Motivation FO-LTL¢ Slicing Slicability Usable Fragment Translation

From First-order Temporal Logic to
Parametric Trace Slicing
Giles Reger David Rydeheard

University of Manchester, Manchester, UK

September 25, 2015

Conclude

Motivation FO-LTLy Slicing Slicability Usable Fragment Translation Conclude

Outline

Motivation

FO-LTL;

Parametric Trace Slicing
Slicability

Usable Fragment
Translation

Conclude

Motivation

Motivation

There are lots and lots of languages used for specifying RV
properties (see the competition)
Particularly for first-order/parametric/data properties

o Whilst propositional case seems well understood, lots more
freedom with first-order

¢ Mainly how to organise the domain of quantification

e Languages often driven by monitoring concerns

We should understand how they are related

Parametric trace slicing can be efficiently monitored
Temporal logic is well understand and widely used

If we can understand their connection we can leverage
both advantages

Motivation FO-LTL; Slicing Slicability Usable Fragment Translation Conclude

Interpreting Formulas

Does this trace

satisfy this formula

In the ‘standard’ view of quantification?

In the ‘slicing’ view of quantification?

Motivation FO-LTL; Slicing Slicability Usable Fragment Translation Conclude

Interpreting Formulas

Does this trace

satisfy this formula

vx - D(p(x) = Oag(x))

In the ‘standard’ view of quantification?
In the ‘slicing’ view of quantification?

Motivation

Interpreting Formulas

Does this trace
p(a).p(b).q(a).q(b).p(c).q(c).p(d).q(d)
satisfy this formula
vx : O(p(x) = Oq(x))

In the ‘standard’ view of quantification?
In the ‘slicing’ view of quantification?

Motivation FO-LTL; Slicing Slicability Usable Fragment Translation Conclude

Interpreting Formulas

Does this trace
p(a).p(b).q(a)-q(b).p(c).q(c).p(d).q(d)
satisfy this formula
vx : O(p(x) = Oq(x))

In the ‘standard’ view of quantification?
In the ‘slicing’ view of quantification?

Motivation FO-LTL; Slicing Slicability Usable Fragment Translation Conclude

Interpreting Formulas

Does this trace
p(a).p(b).q(a).q(b).p(c).q(c).p(d).q(d)
satisfy this formula
vx : O(p(x) = Oq(x))

In the ‘standard’ view of quantification?
In the ‘slicing’ view of quantification?

Motivation

Interpreting Formulas

Does this trace

p(a).p(b).q(a).q(b).p(c).q(c).p(d).q(d)

satisfy this formula

VX 1 ~q(x) U p(x)

In the ‘standard’ view of quantification?
In the ‘slicing’ view of quantification?

Motivation FO-LTL; Slicing Slicability Usable Fragment Translation Conclude

Interpreting Formulas

Does this trace

open(A).open(B).open(B).close(A).close(A)

satisfy this formula

Vf : open(f) — (—open(f) U° close(f))

In the ‘standard’ view of quantification?
In the ‘slicing’ view of quantification?

Motivation FO-LTL; Slicing Slicability Usable Fragment Translation Conclude

Interpreting Formulas

Does this trace

open(A).open(B).open(B).close(A).close(A)

satisfy this formula

Vf : open(f) — (—open(f) U° close(f))

In the ‘standard’ view of quantification?
In the ‘slicing’ view of quantification?

Motivation FO-LTL; Slicing Slicability Usable Fragment Translation Conclude

Interpreting Formulas

Does this trace

open(A).open(B).open(B).close(A).close(A)

satisfy this formula

Vf : open(f) — (—open(f) U° close(f))

In the ‘standard’ view of quantification?
In the ‘slicing’ view of quantification?

Motivation FO-LTL¢ Slicing Slicability Usable Fragment Translation Conclude

Interpreting Formulas

Does this trace

satisfy this formula

In the ‘standard’ view of quantification?

