
Incremental Solving with Vampire

Giles Reger1 Martin Suda2

(1) School of Computer Science, University of Manchester, UK

(2) Institute for Information Systems, Vienna University of Technology, Austria

The 4th Vampire Workshop

Reger and Suda Incremental Solving with Vampire 1 / 19

Introduction

This talk will be about

What we mean by incremental solving

Why we want to be incremental

How we can achieve this

When we we will i.e. what have we actually done so far

Reger and Suda Incremental Solving with Vampire 2 / 19

What is Incremental Solving

Solving a problem in increments

Two flavours

I A growing problem - add new assertions and check consistency
I A stack of assertions - push and pop solving contexts

Reger and Suda Incremental Solving with Vampire 3 / 19

What is Incremental Solving

Solving a problem in increments

Two flavours
I A growing problem - add new assertions and check consistency

I A stack of assertions - push and pop solving contexts

Reger and Suda Incremental Solving with Vampire 3 / 19

What is Incremental Solving

Solving a problem in increments

Two flavours
I A growing problem - add new assertions and check consistency

I A stack of assertions - push and pop solving contexts

Reger and Suda Incremental Solving with Vampire 3 / 19

What is Incremental Solving

Solving a problem in increments

Two flavours
I A growing problem - add new assertions and check consistency

I A stack of assertions - push and pop solving contexts

Reger and Suda Incremental Solving with Vampire 3 / 19

What is Incremental Solving

Solving a problem in increments

Two flavours
I A growing problem - add new assertions and check consistency

I A stack of assertions - push and pop solving contexts

Reger and Suda Incremental Solving with Vampire 3 / 19

What is Incremental Solving

Solving a problem in increments

Two flavours
I A growing problem - add new assertions and check consistency
I A stack of assertions - push and pop solving contexts

Reger and Suda Incremental Solving with Vampire 3 / 19

What is Incremental Solving

Solving a problem in increments

Two flavours
I A growing problem - add new assertions and check consistency
I A stack of assertions - push and pop solving contexts

Reger and Suda Incremental Solving with Vampire 3 / 19

What is Incremental Solving

Solving a problem in increments

Two flavours
I A growing problem - add new assertions and check consistency
I A stack of assertions - push and pop solving contexts

Reger and Suda Incremental Solving with Vampire 3 / 19

What is Incremental Solving

Solving a problem in increments

Two flavours
I A growing problem - add new assertions and check consistency
I A stack of assertions - push and pop solving contexts

Reger and Suda Incremental Solving with Vampire 3 / 19

What is Incremental Solving

Solving a problem in increments

Two flavours
I A growing problem - add new assertions and check consistency
I A stack of assertions - push and pop solving contexts

Reger and Suda Incremental Solving with Vampire 3 / 19

What is Incremental Solving

Solving a problem in increments

Two flavours
I A growing problem - add new assertions and check consistency
I A stack of assertions - push and pop solving contexts

Reger and Suda Incremental Solving with Vampire 3 / 19

What is Incremental Solving

Solving a problem in increments

Two flavours
I A growing problem - add new assertions and check consistency
I A stack of assertions - push and pop solving contexts

Reger and Suda Incremental Solving with Vampire 3 / 19

What is Incremental Solving

Solving a problem in increments

Two flavours
I A growing problem - add new assertions and check consistency
I A stack of assertions - push and pop solving contexts

Reger and Suda Incremental Solving with Vampire 3 / 19

What is Incremental Solving

Solving a problem in increments

Two flavours
I A growing problem - add new assertions and check consistency
I A stack of assertions - push and pop solving contexts

The idea of both is that there is some previous context and you add
some new assertions and try and solve the resulting problem

The second clearly subsumes the first and is more general, but the
first is ‘easier’ as it does not require backtracking

Reger and Suda Incremental Solving with Vampire 3 / 19

Why do we want it?

Very useful in applications (such as program analysis) where there is
some general encoding and different queries are made of this

The cool kids are doing it (SMT)

Reger and Suda Incremental Solving with Vampire 4 / 19

Why is it Hard?

SMT solves are typically model-based i.e. they attempt to build a
model. Therefore, incrementally adding new information means
attempting to extend that model.

Vampire is saturation-based and adding new information means
continuing saturation with this new information.

