
Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

MarQ: Monitoring At Runtime with QEA

Giles Reger

in collaboration with

Helena Cuenca Cruz, David Rydeheard

at University of Manchester, UK

April 17th, 2015

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Outline

Runtime Monitoring

Quantified Event Automata

Efficient monitoring

Using MarQ

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Motivation

• See lots of other talks for why we want formal guarantees
about correctness of software systems

• Static verification has many successes but
• It can have scalability issues
• It often works with abstractions of the real system
• It often needs to make assumptions about the environment

and input data

• Runtime verification is a complementary technique that
tackles these issues by ‘verifying’ a single run of the system

• Additionally, if performed at runtime it can be used to stop or
correct bad behaviour

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Runtime Monitoring Problems

Runtime Monitoring

Checking whether an execution trace τ produced at runtime
satisfies a given a (typically temporal) specification φ

Online Runtime Monitoring

Performing runtime monitoring alongside the running system.

Offline Runtime Monitoring

Performing runtime monitoring on a log file after running the
system.

Parametric Runtime Monitoring

Runtime monitoring with first-order specifications i.e. ones that
deal with data-carrying events

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Online Runtime Monitoring Setup

Instrument the system to observe a trace of relevant events

system	

instrumenta,on	

monitor	

observe	

verdict	

feedback	

property	

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Online Runtime Monitoring Setup

The monitor uses the given property . . .

system	

instrumenta,on	

monitor	

observe	

verdict	

feedback	

property	

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Online Runtime Monitoring Setup

. . . to process each event . . . possibly providing feedback. . .

system	

instrumenta,on	

monitor	

observe	

verdict	

feedback	

property	

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Online Runtime Monitoring Setup

. . . and finally computing a verdict - did the system pass?

system	

instrumenta,on	

monitor	

observe	

verdict	

feedback	

property	

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Online Runtime Monitoring in Practice

• Lots of pragmatic considerations
• Instrumentation
• Overhead
• Interference

• Commonly shown to be useful for checking usage of libraries -
successful application to large open source projects

• Recent industrial successes in the banking industry for
monitoring reliability and correctness

• Applicable to safety-critical systems i.e. aerospace,
automotive, medical.

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Offline Runtime Monitoring in Practice

• Idea: record behaviour and check afterwards
• Gives minimal/predictable overhead
• Applies to more general domains/settings
• Only get what is recorded

• Offline RV successes at NASA’s JPL
• Used on the LADEE mission to check command sequences

sent to the spacecraft as part of a daily testing regime
• Used daily on the MSL mission to check rules against

Spacecraft telemetry logs sent from Curiosity

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Parametric (or first-order) Properties

• Originally runtime verification considered properties over
event names i.e. using propositional LTL or automata

• A parametric event consists of a name and a list of data values

• Examples:
• An iterator i created from a collection c should not be used

after c is updated
• Every start(t) should have a corresponding stop(t)
• If locks l1 and l2 are taken in one order by a thread t then later

they should not be taken in the reverse order by any thread

• Introduces new challenges in terms of specification languages
and monitoring algorithms

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Contributions

• We introduce the MarQ runtime monitoring tool

• MarQ stands for Monitoring at runtime with QEA

• Quantified Event Automata (QEA) is a previously introduced
specification language for parametric specifications

MarQ

• Can be used offline and online

• Supports all features of the QEA language

• Is efficient
• Won the Offline and Java tracks of the CRV14, the first

international competition on runtime verification.
• Incorporates novel indexing, redundancy elimination and

structural specialisation techniques

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Outline

Runtime Monitoring

Quantified Event Automata

Efficient monitoring

Using MarQ

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

The Slicing idea

• Based on the notion of parametric trace slicing
• Turns a quantified problem into a set of unquantified problems

• The basic idea of QEA

1. Use a list of quantifications to define trace slices relating to
separate valuations of quantified variables

2. Use an extended finite state machine to check properties over
those slices

3. The quantifications define which trace slices need to be
accepted by the state machine

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Quantified Event Automata

Definition (Event Automaton)

An Event Automaton 〈Q,A, δ, q0,F 〉 is a tuple where

• Q is a set of states,

• A ⊆ SymbolicEvent is a alphabet of events,

• δ ⊆ (Q ×A× Guard ×Assign × Q) is a set of transitions,

• q0 is an initial state, and

• F ⊆ Q is a set of final states.

