
Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Performance issues and optimizations

Giles Reger

University of Manchester

September 24, 2016

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Three Parts

• Optimising Parametric Trace Slicing

• Static Partial Evaluation of Monitors

• Evaluating Runtime Monitoring Tools

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Optimising Parametric Trace Slicing

In this part we will consider:

• Extensions to the expressiveness of the theory

• Indexing techniques to improve efficiency

• Notions of redundancy that reduce the work required

• Other pragmatic issues.

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Optimising Parametric Trace Slicing

In this part we will consider:

• Extensions to the expressiveness of the theory

• Indexing techniques to improve efficiency

• Notions of redundancy that reduce the work required

• Other pragmatic issues.

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Expressiveness: What are the limitations?

How do we use the slicing technique to capture such properties?

• Every counter strictly increases

• Every item on an auction site sells for the maximum of its bids

• Every account has two distinct account managers

• There exists a control tower in each region that, in the last 20
minutes, has communicated with every plane in that region

• For every publisher there exists a subscriber that
acknowledges every message the publisher sends

Some of these:

• Require data to be processed locally to each slice

• Require the results of slices to be combined non-universally

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Expressiveness: What are the limitations?

How do we use the slicing technique to capture such properties?

• Every counter strictly increases

• Every item on an auction site sells for the maximum of its bids

• Every account has two distinct account managers

• There exists a control tower in each region that, in the last 20
minutes, has communicated with every plane in that region

• For every publisher there exists a subscriber that
acknowledges every message the publisher sends

Some of these:

• Require data to be processed locally to each slice

• Require the results of slices to be combined non-universally

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Expressiveness: What are the limitations?

How do we use the slicing technique to capture such properties?

• Every counter strictly increases

• Every item on an auction site sells for the maximum of its bids

• Every account has two distinct account managers

• There exists a control tower in each region that, in the last 20
minutes, has communicated with every plane in that region

• For every publisher there exists a subscriber that
acknowledges every message the publisher sends

Some of these:

• Require data to be processed locally to each slice

• Require the results of slices to be combined non-universally

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Data Local Processing

• Let us take the property: Every counter strictly increases

• We observe the event counter(id ,value)

• The property is for every counter so we slice on counter ids

• For example, the trace

counter(A, 2).counter(B, 5).counter(A, 3).counter(B, 5)

has two slices (for A and B) with the one for B being ‘wrong’

• Without keeping the value data values in the projected trace
we cannot tell this

• Therefore the solution for data local processing is

1. Define projection to preserve parameters
2. Define plugin languages over parameterised traces

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Data Local Processing

• Let us take the property: Every counter strictly increases

• We observe the event counter(id ,value)

• The property is for every counter so we slice on counter ids

• For example, the trace

counter(A, 2).counter(B, 5).counter(A, 3).counter(B, 5)

has two slices (for A and B) with the one for B being ‘wrong’

• Without keeping the value data values in the projected trace
we cannot tell this

• Therefore the solution for data local processing is

1. Define projection to preserve parameters
2. Define plugin languages over parameterised traces

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Data Local Processing

• Let us take the property: Every counter strictly increases

• We observe the event counter(id ,value)

• The property is for every counter so we slice on counter ids

• For example, the trace

counter(A, 2).counter(B, 5).counter(A, 3).counter(B, 5)

has two slices (for A and B) with the one for B being ‘wrong’

• Without keeping the value data values in the projected trace
we cannot tell this

• Therefore the solution for data local processing is

1. Define projection to preserve parameters
2. Define plugin languages over parameterised traces

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Data Local Processing

• Let us take the property: Every counter strictly increases

• We observe the event counter(id ,value)

• The property is for every counter so we slice on counter ids

• For example, the trace

counter(A, 2).counter(B, 5).counter(A, 3).counter(B, 5)

has two slices (for A and B) with the one for B being ‘wrong’

• Without keeping the value data values in the projected trace
we cannot tell this

• Therefore the solution for data local processing is

1. Define projection to preserve parameters
2. Define plugin languages over parameterised traces

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

On the Relation between Concrete and Abstract Events

• A small note....

• Take the property: No two counters have the same value

• With the same observed event counter(id ,value)

• Now we need to talk about two counters. So we really need
two events

counter(id1, value) counter(id2, value)

• This is easily supported by the slicing theory (e.g. in
tracematches). But the work of JavaMOP assumes an
implicit mapping between event names and parameters

• There is, of course, the case where id1 = id2 to deal with

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Non-Universal Acceptance

• Let us take the property: Every account has two distinct
account managers

• We observe the event isManager(account,manager)

• The property says that for every account a there exists
managers m1 and m2 such that m1 6= m2 and eventually
isManager(a,m1) and isManager(a,m2)

• We cannot capture the property by defining a property that
must hold for every account and manager

• Or even every account and pair of managers

• We need to write ∀a∃m1∃m2 : m1 6= m2 ∧ ϕ (or similar)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

One Solution: Quantified Event Automata

Quantified event automata (QEA) (see Barringer 2012) is a
slicing-baesd formalism that solves all of the above issues. It has:

• A plugin language over parameterised traces (event automata)
that are extended finite state machines with guards and
assignments on transitions

• A general alphabet (i.e. no implicit mapping)

• Arbitrary quantification (including empty) with guards

There exists a tool called MarQ (Monitoring At Runtime with
QEA) for monitoring specifications written as QEAs.

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Brief Examples

Every counter strictly increases

1 2

∀c

counter(c, last)
counter(c, value) value>last

last:=value

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Brief Examples

Every item on an auction site sells for the maximum of its bids

1 2

3

∀item

list(item)high:=0
bid(item, value)high:=max(value,high)

sell(item, value) value<high

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Brief Examples

Every account has two distinct account managers

1

2

3

4

∀a∃m1∃m2 : m1 6= m2

isManager(a,m1)

isManager(a,m2)

isManager(a,m2)

isManager(a,m1)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Brief Examples

There exists a control tower in each region that, in the last 20
minutes, has communicated with every plane in that region

1 2

3

∀region∃control∀plane

inRegion(region, plane)

outRegion(region, plane)

talk(control , plane) t:=20

tick t>1
t:=t−1

talk(control , plane) t:=20

tick t=1

outRegion(region, plane)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Brief Examples

For every publisher there exists a subscriber that acknowledges
every message the publisher sends

1 2 3

∀publisher∃subscriber∀message

publish(publisher ,message) ack(subscriber ,message)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

On Algorithms

• These changes affect how the algorithms discussed in this and
the previous lecture behave

• The two main differences come from
• Dealing with the general alphabet, especially the case where

two symbolic events match the same concrete event
• Dealing with free (unquantified) variables (and guards and

assignments)

• For time/space reasons we will not discuss QEAs further

• In the next part we will assume the previous semantics

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Optimising Parametric Trace Slicing

In this part we will consider:

• Extensions to the expressiveness of the theory

• Indexing techniques to improve efficiency

• Notions of redundancy that reduce the work required

• Other pragmatic issues.

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Previously. . .

We saw an algorithm for monitoring JavaMOP properties. . .

1 ∆ : [Bind ⇁ State]; Θ : Bind ;
2 ∆← [⊥ → q0] ;
3 foreach e(θ) ∈ τ in order do
4 Θ← dom(∆);
5 foreach θ′ ∈ Θ do
6 if θ is consistent with θ′ then
7 θmax ← θ′;
8 foreach θalt ∈ Θ do
9 if θmax v θalt v θ † θ′ then θmax = θalt ;

10 ∆(θ † θ′)← δ(∆(θmax), e)

11 return θ ∈ dom(∆) where ∆(θ) is final

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Previously. . .

We saw an algorithm for monitoring JavaMOP properties. . .

1 ∆ : [Bind ⇁ State]; Θ : Bind ;
2 ∆← [⊥ → q0] ;
3 foreach e(θ) ∈ τ in order do
4 Θ← dom(∆);
5 foreach θ′ ∈ Θ do
6 if θ is consistent with θ′ then
7 θmax ← θ′;
8 foreach θalt ∈ Θ do
9 if θmax v θalt v θ † θ′ then θmax = θalt ;

10 ∆(θ † θ′)← δ(∆(θmax), e)

11 return θ ∈ dom(∆) where ∆(θ) is final

• Let n = |dom(∆)|
on a given step

• There are n2

accesses to ∆ for
each event

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Value-Based Indexing

• The reason for the n2 accesses is that we check every binding
to see if it is relevant to the event

• This is clearly inefficient

• Instead, we can directly lookup relevant events by storing in a
map, for each binding, those existing bindings that are
relevant

• This is called value-based indexing as we are indexing on the
values (parameters) of the event

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

What should U be?

