
A Story of Parametric Trace Slicing, Garbage
and Static Analysis

Giles Reger

School of Computer Science, University of Manchester, UK

PrePost 2017

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 1 / 31

Context

Helped develop the Quantified Event Automata
(QEA) language and associated MarQ runtime
monitoring tool

Have started thinking about typestate-analysis for
QEA, wrote about it at ISoLA 2016

This idea grew out of that and I thank Adrian for
encouraging me to write the idea down

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 2 / 31

Introduction

In this talk I will outline some ideas around how we can relate the ideas of

Garbage collection at runtime

Static identification of object unreachability

to improve the performance of runtime monitoring based on parametric
trace slicing

Note that we are explicitly exclusively in the realms of monitoring Java

programs using a monitor that shares the same JVM.

These ideas haven’t yet been implemented but the intention is to realise
them in the MarQ runtime monitoring tool for QEA

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 3 / 31

The Idea

At a high level:

Parametric trace slicing is a runtime monitoring approach that tracks
the behaviour of groups of objects

By detecting when some of those objects become garbage we can
I Optimise the monitoring algorithm
I Potentially detect violations of co-safety properties

But there can be a delay before something is recognised as garbage

The idea is to statically identify points where an object will become
unreachable to insert explicit garbage events

Now I will introduce parametric trace slicing and how it can be improved
by garbage detection and then discuss how static analysis can play a part

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 4 / 31

Overview

1 Parametric Trace Slicing

2 Online Monitoring and Garbage

3 Static Analysis

4 What’s Next?

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 5 / 31

Parametric Trace Slicing

Used first in tracematches but named and extended to total matching in
the JavaMOP work. Later adopted by the QEA language (and others)

A solution for parametric runtime monitoring concerned with events that
carry parameters

The philosophy behind the approach is to slice a trace based on the values
of parameters and to consider each slice separately

I will introduce the idea by example

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 6 / 31

HasNext Example

HasNext

For every iterator object i (instance of java.util.Iterator) we only
call i .next() if a preceding call of i .hasNext() returned true with no
intermediate calls to i .next() or i .hasNext().

1 2

3 4

hasNextT(i)

next(i)
hasNextT(i)

next(i)
hasNextF(i)hasNextF(i)

next(i), hasNextT(i)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 7 / 31

HasNext Example

hasNextT(i1) next(i1) hasNextT(i1) hasNextF(i2) next(i2) next(i1)

[i 7→ i1] 7→

hasNextT(i1) next(i1) hasNextT(i1) next(i1) X

[i 7→ i2] 7→

hasNextF(i2) next(i2) X

1 2

3 4

hasNextT(i)

next(i)
hasNextT(i)

next(i)
hasNextF(i)hasNextF(i)

next(i), hasNextT(i)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 8 / 31

HasNext Example

hasNextT(i1) next(i1) hasNextT(i1) hasNextF(i2) next(i2) next(i1)

[i 7→ i1] 7→

hasNextT(i1) next(i1) hasNextT(i1) next(i1) X

[i 7→ i2] 7→

hasNextF(i2) next(i2) X

1 2

3 4

hasNextT(i)

next(i)
hasNextT(i)

next(i)
hasNextF(i)hasNextF(i)

next(i), hasNextT(i)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 8 / 31

HasNext Example

hasNextT(i1) next(i1) hasNextT(i1) hasNextF(i2) next(i2) next(i1)

[i 7→ i1] 7→ hasNextT(i1)

next(i1) hasNextT(i1) next(i1) X

[i 7→ i2] 7→

hasNextF(i2) next(i2) X

1 2

3 4

hasNextT(i)

next(i)
hasNextT(i)

next(i)
hasNextF(i)hasNextF(i)

next(i), hasNextT(i)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 8 / 31

HasNext Example

hasNextT(i1) next(i1) hasNextT(i1) hasNextF(i2) next(i2) next(i1)

