
Motivation Two Languages The Translation Properties Discussion

From Parametric Trace Slicing to Rule Systems

Giles Reger David Rydeheard

University of Manchester, Manchester, UK

November 11, 2018

Motivation Two Languages The Translation Properties Discussion

Spot the Difference
qea(UnsafeMapIterator) {

forall(m,c,i)
accept skip(start){

create(m, c) →
createdC

}
accept skip(createdC){

iterator(c, i) →
createdI

}
accept skip(createdI){

update(m) → updated
}
accept skip(updated){

next(i) → failure
}

}

� ∀i .
(
next(i)→ ∃m, c.

(
¬update(m) S(

iterator(c, i) ∧ � create(m, c)
)))

createdC = create ∪ createdC[−1|∅]
createdI = (iterator ./ createdC) ∪ createdI[−1|∅]
updated = (update ./ createdI) ∪ updated[−1|∅]

ok = next ⊆/ π〈i〉(updated)

class UnsafeMapIterator extends Monitor {
val create ,iterator ,update ,next = event
val createdC ,createdI ,updated = fact

r1: create(m,c) |-> createdC(m,c)
r2: createdC(m,c),

iterator(c,i) |-> createdI(m,i)
r3: createdI(m,i),

update(m) |-> updated(i)
r4: updated(i), next(i) |-> error

}

∀c,m, i . �
(create(m, c)→

©�(iterator(c, i)→
©�(update(m)→
©�¬next(i)))

)

Motivation Two Languages The Translation Properties Discussion

Some Terminology: Parametric RV

Runtime Verification Problem
Given a trace τ and a specification ϕ decide whether τ ∈ P(ϕ).

Where a trace is a finite sequence of events and P(ϕ) is the set of
traces denoted by specification ϕ (could be good prefixes).

This can be parameterised by our notion of event.

Propositional Events
An event is an atomic symbol

Parametric Events
An event is a pair of an event name and a finite sequence of values

Motivation Two Languages The Translation Properties Discussion

We Have Lots of Languages for Parametric RV

Rule-based
• RuleR, LogFire, TraceContract

Temporal logic
• ‘Standard’ First-order LTL (past/future)
• MFOTL (also with aggregates),
• Parameterized LTL, LTL-FO+, LTLFO, LTL-FO
• LTL and MTL extended with freeze quantifiers

Projection or Slicing based
• JavaMOP, tracematches, QEA, Larva, Mufin

Stream based
• Lola, TeSSLa, BeepBeep

Motivation Two Languages The Translation Properties Discussion

Our Research Question

The Question
What are the fundamental differences between specification
languages for describing parametric properties for runtime
verification and how do these differences impact the expressiveness
and efficiency of the runtime verification process.

The Approach:
1. Map the space. Find out what languages there are. Apply

them to examples and see what they do (joint with Klaus).

2. Connect the space. Formalise translations from (a fragment
of) one language to (a fragment of) another language.

Motivation Two Languages The Translation Properties Discussion

Our Research Question

The Question
What are the fundamental differences between specification
languages for describing parametric properties for runtime
verification and how do these differences impact the expressiveness
and efficiency of the runtime verification process.

The Approach:
1. Map the space. Find out what languages there are. Apply

them to examples and see what they do (joint with Klaus).

2. Connect the space. Formalise translations from (a fragment
of) one language to (a fragment of) another language.

Motivation Two Languages The Translation Properties Discussion

Our Research Question

The Question
What are the fundamental differences between specification
languages for describing parametric properties for runtime
verification and how do these differences impact the expressiveness
and efficiency of the runtime verification process.

The Approach:
1. Map the space. Find out what languages there are. Apply

them to examples and see what they do (joint with Klaus).

2. Connect the space. Formalise translations from (a fragment
of) one language to (a fragment of) another language.

Motivation Two Languages The Translation Properties Discussion

Our Research Question

The Question
What are the fundamental differences between specification
languages for describing parametric properties for runtime
verification and how do these differences impact the expressiveness
and efficiency of the runtime verification process.

The Approach:
1. Map the space. Find out what languages there are. Apply

them to examples and see what they do (joint with Klaus).

2. Connect the space. Formalise translations from (a fragment
of) one language to (a fragment of) another language.

Motivation Two Languages The Translation Properties Discussion

Our Research Question

The Question
What are the fundamental differences between specification
languages for describing parametric properties for runtime
verification and how do these differences impact the expressiveness
and efficiency of the runtime verification process.

The Approach:
1. Map the space. Find out what languages there are. Apply

them to examples and see what they do (joint with Klaus).

2. Connect the space. Formalise translations from (a fragment
of) one language to (a fragment of) another language.

Motivation Two Languages The Translation Properties Discussion

The Landscape

Rule-based

Temporal Logic-based

Slicing-based

Stream-based

F(future FO LTL)

∀∃ det QEA (no locals)

∀ QEA (locals)Core RuleR

?

Motivation Two Languages The Translation Properties Discussion

The Landscape

Rule-based

Temporal Logic-based

Slicing-based

Stream-based

F(future FO LTL)

∀∃ det QEA (no locals)

∀ QEA (locals)Core RuleR

?

MFTL

Motivation Two Languages The Translation Properties Discussion

Previous Work

From First-Order Temporal Logic to Parametric Trace Slicing
(RV15)

• Motivation: the semantics of the LTL plugin with parametric
slicing is ‘local’ e.g. the notion of next is always with respect
to the current slice

• Define a fragment of a function-free future-time first-order
LTL that coincides with slicing-based LTL, which can be
converted to a QEA

• The fragment is (in some sense) next-free, reflecting the
restrictions that slicing brings

Motivation Two Languages The Translation Properties Discussion

This Talk

The two languages (QEA and RuleR) by example

The translation by example

Properties of the translation

Some Observations

Fin

Motivation Two Languages The Translation Properties Discussion

Two Languages By Example

Quantified Event Automata. Introduced in 2012 by Barringer,
Falcone, Havelund, Reger, and Rydeheard. Based on parametric
trace slicing and inspired by MOP.

