
Revisiting Question Answering in Vampire

Giles Reger

School of Computer Science, University of Manchester, UK

The 4th Vampire Workshop

Reger,G Revisiting Question Answering in Vampire 1 / 24

Introduction

In this talk we will

Revisit the question answering problem

Look at the answer literal approach
I Multiple answers
I Theories
I Making it work with AVATAR

Look at new ideas (unimplemented)
I Analysis of unification-free proofs
I Using finite-model-building
I Other stuff

Reger,G Revisiting Question Answering in Vampire 2 / 24

Question Answering

Given a set of axioms A and a conjecture of the form

∃x1, . . . xn : φ(x1, . . . , xn)

find a substitution σ with domain x1, . . . , xn such that

A |= φ(x1, . . . , xn)σ

i.e. an instantiation of the existentially quantified variables that makes φ
true in A.

There may be more than one such σ and we may want to find multiple
answers.

Reger,G Revisiting Question Answering in Vampire 3 / 24

The Answer Literal Approach

Transform the conjecture

∃x1, . . . xn : φ(x1, . . . , xn)

into
∃x1, . . . xn : ans(x1, . . . , xn) ∧ φ(x1, . . . , xn)

For example, ∃x : p(x) becomes the clause ¬p(x) ∨ ¬ans(x)

Conceptually our conjecture then becomes

∃x1, . . . xn : ¬ans(x1, . . . , xn)

but we don’t add this

Run saturation and look for unit clauses containing an ans literal.

Reger,G Revisiting Question Answering in Vampire 4 / 24

The Answer Literal Approach

Transform the conjecture

∃x1, . . . xn : φ(x1, . . . , xn)

into
∀x1, . . . xn : ans(x1, . . . , xn) → ¬φ(x1, . . . , xn)

For example, ∃x : p(x) becomes the clause ¬p(x) ∨ ¬ans(x)

Conceptually our conjecture then becomes

∃x1, . . . xn : ¬ans(x1, . . . , xn)

but we don’t add this

Run saturation and look for unit clauses containing an ans literal.

Reger,G Revisiting Question Answering in Vampire 4 / 24

Example

fof(a,axiom,prover(vampire)).

fof(a,axiom,prover(e)).

fof(a,axiom,workshop(vampire)).

fof(a,axiom,workshop(arcade)).

fof(a,conjecture,?[X]: (prover(X) & workshop(X))).

Reger,G Revisiting Question Answering in Vampire 5 / 24

Example

prover(vampire)
prover(E)
workshop(vampire)
workshop(arcade)

¬workshop(X) ∨ ¬prover(X) ∨ ¬ans(X)

¬prover(vampire) ∨ ¬ans(vampire)
¬prover(arcade) ∨ ¬ans(arcade)

¬ans(vampire)

Reger,G Revisiting Question Answering in Vampire 6 / 24

Example

prover(vampire)
prover(E)
workshop(vampire)
workshop(arcade)

¬workshop(X) ∨ ¬prover(X) ∨ ¬ans(X)

¬prover(vampire) ∨ ¬ans(vampire)
¬prover(arcade) ∨ ¬ans(arcade)

¬ans(vampire)

Reger,G Revisiting Question Answering in Vampire 6 / 24

Example

prover(vampire)
prover(E)
workshop(vampire)
workshop(arcade)

¬workshop(X) ∨ ¬prover(X) ∨ ¬ans(X)

¬prover(vampire) ∨ ¬ans(vampire)
¬prover(arcade) ∨ ¬ans(arcade)

¬ans(vampire)

Reger,G Revisiting Question Answering in Vampire 6 / 24

Example

% SZS answers Tuple [[vampire]|_] for question

1. prover(vampire) [input]

3. workshop(vampire) [input]

5. ? [X0] : (workshop(X0) & prover(X0)) [input]

6. ~? [X0] : (workshop(X0) & prover(X0)) [negated conjecture 5]

7. ~? [X0] : (workshop(X0) & prover(X0) & ans0(X0)) [answer literal 6]

8. ! [X0] : (~workshop(X0) | ~prover(X0) | ~ans0(X0)) [ennf transformation 7]

9. prover(vampire) [cnf transformation 1]

11. workshop(vampire) [cnf transformation 3]

13. ~workshop(X0) | ~prover(X0) | ~ans0(X0) [cnf transformation 8]

14. ~prover(vampire) | ~ans0(vampire) [resolution 13,11]

16. ~ans0(vampire) [subsumption resolution 14,9]