[i 7→ i1] 7→ hasNextT(i1) next(i1)

hasNextT(i1) next(i1) X

[i 7→ i2] 7→

hasNextF(i2) next(i2) X

1 2

3 4

hasNextT(i)

next(i)
hasNextT(i)

next(i)
hasNextF(i)hasNextF(i)

next(i), hasNextT(i)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 8 / 31

HasNext Example

hasNextT(i1) next(i1) hasNextT(i1) hasNextF(i2) next(i2) next(i1)

[i 7→ i1] 7→ hasNextT(i1) next(i1) hasNextT(i1)

next(i1) X

[i 7→ i2] 7→

hasNextF(i2) next(i2) X

1 2

3 4

hasNextT(i)

next(i)
hasNextT(i)

next(i)
hasNextF(i)hasNextF(i)

next(i), hasNextT(i)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 8 / 31

HasNext Example

hasNextT(i1) next(i1) hasNextT(i1) hasNextF(i2) next(i2) next(i1)

[i 7→ i1] 7→ hasNextT(i1) next(i1) hasNextT(i1)

next(i1) X

[i 7→ i2] 7→ hasNextF(i2)

next(i2) X

1 2

3 4

hasNextT(i)

next(i)
hasNextT(i)

next(i)
hasNextF(i)hasNextF(i)

next(i), hasNextT(i)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 8 / 31

HasNext Example

hasNextT(i1) next(i1) hasNextT(i1) hasNextF(i2) next(i2) next(i1)

[i 7→ i1] 7→ hasNextT(i1) next(i1) hasNextT(i1)

next(i1) X

[i 7→ i2] 7→ hasNextF(i2) next(i2)

X

1 2

3 4

hasNextT(i)

next(i)
hasNextT(i)

next(i)
hasNextF(i)hasNextF(i)

next(i), hasNextT(i)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 8 / 31

HasNext Example

hasNextT(i1) next(i1) hasNextT(i1) hasNextF(i2) next(i2) next(i1)

[i 7→ i1] 7→ hasNextT(i1) next(i1) hasNextT(i1) next(i1)

X

[i 7→ i2] 7→ hasNextF(i2) next(i2)

X

1 2

3 4

hasNextT(i)

next(i)
hasNextT(i)

next(i)
hasNextF(i)hasNextF(i)

next(i), hasNextT(i)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 8 / 31

HasNext Example

hasNextT(i1) next(i1) hasNextT(i1) hasNextF(i2) next(i2) next(i1)

[i 7→ i1] 7→ hasNextT(i1) next(i1) hasNextT(i1) next(i1)

X

[i 7→ i2] 7→ hasNextF(i2) next(i2)

X

1 2

3 4

1 2

hasNextT(i)

next(i)
hasNextT(i)

next(i)
hasNextF(i)hasNextF(i)

next(i), hasNextT(i)

hasNextT(i)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 8 / 31

HasNext Example

hasNextT(i1) next(i1) hasNextT(i1) hasNextF(i2) next(i2) next(i1)

[i 7→ i1] 7→ hasNextT(i1) next(i1) hasNextT(i1) next(i1)

X

[i 7→ i2] 7→ hasNextF(i2) next(i2)

X

1 2

3 4

1 2

hasNextT(i)

next(i)
hasNextT(i)

next(i)
hasNextF(i)hasNextF(i)

next(i), hasNextT(i)

next(i)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 8 / 31

HasNext Example

hasNextT(i1) next(i1) hasNextT(i1) hasNextF(i2) next(i2) next(i1)

[i 7→ i1] 7→ hasNextT(i1) next(i1) hasNextT(i1) next(i1)

X

[i 7→ i2] 7→ hasNextF(i2) next(i2)

X

1 2

3 4

1 2

hasNextT(i)

next(i)
hasNextT(i)

next(i)
hasNextF(i)hasNextF(i)

next(i), hasNextT(i)

hasNextT(i)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 8 / 31

HasNext Example

hasNextT(i1) next(i1) hasNextT(i1) hasNextF(i2) next(i2) next(i1)