Definition (Quantified Event Automaton)

A QEA is a pair 〈Λ,E〉 where

• Λ ∈ ({∀, ∃}× variables(E)× Guard)∗ is a list of quantified
variables with guards, and

• E is an Event Automaton

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

UnsafeMapIterator Example

Property : UnsafeMapIterator

An iterator created from a collection created from a map should
not be used after the map is updated.

1 2 3 4 5

¬∃m, ∃c , ∃i

create(m,c) iterator(c,i) update(m) use(i)

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Demonstrating slicing

create(M,C 1).iterator(C 1, I 1).use(I 1).update(M).create(M,C 2).
iterator(C 2, I 2).iterator(C 2, I 3).use(I 3).update(M).use(I 2)

There are six possible bindings

1 2 3 4 5

¬∃m, ∃c , ∃i

create(m,c) iterator(c,i) update(m) use(i)

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Demonstrating slicing

create(M,C 1).iterator(C 1, I 1).use(I 1).update(M).create(M,C 2).
iterator(C 2, I 2).iterator(C 2, I 3).use(I 3).update(M).use(I 2)

For m = M, c = C 1, i = I 1

1 2 3 4 5

¬∃m, ∃c , ∃i

create(m,c) iterator(c,i) update(m) use(i)

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Demonstrating slicing

create(M,C 1).iterator(C 1, I 1).use(I 1).update(M).create(M,C 2).
iterator(C 2, I 2).iterator(C 2, I 3).use(I 3).update(M).use(I 2)

For m = M, c = C 2, i = I 2

1 2 3 4 5

¬∃m, ∃c , ∃i

create(m,c) iterator(c,i) update(m) use(i)

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Demonstrating slicing

create(M,C 1).iterator(C 1, I 1).use(I 1).update(M).create(M,C 2).
iterator(C 2, I 2).iterator(C 2, I 3).use(I 3).update(M).use(I 2)

For m = M, c = C 2, i = I 3

1 2 3 4 5

¬∃m, ∃c , ∃i

create(m,c) iterator(c,i) update(m) use(i)

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Demonstrating slicing

create(M,C 1).iterator(C 1, I 1).use(I 1).update(M).create(M,C 2).
iterator(C 2, I 2).iterator(C 2, I 3).use(I 3).update(M).use(I 2)

There exists a slice that reaches a final state. The quantifications
mean that the trace violates the property.

1 2 3 4 5

¬∃m, ∃c , ∃i

create(m,c) iterator(c,i) update(m) use(i)

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Free Variables

• Some variables in the Event Automaton may not be quantified

• These are called free variables

• Free variables are (re)bound as the trace is processed

• Allowing us to capture changing data values

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Auction Bidding Example

Property : Auction Bidding

Amounts bid for an item should be strictly increasing.

1 2

3
∀item

bid(item, max)
bid(item, new) new>max

max :=new

bid(item, new) new≤max

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Auction Bidding Example

Property : Auction Bidding

Amounts bid for an item should be strictly increasing.

1 2

3
∀item

bid(item, max)
bid(item, new) new>max

max :=new

bid(item, new) new≤max

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Bidding For A Hat

bid(hat, 5).bid(hat, 10).bid(hat, 7)

1 2

3

bid(hat, max)
bid(hat, new) new>max

max :=new

bid(hat, new) new≤max

〈1, []〉

bid(hat,5)−→ 〈2, [max 7→ 5]〉
bid(hat,10)−→ 〈2, [new 7→ 10,max 7→ 10]〉
bid(hat,7)−→ 〈3, [new 7→ 7,max 7→ 10]〉

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Bidding For A Hat

bid(hat, 5).bid(hat, 10).bid(hat, 7)

1 2

3

bid(hat, max)
bid(hat, new) new>max

max :=new

bid(hat, new) new≤max

〈1, []〉

bid(hat,5)−→ 〈2, [max 7→ 5]〉
bid(hat,10)−→ 〈2, [new 7→ 10,max 7→ 10]〉
bid(hat,7)−→ 〈3, [new 7→ 7,max 7→ 10]〉

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Bidding For A Hat

bid(hat, 5).bid(hat, 10).bid(hat, 7)

1 2

3

bid(hat, max)
bid(hat, new) new>max

max :=new

bid(hat, new) new≤max

〈1, []〉 bid(hat,5)−→ 〈2, [max 7→ 5]〉

bid(hat,10)−→ 〈2, [new 7→ 10,max 7→ 10]〉
bid(hat,7)−→ 〈3, [new 7→ 7,max 7→ 10]〉

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Bidding For A Hat

bid(hat, 5).bid(hat, 10).bid(hat, 7)