• Let U : Bind → 2Bind be such a map

• We want U to help us update ∆

• ∆ should be ‘union-closed’ - if two compatible bindings are in
∆, their union should also be in ∆:

• U should be ‘submap-closed’ - every submap of a binding in
∆ should be in U:

• U should be ‘relevance-closed’ - every entry in U should point
to the relevant bindings in ∆:

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

What should U be?

• Let U : Bind → 2Bind be such a map

• We want U to help us update ∆

• ∆ should be ‘union-closed’ - if two compatible bindings are in
∆, their union should also be in ∆:

• U should be ‘submap-closed’ - every submap of a binding in
∆ should be in U:

• U should be ‘relevance-closed’ - every entry in U should point
to the relevant bindings in ∆:

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

What should U be?

• Let U : Bind → 2Bind be such a map

• We want U to help us update ∆

• ∆ should be ‘union-closed’ - if two compatible bindings are in
∆, their union should also be in ∆:

• U should be ‘submap-closed’ - every submap of a binding in
∆ should be in U:

• U should be ‘relevance-closed’ - every entry in U should point
to the relevant bindings in ∆:

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

What should U be?

• Let U : Bind → 2Bind be such a map

• We want U to help us update ∆

• ∆ should be ‘union-closed’ - if two compatible bindings are in
∆, their union should also be in ∆:

This ensures that the most informative bindings are in ∆

• U should be ‘submap-closed’ - every submap of a binding in
∆ should be in U:

• U should be ‘relevance-closed’ - every entry in U should point
to the relevant bindings in ∆:

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

What should U be?

• Let U : Bind → 2Bind be such a map

• We want U to help us update ∆

• ∆ should be ‘union-closed’ - if two compatible bindings are in
∆, their union should also be in ∆:

∀θ, θ′ ∈ dom(∆) : compatible(θ, θ′)⇒ θ t θ′ ∈ dom(∆)

• U should be ‘submap-closed’ - every submap of a binding in
∆ should be in U:

• U should be ‘relevance-closed’ - every entry in U should point
to the relevant bindings in ∆:

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

What should U be?

• Let U : Bind → 2Bind be such a map

• We want U to help us update ∆

• ∆ should be ‘union-closed’ - if two compatible bindings are in
∆, their union should also be in ∆:

∀θ, θ′ ∈ dom(∆) : compatible(θ, θ′)⇒ θ t θ′ ∈ dom(∆)

• U should be ‘submap-closed’ - every submap of a binding in
∆ should be in U:

• U should be ‘relevance-closed’ - every entry in U should point
to the relevant bindings in ∆:

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

What should U be?

• Let U : Bind → 2Bind be such a map

• We want U to help us update ∆

• ∆ should be ‘union-closed’ - if two compatible bindings are in
∆, their union should also be in ∆:

∀θ, θ′ ∈ dom(∆) : compatible(θ, θ′)⇒ θ t θ′ ∈ dom(∆)

• U should be ‘submap-closed’ - every submap of a binding in
∆ should be in U:

This ensures that every partial binding will be related to the
known larger bindings

• U should be ‘relevance-closed’ - every entry in U should point
to the relevant bindings in ∆:

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

What should U be?

• Let U : Bind → 2Bind be such a map

• We want U to help us update ∆

• ∆ should be ‘union-closed’ - if two compatible bindings are in
∆, their union should also be in ∆:

∀θ, θ′ ∈ dom(∆) : compatible(θ, θ′)⇒ θ t θ′ ∈ dom(∆)

• U should be ‘submap-closed’ - every submap of a binding in
∆ should be in U:

∀θ ∈ dom(∆),∀θ′ ∈ Bind : θ′ @ θ ⇒ θ′ ∈ dom(U)

• U should be ‘relevance-closed’ - every entry in U should point
to the relevant bindings in ∆:

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

What should U be?

• Let U : Bind → 2Bind be such a map

• We want U to help us update ∆

• ∆ should be ‘union-closed’ - if two compatible bindings are in
∆, their union should also be in ∆:

∀θ, θ′ ∈ dom(∆) : compatible(θ, θ′)⇒ θ t θ′ ∈ dom(∆)

• U should be ‘submap-closed’ - every submap of a binding in
∆ should be in U:

∀θ ∈ dom(∆),∀θ′ ∈ Bind : θ′ @ θ ⇒ θ′ ∈ dom(U)

• U should be ‘relevance-closed’ - every entry in U should point
to the relevant bindings in ∆:

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

What should U be?

• Let U : Bind → 2Bind be such a map

• We want U to help us update ∆

• ∆ should be ‘union-closed’ - if two compatible bindings are in
∆, their union should also be in ∆:

∀θ, θ′ ∈ dom(∆) : compatible(θ, θ′)⇒ θ t θ′ ∈ dom(∆)

• U should be ‘submap-closed’ - every submap of a binding in
∆ should be in U:

∀θ ∈ dom(∆),∀θ′ ∈ Bind : θ′ @ θ ⇒ θ′ ∈ dom(U)

• U should be ‘relevance-closed’ - every entry in U should point
to the relevant bindings in ∆:

This is the point of U. . . to point to the relevant known
bindings

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

What should U be?

• Let U : Bind → 2Bind be such a map

• We want U to help us update ∆

• ∆ should be ‘union-closed’ - if two compatible bindings are in
∆, their union should also be in ∆:

∀θ, θ′ ∈ dom(∆) : compatible(θ, θ′)⇒ θ t θ′ ∈ dom(∆)

• U should be ‘submap-closed’ - every submap of a binding in
∆ should be in U:

∀θ ∈ dom(∆),∀θ′ ∈ Bind : θ′ @ θ ⇒ θ′ ∈ dom(U)

• U should be ‘relevance-closed’ - every entry in U should point
to the relevant bindings in ∆:

∀θ, θ′ ∈ dom(∆) : θ v θ′ ⇒ θ′ ∈ U(θ)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

A refined algorithm

1 ∆ : [Bind ⇁ State];U : Bind → 2Bind

2 ∆← {⊥ → q0};U← ∅ for any θ ∈ Bind
3 foreach e(θ) ∈ τ in order do
4 if θ /∈ dom(∆) then
5 foreach θm @ θ (big to small) do
6 if θm ∈ dom(∆) then break;

7 defTo(θ, θm)
8 foreach θm @ θ (big to small) do
9 foreach θ′ ∈ U(θm) compatible

with θ do
10 if (θ′ t θ) /∈ dom(∆) then

defTo(θ′ t θ, θ′);

11 foreach θ′ ∈ {θ} ∪ U(θ) do
12 ∆(θ′)← σ(∆(θ′), e)

13 return ∆

• Initialisation

• For each event

• If θ is not defined
add it and ensure
closure properties

We will look at how
this is done next

• Update states for
relevant bindings

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

A refined algorithm

1 ∆ : [Bind ⇁ State];U : Bind → 2Bind

2 ∆← {⊥ → q0};U← ∅ for any θ ∈ Bind
3 foreach e(θ) ∈ τ in order do
4 if θ /∈ dom(∆) then
5 foreach θm @ θ (big to small) do
6 if θm ∈ dom(∆) then break;

7 defTo(θ, θm)
8 foreach θm @ θ (big to small) do
9 foreach θ′ ∈ U(θm) compatible

with θ do
10 if (θ′ t θ) /∈ dom(∆) then

defTo(θ′ t θ, θ′);

11 foreach θ′ ∈ {θ} ∪ U(θ) do
12 ∆(θ′)← σ(∆(θ′), e)

13 return ∆

• Initialisation

• For each event

• If θ is not defined
add it and ensure
closure properties

We will look at how
this is done next

• Update states for
relevant bindings

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

A refined algorithm

1 ∆ : [Bind ⇁ State];U : Bind → 2Bind

2 ∆← {⊥ → q0};U← ∅ for any θ ∈ Bind
3 foreach e(θ) ∈ τ in order do
4 if θ /∈ dom(∆) then
5 foreach θm @ θ (big to small) do
6 if θm ∈ dom(∆) then break;

7 defTo(θ, θm)
8 foreach θm @ θ (big to small) do
9 foreach θ′ ∈ U(θm) compatible

with θ do
10 if (θ′ t θ) /∈ dom(∆) then

defTo(θ′ t θ, θ′);