In the ‘slicing’ view of quantification?

Other notions of quantification exist that give different
interpretations, we stick to these two for now

FO-LTL;

D,1,Vv,i
D,7,v,i
D,1,Vv,i
D,7,v,i
D,1,Vv,i

D,1,Vv,i

Introducing FO-LTL;

Time is linear, discrete and future
Finite-trace semantics
Syntax (note use of next-Until)

p=truela|Vx: o[=p|oVe|oU

Semantics

T

T

true

a

-

H1V P2
o1 U° 2

VX : ¢

if ;= v(a)

it D, 7, v,i ¢

ifD,T, v, i): o1 OI'D,T,V,I.‘: 03

if there exists a j > i such that either
D,1,v,j = ¢z 0r (j = |7| and ¢ = false)

and fori < k < jwe have D, 7, v,k = ¢1

if for every d € D(x) we have

D,r,vi[x—d],ikE¢

Motivation FO-LTLy Slicing Slicability Usable Fragment Translation Conclude

Introducing FO-LTL;

e Time is linear, discrete and future
e Finite-trace semantics
e Syntax (note use of next-Until)

p=truela|Vx:o|=p|oVelol

e Semantics
D,t,v,i [true
D,r,v,i E a if 7 = v(a)
D,r,v,i E —¢ it D, 7, v,i ¢
D,1,Vv,i): P1V po if’D,T,V,I.):(;HOI’D,T,V,I.':qbg
D,m,v,i | ¢1U° ¢ ifthere exists aj > i such that either
D,7,v,j = ¢20r (j = |7] and ¢ = false)
and fori < k < jwe have D, 7, v,k = ¢1
D,r,v,i E Vx:¢ if for every d € D(x) we have

D,r,vi[x—d,iE¢

Motivation FO-LTLy Slicing Slicability Usable Fragment Translation Conclude

Introducing FO-LTL;

e Time is linear, discrete and future
e Finite-trace semantics
e Syntax (note use of next-Until)

p=truela|Vx: o[=p|oVe|oU

e Semantics
D,t,v,i [true
D,r,v,i E a if 7 = v(a)
D,r,v,i E —¢ it D, 7, v,i ¢
D,1,Vv,i): P1V po if’D,T,V,I.):(;HOI’D,T,V,I.':qbg
D,m,v,i |E ¢1U° ¢o ifthere exists aj > i such that either
D,7,V,j = ¢20r (j = |7] and ¢ = false)
and fori < k < jwe have D, 7, v,k = ¢1
D,r,v,i E Vx:¢ if for every d € D(x) we have

D,r,vi[x—d,iE¢

FO-LTL;

Definitions

Can define the normal things in terms of 4/°

O =
$1 U P2

O =
Lo =

false U°

P2V (1 A (o1 U° $2))
trueld ¢

o U false

Next is strong i.e. (a is false at the end of the trace
But Oa will be true at the end of the trace
And Oa will be false at the end of the trace

Slightly non-standard finite trace semantics, would like to

vary in the future

FO-LTL;

Domain of quantification

e The (other) controversial bit

o We write 7 |= ¢ if a trace 7 satisfies a property ¢, defined
as follows

TE¢ iff dom(r,¢),7,[,0 ¢

where the domain function dom is defined as:

e(...,d,-,...) eTN
dom(T, ¢)(x) = {d,- where e(...,Xj,...) € events(¢) A
Xi= X

e The domain of quantification is dependent on the full trace

Slicing

Parametric Trace Slicing

e Given a trace 7 and valuation 6 let 7 |y be the 6-slice of T

€lg = ¢
[(rle)e®) if3e(@) € AX) : 6(e(2)) = e(V)
Te(V) o = { (T ¢Z) otherwise

e The trace 7 is accepted for quantification list A(X) and
propositional property P(X) if 7 }:P(X) A(X), defined as
E(X) Vx : A if for every d € dom(x) we have 7 HT!