RuleR. Introduced in 2007 by Barringer, Rydheard, and Havelund.
Follow on work from fixed-point rule-based language EAGLE.

We will use a running example:

UnsafeIterator
An iterator object i created from a collection object c cannot be
used after c is updated.

Motivation Two Languages The Translation Properties Discussion

Quantified Event Automata

1 2 3 4

∀c∀i
create(c, i) update(c) use(i)

create(C ,A).create(C ,B).use(A).update(C).use(B)

Based on parametric trace slicing
• Domain of quantification extracted from trace
• For each binding of variables, slice trace and check slice
• QEA differs from MOP as it keeps the parameters in the slice

Ignore existential quantification in this work (discussed later)

Motivation Two Languages The Translation Properties Discussion

Quantified Event Automata

1 2 3 4

∀c∀i
create(c, i) update(c) use(i)

create(C ,A).create(C ,B).use(A).update(C).use(B)

Based on parametric trace slicing
• Domain of quantification extracted from trace
• For each binding of variables, slice trace and check slice
• QEA differs from MOP as it keeps the parameters in the slice

Ignore existential quantification in this work (discussed later)

Motivation Two Languages The Translation Properties Discussion

Quantified Event Automata

1 2 3 4

∀c∀i
create(c, i) update(c) use(i)

create(C ,A).create(C ,B).use(A).update(C).use(B)

Based on parametric trace slicing
• Domain of quantification extracted from trace
• For each binding of variables, slice trace and check slice
• QEA differs from MOP as it keeps the parameters in the slice

Ignore existential quantification in this work (discussed later)

Motivation Two Languages The Translation Properties Discussion

QEA Small-Step Semantics

Definition (Monitoring Construction)
Given ground event a and monitoring state M, let θ1, . . . , θm be a
linearisation of the domain of M from largest to smallest wrt v i.e. if
θj < θk then j > k and every element in the domain of M is present once
in the sequence, hence m = |M|. We define the monitoring state
(a ∗M) = Nm where Nm is iteratively defined as follows for i ∈ [1,m] and
N0 = ⊥

Ni = Ni−1 † Addi †
{

[θi 7→ next(M(θi), a, θi)] if relevant(θi , a)
[θi 7→ M(θi)] otherwise

with additions defined in terms of extensions not already present:

Addi = [(θ′ 7→ next(M(θi), a, θ′)) | θ′ ∈ extensions(θi , a)∧θ′ /∈ dom(Ni−1)]

and next is a function computing the next configurations given a
valuation.

Motivation Two Languages The Translation Properties Discussion

Illustrating Maximality

1 2 3 4

∀c∀i
create(c, i) update(c) use(i)

update(C).create(C ,A).use(A).create(B,A)

(C,-) update(C)
(-,A) use(A)
(B,-)
(C,A) update(C).create(C,A).use(A)
(B,A) use(A).create(B,A)

(-,-)

Motivation Two Languages The Translation Properties Discussion

Illustrating Maximality

1 2 3 4

∀c∀i
create(c, i) update(c) use(i)

update(C).create(C ,A).use(A).create(B,A)

(C,-) update(C)

(-,A) use(A)
(B,-)
(C,A) update(C).create(C,A).use(A)
(B,A) use(A).create(B,A)

(-,-)

(C,-)

Motivation Two Languages The Translation Properties Discussion

Illustrating Maximality

1 2 3 4

∀c∀i
create(c, i) update(c) use(i)

update(C).create(C ,A).use(A).create(B,A)

(C,-) update(C)
(-,A)

use(A)
(B,-)

(C,A) update(C).create(C,A)

.use(A)
(B,A) use(A).create(B,A)

(-,-)

(-,A)(C,-)

(C,A)

Motivation Two Languages The Translation Properties Discussion

Illustrating Maximality

1 2 3 4

∀c∀i
create(c, i) update(c) use(i)

update(C).create(C ,A).use(A).create(B,A)

(C,-) update(C)
(-,A) use(A)

(B,-)

(C,A) update(C).create(C,A).use(A)

(B,A) use(A).create(B,A)

(-,-)

(-,A)(C,-)

(C,A)

Motivation Two Languages The Translation Properties Discussion

Illustrating Maximality

1 2 3 4

∀c∀i
create(c, i) update(c) use(i)

update(C).create(C ,A).use(A).create(B,A)

(C,-) update(C)
(-,A) use(A)
(B,-)
(C,A) update(C).create(C,A).use(A)
(B,A) use(A).create(B,A) (-,-)

(-,A)(C,-) (B,-)

(C,A) (B,A)

Motivation Two Languages The Translation Properties Discussion

RuleR
A rule has parameters and a list of rule terms of the form
event, conditions → obligations

Start{ create(c , i), !Unsafe(c, i)→ Created(c , i), Start }
Created(c , i){ update(c)→ Unsafe(c , i) }
Unsafe(c , i){ use(i)→ Fail }

create(C ,A)

.

create(C ,B)

.

use(A)

.

update(C)

.

use(B)

{Start}

−→ {Start,Created(C ,A)}
−→ {Start,Created(C ,A),Created(C ,B)}
−→ {Start,Created(C ,A),Created(C ,B)}
−→ {Start,Unsafe(C ,A),Unsafe(C ,B)}
−→ {Start,Unsafe(C ,A),Fail} = {Fail}

Motivation Two Languages The Translation Properties Discussion

RuleR
A rule has parameters and a list of rule terms of the form
event, conditions → obligations

Start{ create(c , i), !Unsafe(c, i)→ Created(c , i), Start }
Created(c , i){ update(c)→ Unsafe(c , i) }
Unsafe(c , i){ use(i)→ Fail }

create(C ,A).

create(C ,B)

.

use(A)

.

update(C)

.

use(B)

