
Revisiting Global Subsumption

Giles Reger1 and Martin Suda2

(1) School of Computer Science, University of Manchester, UK

(2) Institute for Information Systems, Vienna University of Technology, Austria

The 3rd Vampire Workshop

Reger,G Revisiting Global Subsumption 1 / 1

Introduction

In this talk we will

Remind ourselves what Global Subsumption (GS) is

Discuss five related questions

The following five questions will hopefully make more sense when we have
explained GS

1 What groundings are good groundings?

2 What subclause are good subclauses?

3 Can GS play nicely with AVATAR?

4 Can GS play with theories?

5 Can we apply this lookahead idea to GS?

Reger,G Revisiting Global Subsumption 2 / 1

Overview

Reger,G Revisiting Global Subsumption 3 / 1

Global Subsumption: the Ground Case

Assume a set of first order clauses S

Let Sgr be a set of ground clauses implied by S

i.e. instances of clauses in S

The ground clause D _ D

0 can be replaced by D in S if Sgr |= D

This is sound as D follows from S and subsumes D _ D

0

If D is empty then Sgr is unsatisfiable and so is S

Reger,G Revisiting Global Subsumption 4 / 1

Global Subsumption: the Ground Case, an Example

Consider

S =

8
>><

>>:

p(x) _ q(a)
¬p(x) _ q(c)
f (a) = a

f (f (a)) 6= a

9
>>=

>>;
Sgr =

8
>>>><

>>>>:

p(?) _ q(a)
¬p(?) _ q(c)

f (a) = a

f (f (a)) 6= a

9
>>>>=

>>>>;

(D _ D

0) = q(a) _ q(b) _ q(c)

Sgr |= q(a) _ q(c)

q(a) _ q(b) _ q(c) can be replaced by q(a) _ q(c)

Reger,G Revisiting Global Subsumption 5 / 1

Global Subsumption: the Ground Case, an Example

Consider

S =

8
>><

>>:

p(x) _ q(a)
¬p(x) _ q(c)
f (a) = a

f (f (a)) 6= a

9
>>=

>>;
Sgr =

8
>>>><

>>>>:

1 _ 2
¬1 _ 3

4
¬5

9
>>>>=

>>>>;

(D _ D

0) = 2 _ 6 _ 3

Sgr |= 2 _ 3

q(a) _ q(b) _ q(c) can be replaced by q(a) _ q(c)

Reger,G Revisiting Global Subsumption 5 / 1

Global Subsumption: the Ground Case, an Example

Consider

S =

8
>><

>>:

p(x) _ q(a)
¬p(x) _ q(c)
f (a) = a

f (f (a)) 6= a

9
>>=

>>;
Sgr =

8
>>>><

>>>>:

1 _ 2
¬1 _ 3

4
¬5

¬2,¬3

9
>>>>=

>>>>;

(D _ D

0) = 2 _ 6 _ 3

Sgr |= 2 _ 3

q(a) _ q(b) _ q(c) can be replaced by q(a) _ q(c)

Reger,G Revisiting Global Subsumption 5 / 1

Global Subsumption: the Non-Ground Case

We can lift this to give the non-ground global subsumption rule:

C _ C

0

C

where Sgr |= C� for non-empty C

0 and injective substitution � from
variables in C to fresh constants

For every generated clause C we
1 Let � = [x

1

7! c

1

, . . . xn 7! cn] for xi in C and fresh ci
2 Add C� to Sgr
3 Search for a minimal C 0 ⇢ C such that Sgr |= C

0

Why an injective substitution?
I

Sgr |= C is the same as Sgr ,¬C being inconsistent
I ¬C is ¬(8xC [x]) is 9x¬C [x] so � looks like the result of Skolemization

Reger,G Revisiting Global Subsumption 6 / 1

Example

Take the following case:
I

C = p(x , y) _ r(x)
I

S = {p(x , y) _ r(x), p(x , x)}

C cannot be reduced. Injectivity is important
I If we do things wrong we can get Sgr = {p(a, b) _ r(a), p(a, a)}
I We check {p(a, a) _ r(a), p(a, a),¬p(a, a)}
I We have Sgr |= p(a, a) but p(x , y) does not follow from S

If we add p(x , y) to S then C can be reduced
I The correct grounding of S is Sgr = {p(a, b) _ r(a), p(a, a), p(a, b)}
I We check {p(a, b) _ r(a), p(a, a), p(a, b),¬p(a, b)}
I

C can be replaced by p(x , y)

Reger,G Revisiting Global Subsumption 7 / 1

Note on Cheap SAT Solvers.... and Experiments!

We make a note that GS is all about doing some very cheap stu↵ for
big improvements

This will influence our decisions generally

And for this reason we only run SAT solver in unit propagation mode
i.e. no guessing

But maybe that assumption is wrong..

Experiment

Total Unique

Propagation Only 8935 61
Full 8920 46

Baseline ? ?

Reger,G Revisiting Global Subsumption 8 / 1

Overview

Reger,G Revisiting Global Subsumption 9 / 1

What do we want?

Consider 8
<

:

C

1

= p(x) _ ¬q(y) _ r(y)
¬p(x)

9
=

;

Reger,G Revisiting Global Subsumption 10 / 1

What do we want?

Consider 8
<

:

C

1

= p(a) _ ¬q(b) _ r(b)
¬p(a)

9
=

; gr

� = [x 7! a, y 7! b] for C
1

Reger,G Revisiting Global Subsumption 10 / 1

What do we want?

Consider
8
<

:

C

1

= p(a) _ ¬q(b) _ r(b)
¬p(a)

9
=

; gr |= ¬q(x) _ r(x)

� = [x 7! a, y 7! b] for C
1

Reger,G Revisiting Global Subsumption 10 / 1

What do we want?