11 foreach θ′ ∈ {θ} ∪ U(θ) do
12 ∆(θ′)← σ(∆(θ′), e)

13 return ∆

• Initialisation

• For each event

• If θ is not defined
add it and ensure
closure properties

We will look at how
this is done next

• Update states for
relevant bindings

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

A refined algorithm

1 ∆ : [Bind ⇁ State];U : Bind → 2Bind

2 ∆← {⊥ → q0};U← ∅ for any θ ∈ Bind
3 foreach e(θ) ∈ τ in order do
4 if θ /∈ dom(∆) then
5 foreach θm @ θ (big to small) do
6 if θm ∈ dom(∆) then break;

7 defTo(θ, θm)
8 foreach θm @ θ (big to small) do
9 foreach θ′ ∈ U(θm) compatible

with θ do
10 if (θ′ t θ) /∈ dom(∆) then

defTo(θ′ t θ, θ′);

11 foreach θ′ ∈ {θ} ∪ U(θ) do
12 ∆(θ′)← σ(∆(θ′), e)

13 return ∆

• Initialisation

• For each event

• If θ is not defined
add it and ensure
closure properties

We will look at how
this is done next

• Update states for
relevant bindings

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

A refined algorithm

1 ∆ : [Bind ⇁ State];U : Bind → 2Bind

2 ∆← {⊥ → q0};U← ∅ for any θ ∈ Bind
3 foreach e(θ) ∈ τ in order do
4 if θ /∈ dom(∆) then
5 foreach θm @ θ (big to small) do
6 if θm ∈ dom(∆) then break;

7 defTo(θ, θm)
8 foreach θm @ θ (big to small) do
9 foreach θ′ ∈ U(θm) compatible

with θ do
10 if (θ′ t θ) /∈ dom(∆) then

defTo(θ′ t θ, θ′);

11 foreach θ′ ∈ {θ} ∪ U(θ) do
12 ∆(θ′)← σ(∆(θ′), e)

13 return ∆

• Initialisation

• For each event

• If θ is not defined
add it and ensure
closure properties

We will look at how
this is done next

• Update states for
relevant bindings

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Closing U

1 if θ /∈ dom(∆) then
2 foreach θm @ θ (big to small) do
3 if θm ∈ dom(∆) then break ;

4 defTo(θ, θm)
5 foreach θm @ θ (big to small) do
6 foreach θ′ ∈ U(θm)

compatible with θ do
7 if (θ′ t θ) /∈ dom(∆) then

defTo(θ′ t θ, θ′);

8 ...
9 defTo(θ, θ′):

10 ∆(θ)← ∆(θ′)
11 foreach θ′′ @ θ do

U(θ′′)← U(θ′′) ∪ {θ};

• We only need to update U if
θ is not in U

• We first find the maximal
binding in ∆ (might be ⊥)

• Use it to add θ

• Ensures closure properties

• Consider all submaps

• Attempt to create all unions

• defTo uses the state from
the maximal binding to
initialise θ

• Relevance-closes U for θ i.e.
adds it to the U-entry for all
smaller existing bindings

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Closing U

1 if θ /∈ dom(∆) then
2 foreach θm @ θ (big to small) do
3 if θm ∈ dom(∆) then break ;

4 defTo(θ, θm)
5 foreach θm @ θ (big to small) do
6 foreach θ′ ∈ U(θm)

compatible with θ do
7 if (θ′ t θ) /∈ dom(∆) then

defTo(θ′ t θ, θ′);

8 ...
9 defTo(θ, θ′):

10 ∆(θ)← ∆(θ′)
11 foreach θ′′ @ θ do

U(θ′′)← U(θ′′) ∪ {θ};

• We only need to update U if
θ is not in U

• We first find the maximal
binding in ∆ (might be ⊥)

• Use it to add θ

• Ensures closure properties

• Consider all submaps

• Attempt to create all unions

• defTo uses the state from
the maximal binding to
initialise θ

• Relevance-closes U for θ i.e.
adds it to the U-entry for all
smaller existing bindings

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Closing U

1 if θ /∈ dom(∆) then
2 foreach θm @ θ (big to small) do
3 if θm ∈ dom(∆) then break ;

4 defTo(θ, θm)
5 foreach θm @ θ (big to small) do
6 foreach θ′ ∈ U(θm)

compatible with θ do
7 if (θ′ t θ) /∈ dom(∆) then

defTo(θ′ t θ, θ′);

8 ...
9 defTo(θ, θ′):

10 ∆(θ)← ∆(θ′)
11 foreach θ′′ @ θ do

U(θ′′)← U(θ′′) ∪ {θ};

• We only need to update U if
θ is not in U

• We first find the maximal
binding in ∆ (might be ⊥)

• Use it to add θ

• Ensures closure properties

• Consider all submaps

• Attempt to create all unions

• defTo uses the state from
the maximal binding to
initialise θ

• Relevance-closes U for θ i.e.
adds it to the U-entry for all
smaller existing bindings

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Closing U

1 if θ /∈ dom(∆) then
2 foreach θm @ θ (big to small) do
3 if θm ∈ dom(∆) then break ;

4 defTo(θ, θm)
5 foreach θm @ θ (big to small) do
6 foreach θ′ ∈ U(θm)

compatible with θ do
7 if (θ′ t θ) /∈ dom(∆) then

defTo(θ′ t θ, θ′);

8 ...
9 defTo(θ, θ′):

10 ∆(θ)← ∆(θ′)
11 foreach θ′′ @ θ do

U(θ′′)← U(θ′′) ∪ {θ};

• We only need to update U if
θ is not in U

• We first find the maximal
binding in ∆ (might be ⊥)

• Use it to add θ

• Ensures closure properties

• Consider all submaps

• Attempt to create all unions

• defTo uses the state from
the maximal binding to
initialise θ

• Relevance-closes U for θ i.e.
adds it to the U-entry for all
smaller existing bindings

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Closing U

1 if θ /∈ dom(∆) then
2 foreach θm @ θ (big to small) do
3 if θm ∈ dom(∆) then break ;

4 defTo(θ, θm)
5 foreach θm @ θ (big to small) do
6 foreach θ′ ∈ U(θm)

compatible with θ do
7 if (θ′ t θ) /∈ dom(∆) then

defTo(θ′ t θ, θ′);

8 ...
9 defTo(θ, θ′):

10 ∆(θ)← ∆(θ′)
11 foreach θ′′ @ θ do

U(θ′′)← U(θ′′) ∪ {θ};

• We only need to update U if
θ is not in U

• We first find the maximal
binding in ∆ (might be ⊥)

• Use it to add θ

• Ensures closure properties

• Consider all submaps

• Attempt to create all unions

• defTo uses the state from
the maximal binding to
initialise θ

• Relevance-closes U for θ i.e.
adds it to the U-entry for all
smaller existing bindings

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Closing U

1 if θ /∈ dom(∆) then
2 foreach θm @ θ (big to small) do
3 if θm ∈ dom(∆) then break ;

4 defTo(θ, θm)
5 foreach θm @ θ (big to small) do
6 foreach θ′ ∈ U(θm)

compatible with θ do
7 if (θ′ t θ) /∈ dom(∆) then

defTo(θ′ t θ, θ′);

8 ...
9 defTo(θ, θ′):

10 ∆(θ)← ∆(θ′)
11 foreach θ′′ @ θ do

U(θ′′)← U(θ′′) ∪ {θ};

• We only need to update U if
θ is not in U

• We first find the maximal
binding in ∆ (might be ⊥)

• Use it to add θ

• Ensures closure properties

• Consider all submaps

• Attempt to create all unions

• defTo uses the state from
the maximal binding to
initialise θ

• Relevance-closes U for θ i.e.
adds it to the U-entry for all
smaller existing bindings

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Closing U

1 if θ /∈ dom(∆) then
2 foreach θm @ θ (big to small) do
3 if θm ∈ dom(∆) then break ;

4 defTo(θ, θm)
5 foreach θm @ θ (big to small) do
6 foreach θ′ ∈ U(θm)

compatible with θ do
7 if (θ′ t θ) /∈ dom(∆) then

defTo(θ′ t θ, θ′);

8 ...
9 defTo(θ, θ′):

10 ∆(θ)← ∆(θ′)
11 foreach θ′′ @ θ do

U(θ′′)← U(θ′′) ∪ {θ};