{Start} −→ {Start,Created(C ,A)}

−→ {Start,Created(C ,A),Created(C ,B)}
−→ {Start,Created(C ,A),Created(C ,B)}
−→ {Start,Unsafe(C ,A),Unsafe(C ,B)}
−→ {Start,Unsafe(C ,A),Fail} = {Fail}

Motivation Two Languages The Translation Properties Discussion

RuleR
A rule has parameters and a list of rule terms of the form
event, conditions → obligations

Start{ create(c , i), !Unsafe(c, i)→ Created(c , i), Start }
Created(c , i){ update(c)→ Unsafe(c , i) }
Unsafe(c , i){ use(i)→ Fail }

create(C ,A).create(C ,B).

use(A)

.

update(C)

.

use(B)

{Start} −→ {Start,Created(C ,A)}
−→ {Start,Created(C ,A),Created(C ,B)}

−→ {Start,Created(C ,A),Created(C ,B)}
−→ {Start,Unsafe(C ,A),Unsafe(C ,B)}
−→ {Start,Unsafe(C ,A),Fail} = {Fail}

Motivation Two Languages The Translation Properties Discussion

RuleR
A rule has parameters and a list of rule terms of the form
event, conditions → obligations

Start{ create(c , i), !Unsafe(c, i)→ Created(c , i), Start }
Created(c , i){ update(c)→ Unsafe(c , i) }
Unsafe(c , i){ use(i)→ Fail }

create(C ,A).create(C ,B).use(A).

update(C)

.

use(B)

{Start} −→ {Start,Created(C ,A)}
−→ {Start,Created(C ,A),Created(C ,B)}
−→ {Start,Created(C ,A),Created(C ,B)}

−→ {Start,Unsafe(C ,A),Unsafe(C ,B)}
−→ {Start,Unsafe(C ,A),Fail} = {Fail}

Motivation Two Languages The Translation Properties Discussion

RuleR
A rule has parameters and a list of rule terms of the form
event, conditions → obligations

Start{ create(c , i), !Unsafe(c, i)→ Created(c , i), Start }
Created(c , i){ update(c)→ Unsafe(c , i) }
Unsafe(c , i){ use(i)→ Fail }

create(C ,A).create(C ,B).use(A).update(C).

use(B)

{Start} −→ {Start,Created(C ,A)}
−→ {Start,Created(C ,A),Created(C ,B)}
−→ {Start,Created(C ,A),Created(C ,B)}
−→ {Start,Unsafe(C ,A),Unsafe(C ,B)}

−→ {Start,Unsafe(C ,A),Fail} = {Fail}

Motivation Two Languages The Translation Properties Discussion

RuleR
A rule has parameters and a list of rule terms of the form
event, conditions → obligations

Start{ create(c , i), !Unsafe(c, i)→ Created(c , i), Start }
Created(c , i){ update(c)→ Unsafe(c , i) }
Unsafe(c , i){ use(i)→ Fail }

create(C ,A).create(C ,B).use(A).update(C).use(B)

{Start} −→ {Start,Created(C ,A)}
−→ {Start,Created(C ,A),Created(C ,B)}
−→ {Start,Created(C ,A),Created(C ,B)}
−→ {Start,Unsafe(C ,A),Unsafe(C ,B)}
−→ {Start,Unsafe(C ,A),Fail} = {Fail}

Motivation Two Languages The Translation Properties Discussion

The Translation

1 2

34

8c8i
create(c, i)

update(c)

use(i)

1 2 3

8s8r
send(s)

ack(r, s) send(s)

1 2 3

4

8i �0(c) = 0

list(i,min)

bid(i, a) if a > c do c := a

sell(i) if c � min

list(i,),
bid(i, a) if a c
sell(i) if c < min list(i,),

bid(i, a)

Fig. 1. QEA for (i) the UnsafeIterator property (top left), (ii) the AuctionBidding property (right),
and (iii) the Broadcast property (bottom left).

3.3 Examples

We now introduce three example properties and specify them in the two languages.
We will later use these to motivate, demonstrate, and discuss the translation. The three
properties are:

– The UnsafeIterator property that an iterator i created from a collection c cannot be
used after c is updated.

– The AuctionBidding property that after an item i is listed on an auction site with a
reserve price min it cannot be relisted, all bids must be strictly increasing, and it
can only be sold once this min price has been reached.

– The Broadcast property that for every sender s and receiver r, after s sends a mes-
sage it should wait for an acknowledgement from r before sending again. Receivers
are identified exactly as objects that acknowledge messages.

These are formalised as QEA in Figure 1 and as rule systems in Figure 2. One case that
may require some explanation is the rule system for the Broadcast property. This needs
to build up knowledge about the set of sender and receiver objects explicitly (whilst in
trace slicing this is done implicitly), relying on the knowledge that the set of receivers
must be fixed once a sender sends for the second time.

4 Translating Quantified Event Automata to Rule Systems

We now show how to produce a rule system from a QEA. This will consist of three
translations on the QEA until it is in a form where we can apply a local translation
of each state to a rule definition. The translation has been implemented in SCALA (see
https://github.com/selig/qea_to_rules).

4.1 An equivalent representation with labelled states

We introduce an annotation of QEA that replaces states with labelled states. The idea
is that a state will be labelled with the set of variables that are seen on all paths to that
state. Let hq, Si be a labelled state where q is a state and S a (possibly empty) set of
variables. Given a set of states Q and a set of variables X let LS = Q ⇥ 2X be the
(finite) set of labelled states.