[i 7→ i1] 7→ hasNextT(i1) next(i1) hasNextT(i1) next(i1) X
[i 7→ i2] 7→ hasNextF(i2) next(i2)

X

1 2

3 4

1 2

hasNextT(i)

next(i)
hasNextT(i)

next(i)
hasNextF(i)hasNextF(i)

next(i), hasNextT(i)

next(i)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 8 / 31

HasNext Example

hasNextT(i1) next(i1) hasNextT(i1) hasNextF(i2) next(i2) next(i1)

[i 7→ i1] 7→ hasNextT(i1) next(i1) hasNextT(i1) next(i1) X
[i 7→ i2] 7→ hasNextF(i2) next(i2)

X

1 2

3 4

1

3

hasNextT(i)

next(i)
hasNextT(i)

next(i)
hasNextF(i)hasNextF(i)

next(i), hasNextT(i)

hasNextF(i)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 8 / 31

HasNext Example

hasNextT(i1) next(i1) hasNextT(i1) hasNextF(i2) next(i2) next(i1)

[i 7→ i1] 7→ hasNextT(i1) next(i1) hasNextT(i1) next(i1) X
[i 7→ i2] 7→ hasNextF(i2) next(i2) X

1 2

3 43 4

hasNextT(i)

next(i)
hasNextT(i)

next(i)
hasNextF(i)hasNextF(i)

next(i), hasNextT(i)next(i), hasNextT(i)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 8 / 31

UnsafeIter Example

UnsafeIter

For every collection c and iterator object i created from c , the iterator i is
not used (e.g. by calls to i .next()) after c has been updated.

1 2 3 4
create(c, i) update(c) use(i)

use(i) update(c)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 9 / 31

UnsafeIter Example

create(A, i1) use(i1) create(A, i2) use(i2) update(A) use(i1)

[c 7→ A, i 7→ i1] 7→

create(A, i1) use(i1) update(A) use(i1) X

[c 7→ A, i 7→ i2] 7→

create(A, i2) use(i2) update(A) X

1 2 3 4
create(c, i) update(c) use(i)

use(i) update(c)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 10 / 31

UnsafeIter Example

create(A, i1) use(i1) create(A, i2) use(i2) update(A) use(i1)

[c 7→ A, i 7→ i1] 7→

create(A, i1) use(i1) update(A) use(i1) X

[c 7→ A, i 7→ i2] 7→

create(A, i2) use(i2) update(A) X

1 2 3 4
create(c, i) update(c) use(i)

use(i) update(c)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 10 / 31

UnsafeIter Example

create(A, i1) use(i1) create(A, i2) use(i2) update(A) use(i1)

[c 7→ A, i 7→ i1] 7→ create(A, i1)

use(i1) update(A) use(i1) X

[c 7→ A, i 7→ i2] 7→

create(A, i2) use(i2) update(A) X

1 2 3 4
create(c, i) update(c) use(i)

use(i) update(c)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 10 / 31

UnsafeIter Example

create(A, i1) use(i1) create(A, i2) use(i2) update(A) use(i1)

[c 7→ A, i 7→ i1] 7→ create(A, i1) use(i1)

update(A) use(i1) X

[c 7→ A, i 7→ i2] 7→

create(A, i2) use(i2) update(A) X

1 2 3 4
create(c, i) update(c) use(i)

use(i) update(c)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 10 / 31

UnsafeIter Example

create(A, i1) use(i1) create(A, i2) use(i2) update(A) use(i1)

[c 7→ A, i 7→ i1] 7→ create(A, i1) use(i1)

update(A) use(i1) X

[c 7→ A, i 7→ i2] 7→ create(A, i2)

use(i2) update(A) X

1 2 3 4
create(c, i) update(c) use(i)

use(i) update(c)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 10 / 31

UnsafeIter Example

create(A, i1) use(i1) create(A, i2) use(i2) update(A) use(i1)