• We only need to update U if
θ is not in U

• We first find the maximal
binding in ∆ (might be ⊥)

• Use it to add θ

• Ensures closure properties

• Consider all submaps

• Attempt to create all unions

• defTo

uses the state from
the maximal binding to
initialise θ

• Relevance-closes U for θ i.e.
adds it to the U-entry for all
smaller existing bindings

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Closing U

1 if θ /∈ dom(∆) then
2 foreach θm @ θ (big to small) do
3 if θm ∈ dom(∆) then break ;

4 defTo(θ, θm)
5 foreach θm @ θ (big to small) do
6 foreach θ′ ∈ U(θm)

compatible with θ do
7 if (θ′ t θ) /∈ dom(∆) then

defTo(θ′ t θ, θ′);

8 ...
9 defTo(θ, θ′):

10 ∆(θ)← ∆(θ′)
11 foreach θ′′ @ θ do

U(θ′′)← U(θ′′) ∪ {θ};

• We only need to update U if
θ is not in U

• We first find the maximal
binding in ∆ (might be ⊥)

• Use it to add θ

• Ensures closure properties

• Consider all submaps

• Attempt to create all unions

• defTo uses the state from
the maximal binding to
initialise θ

• Relevance-closes U for θ i.e.
adds it to the U-entry for all
smaller existing bindings

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Closing U

1 if θ /∈ dom(∆) then
2 foreach θm @ θ (big to small) do
3 if θm ∈ dom(∆) then break ;

4 defTo(θ, θm)
5 foreach θm @ θ (big to small) do
6 foreach θ′ ∈ U(θm)

compatible with θ do
7 if (θ′ t θ) /∈ dom(∆) then

defTo(θ′ t θ, θ′);

8 ...
9 defTo(θ, θ′):

10 ∆(θ)← ∆(θ′)
11 foreach θ′′ @ θ do

U(θ′′)← U(θ′′) ∪ {θ};

• We only need to update U if
θ is not in U

• We first find the maximal
binding in ∆ (might be ⊥)

• Use it to add θ

• Ensures closure properties

• Consider all submaps

• Attempt to create all unions

• defTo uses the state from
the maximal binding to
initialise θ

• Relevance-closes U for θ i.e.
adds it to the U-entry for all
smaller existing bindings

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Why is this better?

1 foreach e(θ) ∈ τ in order do
2 if θ /∈ dom(∆) then
3 foreach θm @ θ (big to small) do
4 if θm ∈ dom(∆) then break;

5 defTo(θ, θm)
6 foreach θm @ θ (big to small) do
7 foreach θ′ ∈ U(θm)

compatible with θ do
8 if (θ′ t θ) /∈ dom(∆)

then defTo(θ′ t θ, θ′);

9 foreach θ′ ∈ {θ} ∪ U(θ) do
10 ∆(θ′)← σ(∆(θ′), e)

11 return ∆

• We only update U if we
haven’t seen the event’s
objects before.

Optimise Common Case

• Only iterate over small
collections - we expect
U(θ) to be small compared
to dom(∆).

1 defTo(θ, θ′):
2 ∆(θ)← ∆(θ′)
3 foreach θ′′ @ θ do

U(θ′′)← U(θ′′) ∪ {θ};

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Why is this better?

1 foreach e(θ) ∈ τ in order do
2 if θ /∈ dom(∆) then
3 foreach θm @ θ (big to small) do
4 if θm ∈ dom(∆) then break;

5 defTo(θ, θm)
6 foreach θm @ θ (big to small) do
7 foreach θ′ ∈ U(θm)

compatible with θ do
8 if (θ′ t θ) /∈ dom(∆)

then defTo(θ′ t θ, θ′);

9 foreach θ′ ∈ {θ} ∪ U(θ) do
10 ∆(θ′)← σ(∆(θ′), e)

11 return ∆

• We only update U if we
haven’t seen the event’s
objects before.

Optimise Common Case

• Only iterate over small
collections - we expect
U(θ) to be small compared
to dom(∆).

1 defTo(θ, θ′):
2 ∆(θ)← ∆(θ′)
3 foreach θ′′ @ θ do

U(θ′′)← U(θ′′) ∪ {θ};

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Why is this better?

1 foreach e(θ) ∈ τ in order do
2 if θ /∈ dom(∆) then
3 foreach θm @ θ (big to small) do
4 if θm ∈ dom(∆) then break;

5 defTo(θ, θm)
6 foreach θm @ θ (big to small) do
7 foreach θ′ ∈ U(θm)

compatible with θ do
8 if (θ′ t θ) /∈ dom(∆)

then defTo(θ′ t θ, θ′);

9 foreach θ′ ∈ {θ} ∪ U(θ) do
10 ∆(θ′)← σ(∆(θ′), e)

11 return ∆

• We only update U if we
haven’t seen the event’s
objects before.

Optimise Common Case

• Only iterate over small
collections - we expect
U(θ) to be small compared
to dom(∆).

1 defTo(θ, θ′):
2 ∆(θ)← ∆(θ′)
3 foreach θ′′ @ θ do

U(θ′′)← U(θ′′) ∪ {θ};

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

How it works

Recall the UnsafeMapIterator example used previously.

1 2 3 4 5
createC

update

createI

use

update

update

use

createC(M1,C1)
createC(M1,C2)
createI(C1,I1)
update(C1)
createI(C2,I2)
use(I1)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

How it works

We begin with ∆ containing the empty binding and initial state, and U
empty

Trace ∆ U
(-,-,-) 1

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

How it works

Adding (M1,-,-) and (-,C1,-) to U allows us to find (M1,C1,-) in the

future whenever we see an event using just C1 or M1

Trace ∆ U
(-,-,-) 1 (-,-,-) (M1,C1,-)

createC(M1,C1) (M1,C1,-) 2

(M1,-,-) (M1,C1,-)

(-,C1,-) (M1,C1,-)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

How it works

(M1,C2,-) is also added to the entry in U for (M1,-,-) - this relates to the

‘above-of’ relation in the lattice we were building earlier

Trace ∆ U
(-,-,-) 1 (-,-,-) (M1,C1,-)(M1,C2,-)

createC(M1,C1) (M1,C1,-) 2
createC(M1,C2) (M1,C2,-) 2

(M1,-,-) (M1,C1,-)(M1,C2,-)

(-,C1,-) (M1,C1,-)

(-,C2,-) (M1,C2,-)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

How it works

(-,C1,I1) is added from (-,-,-) (M1,C1,-) in U((-,C1,-)) is used to add

(M1,C1,I1)

Trace ∆ U
(-,-,-) 1 (-,-,-) (M1,C1,-)(M1,C2,-)

createC(M1,C1) (M1,C1,-) 2 (-,C1,I1)(M1,C1,I1)
createC(M1,C2) (M1,C2,-) 2
createI(C1,I1) (-,C1,I1) F

(M1,C1,I1) 3 (M1,-,-) (M1,C1,-)(M1,C2,-)
(M1,C1,I1)

(-,C1,-) (M1,C1,-)(-,C1,I1)
(M1,C1,I1)

(-,C2,-) (M1,C2,-)(-,C2,I2)

(-,-,I1) (-,C1,I1)(M1,C1,I1)
(M1,C1,-) (M1,C1,I1)
(-,C1,I1) (M1,C1,I1)
(M1,-,I1) (M1,C1,I1)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

How it works

θm is (-,-,-) therefore defTo((-,C1,-),(-,-,-)) sets ∆((-,C1,-))=1 which is

updated to F. As expected U((-,C1,-)) = {(M1,C1,-),(-,C1,I1),(M1,C1,I1)}

Trace ∆ U
(-,-,-) 1 (-,-,-) (M1,C1,-)(M1,C2,-)

createC(M1,C1) (M1,C1,-) 2 (-,C1,I1)(M1,C1,I1)
createC(M1,C2) (M1,C2,-) 2 (-,C1,-)
createI(C1,I1) (-,C1,I1) F
update(C1) (M1,C1,I1) 4 (M1,-,-) (M1,C1,-)(M1,C2,-)

(-,C1,-) F (M1,C1,I1)
(-,C1,-) (M1,C1,-)(-,C1,I1)

(M1,C1,I1)
(-,C2,-) (M1,C2,-)

(-,-,I1) (-,C1,I1)(M1,C1,I1)
(M1,C1,-) (M1,C1,I1)
(-,C1,I1) (M1,C1,I1)
(M1,-,I1) (M1,C1,I1)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

How it works

We consider (-,C2,-) @ (-,C2,I2) and use U((-,C2,-)) to add (M1,C2,I2)

Trace ∆ U
(-,-,-) 1 (-,-,-) (M1,C1,-)(M1,C2,-)

createC(M1,C1) (M1,C1,-) 2 (-,C1,I1)(M1,C1,I1)
createC(M1,C2) (M1,C2,-) 2 (-,C1,-)(-,C2,I2)
createI(C1,I1) (-,C1,I1) F (M1,C2,I2)
update(C1) (M1,C1,I1) 4 (M1,-,-) (M1,C1,-)(M1,C2,-)
createI(C2,I2) (-,C1,-) F (M1,C1,I1)(M1,C2,I2)

(-,C2,I2) F (-,C1,-) (M1,C1,-)(-,C1,I1)
(M1,C2,I2) 3 (M1,C1,I1)

(-,C2,-) (M1,C2,-)(-,C2,I2)
(M1,C2,I2)

.
(-,-,I2) (-,C2,I2)(M1,C2,I2)
(M1,C2,-) (M1,C2,I2)
(-,C2,I2) (M1,C2,I2)
(M1,-,I2) (M1,C2,I2)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

How it works

We can use the (-,-,I1) entry in U to find the two relevant bindings.