Consider
8
<

:

C

1

= p(a) _ ¬q(b) _ r(b)
¬p(a)

9
=

; gr |= ¬q(a) _ r(a)

� = [x 7! a, y 7! b] for C
1

Reger,G Revisiting Global Subsumption 10 / 1

What do we want?

Consider
8
<

:

C

1

= p(b) _ ¬q(a) _ r(a)
¬p(b)

9
=

; gr |= ¬q(a) _ r(a)

� = [x 7! b, y 7! a] for C
1

Reger,G Revisiting Global Subsumption 10 / 1

What do we want?

Consider
8
<

:

C

1

= p(a) _ ¬q(b) _ r(b)
¬p(a)

9
=

; gr |= ¬q(b) _ r(b)

� = [x 7! a, y 7! b] for C
1

Reger,G Revisiting Global Subsumption 10 / 1

What do we want?

Consider
8
>><

>>:

C

1

= p(a) _ ¬q(b) _ r(b)
¬p(a)

p(b) _ ¬q(a) _ r(a)
¬p(b)

9
>>=

>>;
gr |= ¬q(a) _ r(a)

� = [x 7! a, y 7! b] for C
1

Reger,G Revisiting Global Subsumption 10 / 1

What do we do?

A single substitution

Order literals
I Prefer fewer variables
I Prefer lighter literals (complexity)
I Order predicate symbols
I Prefer negative
I Break ties

Reger,G Revisiting Global Subsumption 11 / 1

Ideas

Implemented
I Reverse the ordering (backward) to see what happens
I

n substitutions where there are n clauses where we put each literal first

Next ideas
I Ground units in more than one way (i.e. p(a), p(b), p(c))
I Single constant substitution (i.e. {x

1

, . . . , xn 7! a})
I Lookahead (see last question)

Reger,G Revisiting Global Subsumption 12 / 1

Experiment

Total Unique A Unique T

AVATAR on

Standard 8873 36 23
Backward 8882 54 38
First 8845 31 25

AVATAR o↵

Standard 8110 26 5
Backward 8099 24 7
First 8029 20 6

Interesting relation with AVATAR

Kind of demonstrates the point about di�culty with experiments

Reger,G Revisiting Global Subsumption 13 / 1

Overview

Reger,G Revisiting Global Subsumption 14 / 1

Finding the subclause

Given D _ D

0 we need to decide which bit is D and which bit is D 0

Clearly trying all combinations will get boring (expensive)

Initial idea is to go linearly i.e. first 1,2,3...

It worked very well like this until we did something better...

Reger,G Revisiting Global Subsumption 15 / 1

Using Solving Under Assumptions

Concept:
I Assume some SAT variables v

1

, . . . , vn have a certain value
I Run SAT solver and it finds unsat
I Ask it for a minimal set of xi that were used in unsat

In this context...

Let D _ D

0 be l

1

_ . . . _ ln such that the grounding is v
1

_ . . . _ vn

Add v

1

_ . . . _ vn as usual

Assume ¬v
1

, . . .¬vn
vi is a first guess at D 0

Reger,G Revisiting Global Subsumption 16 / 1

Going Further

We can then minimise the set of assumptions

Basically, step through the literals and see if they can be removed

Three options
I Don’t do it
I In order
I Randomized order (default)

Reger,G Revisiting Global Subsumption 17 / 1

Experiment

Total Unique

o↵ 8959 16
on 8965 21
randomized 8981 38

So the default is best... that’s good

Reger,G Revisiting Global Subsumption 18 / 1

Overview

Reger,G Revisiting Global Subsumption 19 / 1

AVATAR Clauses

In AVATAR with have A-Clauses i.e. clauses have assertions A that
capture splitting context

Reductions (like GS) need to be careful of assertions

Reger,G Revisiting Global Subsumption 20 / 1

Two Approaches

Add assertions as additional SAT variables to every grounded clause

Current Branch
I Assume the current branch

Full Model
I Assume the full encoding of the model

What we haven’t tried
I Letting GS and AVATAR share a SAT solver
I Using GS to reduce the assertions only

Reger,G Revisiting Global Subsumption 21 / 1

Experiment

Total Unique

ssnc=known

o↵ 9030 131
current 6149 6
full 3250

ssnc=all

o↵ 8615 47
current 933
full 699

ssnc=all dependent

o↵ 8678 16
current 5915
full 3416

ssnc=none

o↵ 8832 43
current 6853
full 3586

Reger,G Revisiting Global Subsumption 22 / 1

Overview

Reger,G Revisiting Global Subsumption 23 / 1

Idea: replace SAT solver with SMT solver

It’s a simple idea... we did it with AVATAR

But, the idea of GS is to be cheap

Let’s try it and find out!

Reger,G Revisiting Global Subsumption 24 / 1

Technical Issues

Ground terms get translated into SMT language

Non-ground terms get named propositionally again

Make sure that assertions (which represent theory constraints) are
also included!

I had hoped to present some experimental results, but I forgot the last
point so it was unsound

Reger,G Revisiting Global Subsumption 25 / 1

Overview

Reger,G Revisiting Global Subsumption 26 / 1

The Lookahead Idea

Earlier when we were talking about good groundings to add we were
trying to guess what groundings were already in the SAT solver

The next idea is to look and base our decision on what is actually
there

Is this E-matching? (without the Equality bit)

Reger,G Revisiting Global Subsumption 27 / 1

Conclusions

Global Subsumption is useful

We can play with lots of bits

There’s more playing to do

Reger,G Revisiting Global Subsumption 28 / 1