17. ans0(X0) [answer literal]

18. $false [unit resulting resolution 17,16]

Reger,G Revisiting Question Answering in Vampire 7 / 24

Example

% SZS answers Tuple [[vampire]|_] for question

1. prover(vampire) [input]

3. workshop(vampire) [input]

5. ? [X0] : (workshop(X0) & prover(X0)) [input]

6. ~? [X0] : (workshop(X0) & prover(X0)) [negated conjecture 5]

7. ~? [X0] : (workshop(X0) & prover(X0) & ans0(X0)) [answer literal 6]

8. ! [X0] : (~workshop(X0) | ~prover(X0) | ~ans0(X0)) [ennf transformation 7]

9. prover(vampire) [cnf transformation 1]

11. workshop(vampire) [cnf transformation 3]

13. ~workshop(X0) | ~prover(X0) | ~ans0(X0) [cnf transformation 8]

14. ~prover(vampire) | ~ans0(vampire) [resolution 13,11]

16. ~ans0(vampire) [subsumption resolution 14,9]

17. ans0(X0) [answer literal]

18. $false [unit resulting resolution 17,16]

Reger,G Revisiting Question Answering in Vampire 7 / 24

Answer Literals in Proof Search

To make this work we need to make sure that we never select an
answer literal for inference

Notice that using answer literals alters proof search in other ways
I Things that were units may not be units anymore, changing things like

demodulation
I Answer literals have some weight, changes clause selection

If we want to avoid this then we need to extract answers directly from
proofs (see later)

Reger,G Revisiting Question Answering in Vampire 8 / 24

Multiple Answers

To obtain multiple answers we don’t stop when we have one answer

We just record the answer and carry on going

When we saturation we print all found answers

Reger,G Revisiting Question Answering in Vampire 9 / 24

Example

fof(a,axiom,prover(vampire)).

fof(a,axiom,prover(e)).

fof(a,axiom,workshop(vampire)).

fof(a,axiom,workshop(arcade)).

fof(a,conjecture,?[X]: (prover(X)).

We get the answer (without proof now)

% SZS answers Tuple [[e],[vampire]|_] for question

Reger,G Revisiting Question Answering in Vampire 10 / 24

Disjunctive Answers

The above formulation of the question answering question was not general
enough in some sense. Given a set of axioms A and a conjecture of the
form

∃x1, . . . xn : φ(x1, . . . , xn)

it may be sufficient/useful to find a set of substitutions Θ such that

A |=
∨
σ∈Θ

φ(x1, . . . , xn)σ

such a set of substitutions is a disjunctive answer and tells us that at least
one substitution in Θ is an answer.

Reger,G Revisiting Question Answering in Vampire 11 / 24

Example

fof(a,axiom,monday => workshop(vampire)).

fof(a,axiom,sunday => workshop(arcade)).

fof(a,conjecture,?[X]: ((sunday | monday) => workshop(X))).

We get the answer

% SZS answers Tuple [([arcade]|[X0]|[vampire])|_]

Reger,G Revisiting Question Answering in Vampire 12 / 24

Example

fof(a,axiom,monday => workshop(vampire)).

fof(a,axiom,sunday => workshop(arcade)).

fof(a,axiom, monday | sunday).

fof(a,conjecture,?[X]: (workshop(X))).

We get the answer

% SZS answers Tuple [([arcade]|[vampire])|_]

Reger,G Revisiting Question Answering in Vampire 13 / 24

Theories

It would be nice to be able to ask questions involving theories.

We can, it just works.

tff(a,conjecture,?[X:$int]: $greater(X,0)).

Gives

% SZS answers Tuple [[1]|_]

tff(a,conjecture,?[X:$int]:

0 = $sum($product(X,X),$uminus(4))).

Gives

% SZS answers Tuple [[-2]|_]

Reger,G Revisiting Question Answering in Vampire 14 / 24

Revisiting Multiple Answers

How many answers are there to this question?

tff(a,conjecture,?[X: $int,Y:$int]: 5 = $sum(X,Y)).

Reger,G Revisiting Question Answering in Vampire 15 / 24

Revisiting Multiple Answers
How many answers are there to this question?

tff(a,conjecture,?[X: $int,Y:$int]: 5 = $sum(X,Y)).

We need to add a counter to give a limit on the number of answers we
want e.g. 3

% SZS answers Tuple [[X0,$sum($uminus(X0),5)],[0,5],[5,0]|_]

Although it is not as fun as we might expect

tff(a,conjecture,?[X:$int]: $greater(X,0)).

