Revisiting Global Subsumption

Giles Reger¹ and Martin Suda²

(1) School of Computer Science, University of Manchester, UK

(2) Institute for Information Systems, Vienna University of Technology, Austria

The 3rd Vampire Workshop

Introduction

In this talk we will

- Remind ourselves what Global Subsumption (GS) is
- Discuss five related questions

The following five questions will hopefully make more sense when we have explained GS

- What groundings are good groundings?
- What subclause are good subclauses?
- San GS play nicely with AVATAR?
- Can GS play with theories?
- San we apply this lookahead idea to GS?

Overview

Global Subsumption: the Ground Case

- Assume a set of first order clauses S
- Let S_{gr} be a set of ground clauses implied by S i.e. instances of clauses in S
- The ground clause $D \lor D'$ can be replaced by D in S if $S_{gr} \models D$
- This is sound as D follows from S and subsumes $D \vee D'$
- If D is empty then S_{gr} is unsatisfiable and so is S

Global Subsumption: the Ground Case, an Example

• Consider

$$S = \left\{ \begin{array}{c} p(x) \lor q(a) \\ \neg p(x) \lor q(c) \\ f(a) = a \\ f(f(a)) \neq a \end{array} \right\} \quad S_{gr} = \left\{ \begin{array}{c} p(\bot) \lor q(a) \\ \neg p(\bot) \lor q(c) \\ f(a) = a \\ f(f(a)) \neq a \end{array} \right\}$$

•
$$(D \lor D') = q(a) \lor q(b) \lor q(c)$$

•
$$S_{gr} \models q(a) \lor q(c)$$

• $q(a) \lor q(b) \lor q(c)$ can be replaced by $q(a) \lor q(c)$

Global Subsumption: the Ground Case, an Example

Consider

$$S = \left\{ \begin{array}{c} p(x) \lor q(a) \\ \neg p(x) \lor q(c) \\ f(a) = a \\ f(f(a)) \neq a \end{array} \right\} \quad S_{gr} = \left\{ \begin{array}{c} 1 \lor 2 \\ \neg 1 \lor 3 \\ 4 \\ \neg 5 \end{array} \right\}$$

•
$$(D \lor D') = 2 \lor 6 \lor 3$$

•
$$S_{gr} \models 2 \lor 3$$

• $q(a) \lor q(b) \lor q(c)$ can be replaced by $q(a) \lor q(c)$

Global Subsumption: the Ground Case, an Example

Consider

$$S = \left\{ \begin{array}{c} p(x) \lor q(a) \\ \neg p(x) \lor q(c) \\ f(a) = a \\ f(f(a)) \neq a \end{array} \right\} \quad S_{gr} = \left\{ \begin{array}{c} 1 \lor 2 \\ \neg 1 \lor 3 \\ 4 \\ \neg 5 \\ \neg 2, \neg 3 \end{array} \right\}$$

•
$$(D \lor D') = 2 \lor 6 \lor 3$$

•
$$S_{gr} \models 2 \lor 3$$

• $q(a) \lor q(b) \lor q(c)$ can be replaced by $q(a) \lor q(c)$

Global Subsumption: the Non-Ground Case

• We can lift this to give the non-ground global subsumption rule:

$$\frac{C \vee C'}{C}$$

where $S_{gr} \models C\gamma$ for non-empty C' and injective substitution γ from variables in C to fresh constants

• For every generated clause C we

1 Let
$$\gamma = [x_1 \mapsto c_1, \dots, x_n \mapsto c_n]$$
 for x_i in C and fresh c_i

- 2 Add $C\gamma$ to S_{gr}
- **③** Search for a minimal $C' \subset C$ such that $S_{gr} \models C'$

• Why an injective substitution?

- $S_{gr} \models C$ is the same as $S_{gr}, \neg C$ being inconsistent
- ▶ $\neg C$ is $\neg (\forall \mathbf{x} C[\mathbf{x}])$ is $\exists \mathbf{x} \neg C[\mathbf{x}]$ so γ looks like the result of Skolemization

Example

- Take the following case:
 - $C = p(x, y) \vee r(x)$
 - $\blacktriangleright S = \{p(x, y) \lor r(x), p(x, x)\}$
- C cannot be reduced. Injectivity is important
 - If we do things wrong we can get $S_{gr} = \{p(a, b) \lor r(a), p(a, a)\}$
 - We check $\{p(a, a) \lor r(a), p(a, a), \neg p(a, a)\}$
 - We have $S_{gr} \models p(a, a)$ but p(x, y) does not follow from S
- If we add p(x, y) to S then C can be reduced
 - The correct grounding of S is $S_{gr} = \{p(a, b) \lor r(a), p(a, a), p(a, b)\}$
 - We check {p(a, b) ∨ r(a), p(a, a), p(a, b), ¬p(a, b)}
 - C can be replaced by p(x, y)

MANCHESTER

Note on Cheap SAT Solvers.... and Experiments!

- We make a note that GS is all about doing some very cheap stuff for big improvements
- This will influence our decisions generally
- And for this reason we only run SAT solver in unit propagation mode i.e. no guessing
- But maybe that assumption is wrong..
- Experiment

	Total	Unique
Propagation Only	8935	61
Full	8920	46
Baseline	?	?