B Translation of Auction Bidding Property

The transformed QEA for this property is given as:

1,{} 2,{i} 3,{i}

4,{i}1,{i}

8i

list(i,min)

bid(i, b) if b > c do a := b; c := a

sell(i) if c � min

list(i,),
bid(i, a) if a c
sell(i) if c < min

list(i,),
bid(i, a)

bid(i, a),
sell(i)

list(i,min)

The resulting rule definitions are then

r1(m, c, a)

8
>>>>>><
>>>>>>:

list(i, n), !r1(i, m1, c1, a1), !r2(i, m2, c2, a2), !r3(i, m3, c3, a3),
!r4(i, ,m4, c4, a4) ! r2(i, n, c, a), r1(m, c, a)

bid(i, b), !r1(i, m1, c1, a1), !r2(i, m2, c2, a2), !r3(i, m3, c3, a3),
!r4(i, ,m4, c4, a4) ! r1(i, m, c, a), r1(m, c, a)

sell(i), !r1(i, m1, c1, a1), !r2(i, m2, c2, a2), !r3(i, m3, c3, a3),
!r4(i, ,m4, c4, a4) ! r1(i, m, c, a), r1(m, c, a)

9
>>>>>>=
>>>>>>;

r1(i, m, c, a) { list(i, n) ! r2(i, n, c, a), r1(m, c, a) }

r2(i, m, c, a)

8
>>>><
>>>>:

bid(i, b), b > c ! r2(i, m, b, b)
sell(i), c � m ! r3(i, m, c, a)
list(i, x) ! r4(i, m, c, a)
bid(i, b), b < c ! r4(i, m, c, a)
sell(i), c < m ! r4(i, m, c, a)

9
>>>>=
>>>>;

r3(i, m, c, a)

⇢
list(i, x) ! r4(i, m, c, a)
bid(i, b) ! r4(i, m, c, a)

�

r4(i, m, c, a) { }

C Labelled QEA for UnsafeIterator

1, {} 2, {c, i}

3, {c, i}4, {c, i}

8c8i
create(c, i)

update(c)

use(i)

h1, {}i h2, c, i}i h3, {c, i}i

h4, {c, i}ih1, {i}i h1, {c}i h1, {c, i}i

8c8i
create(c, i) update(c)

use(i)create(c, i)use(i)
update(c)

update(c), create(c, x) if x 6= i

use(i), create(x, i) if x 6= c

create(c, i)

create(c, i)

r1

8
<
:

update(c), !r1(c), !r1(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1, r1(c)
create(c, i), !r1(c), !r1(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1, r2(c, i)
use(i), !r1(c), !r1(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1, r1(i)

9
=
;

r1(c)

8
<
:

create(c, i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(c), r2(c, i)
use(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(c), r1(c, i)
create(cp, i), c 6= cp, !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(c), r1(c, i)

9
=
;

r1(i)

8
<
:

create(c, ip), i 6= ip, !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(i), r1(c, i)
update(c), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(i), r1(c, i)
create(c, i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(i), r2(c, i)

9
=
;

r1(c, i)
�
create(c, i) ! r2(c, i)

r2(c, i)
�
update(c) ! r3(c, i)

r3(c, i)
�
use(i) ! r4(c, i)

r4(c, i) {}

Fig. 5. Fully transformed QEA and corresponding rule system for the UnsafeIterator property.

not be surprising as if we remove these rule definitions the rule system becomes very
similar to the one given in Section 3.3, only with the addition of maximality guards. By
making some operations carried out by the slicing structure explicit, we can identify an
inherent redundancy in this computation, which should lead to an optimisation of the
monitoring algorithm for QEA. Formalising this redundancy both for rule systems and
QEA remains further work.

Secondly, one hope for this translation was to identify a fragment of rule systems
that are amenable to the efficient indexing-based monitoring algorithms used for QEA.
After removing the redundancy identified above the first rule definition becomes

r1
�
create(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r2(c, i), r1

which, when compared to the rule system in Figure 2, includes additional negated rule
expressions in the premises (which add to monitoring complexity). So taken ‘as is’ the
resulting rule system is likely to be less efficient. However, these negated rule expres-
sions give an explicit order in which to check rule definitions when matching incoming
events (in a similar way to how indexing works for QEA) and it is plausible that this
can be used to improve RULER’s monitoring algorithm by either detecting rule systems
of this form or automatically checking if the given rule system is equivalent to a rule
system of this form (as it is in this case). Therefore, the translation suggests a future
direction for developing efficient indexing for rule-based runtime verification tools.

h1, {}i h2, c, i}i h3, {c, i}i

h4, {c, i}ih1, {i}i h1, {c}i h1, {c, i}i

8c8i
create(c, i) update(c)

use(i)create(c, i)use(i)
update(c)

update(c), create(c, x) if x 6= i

use(i), create(x, i) if x 6= c

create(c, i)

create(c, i)

r1

8
<
:

update(c), !r1(c), !r1(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1, r1(c)
create(c, i), !r1(c), !r1(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1, r2(c, i)
use(i), !r1(c), !r1(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1, r1(i)

9
=
;

r1(c)

8
<
:

create(c, i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(c), r2(c, i)
use(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(c), r1(c, i)
create(cp, i), c 6= cp, !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(c), r1(c, i)

9
=
;

r1(i)

8
<
:

create(c, ip), i 6= ip, !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(i), r1(c, i)
update(c), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(i), r1(c, i)
create(c, i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(i), r2(c, i)

9
=
;

r1(c, i)
�
create(c, i) ! r2(c, i)

r2(c, i)
�
update(c) ! r3(c, i)

r3(c, i)
�
use(i) ! r4(c, i)

r4(c, i) {}

Fig. 5. Fully transformed QEA and corresponding rule system for the UnsafeIterator property.

not be surprising as if we remove these rule definitions the rule system becomes very
similar to the one given in Section 3.3, only with the addition of maximality guards. By
making some operations carried out by the slicing structure explicit, we can identify an
inherent redundancy in this computation, which should lead to an optimisation of the
monitoring algorithm for QEA. Formalising this redundancy both for rule systems and
QEA remains further work.

