.

26/32

Classification (Tools)

Tools were taken from previous RV competitions and RV-CuBES
workshop. This led to 20 tools in total.

Aerial
ARTiMon
BeepBeep
DANA
detectEr

E-ACSL
JavaMOP
jUnitRV
Larva
LogFire

MarQ
MonPoly
Mufin
R2U2
RiTHM

RTC
RV-Monitor
STePr
TemPsy/OCLR-Check
VALOUR

Threat to Validity. The competition was relatively restricted in the
kinds of tools that it targeted and, whilst RV-CuBES was open, this
alone means that our selection is biased.

https://bitbucket.org/traytel/aerial
http://artimon-online.com
http://beepbeep.sourceforge.net
http://www.cs.um.edu.mt/svrg/Tools/detectEr/
http://frama-c.com/eacsl.html
http://fsl.cs.illinois.edu/index.php/JavaMOP
http://www.isp.uni-luebeck.de/junitrv
http://www.cs.um.edu.mt/~svrg/Tools/LARVA/
http://www.havelund.com/Publications/sttt-2013-logfire.pdf
https://github.com/selig/qea
https://sourceforge.net/projects/monpoly/
https://www.isp.uni-luebeck.de/mufin
http://temporallogic.org/research/R2U2/
https://uwaterloo.ca/embedded-software-group/projects/rithm
http://runtimeverification.com/monitor
https://www.isp.uni-luebeck.de/stepr
http://weidou.github.io/TemPsy-Check/

27/32

Classification (Results)

28/32

Observations

Common themes
Generally use totally ordered logical time
Generally event-based & event-triggered
Generally online
Even split between ‘declarative’ and ‘operational’ languages

Most controversial part of taxonomy was Monitor

Most difficult to justify was relation between trace model and
observed trace

29/32

Underpopulated Areas

Decentralized architecture - growing area (?)

Monitoring ‘states’ (instead of events) - common dichotomy (?)
not seen in tools (what does it mean to monitor state)

Richer reactions - mostly passive reactions, or very weak active ones

Applications - many tools were in fact application agnostic

30/32

Future Work

Tools
Have around 30 more ready to classify
Need to consult on current classification
Main challenge: getting enough information
Second challenge: some tools may require refinement of
taxonomy

Refine Some Areas of Taxonomy
Hardware monitoring
Implicit property tools
Currently only focus on ‘trace checking’ part of RV

31/32

Watch this Space

Survey
In the next few months we will prepare a detailed survey to
capture sufficient information to classify tools using our
taxonomy.
This will be distributed widely and we hope that you will help
us by completing it.
This will help us verify the current classification and
significantly extend it.

Online Home
To support the use of the taxonomy we are looking for an
online home where the taxonomy and classification can easily
be explored

32/32

Summary

First steps but big steps

Lots more work to do

Will other people use the taxonomy?

Will other people care about and/or contribute to the classification?

	Introduction
	Previous
	Methodology
	Taxonomy
	Classification
	Observations
	Future Work
	Summary