Overview

• Consider $\left\{\begin{array}{c} C_1 = p(x) \lor \neg q(y) \lor r(y) \\ \neg p(x) \end{array}\right\}$

(日) (同) (三) (三)

• Consider $\left\{\begin{array}{c} C_1 = p(a) \lor \neg q(b) \lor r(b) \\ \neg p(a) \end{array}\right\}_{gr}$

• $\gamma = [x \mapsto a, y \mapsto b]$ for C_1

(日) (同) (三) (三)

• Consider

$$\left\{\begin{array}{c}C_1 = p(a) \lor \neg q(b) \lor r(b)\\ \neg p(a)\end{array}\right\}_{gr} \models \neg q(x) \lor r(x)$$

•
$$\gamma = [x \mapsto a, y \mapsto b]$$
 for C_1

・ロト ・聞 ト ・ ヨト ・ ヨト

Consider

$$\left\{\begin{array}{c}C_1 = p(a) \lor \neg q(b) \lor r(b) \\ \neg p(a)\end{array}\right\}_{gr} \models \neg q(a) \lor r(a)$$

• $\gamma = [x \mapsto a, y \mapsto b]$ for C_1

Consider

$$\left\{\begin{array}{c}C_1 = p(b) \lor \neg q(a) \lor r(a) \\ \neg p(b)\end{array}\right\}_{gr} \models \neg q(a) \lor r(a)$$

• $\gamma = [x \mapsto b, y \mapsto a]$ for C_1

Consider

$$\left\{\begin{array}{c}C_1 = p(a) \lor \neg q(b) \lor r(b) \\ \neg p(a)\end{array}\right\}_{gr} \models \neg q(b) \lor r(b)$$

• $\gamma = [x \mapsto a, y \mapsto b]$ for C_1

Consider

$$\left\{\begin{array}{c}C_1 = p(a) \lor \neg q(b) \lor r(b) \\ \neg p(a) \\ p(b) \lor \neg q(a) \lor r(a) \\ \neg p(b)\end{array}\right\}_{gr} \models \neg q(a) \lor r(a)$$

• $\gamma = [x \mapsto a, y \mapsto b]$ for C_1

What do we do?

- A single substitution
- Order literals
 - Prefer fewer variables
 - Prefer lighter literals (complexity)
 - Order predicate symbols
 - Prefer negative
 - Break ties

Ideas

Implemented

- Reverse the ordering (backward) to see what happens
- ▶ *n* substitutions where there are *n* clauses where we put each literal first

Next ideas

- Ground units in more than one way (i.e. p(a), p(b), p(c))
- Single constant substitution (i.e. $\{x_1, \ldots, x_n \mapsto a\}$)
- Lookahead (see last question)

Experiment

	Total	Unique A	Unique T
AV	AVATAR on		
Standard	8873	36	23
Backward	8882	54	38
First	8845	31	25
AVATAR off			
Standard	8110	26	5
Backward	8099	24	7
First	8029	20	6

- Interesting relation with AVATAR
- Kind of demonstrates the point about difficulty with experiments

< 3 >

< A

Overview

メロト メポト メヨト メヨト

Finding the subclause

- Given $D \lor D'$ we need to decide which bit is D and which bit is D'
- Clearly trying all combinations will get boring (expensive)
- Initial idea is to go linearly i.e. first 1,2,3...
- It worked very well like this until we did something better...

Using Solving Under Assumptions

- Concept:
 - Assume some SAT variables v_1, \ldots, v_n have a certain value
 - Run SAT solver and it finds unsat
 - Ask it for a minimal set of x_i that were used in unsat
- In this context...
- Let $D \lor D'$ be $l_1 \lor \ldots \lor l_n$ such that the grounding is $v_1 \lor \ldots \lor v_n$
- Add $v_1 \lor \ldots \lor v_n$ as usual
- Assume $\neg v_1, \ldots \neg v_n$
- v_i is a first guess at D'

Going Further

- We can then minimise the set of assumptions
- Basically, step through the literals and see if they can be removed
- Three options
 - Don't do it
 - In order
 - Randomized order (default)

Experiment

	Total	Unique
off	8959	16
on	8965	21
randomized	8981	38

• So the default is best... that's good

Overview

メロト メポト メヨト メヨト

AVATAR Clauses

- In AVATAR with have A-Clauses i.e. clauses have assertions A that capture splitting context
- Reductions (like GS) need to be careful of assertions

Two Approaches

• Add assertions as additional SAT variables to every grounded clause

- Current Branch
 - Assume the current branch
- Full Model
 - Assume the full encoding of the model
- What we haven't tried
 - Letting GS and AVATAR share a SAT solver
 - Using GS to reduce the assertions only

Experiment

	Total	Unique
SSI	nc=know	vn
off	9030	131
current	6149	6
full	3250	
:	ssnc=all	
off	8615	47
current	933	
full	699	
ssnc=	all_depe	ndent
off	8678	16
current	5915	
full	3416	
SS	snc=non	e
off	8832	43
current	6853	
full	3586	•

Revisiting Global Subsumption

MANCHESTER 2

▶ < ∃ >

Overview

メロト メポト メヨト メヨト

Idea: replace SAT solver with SMT solver

- It's a simple idea... we did it with AVATAR
- But, the idea of GS is to be cheap
- Let's try it and find out!

Technical Issues

- Ground terms get translated into SMT language
- Non-ground terms get named propositionally again
- Make sure that assertions (which represent theory constraints) are also included!
- I had hoped to present some experimental results, but I forgot the last point so it was unsound

Overview

メロト メポト メヨト メヨト

- Earlier when we were talking about <u>good</u> groundings to add we were trying to guess what groundings were already in the SAT solver
- The next idea is to look and base our decision on what is actually there
- Is this E-matching? (without the Equality bit)

Conclusions

- Global Subsumption is useful
- We can play with lots of bits
- There's more playing to do