[c 7→ A, i 7→ i1] 7→ create(A, i1) use(i1)

update(A) use(i1) X

[c 7→ A, i 7→ i2] 7→ create(A, i2) use(i2)

update(A) X

1 2 3 4
create(c, i) update(c) use(i)

use(i) update(c)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 10 / 31

UnsafeIter Example

create(A, i1) use(i1) create(A, i2) use(i2) update(A) use(i1)

[c 7→ A, i 7→ i1] 7→ create(A, i1) use(i1) update(A)

use(i1) X

[c 7→ A, i 7→ i2] 7→ create(A, i2) use(i2) update(A)

X

1 2 3 4
create(c, i) update(c) use(i)

use(i) update(c)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 10 / 31

UnsafeIter Example

create(A, i1) use(i1) create(A, i2) use(i2) update(A) use(i1)

[c 7→ A, i 7→ i1] 7→ create(A, i1) use(i1) update(A) use(i1)

X

[c 7→ A, i 7→ i2] 7→ create(A, i2) use(i2) update(A)

X

1 2 3 4
create(c, i) update(c) use(i)

use(i) update(c)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 10 / 31

UnsafeIter Example

create(A, i1) use(i1) create(A, i2) use(i2) update(A) use(i1)

[c 7→ A, i 7→ i1] 7→ create(A, i1) use(i1) update(A) use(i1)

X

[c 7→ A, i 7→ i2] 7→ create(A, i2) use(i2) update(A)

X

1 2 3 41 2
create(c, i) update(c) use(i)

use(i) update(c)

create(c, i)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 10 / 31

UnsafeIter Example

create(A, i1) use(i1) create(A, i2) use(i2) update(A) use(i1)

[c 7→ A, i 7→ i1] 7→ create(A, i1) use(i1) update(A) use(i1)

X

[c 7→ A, i 7→ i2] 7→ create(A, i2) use(i2) update(A)

X

1 2 3 42
create(c, i) update(c) use(i)

use(i) update(c)use(i)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 10 / 31

UnsafeIter Example

create(A, i1) use(i1) create(A, i2) use(i2) update(A) use(i1)

[c 7→ A, i 7→ i1] 7→ create(A, i1) use(i1) update(A) use(i1)

X

[c 7→ A, i 7→ i2] 7→ create(A, i2) use(i2) update(A)

X

1 2 3 42 3
create(c, i) update(c) use(i)

use(i) update(c)

update(c)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 10 / 31

UnsafeIter Example

create(A, i1) use(i1) create(A, i2) use(i2) update(A) use(i1)

[c 7→ A, i 7→ i1] 7→ create(A, i1) use(i1) update(A) use(i1) X
[c 7→ A, i 7→ i2] 7→ create(A, i2) use(i2) update(A)

X

1 2 3 43 4
create(c, i) update(c) use(i)

use(i) update(c)

use(i)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 10 / 31

UnsafeIter Example

create(A, i1) use(i1) create(A, i2) use(i2) update(A) use(i1)

[c 7→ A, i 7→ i1] 7→ create(A, i1) use(i1) update(A) use(i1) X
[c 7→ A, i 7→ i2] 7→ create(A, i2) use(i2) update(A)

X

1 2 3 41 2
create(c, i) update(c) use(i)

use(i) update(c)

create(c, i)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 10 / 31

UnsafeIter Example

create(A, i1) use(i1) create(A, i2) use(i2) update(A) use(i1)

[c 7→ A, i 7→ i1] 7→ create(A, i1) use(i1) update(A) use(i1) X
[c 7→ A, i 7→ i2] 7→ create(A, i2) use(i2) update(A)

X

1 2 3 42
create(c, i) update(c) use(i)

use(i) update(c)use(i)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 10 / 31

UnsafeIter Example

create(A, i1) use(i1) create(A, i2) use(i2) update(A) use(i1)

[c 7→ A, i 7→ i1] 7→ create(A, i1) use(i1) update(A) use(i1) X
[c 7→ A, i 7→ i2] 7→ create(A, i2) use(i2) update(A) X

1 2 3 42 3
create(c, i) update(c) use(i)

use(i) update(c)

update(c)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 10 / 31

OpenClose Example

OpenClose

For every file object f , the file cannot be written to or closed if not
opened, cannot be opened once already open, and must eventually be
closed once opened.