Previously we would have had to compare (-,-,I1) with every binding in ∆

Trace ∆ U
(-,-,-) 1 (-,-,-) (M1,C1,-)(M1,C2,-)

createC(M1,C1) (M1,C1,-) 2 (-,C1,I1)(M1,C1,I1)
createC(M1,C2) (M1,C2,-) 2 (-,C1,-)1-¿(-,C2,I2)
createI(C1,I1) (-,C1,I1) F (M1,C2,I2)(-,-,I1)
update(C1) (M1,C1,I1) 5 (M1,-,-) (M1,C1,-)(M1,C2,-)
createI(C2,I2) (-,C1,-) F (M1,C1,I1)(M1,C2,I2)
use(I1) (-,C2,I2) F (-,C1,-) (M1,C1,-)(-,C1,I1)

(M1,C2,I2) 3 (M1,C1,I1)
(-,C2,-) (M1,C2,-)(-,C2,I2)

(M1,C2,I2)
(-,-,I1) (-,C1,I1)(M1,C1,I1)
(M1,C1,-) (M1,C1,I1)
.

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

How it works

Trace ∆ U
(-,-,-) 1 (-,-,-) (M1,C1,-)(M1,C2,-)

createC(M1,C1) (M1,C1,-) F (-,C1,I1)(M1,C1,I1)
createC(M1,C2) (M1,C2,-) 2 (-,C1,-)(-,C2,I2)
createI(C1,I1) (-,C1,I1) F (M1,C2,I2)(-,-,I1)
update(C1) (M1,C1,I1) 5 (M1,-,-) (M1,C1,-)(M1,C2,-)
createI(C2,I2) (-,C1,-) F (M1,C1,I1)(M1,C2,I2)
use(I1) (-,C2,I2) F (-,C1,-) (M1,C1,-)(-,C1,I1)

(M1,C2,I2) 3 (M1,C1,I1)
(-,C2,-) (M1,C2,-)(-,C2,I2)

(M1,C2,I2)
(-,-,I1) (-,C1,I1)(M1,C1,I1)
(M1,C1,-) (M1,C1,I1)
(-,C1,I1) (M1,C1,I1)
(M1,-,I1) (M1,C1,I1)
(-,-,I2) (-,C2,I2)(M1,C2,I2)
(M1,C2,-) (M1,C2,I2)
(-,C2,I2) (M1,C2,I2)
(M1,-,I2) (M1,C2,I2)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Other kinds of Indexing

• The idea here was to lookup the relevant bindings using the
values in an event

• There are two other possibilities:
• State-based. Associate states with the bindings in those states

(only beneficial in suffix-matching)
• Symbol-based. Use the event names to find the bindings in

states where those events have transitions that cause the
binding to change state.

• It is possible to combine the kinds of indexing
• tracematches combines State and Value
• MarQ combines Symbol and Value

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Distributed Indexing

• The idea is to use AspectJ weaving to distribute indexing
directly into the relevant objects

• The simple idea: single object indexing

• Instead of having a map relating objects to the relevant
states, add that relevant state directly into the object

• For multi-object indexing a master object is chosen per
parameter list and the index distributed into that object. The
details depend on how indexing is organised generally.

• The disadvantages of this approach are
• Restricted to online monitoring of Java programs using AspectJ
• The amount of instrumentation significantly increases
• It may require modifying libraries (e.g. the code of Map)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

The Hierarchical Fragment

• The recent work of those behind the Mufin tool has
introduced a new indexing technique

• They noticed that most of the properties used in
benchmarks+papers have a certain property that when
multiple objects are monitored one is created from the other

• This leads to a fragment of the slicing theory (which I call the
hierarchical fragment)

• It also leads to a (very) efficient indexing technique that
organises everything in terms of this hierarchy. Briefly,
• Monitored objects are extended to point to the monitored

objects below them in the hierarchy
• These objects are organised into sets according to the state the

combination of objects is in
• This allows monitoring steps to be implemented using

union-find techniques

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Optimising Parametric Trace Slicing

In this part we will consider:

• Extensions to the expressiveness of the theory

• Indexing techniques to improve efficiency

• Notions of redundancy that reduce the work required

• Other pragmatic issues.

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

What is Redundant?

• Looking at the algorithm we have so far, where can we find
redundancies?

• We process each event

• With respect to existing bindings

• Work is proportional to the number of each

• We want to find when we can ignore an event

• We want to find when we do not need to create, or can
remove, a binding

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

What is Redundant?

• Looking at the algorithm we have so far, where can we find
redundancies?

• We process each event

• With respect to existing bindings

• Work is proportional to the number of each

• We want to find when we can ignore an event

• We want to find when we do not need to create, or can
remove, a binding

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Garbage

• When monitoring a garbage-collected language like Java there
are two concerns with respect to garbage
• The monitoring can cause memory-leaks
• Some bindings may necessarily never lead to matches due to

garbage values i.e. they are now redundant

• This was originally noted in early work on tracematches

• The typical solution is to use weak references to refer to
monitored objects

• A weak reference in Java is ignored by garbage collection

• But we need to be careful...

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Going Wrong with Weak References

• Consider the property every file that is opened must be closed

• What if a monitored file is in the open state and becomes
garbage?

• Removing any reference to the file from the monitoring state
would miss this violation

• It is important to detect the occurrence of garbage collection
and treat the binding appropriately (see co-enable sets)

• Early work got this wrong (always read the most recent
papers!)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Other Redundancy Issues

There are other notions of redundancy that can reduce the amount
of work that you need to do.

• creation events: if every matching trace starts with a subset
of events then start monitoring on these events only

• enable sets: for each event detect the set of other events that
must occur first for that event to make a difference. We call
such a the enable set. For efficiency reasons we can
approximate events by the parameters they bind.

• co-enable sets: a symmetric notion for removing bindings.
Detect the parameters needed to exist to reach a goal state. If
they all become garbage then the binding can be removed.

Enable sets are a special instance of a more general notion of
redundancy where an event is considered redundant if ignoring it
always gives the same verdict. Easy to compute but not yet clear
how to apply this notion efficiently in general.

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

An Example of (co)Enable Sets

• creation event: without a createC we don’t need to record
anything

• enable set: unless m and c are bound, we can ignore i

• coEnable set: if i is garbage collected then we cannot reach
state 5

1 2 3 4 5
createC(m, c)

update(m)

createI(c , i)

use(i)

update(m)

update(m)

use(i)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Optimising Parametric Trace Slicing

In this part we will consider:

• Extensions to the expressiveness of the theory

• Indexing techniques to improve efficiency

• Notions of redundancy that reduce the work required

• Other pragmatic issues.

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Other Pragmatic Issues

• Monitoring multiple properties
• What if we want to monitor many (similar) properties at the

same time?
• There exists work on sharing parts of the monitoring (and

results on what not to share)

• Signal and Continue Monitoring
• Note we often talk about success and failure, but many

systems talk about matches
• Slicing gives a nice signal-and-continue approach where sets of

parameters can fail in separation

• Explaining Failures
• If we get a violation how do we report it, what information can

we give?
• Tracking the code points that generated events is expensive
• Signal-and-continue is a coarse-grained notion of multiple

failure reporting

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Summary

• We can have a more expressive slicing-based language than
JavaMOP

• Indexing is important. The most prominent approach is
value-based

• Reducing expressiveness can lead to more efficient indexing

• Removing redundancies is important. Dealing with garbage is
very important for online monitoring

• Ongoing research: comparing slicing to other languages
• Can we automatically translate between them?
• Can we transfer algorithm optimisations i.e. indexing and

notions of redundancy?