Secondly, one hope for this translation was to identify a fragment of rule systems
that are amenable to the efficient indexing-based monitoring algorithms used for QEA.
After removing the redundancy identified above the first rule definition becomes

r1
�
create(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r2(c, i), r1

which, when compared to the rule system in Figure 2, includes additional negated rule
expressions in the premises (which add to monitoring complexity). So taken ‘as is’ the
resulting rule system is likely to be less efficient. However, these negated rule expres-
sions give an explicit order in which to check rule definitions when matching incoming
events (in a similar way to how indexing works for QEA) and it is plausible that this
can be used to improve RULER’s monitoring algorithm by either detecting rule systems
of this form or automatically checking if the given rule system is equivalent to a rule
system of this form (as it is in this case). Therefore, the translation suggests a future
direction for developing efficient indexing for rule-based runtime verification tools.

h1, {}i h2, c, i}i h3, {c, i}i

h4, {c, i}ih1, {i}i h1, {c}i h1, {c, i}i

8c8i
create(c, i) update(c)

use(i)create(c, i)use(i)
update(c)

update(c), create(c, x) if x 6= i

use(i), create(x, i) if x 6= c

create(c, i)

create(c, i)

r1

8
<
:

update(c), !r1(c), !r1(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1, r1(c)
create(c, i), !r1(c), !r1(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1, r2(c, i)
use(i), !r1(c), !r1(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1, r1(i)

9
=
;

r1(c)

8
<
:

create(c, i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(c), r2(c, i)
use(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(c), r1(c, i)
create(cp, i), c 6= cp, !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(c), r1(c, i)

9
=
;

r1(i)

8
<
:

create(c, ip), i 6= ip, !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(i), r1(c, i)
update(c), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(i), r1(c, i)
create(c, i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(i), r2(c, i)

9
=
;

r1(c, i)
�
create(c, i) ! r2(c, i)

r2(c, i)
�
update(c) ! r3(c, i)

r3(c, i)
�
use(i) ! r4(c, i)

r4(c, i) {}

Fig. 5. Fully transformed QEA and corresponding rule system for the UnsafeIterator property.

not be surprising as if we remove these rule definitions the rule system becomes very
similar to the one given in Section 3.3, only with the addition of maximality guards. By
making some operations carried out by the slicing structure explicit, we can identify an
inherent redundancy in this computation, which should lead to an optimisation of the
monitoring algorithm for QEA. Formalising this redundancy both for rule systems and
QEA remains further work.

Secondly, one hope for this translation was to identify a fragment of rule systems
that are amenable to the efficient indexing-based monitoring algorithms used for QEA.
After removing the redundancy identified above the first rule definition becomes

r1
�
create(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r2(c, i), r1

which, when compared to the rule system in Figure 2, includes additional negated rule
expressions in the premises (which add to monitoring complexity). So taken ‘as is’ the
resulting rule system is likely to be less efficient. However, these negated rule expres-
sions give an explicit order in which to check rule definitions when matching incoming
events (in a similar way to how indexing works for QEA) and it is plausible that this
can be used to improve RULER’s monitoring algorithm by either detecting rule systems
of this form or automatically checking if the given rule system is equivalent to a rule
system of this form (as it is in this case). Therefore, the translation suggests a future
direction for developing efficient indexing for rule-based runtime verification tools.

Input: QEA Labelled Form Domain-Explicit Form

Fresh-Variable FormOutput: Rule System

The idea is to get
the QEA into a
format where each
state can be trans-
lated into a rule

Motivation Two Languages The Translation Properties Discussion

Labelled States

Issue: Rules need to know which variables should be bound
Solution: Label states with the variables bound so far

Given a set of states Q and a set of variables X let LS = Q × 2X

be the (finite) set of labelled states.

Each state is labelled with the union of variables that are seen on
all paths to that state.

A QEA over labelled states is well-labelled if when 〈q2,S2〉 is
reachable from 〈q1,S1〉 we have S1 ⊆ S2.

We can transform any QEA into a well-labelled QEA

Motivation Two Languages The Translation Properties Discussion

Labelled States Example

Broadcast Property
For every sender s and receiver r , after s sends a message it should
wait for an acknowledgement from r before sending again.

1 2 3

∀s∀r send(s)

ack(r , s) send(s)

1, {} 2, {s}

3, {s}

1, {r , s}

2, {r , s}3, {r , s}
∀s∀r

send(s) ack(r , s)

ack(r , s)
send(s) ack(r , s)send(s)

send(s)

ack(r , s)

Motivation Two Languages The Translation Properties Discussion

Labelled States Example

Broadcast Property
For every sender s and receiver r , after s sends a message it should
wait for an acknowledgement from r before sending again.

1 2 3

∀s∀r send(s)

ack(r , s) send(s)

1, {} 2, {s}

3, {s}

1, {r , s}

2, {r , s}3, {r , s}
∀s∀r

send(s) ack(r , s)

ack(r , s)
send(s) ack(r , s)send(s)

send(s)

ack(r , s)

Motivation Two Languages The Translation Properties Discussion

Domain-Explicit Form

Issue: Rules can only remember values (extend the quantification
domain) when a transition occurs but in the QEA algorithm this
can happen without any transition
Solution: Add transitions wherever the domain gets extended

These new transitions remain in the same state but extend the set
of bound variables

We also have to add transitions for events where some of the
variables are already bound even if the value of that bound variable
disagrees with the value in the observed event.