1 2

3

open(f)

close(f)
write(f)

close(f), write(f)

open(f)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 11 / 31

OpenClose Example

open(A) open(B) write(A) write(B) close(B)

[f 7→ A] 7→

open(A) write(A) X

[f 7→ B] 7→

open(B) write(B) close(B) X

1 2

3

open(f)

close(f)
write(f)

close(f), write(f)

open(f)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 12 / 31

OpenClose Example

open(A) open(B) write(A) write(B) close(B)

[f 7→ A] 7→

open(A) write(A) X

[f 7→ B] 7→

open(B) write(B) close(B) X

1 2

3

open(f)

close(f)
write(f)

close(f), write(f)

open(f)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 12 / 31

OpenClose Example

open(A) open(B) write(A) write(B) close(B)

[f 7→ A] 7→ open(A)

write(A) X

[f 7→ B] 7→

open(B) write(B) close(B) X

1 2

3

open(f)

close(f)
write(f)

close(f), write(f)

open(f)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 12 / 31

OpenClose Example

open(A) open(B) write(A) write(B) close(B)

[f 7→ A] 7→ open(A)

write(A) X

[f 7→ B] 7→ open(B)

write(B) close(B) X

1 2

3

open(f)

close(f)
write(f)

close(f), write(f)

open(f)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 12 / 31

OpenClose Example

open(A) open(B) write(A) write(B) close(B)

[f 7→ A] 7→ open(A) write(A)

X

[f 7→ B] 7→ open(B)

write(B) close(B) X

1 2

3

open(f)

close(f)
write(f)

close(f), write(f)

open(f)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 12 / 31

OpenClose Example

open(A) open(B) write(A) write(B) close(B)

[f 7→ A] 7→ open(A) write(A)

X

[f 7→ B] 7→ open(B) write(B)

close(B) X

1 2

3

open(f)

close(f)
write(f)

close(f), write(f)

open(f)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 12 / 31

OpenClose Example

open(A) open(B) write(A) write(B) close(B)

[f 7→ A] 7→ open(A) write(A)

X

[f 7→ B] 7→ open(B) write(B) close(B)

X

1 2

3

open(f)

close(f)
write(f)

close(f), write(f)

open(f)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 12 / 31

OpenClose Example

open(A) open(B) write(A) write(B) close(B)

[f 7→ A] 7→ open(A) write(A)

X

[f 7→ B] 7→ open(B) write(B) close(B)

X

1 2

3

1 2

open(f)

close(f)
write(f)

close(f), write(f)

open(f)

open(f)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 12 / 31

OpenClose Example

open(A) open(B) write(A) write(B) close(B)

[f 7→ A] 7→ open(A) write(A) X
[f 7→ B] 7→ open(B) write(B) close(B)

X

1 2

3

2

open(f)

close(f)
write(f)

close(f), write(f)

open(f)

write(f)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 12 / 31

OpenClose Example

open(A) open(B) write(A) write(B) close(B)

[f 7→ A] 7→ open(A) write(A) X
[f 7→ B] 7→ open(B) write(B) close(B)

X

1 2

3

1 2

open(f)

close(f)
write(f)

close(f), write(f)

open(f)

open(f)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 12 / 31

OpenClose Example

open(A) open(B) write(A) write(B) close(B)

[f 7→ A] 7→ open(A) write(A) X
[f 7→ B] 7→ open(B) write(B) close(B)