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Static Partial Evaluation of Monitors

In this part we will

• Motivate the use of static analysis through some examples

• Quickly revisit what pointer analysis is

• Outline the CLARA architecture

• Describe four static whole-program analyses

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Static Partial Evaluation of Monitors

In this part we will

• Motivate the use of static analysis through some examples

• Quickly revisit what pointer analysis is

• Outline the CLARA architecture

• Describe four static whole-program analyses

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Motivating Static Analysis

Q Does the following violate the UnsafeMapIterator property?

A

public static void main(String args[]){

Map<Integer,String> map = new HashMap<>();

for(int i=0; i+1<args.length;i+=2){

map.insert(Integer.parseInt(args[i]),args[i+1]);

}

System.out.println("There are "+map.keySet().size()+

" unique keys");

}

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Motivating Static Analysis

Q Does the following violate the UnsafeMapIterator property?

A No. There are no iterators created.

public static void main(String args[]){

Map<Integer,String> map = new HashMap<>();

for(int i=0; i+1<args.length;i+=2){

map.insert(Integer.parseInt(args[i]),args[i+1]);

}

System.out.println("There are "+map.keySet().size()+

" unique keys");

}

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Motivating Static Analysis

Q Does the following violate the UnsafeMapIterator property?
A

public static void main(String args[]){

Map<Integer,String> map = new HashMap<>();

for(int i=0; i+1<args.length;i+=2){

map.insert(Integer.parseInt(args[i]),args[i+1]);

}

Iterator iter = Arrays.asList(args).iterator();

while(iter.hasNext()){

String arg = iter.next();

if(map.containsKey(Integer.parseInt(arg)) &&

map.containsValue(arg)){

System.out.println(arg+" is a key and value");

}

}

}

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Motivating Static Analysis

Q Does the following violate the UnsafeMapIterator property?
A No. No one slice contains all necessary events.

public static void main(String args[]){

Map<Integer,String> map = new HashMap<>();

for(int i=0; i+1<args.length;i+=2){

map.insert(Integer.parseInt(args[i]),args[i+1]);

}

Iterator iter = Arrays.asList(args).iterator();

while(iter.hasNext()){

String arg = iter.next();

if(map.containsKey(Integer.parseInt(arg)) &&

map.containsValue(arg)){

System.out.println(arg+" is a key and value");

}

}

}

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Motivating Static Analysis

Q Does the following violate the UnsafeMapIterator property?

A

public static void main(String args[]){

Map<Integer,String> map = new HashMap<>();

for(int i=0; i+1<args.length;i+=2){

map.insert(Integer.parseInt(args[i]),args[i+1]);

}

Iterator iter = map.keySet().iterator();

while(iter.hasNext()){

Integer key = iter.next();

System.out.println(key+" \t:\t"+map.get(key));

}

}

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Motivating Static Analysis

Q Does the following violate the UnsafeMapIterator property?

A No. There are no updates after iteration.

public static void main(String args[]){

Map<Integer,String> map = new HashMap<>();

for(int i=0; i+1<args.length;i+=2){

map.insert(Integer.parseInt(args[i]),args[i+1]);

}

Iterator iter = map.keySet().iterator();

while(iter.hasNext()){

Integer key = iter.next();

System.out.println(key+" \t:\t"+map.get(key));

}

}

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Motivating Static Analysis

Q Does the following violate the UnsafeMapIterator property?

A

public static void main(String args[]){

Map<Integer,String> map = new HashMap<>();

for(int i=0; i+1<args.length;i+=2){

map.insert(Integer.parseInt(args[i]),args[i+1]);

}

Iterator iter = map.valueSet().iterator();

while(iter.hasNext()){

Integer key = iter.next();

if(map.containsKey(Integer.parseInt(arg))){

map.remove(key);

}

}

}

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Motivating Static Analysis

Q Does the following violate the UnsafeMapIterator property?

A Maybe. We cannot tell statically.

public static void main(String args[]){

Map<Integer,String> map = new HashMap<>();

for(int i=0; i+1<args.length;i+=2){

map.insert(Integer.parseInt(args[i]),args[i+1]);

}

Iterator iter = map.valueSet().iterator();

while(iter.hasNext()){

Integer key = iter.next();

if(map.containsKey(Integer.parseInt(arg))){

map.remove(key);

}

}

}

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Motivating Static Analysis

Q Does the following violate the UnsafeMapIterator property?
A

public static void main(String args[]){

Map<Integer,String> map = new HashMap<>();

for(int i=0; i+1<args.length;i+=2){

map.insert(Integer.parseInt(args[i]),args[i+1]);

}

Iterator iter = map.valueSet().iterator();

map.insert(0,"empty");

while(iter.hasNext()){

Integer key = iter.next();

if(map.containsKey(Integer.parseInt(arg))){

map.remove(key);

}

}

}

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Motivating Static Analysis

Q Does the following violate the UnsafeMapIterator property?
A Yes. This insertion must violate the property.

public static void main(String args[]){

Map<Integer,String> map = new HashMap<>();

for(int i=0; i+1<args.length;i+=2){

map.insert(Integer.parseInt(args[i]),args[i+1]);

}

Iterator iter = map.valueSet().iterator();

map.insert(0,"empty");

while(iter.hasNext()){

Integer key = iter.next();

if(map.containsKey(Integer.parseInt(arg))){

map.remove(key);

}

}

}

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

What do we want?

• To reduce the work required at runtime

• We already established this involves deciding which events to
safely ignore

• In the context of AspectJ this removes removing joinpoints

• Static partial evaluation is about statically deciding which
events do not need to be recorded. In the limit we can decide
if the property necessarily does or does not hold

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

A Quick Guide to Static Analysis

• Intra vs Inter procedural
• Intraprocedural considers functions/methods in separation.

Assumes other procedures exhibit all possible behaviours.
• Interprocedural considers whole program (full call graph)

• Flow sensitive/insensitive.
• sensitive: considers the order of statements
• insensitive: considers the statements as unordered

• Context sensitive/insensitive (interprocedural only).
• sensitive: keeps track of the context of procedure calls i.e. its

calling parameters
• insensitive; the set of all contexts is considered

• Heap abstraction.
• For heap-based languages (e.g. Java) it is necessary to model

dynamically allocated objects
• This is typically done by allocation sites (new) where each site

gives a representative object

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Static Partial Evaluation of Monitors

In this part we will

• Motivate the use of static analysis through some examples

• Quickly revisit what pointer analysis is

• Outline the CLARA architecture

• Describe four static whole-program analyses

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Pointer Analysis

• The aim of points-to analysis is to compute for a variable x
the superset of representative objects that x (may/must)
point to during execution

• There is a trade-off between precision and efficiency
• Imprecision may overapproximate i.e. may-points-to
• Imprecision may underapproximate i.e. must-points-to

• The imprecision can come from different sources (e.g. flow
insensitivity, approximating recursion)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

By Some Examples

flow-insensitive may points to(x) = {1, 2}

A x;

void f () {x = new A(); }// (1)

void g() {x = new A(); }// (2)

void main() {

f ();

g ();

print (x);

}

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

By Some Examples

flow-insensitive may points to(x) = {1, 2}
flow-sensitive may points to(x) = {2}

A x;

void f () {x = new A(); }// (1)

void g() {x = new A(); }// (2)

void main() {

f ();

g ();

print (x);

}

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

By Some Examples

intraprocedural analysis must assume the iterator calls may
return the same values, it may return anything

x = c. iterator (); // (3)

y = c. iterator (); // (4)

...