However
I Finite saturations may not exist
I Finding a model means finding one satisfiable branch whereas

saturating means exploring all possibilities i.e. it is harder for us
I In many cases saturation does not mean satisfiable (e.g. theories and

incomplete preprocessing)

Reger and Suda Incremental Solving with Vampire 5 / 19

Dealing with a Growing Problem

1 Receive formulas

2 Clausify and add to Unprocessed

3 If saturated report and goto 1

4 Else stop with unsat

Reger and Suda Incremental Solving with Vampire 6 / 19

Completeness

To be useful we probably want to be complete

Don’t throw things away

Avoid preprocessing steps such as
I pure literal removal
I function definition elimination
I set of support or SiNE selection

Avoid limited resource strategy or weight limits

Preserve completeness criteria

Use all necessary inference rules

Only use complete versions of selection

If we have theories (interpreted symbols) it’s game over

Reger and Suda Incremental Solving with Vampire 7 / 19

Assumptions about the Signature

We need to be careful as Vampire makes decisions based on the signature
But we do not know the full signature when we start solving.

Some things we need to take care of:

Preprocessing may add symbols to the signature!

Inference rules are selected based on what is needed - need to add
everything as we do not know

Term ordering relies on a symbol precedence but new symbols can
appear, should only be suboptimal instead of wrong

Indexing data structures cannot be specialised (e.g. for EPR)

Discrimination indexing trees index directly on the signature! Need to
modify these to expand as needed

Theory symbols treated specially, may need to decide from the start
whether they are going to appear

Reger and Suda Incremental Solving with Vampire 8 / 19

Assumptions about the Signature

We need to be careful as Vampire makes decisions based on the signature
But we do not know the full signature when we start solving.

Some things we need to take care of:

Preprocessing may add symbols to the signature!

Inference rules are selected based on what is needed - need to add
everything as we do not know

Term ordering relies on a symbol precedence but new symbols can
appear, should only be suboptimal instead of wrong

Indexing data structures cannot be specialised (e.g. for EPR)

Discrimination indexing trees index directly on the signature! Need to
modify these to expand as needed

Theory symbols treated specially, may need to decide from the start
whether they are going to appear

Reger and Suda Incremental Solving with Vampire 8 / 19

New Problem: Changing Conjecture

Goal-directed proof search with a changing goal!

Vampire might give extra weight to goal clauses and their children

Do we adjust these weights when the goal changes?

Not a big deal but something to think about

Reger and Suda Incremental Solving with Vampire 9 / 19

Tracking Solving Contexts

We have two approaches for dealing with a stack of solving contexts

1 Fork a new process for each push
I This is what we do in competition modes for each strategy
I The idea can allow us to try multiple proof attempts on the same

solving context, this could be very important
I But lose everything when we pop
I But this means we are also allowed to be incomplete, throw away

things from earlier solving contexts etc

2 Use labelled clauses to track stack information
I Thought: Work in a different solving context can help
I To preserve this we can label clauses with the most specific solving

context they are relevant to
I Also allows us to be a bit more clever... see later

Reger and Suda Incremental Solving with Vampire 10 / 19

The Forking Approach

Theoretically simple

A few issues with concurrecy

Probably very helpful practically
I view each conjecture as a new problem with some pre-saturation

But mostly just engineering

Not implemented yet

Reger and Suda Incremental Solving with Vampire 11 / 19

The Labelled Clause Approach

Clauses become labelled
I L → C where C is a clause and L a conjunction of labels

Solving contexts are labelled

Clauses are labelled by their solving context

Solving is under the assumption that the active labels hold

Inferences must preserve labels

Popping asserts that the current label as false

Reductions may need to be backtracked if they no longer hold

We already have a system for dealing with labelled clauses: AVATAR

Reger and Suda Incremental Solving with Vampire 12 / 19

Example

fof(p,axiom,![X] : p(X)).

fof(q,axiom,![Y] : ~p(Y) | q(Y)).

push().

fof(a,conjecture,q(a)).

pop().

fof(a,conjecture,![Z]: q(Z)).

Reger and Suda Incremental Solving with Vampire 13 / 19

Example

fof(p,axiom,![X] : p(X)).

fof(q,axiom,![Y] : ~p(Y) | q(Y)).

push().

fof(a,conjecture,q(a)).

pop().

fof(a,conjecture,![Z]: q(Z)).

0 → p(X)
0 → ¬p(Y) ∨ q(Y)

Reger and Suda Incremental Solving with Vampire 13 / 19

Example

fof(p,axiom,![X] : p(X)).

fof(q,axiom,![Y] : ~p(Y) | q(Y)).

push().

fof(a,conjecture,q(a)).

pop().

fof(a,conjecture,![Z]: q(Z)).

0 → p(X)
0 → ¬p(Y) ∨ q(Y)
1 → ¬q(a)

Reger and Suda Incremental Solving with Vampire 13 / 19

Example

fof(p,axiom,![X] : p(X)).

fof(q,axiom,![Y] : ~p(Y) | q(Y)).

push().

fof(a,conjecture,q(a)).

pop().

fof(a,conjecture,![Z]: q(Z)).