1 2

3

bid(hat, max)
bid(hat, new) new>max

max :=new

bid(hat, new) new≤max

〈1, []〉 bid(hat,5)−→ 〈2, [max 7→ 5]〉
bid(hat,10)−→ 〈2, [new 7→ 10,max 7→ 10]〉

bid(hat,7)−→ 〈3, [new 7→ 7,max 7→ 10]〉

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Bidding For A Hat

bid(hat, 5).bid(hat, 10).bid(hat, 7)

1 2

3

bid(hat, max)
bid(hat, new) new>max

max :=new

bid(hat, new) new≤max

〈1, []〉 bid(hat,5)−→ 〈2, [max 7→ 5]〉
bid(hat,10)−→ 〈2, [new 7→ 10,max 7→ 10]〉
bid(hat,7)−→ 〈3, [new 7→ 7,max 7→ 10]〉

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Outline

Runtime Monitoring

Quantified Event Automata

Efficient monitoring

Using MarQ

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

UnsafeMapIterator Example

Property : UnsafeMapIterator

An iterator created from a collection created from a map should
not be used after the map is updated.

1 2 3 4 5

¬∃m, ∃c , ∃i

create(m,c) iterator(c,i) update(m) use(i)

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Monitoring algorithm

The monitoring algorithm is organised as follows

• There is a map M from bindings (of quantified variables) to
sets of configurations (reached by that slice)

• For each incoming event
• Decides if new bindings need to be created, possibly extending

existing bindings
• Updates configurations related to existing relevant bindings
• Produces a verdict based on the quantifications and M

bindings configurations

m=M1,c=C1 −→ { 2 }
m=M1,c=C1,i=I1 −→ { 3 }

m=M1,c=C1,i=I2 −→ { 3 }

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Monitoring algorithm

The monitoring algorithm is organised as follows

• There is a map M from bindings (of quantified variables) to
sets of configurations (reached by that slice)

• For each incoming event
• Decides if new bindings need to be created, possibly extending

existing bindings
• Updates configurations related to existing relevant bindings
• Produces a verdict based on the quantifications and M

bindings configurations

m=M1,c=C1 −→ { 2 }
m=M1,c=C1,i=I1 −→ { 3 }

m=M1,c=C1,i=I2 −→ { 3 }

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Monitoring algorithm

The monitoring algorithm is organised as follows

• There is a map M from bindings (of quantified variables) to
sets of configurations (reached by that slice)

• For each incoming event iterator(C1,I2)
• Decides if new bindings need to be created, possibly extending

existing bindings
• Updates configurations related to existing relevant bindings
• Produces a verdict based on the quantifications and M

bindings configurations

m=M1,c=C1 −→ { 2 }
m=M1,c=C1,i=I1 −→ { 3 }

m=M1,c=C1,i=I2 −→ { 3 }

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Monitoring algorithm

The monitoring algorithm is organised as follows

• There is a map M from bindings (of quantified variables) to
sets of configurations (reached by that slice)

• For each incoming event iterator(C1,I2)
• Decides if new bindings need to be created, possibly extending

existing bindings
• Updates configurations related to existing relevant bindings
• Produces a verdict based on the quantifications and M

bindings configurations

m=M1,c=C1 −→ { 2 }
m=M1,c=C1,i=I1 −→ { 3 }
m=M1,c=C1,i=I2 −→ { 3 }

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Monitoring algorithm

The monitoring algorithm is organised as follows

• There is a map M from bindings (of quantified variables) to
sets of configurations (reached by that slice)

• For each incoming event iterator(C1,I2)
• Decides if new bindings need to be created, possibly extending

existing bindings
• Updates configurations related to existing relevant bindings
• Produces a verdict based on the quantifications and M

bindings configurations

m=M1,c=C1 −→ { 2 }
m=M1,c=C1,i=I1 −→ { 3 }
m=M1,c=C1,i=I2 −→ { 3 }

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Monitoring algorithm

The monitoring algorithm is organised as follows

• There is a map M from bindings (of quantified variables) to
sets of configurations (reached by that slice)