Motivation Two Languages The Translation Properties Discussion

Domain-Explicit Form Example

1, {} 2, {c , i} 3, {c , i} 4, {c , i}
∀c∀i create(c , i) update(c) use(i)

h1, {}i h2, c, i}i h3, {c, i}i

h4, {c, i}ih1, {i}i h1, {c}i h1, {c, i}i

8c8i
create(c, i) update(c)

use(i)create(c, i)use(i)
update(c)

update(c), create(c, x) if x 6= i

use(i), create(x, i) if x 6= c

create(c, i)

create(c, i)

r1

8
<
:

update(c), !r1(c), !r1(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1, r1(c)
create(c, i), !r1(c), !r1(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1, r2(c, i)
use(i), !r1(c), !r1(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1, r1(i)

9
=
;

r1(c)

8
<
:

create(c, i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(c), r2(c, i)
use(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(c), r1(c, i)
create(cp, i), c 6= cp, !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(c), r1(c, i)

9
=
;

r1(i)

8
<
:

create(c, ip), i 6= ip, !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(i), r1(c, i)
update(c), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(i), r1(c, i)
create(c, i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r1(i), r2(c, i)

9
=
;

r1(c, i)
�
create(c, i) ! r2(c, i)

r2(c, i)
�
update(c) ! r3(c, i)

r3(c, i)
�
use(i) ! r4(c, i)

r4(c, i) {}

Fig. 5. Fully transformed QEA and corresponding rule system for the UnsafeIterator property.

not be surprising as if we remove these rule definitions the rule system becomes very
similar to the one given in Section 3.3, only with the addition of maximality guards. By
making some operations carried out by the slicing structure explicit, we can identify an
inherent redundancy in this computation, which should lead to an optimisation of the
monitoring algorithm for QEA. Formalising this redundancy both for rule systems and
QEA remains further work.

Secondly, one hope for this translation was to identify a fragment of rule systems
that are amenable to the efficient indexing-based monitoring algorithms used for QEA.
After removing the redundancy identified above the first rule definition becomes

r1
�
create(c, i), !r2(c, i), !r3(c, i), !r4(c, i) ! r2(c, i), r1

which, when compared to the rule system in Figure 2, includes additional negated rule
expressions in the premises (which add to monitoring complexity). So taken ‘as is’ the
resulting rule system is likely to be less efficient. However, these negated rule expres-
sions give an explicit order in which to check rule definitions when matching incoming
events (in a similar way to how indexing works for QEA) and it is plausible that this
can be used to improve RULER’s monitoring algorithm by either detecting rule systems
of this form or automatically checking if the given rule system is equivalent to a rule
system of this form (as it is in this case). Therefore, the translation suggests a future
direction for developing efficient indexing for rule-based runtime verification tools.

This makes explicit what the monitoring algorithm does (without
redundancy elimination) as it produces the full cross-product of all
collections and iterators. We need to add redundancy elimination.

Motivation Two Languages The Translation Properties Discussion

Local Variables: The Auction Bidding Example

Auction Bidding
After an item i is listed on an auction site with a reserve price min
it cannot be relisted, all bids must be strictly increasing, and it can
only be sold once this min price has been reached.

1 2 3

4

∀i σ0(c) = 0

list(i ,min)

bid(i , a) if a > c do c := a

sell(i) if c ≥ min

list(i ,_),
bid(i , a) if a ≤ c
sell(i) if c < min list(i ,_),

bid(i , a)

Motivation Two Languages The Translation Properties Discussion

Fresh Variable Form

Issue: In a rule, any variables appearing in the parameter list of a
rule get instantiated in the transition
Solution: Rename local variables in transitions

Without the renaming we would end up producing the rule

r2(i ,min, c , a){bid(i , a), a > c → r2(i ,min, a, a)}

which would not work

To avoid an explosion of variables we can keep the variable local to
the transition, such variables do not need to be added to the set of
bound variables at states as they do not need to be remembered.

Motivation Two Languages The Translation Properties Discussion

Fresh Variable Form

1,{Y } 2,{i ,Y } 3,{i ,Y }

4,{i ,Y }
1,{i ,Y }

∀i
list(i ,min)

bid(i , b) if b > c do a := b; c := a

sell(i) if c ≥ min

list(i ,_),
bid(i , a) if a ≤ c
sell(i) if c < min

list(i ,_),
bid(i , a)

bid(i , a),
sell(i)

list(i ,min)

Y = min, a, c

Motivation Two Languages The Translation Properties Discussion

To Rules

All states are translated into rules and all transitions are translated
into rule terms

For a transition there are two cases

1. The transition does not bound new variables. The translation
is a straightforward translation of event, guard, and action.

2. The transition bounds new variables. Then we need to check if
the current rule instance is maximal. We do this by adding
negations for all rules that could bound more variables.

Motivation Two Languages The Translation Properties Discussion

The Result: UnsafeIter Property

r1

update(c), !r1(c), !r1(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) → r1, r1(c)
create(c, i), !r1(c), !r1(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) → r1, r2(c, i)
use(i), !r1(c), !r1(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) → r1, r1(i)

r1(c)

create(c, i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) → r1(c), r2(c, i)
use(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) → r1(c), r1(c, i)
create(cp, i), c 6= cp, !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) → r1(c), r1(c, i)

r1(i)

create(c, ip), i 6= ip, !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) → r1(i), r1(c, i)
update(c), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) → r1(i), r1(c, i)
create(c, i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) → r1(i), r2(c, i)

r1(c, i)
{

create(c, i) → r2(c, i)
}

r2(c, i)
{

update(c) → r3(c, i)
}

r3(c, i)
{

use(i) → r4(c, i)
}

r4(c, i) {}

Motivation Two Languages The Translation Properties Discussion

The Result: UnsafeIter Property

r1

update(c), !r1(c), !r1(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) → r1, r1(c)
create(c, i), !r1(c), !r1(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) → r1, r2(c, i)
use(i), !r1(c), !r1(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) → r1, r1(i)

r1(c)

create(c, i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) → r1(c), r2(c, i)
use(i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) → r1(c), r1(c, i)
create(cp, i), c 6= cp, !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) → r1(c), r1(c, i)

r1(i)

create(c, ip), i 6= ip, !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) → r1(i), r1(c, i)
update(c), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) → r1(i), r1(c, i)
create(c, i), !r1(c, i), !r2(c, i), !r3(c, i), !r4(c, i) → r1(i), r2(c, i)

r1(c, i)
{

create(c, i) → r2(c, i)
}

r2(c, i)
{

update(c) → r3(c, i)
}

r3(c, i)
{

use(i) → r4(c, i)
}

r4(c, i) {}

Motivation Two Languages The Translation Properties Discussion

The Result: Broadcast Property

r1
{

ack(r , s), !r1(r , s), !r2(r , s), !r2(s), !r3(r , s), !r3(s) → r1, r1(r , s)
send(s), !r1(r , s), !r2(r , s), !r2(s), !r3(r , s), !r3(s) → r1, r2(s)