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

By Some Examples

interprocedural context-insensitive

may points to(x) = {5}
may points to(y) = {5}

x = c. iterator (); // (3)

y = c. iterator (); // (4)

...

public Iterator iterator () {

return new HashSetIterator (); // (5)

}

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

By Some Examples

interprocedural context-sensitive

may points to(x) = {〈3, 5〉}
may points to(y) = {〈4, 5〉}

x = c. iterator (); // (3)

y = c. iterator (); // (4)

...

public Iterator iterator () {

return new HashSetIterator (); // (5)

}

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

By Some Examples

For may points to we merge object representatives at merge
points. Note that the points-to set of a variable changes during
execution, analysis is with respect to a statement.

i = c1. iterator (); // 1

j = i;

if (p)

i = c2. iterator (); // 2

// 3 = 1, 2

j = i;

print (j);

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Static Partial Evaluation of Monitors

In this part we will

• Motivate the use of static analysis through some examples

• Quickly revisit what pointer analysis is

• Outline the CLARA architecture

• Describe four static whole-program analyses

• Give some further context as the above is relatively lightweight

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

CLARA

• A framework developed by Eric Bodden (with collaborators
along the way) for his PhD thesis (2009)

• The main work to date on static partial evaluation of monitors

• Stands for ComiLe-time Approximation of Runtime Analyses

• The basic underlying ideas are:
• Take monitors described using AspectJ aspects
• Abstract the notion of finite-state monitors as dependency

state machines and use to annotate aspects
• Apply three staged static analyses to remove instrumentation

points shown to be ineffectual
• Apply a static analysis that detects certain violations

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Architecture

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Dependency State Machine

• CLARA assumes the monitor admits a finite state machine
capturing dependencies between pointcuts

• It calls such machines dependency state machines (DSM)

• These machines should define the matching (bad) behaviours

• But they are just used for static analysis and do not include
any actions to be taken on a match

• DSM are non-deterministic to support multiple matches i.e.
every trace prefix leading to a final state should be matched
(important when deciding what joinpoints to drop)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

What are JoinPoints?

• A joinpoint is an instance of a pointcut p

• i.e. it is a statement s in the code where the pointcut matches

• A joinpoint-label label(s) is the DSM symbol defined by p

• A joinpoint associates some program variables with the
pointcut parameters, these variables have points-to sets

• Let a joinpoint-binding β(s) be a binding from pointcut
parameters to sets of object representatives

• Two joinpoint- bindings are compatible if their points-to sets
on the joint-domain overlap i.e.

compatible(β1, β2) ≡ ∀v ∈ (dom(β1)∩dom(β2)).β1(v)∩β2(v) 6= ∅

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Soundness Condition

• An analysis is sound if whenever it removes a join point the
same matches are found

• Formally, we ask each analysis to define a predicate
necessaryTransition(α, τ, i) that must be true whenever
removing joinpoint α at the i-th position of τ would change
the matching status of trace τ

• Such a predicate has been defined for the following analysis
and proved to hold

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Static Partial Evaluation of Monitors

In this part we will

• Motivate the use of static analysis through some examples

• Quickly revisit what pointer analysis is

• Outline the CLARA architecture

• Describe four static whole-program analyses

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Syntactic Quick Check

• The idea: check if the symbol needs monitoring at all

0

1

2

3

c d

ba
a

aa

• Consider if. . .

• We only need to monitor. . .

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Syntactic Quick Check

• The idea: check if the symbol needs monitoring at all

0

1

2

3

c d

ba
a

aa

• Consider if. . . symbol b never occurs in the program

• We only need to monitor. . .

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Syntactic Quick Check

• The idea: check if the symbol needs monitoring at all

0

1

2

3

c d

a
a

aa

• Consider if. . . symbol b never occurs in the program

• We only need to monitor. . .

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Syntactic Quick Check

• The idea: check if the symbol needs monitoring at all

0

2

3

c d

a

aa

• Consider if. . . symbol b never occurs in the program

• We only need to monitor. . .

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Syntactic Quick Check

• The idea: check if the symbol needs monitoring at all

0

2

3

c d

a

a a

• Consider if. . . symbol b never occurs in the program

• We only need to monitor. . . c,d

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Syntactic Quick Check

• The idea: check if the symbol needs monitoring at all

0

1

2

3

c d

ba
a

aa

• Consider if. . . symbol d never occurs in the program

• We only need to monitor. . .

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Syntactic Quick Check

• The idea: check if the symbol needs monitoring at all

0

1

2

3

c

ba
a

aa

• Consider if. . . symbol d never occurs in the program

• We only need to monitor. . .

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Syntactic Quick Check

• The idea: check if the symbol needs monitoring at all

0

1

3

ba
a

a

• Consider if. . . symbol d never occurs in the program

• We only need to monitor. . . a,b,c . . . why c? . . . consider acb

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Syntactic Quick Check

• The idea: check if the symbol needs monitoring at all

0

1

3

ba
a

a

• Consider if. . . symbol d never occurs in the program

• We only need to monitor. . .

• This is flow-insensitive (but interprocedural)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Motivating Static Analysis

1 2 3 4 5
createC

update

createI

use

update

update

use

public static void main(String args[]){

Map<Integer,String> map = new HashMap<>();

for(int i=0; i+1<args.length;i+=2){

map.insert(Integer.parseInt(args[i]),args[i+1]);

}

System.out.println("There are "+map.keySet().size()+

" unique keys");

}

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Orphan-shadows Analysis

• The idea: perform the Quick Check ‘per slice’

• Slices (e.g. bindings) are statically approximated using
points-to set abstraction of joinpoints

• For each joinpoint s define the set of compatible symbols

compSyms(s) ≡ {label(s ′) | compatible(β(s), β(s ′))}

• A joinpoint s is necessary if

label(s) ∈ QuickCheck(compSyms(s))

i.e. it is syntactically relevant when only considering possibly
compatible slices

• CLARA uses interprocedural context-sensitive flow-insensitive
points-to analysis

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Orphan-shadows Analysis

• The idea: perform the Quick Check ‘per slice’

• Slices (e.g. bindings) are statically approximated using
points-to set abstraction of joinpoints

• For each joinpoint s define the set of compatible symbols

compSyms(s) ≡ {label(s ′) | compatible(β(s), β(s ′))}

• A joinpoint s is necessary if

label(s) ∈ QuickCheck(compSyms(s))

i.e. it is syntactically relevant when only considering possibly
compatible slices

• CLARA uses interprocedural context-sensitive flow-insensitive
points-to analysis

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Motivating Static Analysis

1 2 3 4 5
createC

update

createI

use

update

update

use

public static void main(String args[]){

Map<Integer,String> map = new HashMap<>();

for(int i=0; i+1<args.length;i+=2){

map.insert(Integer.parseInt(args[i]),args[i+1]);

}

Iterator iter = Arrays.asList(args).iterator();

while(iter.hasNext()){

String arg = iter.next();

if(map.containsKey(Integer.parseInt(arg)) &&

map.containsValue(arg)){

System.out.println(arg+" is a key and value");

}

}

}

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Nop-shadows Analysis

• The idea: compute, for each joinpoint, what state we could
be in at that point, and which states could (hot) and could
not (cold) lead to a match (final state) from that point

• We must keep a joinpoint if
• It can transition from a hot to a cold state
• It can transition from a cold to a hot state

• If we remove any such joinpoints we can get false positives
and false negatives

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

A little more detail

• For a joinpoint s we define
• futures(s) as sets of reachable states by backward analysis
• sources(s) as reached states by forward analysis
• target(q, s) as the state reached from q by s

• Then a joinpoint is a nop if

∀q ∈ sources(s).q ≡s target(q, s) ∧ target(q, s) /∈ F

where

q ≡s q
′ iff ∀Q ∈ futures(s).q1 ∈ Q ⇔ q2 ∈ Q

• The analysis is intraprocedural but has some extra stuff to
make things a little more precise

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Certain-match Analysis

• The forward analysis computes the set of states reached by a
statement

• If a statement necessarily reaches only final states then we
have statically determined that there will certainly be a match

• Therefore this analysis can borrow this information from the
previous analysis and find such certain matches for free

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Summary

• Static partial evaluation can optimise slicing-based approaches
by reducing the number of monitored events

• Question: can we apply the same ideas to more expressive
notions of slicing (QEA)

• Question: can we apply the same ideas to different formalisms
(non-automata based)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Evaluating Runtime Monitoring Tools

In this part we will cover

• The question of how we should evaluate RV tools

• Typical approaches to evaluation in the literature

• The Runtime Verification Competition

• Issues to consider when benchmarking

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Evaluating Runtime Monitoring Tools

In this part we will cover

• The question of how we should evaluate RV tools

• Typical approaches to evaluation in the literature

• The Runtime Verification Competition

• Issues to consider when benchmarking

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Evaluation

• Firstly we need to define what kind of tools we’re dealing with

• As you will have heard, RV is a broad term
• Here we mainly consider trace-checking but some of the

questions apply to RV (and other areas) more broadly

• Some questions

Discuss

• What aspects of the monitoring should we measure?
• What kind of workloads do we want, how do we know if they

are representative?
• How do we compare with other techniques?
• How does the monitoring setup affect how we evaluate? e.g.

offline vs online, matching vs violations
• Does reproducibility matter? (think concurrency)
• What matters... e.g. overall overhead vs responsiveness?