• For each incoming event update(M1)
• Decides if new bindings need to be created, possibly extending

existing bindings
• Updates configurations related to existing relevant bindings
• Produces a verdict based on the quantifications and M

bindings configurations

m=M1,c=C1 −→ { 2 }
m=M1,c=C1,i=I1 −→ { 3 }
m=M1,c=C1,i=I2 −→ { 3 }

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Monitoring algorithm

The monitoring algorithm is organised as follows

• There is a map M from bindings (of quantified variables) to
sets of configurations (reached by that slice)

• For each incoming event update(M1)
• Decides if new bindings need to be created, possibly extending

existing bindings
• Updates configurations related to existing relevant bindings
• Produces a verdict based on the quantifications and M

bindings configurations

m=M1,c=C1 −→ { 2 }
m=M1,c=C1,i=I1 −→ { 3 }
m=M1,c=C1,i=I2 −→ { 3 }

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Monitoring algorithm

The monitoring algorithm is organised as follows

• There is a map M from bindings (of quantified variables) to
sets of configurations (reached by that slice)

• For each incoming event update(M1)
• Decides if new bindings need to be created, possibly extending

existing bindings
• Updates configurations related to existing relevant bindings
• Produces a verdict based on the quantifications and M

bindings configurations

m=M1,c=C1 −→ { 2 }
m=M1,c=C1,i=I1 −→ { 4 }
m=M1,c=C1,i=I2 −→ { 4 }

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Monitoring algorithm

The monitoring algorithm is organised as follows

• There is a map M from bindings (of quantified variables) to
sets of configurations (reached by that slice)

• For each incoming event
• Decides if new bindings need to be created, possibly extending

existing bindings
• Updates configurations related to existing relevant bindings
• Produces a verdict based on the quantifications and M

bindings configurations

m=M1,c=C1 −→ { 2 }
m=M1,c=C1,i=I1 −→ { 4 }
m=M1,c=C1,i=I2 −→ { 4 }

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Efficient monitoring with MarQ

• Obviously for online monitoring overhead and interference are
very important

• For offline monitoring we still need practically efficient trace
processing

• MarQ achieves efficient monitoring in three ways
• Indexing
• Redundancy elimination
• Structural specialisation

• We give a flavour of these techniques here

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Indexing

• The monitor needs to track the status of different valuations
of quantified variables

• Given an event it needs to quickly find what needs to be
updated. This is the indexing problem.

• MarQ uses symbol-based indexing

m,c m,c

m,c,im,c,i m,c,i

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Indexing

• MarQ uses symbol-based indexing

m,c m,c

m,c,im,c,i m,c,i

m=M1,c=C1

create(M1,C1)
iterator(C1,)
update(M1)
use()

m=M1,c=C1,i=I1

create(M1,C1)
iterator(C1,I1)
update(M1)
use(I1)

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Indexing

• MarQ uses symbol-based indexing

m,c m,c

m,c,im,c,i m,c,i

m=M1,c=C1

create(M1,C1)
iterator(C1,)
update(M1)
use()

m=M1,c=C1,i=I1

create(M1,C1)
iterator(C1,I1)
update(M1)
use(I1)

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Indexing

• MarQ uses symbol-based indexing

m,c m,c

m,c,im,c,i m,c,i

create(M1,C1)
iterator(C1,)
iterator(C1,I1)
update(M1)
use()
use(I1)

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Indexing

• MarQ uses symbol-based indexing

m,c m,c

m,c,im,c,i m,c,i

create(M1,C1)
iterator(C1,)
iterator(C1,I1)
update(M1)
use()
use(I1)

On receiving
update(M1)

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Indexing

• MarQ uses symbol-based indexing

m,c m,c

m,c,im,c,i m,c,i

create(M1,C1)
iterator(C1,)
iterator(C1,I1)
update(M1)
use()
use(I1)

On receiving
update(M1)

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Indexing

• MarQ uses symbol-based indexing

m,c m,c

m,c,im,c,i m,c,i

create(M1,C1)
iterator(C1,)
iterator(C1,I1)
update(M1)
use()
use(I1)

On receiving
update(M1)

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Indexing

• MarQ uses symbol-based indexing

m,c m,c

m,c,im,c,i m,c,i

create(M1,C1)
iterator(C1,)
iterator(C1,I1)
update(M1)
use()
use(I1)

On receiving
iterator(C1,I2)

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Indexing

• MarQ uses symbol-based indexing

m,c m,c

m,c,im,c,i m,c,i

create(M1,C1)
iterator(C1,)
iterator(C1,I1)
update(M1)
use()
use(I1)