}

r1(r , s)
{

send(s) → r2(r , s)
}

r2(s)

send(s) → r3(s)
ack(r , sp), s 6= sp, !r1(r , s), !r2(r , s), !r3(r , s) → r2(s), r2(r , s)
ack(r , s), !r1(r , s), !r2(r , s), !r3(r , s) → r2(s), r1(r , s)

r2(r , s)
{

send(s) → r3(r , s)
ack(r , s) → r1(r , s)

}

r3(s)
{

ack(r , sp), s 6= sp, !r1(r , s), !r2(r , s), !r3(r , s) → r3(s), r3(r , s)
ack(r , s), !r1(r , s), !r2(r , s), !r3(r , s) → r3(s), r3(r , s)

}

r3(r , s) {}

Motivation Two Languages The Translation Properties Discussion

The Result: Broadcast Property

r1
{

ack(r , s), !r1(r , s), !r2(r , s), !r2(s), !r3(r , s), !r3(s) → r1, r1(r , s)
send(s), !r1(r , s), !r2(r , s), !r2(s), !r3(r , s), !r3(s) → r1, r2(s)

}

r1(r , s)
{

send(s) → r2(r , s)
}

r2(s)

send(s) → r3(s)
ack(r , sp), s 6= sp, !r1(r , s), !r2(r , s), !r3(r , s) → r2(s), r2(r , s)
ack(r , s), !r1(r , s), !r2(r , s), !r3(r , s) → r2(s), r1(r , s)

r2(r , s)
{

send(s) → r3(r , s)
ack(r , s) → r1(r , s)

}

r3(s)
{

ack(r , sp), s 6= sp, !r1(r , s), !r2(r , s), !r3(r , s) → r3(s), r3(r , s)
ack(r , s), !r1(r , s), !r2(r , s), !r3(r , s) → r3(s), r3(r , s)

}

r3(r , s) {}

Motivation Two Languages The Translation Properties Discussion

The Result: Broadcast Property
For every sender s and receiver r , after s sends a message it should wait
for an acknowledgement from r before sending again.

r1
{

ack(r, s), !r1(r, s), !r2(r, s), !r2(s), !r3(r, s), !r3(s) → r1, r1(r, s)
send(s), !r1(r, s), !r2(r, s), !r2(s), !r3(r, s), !r3(s) → r1, r2(s)

}
r1(r, s)

{
send(s) → r2(r, s)

}
r2(s)

 send(s) → r3(s)
ack(r, sp), s 6= sp , !r1(r, s), !r2(r, s), !r3(r, s) → r2(s), r2(r, s)
ack(r, s), !r1(r, s), !r2(r, s), !r3(r, s) → r2(s), r1(r, s)

r2(r, s)

{
send(s) → r3(r, s)
ack(r, s) → r1(r, s)

}
r3(s)

{
ack(r, sp), s 6= sp , !r1(r, s), !r2(r, s), !r3(r, s) → r3(s), r3(r, s)
ack(r, s), !r1(r, s), !r2(r, s), !r3(r, s) → r3(s), r3(r, s)

}
r3(r, s) {}

Hand-written version from before we started the process:

Start

send(s), !S(s) → S(s), Start
send(s), !S(s), R(r) → Unsafe(r, s), Start
send(s), S(s) → Fixed
ack(r, s), !R(r) → R(r), Start

Fixed

{
ack(r, s), !R(r) → Fail
send(s), !S(s),R(r) → S(s),Unsafe(r, s), Fixed

}
S(s)

{
send(s),R(r) → Unsafe(r, s), S(s)
ack(r, s′), !R(r), s 6= s′ → Unsafe(r, s), S(s)

}
Unsafe(r, s)

{
send(s) → Fail
ack(r, s) → empty

}
R(r) {}

Motivation Two Languages The Translation Properties Discussion

The Result: Broadcast Property
For every sender s and receiver r , after s sends a message it should wait
for an acknowledgement from r before sending again.

r1
{

ack(r, s), !r1(r, s), !r2(r, s), !r2(s), !r3(r, s), !r3(s) → r1, r1(r, s)
send(s), !r1(r, s), !r2(r, s), !r2(s), !r3(r, s), !r3(s) → r1, r2(s)

}
r1(r, s)

{
send(s) → r2(r, s)

}
r2(s)

 send(s) → r3(s)
ack(r, sp), s 6= sp , !r1(r, s), !r2(r, s), !r3(r, s) → r2(s), r2(r, s)
ack(r, s), !r1(r, s), !r2(r, s), !r3(r, s) → r2(s), r1(r, s)

r2(r, s)

{
send(s) → r3(r, s)
ack(r, s) → r1(r, s)

}
r3(s)

{
ack(r, sp), s 6= sp , !r1(r, s), !r2(r, s), !r3(r, s) → r3(s), r3(r, s)
ack(r, s), !r1(r, s), !r2(r, s), !r3(r, s) → r3(s), r3(r, s)

}
r3(r, s) {}

Hand-written version from before we started the process:

Start

send(s), !S(s) → S(s), Start
send(s), !S(s), R(r) → Unsafe(r, s), Start
send(s), S(s) → Fixed
ack(r, s), !R(r) → R(r), Start

Fixed

{
ack(r, s), !R(r) → Fail
send(s), !S(s),R(r) → S(s),Unsafe(r, s), Fixed

}
S(s)

{
send(s),R(r) → Unsafe(r, s), S(s)
ack(r, s′), !R(r), s 6= s′ → Unsafe(r, s), S(s)