X

1 2

3

2

open(f)

close(f)
write(f)

close(f), write(f)

open(f)

write(f)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 12 / 31

OpenClose Example

open(A) open(B) write(A) write(B) close(B)

[f 7→ A] 7→ open(A) write(A) X
[f 7→ B] 7→ open(B) write(B) close(B) X

1 2

3

1 2

open(f)

close(f)
write(f)

close(f), write(f)

open(f)

close(f)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 12 / 31

Overview

1 Parametric Trace Slicing

2 Online Monitoring and Garbage

3 Static Analysis

4 What’s Next?

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 13 / 31

The (basic) online monitoring algorithm

Not particularly important - but notice it depends on the size of Lookup,
which is dependent on the number of objects being monitored.

1: Let Lookup be a map from valuations to states initial mapping the
empty valuation to the initial state

2: for event e(θ) ∈ τ do
3: for θ′ in dom(Lookup) from biggest to smallest do
4: if θ is consistent with θ′ then
5: if θ′ v θ then
6: Update Lookup(θ′) using e
7: else if θ t θ′ is not in dom(Lookup) then
8: Add θ t θ′ to Lookup using Lookup(θ′) updated using e

9: if an entry in Lookup is in a non-accepting state then Fail
10: else Accept

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 14 / 31

Typical Monitoring Setup

Events are generated by AspectJ and references to monitored objects are
passed directly to the monitor

The monitor stores bindings of these objects associated with the current
state of the associated automaton and searches these for each new event

So the monitor holds direct references into the memory of the monitored
program

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 15 / 31

Garbage-Related Issues

Monitoring Overhead

Overhead is dependent on number of monitored objects

There are optimisations that reduce the dependency but it still exists

Keeping objects that no longer contribute is inefficient

Memory leaks

Keeping objects alive after they should die is a memory leak and can
significantly change the behaviour of the monitored program

Anticipation

If we remove an object we need to ensure that no associated slices are
in a non-accepting state where acceptance is now unreachable

Conversely, we have the chance of detecting such cases before the end
of the program

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 16 / 31

Weak Reference Solution

This is the typical approach (taken by tracematches, JavaMOP,
RuleR, optionally in MarQ, and other tools as well)

Wrap every monitored object in a java.lang.ref.WeakReference

In some cases can use implicitly collected objects such as
java.util.WeakHashMap (or more likely custom-variants)

But in other cases, explicit clearing of such objects is required

In either case it is sometimes necessary to detect when an object becomes
garbage in case further action is required (e.g. if file A became garbage in
the OpenClose example).

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 17 / 31

Explicit Garbage Event Solution

Optional in MarQ

Idea:

Separate identification of garbage from how it is handled in the
monitor

Implicitly extend QEA with so-called garbage events

Generate garbage events whenever garbage is observed

To generate garbage events, create a special object that is only
referenced by the monitored object via a collection such that its
collection triggers an event

I We can think of this as a monitor that only detects garbage and whose
verdicts are those objects that become garbage

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 18 / 31

Explicitly Adding Garbage Events

A state is a failure state if no accepting state can be reached. A state is a
success state if no non-accepting state can be reached.

Add a garbage event to each state to either a failure or success state

1 2

3

open(f)

close(f)
write(f)

close(f), write(f)

open(f)

, garbage(f)

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 19 / 31

Explicitly Adding Garbage Events

A state is a failure state if no accepting state can be reached. A state is a
success state if no non-accepting state can be reached.