On receiving
iterator(C1,I2)

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Indexing

• MarQ uses symbol-based indexing

m,c m,c

m,c,im,c,i m,c,i

create(M1,C1)
iterator(C1,)
iterator(C1,I1)
update(M1)
use()
use(I1)

On receiving
iterator(C1,I2)

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Indexing

• MarQ uses symbol-based indexing

m,c m,c

m,c,im,c,i m,c,i

create(M1,C1)
iterator(C1,)
iterator(C1,I1)
update(M1)
use()
use(I1)

On receiving
iterator(C1,I2)

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Indexing

• MarQ uses symbol-based indexing

m,c m,c

m,c,im,c,i m,c,i m,c,i

create(M1,C1)
iterator(C1,)
iterator(C1,I1)
update(M1)
use()
use(I1)

On receiving
iterator(C1,I2)

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Redundancy elimination

1 2 3 4 5

¬∃m, ∃c , ∃i

create(m,c) iterator(c,i) update(m) use(i)

• Given this specification there are two observations

1. A binding m=M,c=C does not need to be extended for use(I)
as this does not tell us anything new

2. If a monitored object is garbage collected it can no longer
contribute to a failing trace slice

• Generalising these gives us a theory of redundancy elimination
that ignores or removes bindings of quantified variables

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Structural specialisation

• Not all features of the QEA specification language are needed
for every specification i.e. non-determinism, free variables

• However supporting these features makes the monitoring
algorithm more complex

• Structural specialisation produces a monitoring algorithm
based on the structure of the specification using special data
structures

• Motivation: monitoring is the frequent repetition of the same
small bit of code

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Results of the 1st compeititon on Runtime Verification

Offline Track

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Results of the 1st compeititon on Runtime Verification

Java Track

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Writing specifications with efficiency in mind

• Efficiency of the monitoring algorithm depends on the
structure of the specification

• Therefore the way the specification is written matters

• Can achieve an order of magnitude speedup by changing the
way the property is expressed

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Outline

Runtime Monitoring

Quantified Event Automata

Efficient monitoring

Using MarQ

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Separating specification and usage

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Writing QEA specifications in MarQ

• The QEA Builder uses an API to construct a QEA

• The MonitorFactory constructs a monitor from that
specification

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

The QEA Builder

QEABuilder q = new QEABuilder("safeiter");

int ITERATOR = 1; int NEXT = 2;

final int i = -1; final int size = 1;

q.addQuantification(FORALL, i)

q.addTransition(1,ITERATOR, i, size, 2);

q.addTransition(2,NEXT, i,

isGreaterThanConstant(size,0),

decrement(size),

2);

q.addFinalStates(1, 2); q.setSkipStates(1);

QEA qea = q.make();

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

The QEA Builder

QEABuilder q = new QEABuilder("safeiter");

int ITERATOR = 1; int NEXT = 2;

final int i = -1; final int size = 1;

q.addQuantification(FORALL, i)

q.addTransition(1,ITERATOR, i, size, 2);

q.addTransition(2,NEXT, i,

isGreaterThanConstant(size,0),

decrement(size),

2);

q.addFinalStates(1, 2); q.setSkipStates(1);

QEA qea = q.make();

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

The QEA Builder

QEABuilder q = new QEABuilder("safeiter");

int ITERATOR = 1; int NEXT = 2;

final int i = -1; final int size = 1;

q.addQuantification(FORALL, i)

q.addTransition(1,ITERATOR, i, size, 2);

q.addTransition(2,NEXT, i,

isGreaterThanConstant(size,0),

decrement(size),

2);

q.addFinalStates(1, 2); q.setSkipStates(1);

QEA qea = q.make();

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

The QEA Builder

QEABuilder q = new QEABuilder("safeiter");

int ITERATOR = 1; int NEXT = 2;

final int i = -1; final int size = 1;

q.addQuantification(FORALL, i)

q.addTransition(1,ITERATOR, i, size, 2);

q.addTransition(2,NEXT, i,

isGreaterThanConstant(size,0),

decrement(size),

2);

q.addFinalStates(1, 2); q.setSkipStates(1);

QEA qea = q.make();

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

The QEA Builder

QEABuilder q = new QEABuilder("safeiter");

int ITERATOR = 1; int NEXT = 2;

final int i = -1; final int size = 1;

q.addQuantification(FORALL, i)

q.addTransition(1,ITERATOR, i, size, 2);

q.addTransition(2,NEXT, i,

isGreaterThanConstant(size,0),

decrement(size),

2);

q.addFinalStates(1, 2); q.setSkipStates(1);