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Evaluation

• Firstly we need to define what kind of tools we’re dealing with

• As you will have heard, RV is a broad term
• Here we mainly consider trace-checking but some of the

questions apply to RV (and other areas) more broadly

• Some questions Discuss
• What aspects of the monitoring should we measure?
• What kind of workloads do we want, how do we know if they

are representative?
• How do we compare with other techniques?
• How does the monitoring setup affect how we evaluate? e.g.

offline vs online, matching vs violations
• Does reproducibility matter? (think concurrency)
• What matters... e.g. overall overhead vs responsiveness?

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

The Big Issue

• Almost every RV tool has its own specification language

• Some research has tried to look at translations between
languages but there has not been much appetite in the
research community - Discuss why

• What issues do we think this brings, what solutions might
there be? - Discuss

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

The Big Issue

• Almost every RV tool has its own specification language

• Some research has tried to look at translations between
languages but there has not been much appetite in the
research community

- Discuss why

• What issues do we think this brings, what solutions might
there be? - Discuss

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

The Big Issue

• Almost every RV tool has its own specification language

• Some research has tried to look at translations between
languages but there has not been much appetite in the
research community - Discuss why

• What issues do we think this brings, what solutions might
there be? - Discuss

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

The Big Issue

• Almost every RV tool has its own specification language

• Some research has tried to look at translations between
languages but there has not been much appetite in the
research community - Discuss why

• What issues do we think this brings, what solutions might
there be?

- Discuss

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

The Big Issue

• Almost every RV tool has its own specification language

• Some research has tried to look at translations between
languages but there has not been much appetite in the
research community - Discuss why

• What issues do we think this brings, what solutions might
there be? - Discuss

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Offline Setting

• Checking a single log file

• Generally only interested in the level of resources required

• Measure: how much time and memory required

• Possibly per-event but usually just totals

• Standard trace file formats emerging, making it easier to
compare tools (see competition)

• So relatively straightforward

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Online Setting

• There will be an unmonitored program that uses its own
resources, say it takes T seconds to run

• Measure: new resources needed, say it now takes M seconds
• Important metrics:

• Overhead: the amount of extra time needed
• Could be raw i.e. O =M−T
• Often given as a percentage i.e. 100× O

T
• Throughput i.e. events per second

• Might change during monitoring
• Responsiveness: amount of time to process each event

• As well as mean should include max and standard deviation etc
• Might break down per event-type

• We might be able to break down overhead by type:
• Instrumentation
• Monitor evaluation
• Synchronisation (especially with concurrent programs)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

What makes online monitoring harder?

• Is instrumentation part of monitoring?

• Are we evaluating the instrumentation or the monitoring
algorithm?

• How stable is the underlying program or the monitoring
algorithm (how many times do we need to run this)?

• Are we evaluating noise in the underlying runtime system or
the monitoring program?

• We might also care about Interference i.e. how has the
execution of the program changed due to monitoring
(reordered threads, different GC behaviour, energy profile).
How do we measure this?

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

False Positive Rate

• If the analysis is precise then incorrect results suggest
unsoundness, this is very bad

• If the analysis is imprecise then we can measure its accuracy
i.e. how often it gets the correct result

• Typically we want to break this down as
• False positive: identified a match when it wasn’t a match
• False negative: missed a match

• Why is the second one hard to measure?

• We can also talk about whether identified bugs are really
bugs. . . what is this measuring?

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Evaluating Runtime Monitoring Tools

In this part we will cover

• The question of how we should evaluate RV tools

• Typical approaches to evaluation in the literature

• The Runtime Verification Competition

• Issues to consider when benchmarking

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Benchmarks in the Literature

• Looking at proceedings of RV14
and RV15

• In 2014 (out of 27 papers)
• 5 described monitoring algorithms
• 7 described implementations
• 17 had evaluation sections
• 1 was a case study papers
• 3 had data available online

• In 2015 (out of 21 papers)
• 6 described monitoring algorithms
• 7 described implementations
• 11 had evaluation sections
• 2 were case study papers
• 3 had data available online

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Benchmarks in the Literature

• Looking at proceedings of RV14
and RV15

• In 2014 (out of 27 papers)
• 5 described monitoring algorithms
• 7 described implementations
• 17 had evaluation sections
• 1 was a case study papers
• 3 had data available online

• In 2015 (out of 21 papers)
• 6 described monitoring algorithms
• 7 described implementations
• 11 had evaluation sections
• 2 were case study papers
• 3 had data available online

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Benchmarks in the Literature

• (Correct me if I missed something, this is very broad)

• Of the above 28 evaluations no two papers used the same
benchmarks

• No evaluation section made a comparison with another
technique or tool (unless it was a previous version of the
discussed one)

• Many (definitely not all) case studies were created for the
evaluation

• This isn’t very encouraging (I am not innocent)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

DaCapo

• There are some ‘standard’ benchmarks frequently used

• One popular set is DaCapo, see http://dacapobench.org/

• Open source, real world applications with non-trivial memory
loads

• Originally designed to evaluate JVMs and architectures

• Okay, from an RV perspective this has a very restrictive set of
workloads and monitorable properties

http://dacapobench.org/

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Evaluating Runtime Monitoring Tools

In this part we will cover

• The question of how we should evaluate RV tools

• Typical approaches to evaluation in the literature

• The Runtime Verification Competition

• Issues to consider when benchmarking

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

The RV Competition

• Started in 2014 and ran in 2015 and 2016

• Goals: to improve benchmarking and tool comparison, and to
drive research

• Has evaluated 14 different tools

• Has used over 70 different benchmarks (some similar)

• Measured time and memory utilisation

• Split into online C, online Java and Offline

• We briefly discuss the tracks

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

The C Track

• The most problematic track. This track didn’t run in 2016
due to lack of interest

• Attracted interest from the static community, but their notion
of property was very different

• Traditional RV concentrates on explicit temporal properties
(i.e. in LTL) whereas the static community (who joined in)
focuses on implicit properties (memory safety) and assertions

• Suffered from a lack of well established tools for monitoring C
programs

• There may be a relatively high barrier to entry due to a lack
of well-used instrumentation methods within the community

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

The Java Track

• Only a few players generally monitoring well-known/standard
properties

• Some benchmarks just replay trace files (I’m guilty of this)

• This an lead to artificially high overhead (all the work is
monitoring)

• Massive variations in results (a few seconds vs a few hours)
mainly attributed to improper handling of garbage

• One success: the Mufin tool was developed with the purpose
of winning this track, and they did. So the competition led to
knew research.

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

The Offline Track

• Surprisingly (maybe) the most popular track

• Probably because of low barrier to entry (just need to parse
traces)

• The competition introduced various trace formats, which have
evolved

• The most popular format was CSV, but there were some
issues with this for more structured data

• Almost completely automated evaluation (the other tracks
required a bit of manual work to set up)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

What can we do better?

• The competition should serve the research community but
also act as an incentive to explore new areas

• What format do you think it should take?

• What should we be measuring? Is time really that important?

• How do we encourage teams to take part?

• How do we deal with
• No common specification language (are submitted monitors

equivalent?)
• No common instrumentation techniques (what are we

measuring?)

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Evaluating Runtime Monitoring Tools

In this part we will cover

• The question of how we should evaluate RV tools

• Typical approaches to evaluation in the literature

• The Runtime Verification Competition

• Issues to consider when benchmarking

Optimising Parametric Trace Slicing Static Partial Evaluation of Monitors Evaluating Runtime Monitoring Tools

Issues to Consider

• Are you measuring what you care about?
• Does overhead matter in your scenario?
• Does the evaluation actually measure whether you solved the

targeted problem?

• Are your results significant?
• How do they compare to other techniques?
• Are you using realistic workloads?
• Are your benchmarks big enough? (the JVM startup effect)

• Are your results reproducible?
• Are the benchmarks downloadable?
• Do you report on the whole setup (e.g. memory limits)
• Are the results stable (error bars)

	Optimising Parametric Trace Slicing
	Static Partial Evaluation of Monitors
	Evaluating Runtime Monitoring Tools