Add a garbage event to each state to either a failure or success state

1 2

3

4

open(f)

close(f)
write(f)

close(f), write(f)

open(f), garbage(f)

garbage(f)
Σ

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 19 / 31

Overview

1 Parametric Trace Slicing

2 Online Monitoring and Garbage

3 Static Analysis

4 What’s Next?

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 20 / 31

Where Static Analysis fits in

We assume that events relate to program points, usually method calls
(e.g. via AspectJ)

We will

1. Consider ways to statically determine pairs of program points A and B
where objects created at point A will become unreachable at point B

2. Consider various ways in which this information can improve runtime
monitoring based on parametric trace slicing

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 21 / 31

Small Example Program

pub l i c s t a t i c void w r i t e T o F i l e (S t r i n g f i l eName ,
C o l l e c t i o n r e c o r d s){

F i l e f i l e = new F i l e (f i l e N a m e) ;
f i l e . open () ;
I t e r a t o r i t e r a t o r = r e c o r d s . i t e r a t o r () ;
whi le (i t e r a t o r . hasNext ()){

f i l e . w r i t e (i t e r a t o r . n e x t ()) ;
}
r e c o r d s . r e m o v e A l l () ;

}

A points where an object is introduced

new File(fileName)

records.iterator() (factory method)

B points where an object becomes unreachable

End of loop e.g. after last usage

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 22 / 31

Small Example Program

pub l i c s t a t i c void w r i t e T o F i l e (S t r i n g f i l eName ,
C o l l e c t i o n r e c o r d s){

F i l e f i l e = new F i l e (f i l e N a m e) ;
f i l e . open () ;
I t e r a t o r i t e r a t o r = r e c o r d s . i t e r a t o r () ;
whi le (i t e r a t o r . hasNext ()){

f i l e . w r i t e (i t e r a t o r . n e x t ()) ;
}
r e c o r d s . r e m o v e A l l () ;

}

statically satisfies HasNext as iterator is local assuming we identify
iterator() as a factory method

statically satisfies UnsafeIter for this iterator but need to track
collection as it escapes

statically violates OpenClose as the local file is not closed

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 23 / 31

Escape Analysis

Determines if an object escapes a method

Uses pointer-analysis to track abstract objects

Typically flow-insensitive and intraprocedural

File file = new File(fileName);

file.open();

file.write(iterator.next());

Iterator iterator = records.iterator ();

while(iterator.hasNext ())

file.write(iterator.next());

Objects only accessed, so file and iterator do not escape.

Requires us to identify iterator as a factory method

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 24 / 31

Free-me Analysis

Works on the call-flow graph of a program. Designed for explicit freeing.

Flow insensitive pointer analysis to identify abstract objects

Start with set of assignments

Propagate via assignments, accesses etc

Represent globally reachable objects as one

Method summaries

Summarise a method by how it treats its input variables

An input variable is either returned, becomes globally reachable, or
becomes reachable from another input parameter

Can also identify pure and factory methods

Liveness analysis

Backwards flow-sensitive analysis to detect reachability

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 25 / 31

Statically Generating Garbage Events

Once we have points A and B we can insert explicit garbage events at B
points. Unlike free-me analysis, we can organise things so that it does not
matter if we create multiple garbage events for the same object.

This allows

Earlier generation of garbage events

Earlier anticipation of failure

However, this is limited to shortly lived objects (i.e. that become locally
unreachable) and such objects are often garbage collected reasonably
quickly.

In the extreme case, we could use this information to inline monitoring and
make it stack-based. However, in such cases static techniques would
hopefully be able to statically check the property.

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 26 / 31

Supporting Offline Monitoring

Where else can this idea help?

In Offline monitoring it is necessary to record the identity of objects.
Typically this is done using IdentityHashCode but this is not unique
across garbage collections.

Idea: record garbage events to allow to replay garbage collection offline.

This now becomes a point of correctness rather than efficiency

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 27 / 31

Minimally Monitoring Abstract Objects

If an object O is created in method M and O does not escape M then we
can enumerate the N paths O can take through M and once we have
observed all N paths we can stop monitoring M.

The requirement for O to escape M can be relaxed such that we stop
monitoring an object if it takes a path that has already been monitored,
allowing for some paths to always require monitoring e.g. if O escapes.

One can also restrict this to path prefixes

This is similar to earlier work that attempted to detect loops where only a
constant number of iterations of that loop required monitoring.