QEA qea = q.make();

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

The QEA Builder

QEABuilder q = new QEABuilder("safeiter");

int ITERATOR = 1; int NEXT = 2;

final int i = -1; final int size = 1;

q.addQuantification(FORALL, i)

q.addTransition(1,ITERATOR, i, size, 2);

q.addTransition(2,NEXT, i,

isGreaterThanConstant(size,0),

decrement(size),

2);

q.addFinalStates(1, 2); q.setSkipStates(1);

QEA qea = q.make();

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

The QEA Builder

QEABuilder q = new QEABuilder("safeiter");

int ITERATOR = 1; int NEXT = 2;

final int i = -1; final int size = 1;

q.addQuantification(FORALL, i)

q.addTransition(1,ITERATOR, i, size, 2);

q.addTransition(2,NEXT, i,

isGreaterThanConstant(size,0),

decrement(size),

2);

q.addFinalStates(1, 2); q.setSkipStates(1);

QEA qea = q.make();

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

The QEA Builder

QEABuilder q = new QEABuilder("safeiter");

int ITERATOR = 1; int NEXT = 2;

final int i = -1; final int size = 1;

q.addQuantification(FORALL, i)

q.addTransition(1,ITERATOR, i, size, 2);

q.addTransition(2,NEXT, i,

isGreaterThanConstant(size,0),

decrement(size),

2);

q.addFinalStates(1, 2); q.setSkipStates(1);

QEA qea = q.make();

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

The QEA Builder

QEABuilder q = new QEABuilder("safeiter");

int ITERATOR = 1; int NEXT = 2;

final int i = -1; final int size = 1;

q.addQuantification(FORALL, i)

q.addTransition(1,ITERATOR, i, size, 2);

q.addTransition(2,NEXT, i,

isGreaterThanConstant(size,0),

decrement(size),

2);

q.addFinalStates(1, 2); q.setSkipStates(1);

QEA qea = q.make();

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

The QEA Builder

QEABuilder q = new QEABuilder("safeiter");

int ITERATOR = 1; int NEXT = 2;

final int i = -1; final int size = 1;

q.addQuantification(FORALL, i)

q.addTransition(1,ITERATOR, i, size, 2);

q.addTransition(2,NEXT, i,

isGreaterThanConstant(size,0),

decrement(size),

2);

q.addFinalStates(1, 2); q.setSkipStates(1);

QEA qea = q.make();

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

The Monitor Factory

public interface Monitor{

public Verdict step(int name, Object[] args);

}

Monitor monitor = MonitorFactory.create(

qea,

GarbageMode.LAZY, //Optional

RestartMode.REMOVE); // Optional

• A monitor is an object accepting events and producing verdicts

• The factory will analyse the specification and produce the best
monitor it can (i.e. using structural specialisation)

• Optional modes
• Garbage: handling monitored objects that are garbage collected
• Restart: what to do when a violation occurs

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

The Monitor Factory

public interface Monitor{

public Verdict step(int name, Object[] args);

}

Monitor monitor = MonitorFactory.create(

qea,

GarbageMode.LAZY, //Optional

RestartMode.REMOVE); // Optional

• A monitor is an object accepting events and producing verdicts

• The factory will analyse the specification and produce the best
monitor it can (i.e. using structural specialisation)

• Optional modes
• Garbage: handling monitored objects that are garbage collected
• Restart: what to do when a violation occurs

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

The Monitor Factory

public interface Monitor{

public Verdict step(int name, Object[] args);

}

Monitor monitor = MonitorFactory.create(

qea,

GarbageMode.LAZY, //Optional

RestartMode.REMOVE); // Optional

• A monitor is an object accepting events and producing verdicts

• The factory will analyse the specification and produce the best
monitor it can (i.e. using structural specialisation)

• Optional modes
• Garbage: handling monitored objects that are garbage collected
• Restart: what to do when a violation occurs

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

The Monitor Factory

public interface Monitor{

public Verdict step(int name, Object[] args);

}

Monitor monitor = MonitorFactory.create(

qea,

GarbageMode.LAZY, //Optional

RestartMode.REMOVE); // Optional

• A monitor is an object accepting events and producing verdicts

• The factory will analyse the specification and produce the best
monitor it can (i.e. using structural specialisation)