Gives the following 10 answers

% SZS answers Tuple [[1],[1],[2],([1]|[0]),[1],

[1],[1],[1],[1],[1]|_]

Reger,G Revisiting Question Answering in Vampire 16 / 24

Missing a Trick with Instantiation

Currently instantiation either:

Heuristically uses constants already in the search space

Uses Z3 to find a single solution

Neither allows us to find interesting answers

Todo: extend the Z3 approach to query for different answers

Reger,G Revisiting Question Answering in Vampire 17 / 24

Making Answer Literal Reasoning work with AVATAR

Problem

As soon as we split away the answer literal it becomes non-obvious
when we have found an answer. In many cases it wouldn’t split
anyway (shared variables)

Unclear how to handle unsat in the SAT solver

Simple Solution (implemented)

Don’t split any clause containing an answer literal

Takes away a lot of the advantages of AVATAR

Todo: A better solution should exist

Reger,G Revisiting Question Answering in Vampire 18 / 24

Analysis of unification-free proofs

Last year I introduced a new proof output for Vampire that removed
unification completely (not actually in master yet)

This expanded each proof step into instantiation + unification-free step

The idea is to analyse these proofs directly to find answers

The reason that this new proof output is useful is because we only need to
track instantiations

Some inference steps not covered (yet) and some things will need special
treatment (e.g. AVATAR)

Reger,G Revisiting Question Answering in Vampire 19 / 24

Analysis of unification-free proofs

For this problem

fof(a,axiom,p(b)).

fof(a,conjecture,?[X]:p(X)).

We get this proof

1. p(b) [input]

2. ? [X0] : p(X0) [input]

3. ~? [X0] : p(X0) [negated conjecture 2]

4. ! [X0] : ~p(X0) [ennf transformation 3]

5. p(b) (0:2:1) [cnf transformation 1]

6. ~p(X0) (0:2:1) [cnf transformation 4]

8. ~p(b) (0:2) [instantiation 6]

9. $false (1:0) [resolution 5,8]

Reger,G Revisiting Question Answering in Vampire 20 / 24

Analysis of unification-free proofs

For this problem

fof(a,axiom,p(c) | p(d)).

fof(a,conjecture,?[X]:p(X)).

We get this proof

1. p(d) | p(c) [input]

2. ? [X0] : p(X0) [input]

3. ~? [X0] : p(X0) [negated conjecture 2]

4. ! [X0] : ~p(X0) [ennf transformation 3]

5. p(d) | p(c) (0:4:1) [cnf transformation 1]

6. ~p(X0) (0:2:1) [cnf transformation 4]

8. ~p(d) (0:2) [instantiation 6]

9. p(c) (1:2:1) [resolution 5,8]

11. ~p(c) (0:2) [instantiation 6]

12. $false (2:0) [resolution 9,11]

Reger,G Revisiting Question Answering in Vampire 21 / 24

Analysis of unification-free proofs

For this problem

fof(a,axiom,p(f(X)) | q(X)).

fof(a,axiom,~q(a)).

fof(a,conjecture,?[X]:p(X)).

We get this proof

1. ! [X0] : (q(X0) | p(f(X0))) [input]

2. ~q(a) [input]

3. ? [X0] : p(X0) [input]

4. ~? [X0] : p(X0) [negated conjecture 3]

5. ! [X0] : ~p(X0) [ennf transformation 4]

6. p(f(X0)) | q(X0) (0:5:1) [cnf transformation 1]

10. ~p(f(X0)) (0:3) [instantiation 5]

11. q(X0) (1:2:1) [resolution 6,10]

12. q(a) (1:2) [instantiation 11]

14. $false (2:0) [resolution 12,2]
Reger,G Revisiting Question Answering in Vampire 22 / 24

Using finite-model-building

Idea: build a finite model of the axioms and ask questions of this model

Already have most of the machinery as there is a model_check mode that
evaluates formulas to true or false in a given finite model.

Extend this to search for instances matching a given formula

Of course, restricted by the finite model we get

Combine this to make a general question answering search method?

Reger,G Revisiting Question Answering in Vampire 23 / 24

Further Areas to Explore

Fix AVATAR issues

Implement the proof analysis idea

Implement the finite-model-building idea

Detect repeated answers

Remove less general answers

Focus on ground answers only?

Vampire as an Iterator

Reger,G Revisiting Question Answering in Vampire 24 / 24