This extends the idea of explicitly adding garbage events to the idea of
statically noticing redundant objects i.e. those whose behaviour has been
necessarily monitored previously.

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 28 / 31

Minimally Monitoring Abstract Objects

If an object O is created in method M and O does not escape M then we
can enumerate the N paths O can take through M and once we have
observed all N paths we can stop monitoring M.

The requirement for O to escape M can be relaxed such that we stop
monitoring an object if it takes a path that has already been monitored,
allowing for some paths to always require monitoring e.g. if O escapes.

One can also restrict this to path prefixes

This is similar to earlier work that attempted to detect loops where only a
constant number of iterations of that loop required monitoring.

This extends the idea of explicitly adding garbage events to the idea of
statically noticing redundant objects i.e. those whose behaviour has been
necessarily monitored previously.

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 28 / 31

Minimally Monitoring Abstract Objects

If an object O is created in method M and O does not escape M then we
can enumerate the N paths O can take through M and once we have
observed all N paths we can stop monitoring M.

The requirement for O to escape M can be relaxed such that we stop
monitoring an object if it takes a path that has already been monitored,
allowing for some paths to always require monitoring e.g. if O escapes.

One can also restrict this to path prefixes

This is similar to earlier work that attempted to detect loops where only a
constant number of iterations of that loop required monitoring.

This extends the idea of explicitly adding garbage events to the idea of
statically noticing redundant objects i.e. those whose behaviour has been
necessarily monitored previously.

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 28 / 31

Minimally Monitoring Abstract Objects

If an object O is created in method M and O does not escape M then we
can enumerate the N paths O can take through M and once we have
observed all N paths we can stop monitoring M.

The requirement for O to escape M can be relaxed such that we stop
monitoring an object if it takes a path that has already been monitored,
allowing for some paths to always require monitoring e.g. if O escapes.

One can also restrict this to path prefixes

This is similar to earlier work that attempted to detect loops where only a
constant number of iterations of that loop required monitoring.

This extends the idea of explicitly adding garbage events to the idea of
statically noticing redundant objects i.e. those whose behaviour has been
necessarily monitored previously.

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 28 / 31

Minimally Monitoring Abstract Objects

If an object O is created in method M and O does not escape M then we
can enumerate the N paths O can take through M and once we have
observed all N paths we can stop monitoring M.

The requirement for O to escape M can be relaxed such that we stop
monitoring an object if it takes a path that has already been monitored,
allowing for some paths to always require monitoring e.g. if O escapes.

One can also restrict this to path prefixes

This is similar to earlier work that attempted to detect loops where only a
constant number of iterations of that loop required monitoring.

This extends the idea of explicitly adding garbage events to the idea of
statically noticing redundant objects i.e. those whose behaviour has been
necessarily monitored previously.

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 28 / 31

Overview

1 Parametric Trace Slicing

2 Online Monitoring and Garbage

3 Static Analysis

4 What’s Next?

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 29 / 31

Implement it

Plan to

implement ideas in an analysis agnostic way i.e. using a set of pairs of
program points

make use of existing implementations for static analysis to suggest
such pairs

integrate into the MarQ monitoring tool

Missing QEA features

Free variables: reachability can be over-aproximated in analysis

Existential quantification: unclear if anything can be done

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 30 / 31

Risks, Limitations and Conclusions

Risks and Limitations

As mentioned, mostly applies to short-lived objects that are garbage
collected quickly anyway as very difficult to lift to an inter-procedural
analysis

However, in most cases an under-approximation of unreachable
objects can be useful

Cases where it can be applied might also be able to be fully statically
verified using typestate analysis

Conclusions

Need to try it out and see

Giles Reger A Story of Parametric Trace Slicing, Garbage and Static Analysis 31 / 31

	Parametric Trace Slicing
	Online Monitoring and Garbage
	Static Analysis
	What's Next?