}
Unsafe(r, s)

{
send(s) → Fail
ack(r, s) → empty

}
R(r) {}

Motivation Two Languages The Translation Properties Discussion

The Result: Broadcast Property
For every sender s and receiver r , after s sends a message it should wait
for an acknowledgement from r before sending again.

r1
{

ack(r, s), !r1(r, s), !r2(r, s), !r2(s), !r3(r, s), !r3(s) → r1, r1(r, s)
send(s), !r1(r, s), !r2(r, s), !r2(s), !r3(r, s), !r3(s) → r1, r2(s)

}
r1(r, s)

{
send(s) → r2(r, s)

}
r2(s)

 send(s) → r3(s)
ack(r, sp), s 6= sp , !r1(r, s), !r2(r, s), !r3(r, s) → r2(s), r2(r, s)
ack(r, s), !r1(r, s), !r2(r, s), !r3(r, s) → r2(s), r1(r, s)

r2(r, s)

{
send(s) → r3(r, s)
ack(r, s) → r1(r, s)

}
r3(s)

{
ack(r, sp), s 6= sp , !r1(r, s), !r2(r, s), !r3(r, s) → r3(s), r3(r, s)
ack(r, s), !r1(r, s), !r2(r, s), !r3(r, s) → r3(s), r3(r, s)

}
r3(r, s) {}

Hand-written version from before we started the process:

Start

send(s), !S(s) → S(s), Start
send(s), !S(s), R(r) → Unsafe(r, s), Start
send(s), S(s) → Fixed
ack(r, s), !R(r) → R(r), Start

Fixed

{
ack(r, s), !R(r) → Fail
send(s), !S(s),R(r) → S(s),Unsafe(r, s), Fixed

}
S(s)

{
send(s),R(r) → Unsafe(r, s), S(s)
ack(r, s′), !R(r), s 6= s′ → Unsafe(r, s), S(s)

}
Unsafe(r, s)

{
send(s) → Fail
ack(r, s) → empty

}
R(r) {}

Motivation Two Languages The Translation Properties Discussion

The Result: Broadcast Property
For every sender s and receiver r , after s sends a message it should wait
for an acknowledgement from r before sending again.

r1
{

ack(r, s), !r1(r, s), !r2(r, s), !r2(s), !r3(r, s), !r3(s) → r1, r1(r, s)
send(s), !r1(r, s), !r2(r, s), !r2(s), !r3(r, s), !r3(s) → r1, r2(s)

}
r1(r, s)

{
send(s) → r2(r, s)

}
r2(s)

 send(s) → r3(s)
ack(r, sp), s 6= sp , !r1(r, s), !r2(r, s), !r3(r, s) → r2(s), r2(r, s)
ack(r, s), !r1(r, s), !r2(r, s), !r3(r, s) → r2(s), r1(r, s)

r2(r, s)

{
send(s) → r3(r, s)
ack(r, s) → r1(r, s)

}
r3(s)

{
ack(r, sp), s 6= sp , !r1(r, s), !r2(r, s), !r3(r, s) → r3(s), r3(r, s)
ack(r, s), !r1(r, s), !r2(r, s), !r3(r, s) → r3(s), r3(r, s)

}
r3(r, s) {}

Hand-written version from before we started the process:

Start

send(s), !S(s) → S(s), Start
send(s), !S(s), R(r) → Unsafe(r, s), Start
send(s), S(s) → Fixed
ack(r, s), !R(r) → R(r), Start

Fixed

{
ack(r, s), !R(r) → Fail
send(s), !S(s),R(r) → S(s),Unsafe(r, s), Fixed

}
S(s)

{
send(s),R(r) → Unsafe(r, s), S(s)
ack(r, s′), !R(r), s 6= s′ → Unsafe(r, s), S(s)

}
Unsafe(r, s)

{
send(s) → Fail
ack(r, s) → empty

}
R(r) {}

Motivation Two Languages The Translation Properties Discussion

Properties

Theorem
Given a domain-explicit Q, let RS be the rule system given by the
above translation. For monitoring state Mτ and rule state ∆τ if

Mτ = τ ∗ [[] 7→ {〈q0, σ0(Y)〉}] and {〈rq0 , σ0〉} τ→ ∆τ

then for any valuation θ

Mτ (θ) = {〈q, σ〉 | 〈rq, θ ∪ σ ∪ σ′〉 ∈ ∆τ ∧ dom(σ′) ∩ Y = ∅}

The translation is decidable; any universal QEA can be translated
to a rule system (which is neither unique nor minimal; no good
notion of minimality exists).

The size of the resulting rule system is potentially O(|Q| × 2|X |)
due to the well-labelled translation introducing new states.

Motivation Two Languages The Translation Properties Discussion

Existential Quantification

Existential quantification is difficult for rule-based systems as the
universal quantification is implicit in the requirement for stored
information to be consistent

For the following property, the best we could do for a rule system
was to record all information, add a special last event, and then
check the property on stored information

1 2 3 4

∀v∃p∀c
member(v , p) candidate(c, p) rank(v , c, r)

One possible solution would be to add a new kind of
non-determinism

Motivation Two Languages The Translation Properties Discussion

Future Work

Check efficiency of translated rule systems in RuleR

Embed redundancy elimination from monitoring algorithm in
translation

Original RuleR work embedded LTL in RuleR, extend to first-order

From rule-systems to first-order temporal logic

From a star-free fragment of QEA to LTL (using nested ∃ for local
variables)

From MFTL to QEA

Relationship between various first-order temporal logics?

Stream-based languages?

Motivation Two Languages The Translation Properties Discussion

Conclusion

In this talk I have:
• Motivated and described our research vision
• Described a translation from QEA to rule systems
• Given some examples and properties
• Didn’t mention that the translation is implemented in Scala

Thank you for listening

Any questions?

	Motivation
	Two Languages
	The Translation
	Properties
	Discussion