0 → p(X)
0 → ¬p(Y) ∨ q(Y)
1 → ¬q(a)
0 → q(Y)
0 ∧ 1 → ¬p(a)
0 ∧ 1 → ⊥

Reger and Suda Incremental Solving with Vampire 13 / 19

Example

fof(p,axiom,![X] : p(X)).

fof(q,axiom,![Y] : ~p(Y) | q(Y)).

push().

fof(a,conjecture,q(a)).

pop().

fof(a,conjecture,![Z]: q(Z)).

0 → p(X)
0 → ¬p(Y) ∨ q(Y)
1 → ¬q(a)
0 → q(Y)
0 ∧ 1 → ¬p(a)
0 ∧ 1 → ⊥

Reger and Suda Incremental Solving with Vampire 13 / 19

Example

fof(p,axiom,![X] : p(X)).

fof(q,axiom,![Y] : ~p(Y) | q(Y)).

push().

fof(a,conjecture,q(a)).

pop().

fof(a,conjecture,![Z]: q(Z)).

0 → p(X)
0 → ¬p(Y) ∨ q(Y)
0 → q(Y)
0 → ¬q(sk)

Reger and Suda Incremental Solving with Vampire 13 / 19

Example

fof(p,axiom,![X] : p(X)).

fof(q,axiom,![Y] : ~p(Y) | q(Y)).

push().

fof(a,conjecture,q(a)).

pop().

fof(a,conjecture,![Z]: q(Z)).

0 → p(X)
0 → ¬p(Y) ∨ q(Y)
0 → q(Y)
0 → ¬q(sk)
0 → ⊥

Reger and Suda Incremental Solving with Vampire 13 / 19

Example

fof(p,axiom,![X] : p(X)).

fof(q,axiom,![Y] : ~p(Y) | q(Y)).

push().

fof(a,conjecture,q(a)).

pop().

fof(a,conjecture,![Z]: q(Z)).

0 → p(X)
0 → ¬p(Y) ∨ q(Y)
0 → q(Y)
0 → ¬q(sk)
0 → ⊥

We used the generation of q(Y) from the inner solving context when
finding the refutation later i.e. we reused some of this proof search.

Reger and Suda Incremental Solving with Vampire 13 / 19

Removing Clauses

Clauses added in a solving context that is then popped can be safely
removed along with any children.

Is it worth explicitly removing such clauses?

Clauses may be re-added in a future solving context. In which case we
could detect this and, instead of adding a new clause, reactive the old
clause along with relevant children. This is an idea we have explored
within the context of AVATAR.

If we really want to do this then do we make it explicit in the input

Reger and Suda Incremental Solving with Vampire 14 / 19

Incremental or Mutually Exclusive?

Consider a problem

tff(all_pos,axiom,

$greater(a,0) &

$greater(b,0) &

$greater(c,0)).

tff(fermat,conjecture,

$sum($product(a,$product(a,a)), $product(b,$product(b,b)))

!= $product(c,$product(c,c))).

tff(abc,conjecture,$greatereq(a,b) & $greatereq(a,c)).

The two conjectures are mutually exclusive, we could tackle them in either
order. One is easier than the other.

Reger and Suda Incremental Solving with Vampire 15 / 19

Incremental or Mutually Exclusive?

Consider another problem

fof(a,axiom, a=b & b=c & c=d).

push().

fof(b,conjecture,a!=c).

pop().

push().

fof(c,conjecture,a!=d).

pop().

The two solving contexts are mutually exclusive and could be tackled in
either order, or at the same time.

Reger and Suda Incremental Solving with Vampire 16 / 19

Multiple Conjectures with Labelled Clauses

Just add the various labels and press Go

Don’t halt on an empty clause, just report the label

Caveat: interaction with AVATAR not completely straightforward

Efficiency: probably want to avoid unhelpful inferences (those that
combine conjectures and their children)

Now lots of things we could play with:
I Attempt all mutually exclusive conjectures at once
I Group them in chunks
I Give each conjecture a bit of time but never give up

Caveat: could be messy in general if relationship between different
conjectures (in terms of exclusiveness, signature etc) is non-trivial

Reger and Suda Incremental Solving with Vampire 17 / 19

What is Implemented?

New --mode incremental which currently accepts SMT-LIB with
I Multiple (check-sat) commands
I Matching (push 1) and (push 2) commands

But currently requires full signature exists before first (check-sat)

On (check-sat) we send problem so far to Vampire
I Don’t restrict completeness but track it

Push/Pop handled by labelled clauses
I Initial hack extends clauses with propositional symbol and registers this

with AVATAR

Reger and Suda Incremental Solving with Vampire 18 / 19

What is Left and Other Thoughts

Relaxing signature issues

Forking push/pop approach

Experiments and finding more benchmarks

Solving under assumptions

We want an API

Playing with new set-of-support ideas for throttling

Reger and Suda Incremental Solving with Vampire 19 / 19