• Optional modes
• Garbage: handling monitored objects that are garbage collected
• Restart: what to do when a violation occurs

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Offline monitoring with MarQ

• We first create a Translator object for the trace

• Then using a QEA object and trace string we create a monitor

• Finally we call monitor to get a result

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Offline monitoring with MarQ

OfflineTranslator translator =

new DefaultTranslator(‘‘a’’, ‘‘b’’,‘‘c’’);

String trace = ‘‘trace_dir/trace.csv’’;

QEA qea = builder.make();

CSVFileMonitor m =

new CSVFileMonitor(trace_name, qea, translator);

Verdict v = m.monitor();

• We first create a Translator object for the trace

• Then using a QEA object and trace string we create a monitor

• Finally we call monitor to get a result

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Offline monitoring with MarQ

OfflineTranslator translator =

new DefaultTranslator(‘‘a’’, ‘‘b’’,‘‘c’’);

String trace = ‘‘trace_dir/trace.csv’’;

QEA qea = builder.make();

CSVFileMonitor m =

new CSVFileMonitor(trace_name, qea, translator);

Verdict v = m.monitor();

• We first create a Translator object for the trace

• Then using a QEA object and trace string we create a monitor

• Finally we call monitor to get a result

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Offline monitoring with MarQ

OfflineTranslator translator =

new DefaultTranslator(‘‘a’’, ‘‘b’’,‘‘c’’);

String trace = ‘‘trace_dir/trace.csv’’;

QEA qea = builder.make();

CSVFileMonitor m =

new CSVFileMonitor(trace_name, qea, translator);

Verdict v = m.monitor();

• We first create a Translator object for the trace

• Then using a QEA object and trace string we create a monitor

• Finally we call monitor to get a result

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Offline monitoring with MarQ

OfflineTranslator translator =

new DefaultTranslator(‘‘a’’, ‘‘b’’,‘‘c’’);

String trace = ‘‘trace_dir/trace.csv’’;

QEA qea = builder.make();

CSVFileMonitor m =

new CSVFileMonitor(trace_name, qea, translator);

Verdict v = m.monitor();

• We first create a Translator object for the trace

• Then using a QEA object and trace string we create a monitor

• Finally we call monitor to get a result

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Trace formats

• We support three trace formats proposed by the RV
competition

• CSV
• JSON
• XML

• We also provide tools for translating between formats

• Parsing is surprisingly important.
• MarQ has an optimised parser for the CSV format
• Also aparallel option that separates trace processing and

monitoring.

• Parsers produce abstract event objects handled by translators
before being passed to the monitor

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Translators

• Translators map abstract events to monitor step calls

• They tackle three pragmatic issues

1. Name mappings
• Map between event names used in the trace and specification
• May not be one-to-one

2. Reordering parameters
• The events recorded in the trace may not have the same

structure as in the specification
• Parameters may be reordered or removed

3. Interpreting values
• Data values in events may need to be treated semantically
• i.e. parsing into integers
• May need to ensure values are interned

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Online monitoring with MarQ

• Currently MarQ supports monitoring Java programs via
AspectJ

• Instrumentation should handle verdicts

• However, we do not yet automatically generate AspectJ

• This is work in process, along with targetting other languages

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Instrumentation with AspectJ

public aspect SafeIterAspect {

private int ITERATOR = 1; private int NEXT = 2;

private Monitor monitor;

SafeIterAspect(){

QEA qea = SafeIter.get();

monitor = MonitorFactory.create(qea);

}

...

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Instrumentation with AspectJ

public aspect SafeIterAspect {

private int ITERATOR = 1; private int NEXT = 2;

private Monitor monitor;

SafeIterAspect(){

QEA qea = SafeIter.get();

monitor = MonitorFactory.create(qea);

}

...

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Instrumentation with AspectJ

pointcut iter(Collection c) :

(call(Iterator Collection+.iterator()) && target(c));

pointcut next(Iterator i) :

(call(* Iterator.next()) && target(i));

after (Collection c) returning (Iterator i) : iter(c) {

synchronized(monitor){

check(monitor.step(ITERATOR,i,c.size()));

}

}

before(Iterator i) : next(i) {

synchronized(monitor){

check(monitor.step(NEXT,i));

}

}

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Instrumentation with AspectJ

pointcut iter(Collection c) :

(call(Iterator Collection+.iterator()) && target(c));

pointcut next(Iterator i) :

(call(* Iterator.next()) && target(i));

after (Collection c) returning (Iterator i) : iter(c) {

synchronized(monitor){

check(monitor.step(ITERATOR,i,c.size()));

}

}

before(Iterator i) : next(i) {

synchronized(monitor){

check(monitor.step(NEXT,i));

}

}

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Instrumentation with AspectJ

pointcut iter(Collection c) :

(call(Iterator Collection+.iterator()) && target(c));

pointcut next(Iterator i) :

(call(* Iterator.next()) && target(i));

after (Collection c) returning (Iterator i) : iter(c) {

synchronized(monitor){

check(monitor.step(ITERATOR,i,c.size()));

}

}

before(Iterator i) : next(i) {

synchronized(monitor){

check(monitor.step(NEXT,i));

}

}

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Instrumentation with AspectJ

pointcut iter(Collection c) :

(call(Iterator Collection+.iterator()) && target(c));

pointcut next(Iterator i) :

(call(* Iterator.next()) && target(i));

after (Collection c) returning (Iterator i) : iter(c) {

synchronized(monitor){

check(monitor.step(ITERATOR,i,c.size()));

}

}

before(Iterator i) : next(i) {

synchronized(monitor){

check(monitor.step(NEXT,i));

}

}

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Instrumentation with AspectJ

pointcut iter(Collection c) :

(call(Iterator Collection+.iterator()) && target(c));

pointcut next(Iterator i) :

(call(* Iterator.next()) && target(i));

after (Collection c) returning (Iterator i) : iter(c) {

synchronized(monitor){

check(monitor.step(ITERATOR,i,c.size()));

}

}

before(Iterator i) : next(i) {

synchronized(monitor){

check(monitor.step(NEXT,i));

}

}

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Instrumentation with AspectJ

...

private void check(Verdict verdict){

if(verdict==Verdict.FAILURE){ <report error here> }

}

}

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Future work

• External specification language

• Automated generation of instrumentation code

• Transformations from other Runtime Monitoring specification
languages into QEA i.e. temporal logics, rule-based systems

• Automated transformations into syntactic classes with better
efficiency guarantees

• Violation explanation

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

And finally...

• The tool is available online

https://github.com/selig/qea

• Thanks for listening

https://github.com/selig/qea

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Non-determinism

1 2 3

∀u∀t

withdraw(u, a, t)a≤10k
s:=a

withdraw(u, a, t2) s+a≤10k
s+=a

withdraw(u, a, t2) t2−t>28

1 2 3

¬∃u

withdraw(u, a, t)

withdraw(u, a, t)a≤10k
s:=a

withdraw(u, a, t2) t2−t≤28 ∧ s+a≤10k
s+=a

withdraw(u, a, t2) t2−t≤28 ∧ s+a>10k

• By introducing non-determinism we can remove a quantifier

• The idea is to have a path through the automata for each t

• There is a trade-off between complexity in quantification and
non-determinism

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Counting

1 2

∀s ∀o add(s, o)h:=o.hashCode()

remove(s, o)h=o.hashCode()

observe(s, o)h=o.hashCode() ,

add(s, o)h=o.hashCode()

1 2

∀o add(o)h:=o.hashCode();c:=1

remove(o)h=o.hashCode()∧c=0

observe(o)h=o.hashCode() ,

add(o)h=o.hashCode()
c:=c+1 ,

remove(o)h=o.hashCode()∧c>0
c:=c−1

• By making certain assumptions about how trace slices for a
quantifier are related we can track instances with a counter

• Transformation needs more information than is in the
specification

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Quantifier stripping

1 2 3

∀p∃s
send(p, s) reply(s, p)

1 2 3

∀p
send(p, s) reply(s, p)

• Existential quantifiers on the right can be stripped

• This is a trivial case, more complex cases involve the
introduction of guards and non-determinism

Runtime Monitoring Quantified Event Automata Efficient monitoring Using MarQ

Big impact

Property Trace length Runtime (milliseconds) Speedup
Original Translated

withdrawal 150k 3,050 2,106 1.44
persistenthash 4M 12,267 864 14.12
publishers 200k 355 37 9.59

• Can achieve an order of magnitude speedup

• A phenomenon not often talked about in RV papers

• Further work: automate these transformations

	Runtime Monitoring
	Quantified Event Automata
	Efficient monitoring
	Using MarQ