T):P(X dx : A if for some d € dom(x) we have 7):9
ST if 7 lge £(6,P(X))

Xx—d| A

X)
fxa) N

¢ Using the same domain of quantification dom

Slicing

Example
Given the trace

call(A).call(B).call(C).return(C).return(B).call(C).return(C).return(A)
And a property ¢ that whenever a method m is called inside a
method my, the method m, should return before my.

events(p) = {call(my), return(my),call(mp), return(m)}
We get the following slices

m m | slice

A B | call(A).call(B).return(B).return(A)
A C

B C

call(A).call(C).return(C).call(C).return(C).return(A)
call(B).call(C).return(C).return(B).call(C).return(C)

Each slice can be checked by some unquantified checker
P(m1,m)

Slicability

Goal of considering Sliceability

Identify the properties of FO-LTL formulas that allow the
semantics to coincide with the slicing semantics

For now only consider globally quantified properties

This is an artificial restriction (as our slicing definition is
restricted) that makes everything easier for now

... but the globally quantified fragment is still interesting
.. and we have begun to consider the full setting

Aim to understand correspondence
And use this to efficiently monitor FO-LTL; properties

Slicability

Slicing Invariance

A formula) with free variables X is sliceable if for valuation 6
over X and trace 7. The formula ¢ is sliceable if

Y & Tl

Let L(v,0) = {7 | 7,0 = ¢} be the traces satisfying 1. Define
LE(4,) as the non-relevance-closure of L(1),) to be the
smallest set containing

T it 7eL(y,0)
T1.72.73 if Va € 1 :adrelevant(y,0) and .73 € LE(v, 0)
T4.73 if 3m.1.m3 € LC(1,0) :Va € 15 : a ¢ relevant(v, §)

where relevant(y, 6) = {6(a) | a € events())}. The formula 1 is
slicing invariant if £(1),0) = LC(1,).

The notions of sliceability and slicing invariance coincide.

Slicability

What are the restrictions?

x(a).£(a).£(b).g(a).g(b).h(b, a).£(b).h(b, c).g(b)

Starting at the start
e £(x)V Ok(x)and —£(x) vV Ok(x) i.e. for x = b
¢ Rule: Cannot allow events (in positive or negative form) at
the top level of a sliceable formula
o —£(x) U° g(x) for the trace g(a).g(a).£(b).g(b).
Never saying next
e O(£(x) = Og(x)) forx =b
e o1 =0(£(x) Vg(x)) =(£(x) Vg(x)) U false for x = b
¢ Rule: cannot restrict what happens at the next time point
Never saying never
o o = O(—£(X) A —g(x)) = trued (—£(x) A —-g(x)) forx =b
e Rule: cannot wait for the negation of things
Symmetry. Note that o1 = —¢»o

Slicability

What are the restrictions?

k(a).f(a).£(b).g(a).g(b).h(b,a).£(b).h(b, c).g(b)
.£(b). .g(b). .£(b). .g(b)
Starting at the start
e £(x)VOk(x)and —£(x) Vv Ok(x) i.e. for x = b
¢ Rule: Cannot allow events (in positive or negative form) at
the top level of a sliceable formula
e —f(x) U° g(x) for the trace g(a).g(a).£(b).g(b).
Never saying next
e O(£(x) = Og(x)) forx =b
e o1 =0(£(x) Vg(x)) =(£(x) Vg(x)) U false for x = b
¢ Rule: cannot restrict what happens at the next time point
Never saying never
o o = O(—£(X) A —g(x)) = trued (—£(x) A —-g(x)) forx =b
e Rule: cannot wait for the negation of things
Symmetry. Note that o1 = —¢»o

Slicability

What are the restrictions?

k(a).f(a).£(b).g(a).g(b).h(b,a).£(b).h(b, c).g(b)
.£(b). .g(b). .£(b). .g(b)
Starting at the start
e £(x)V Ok(x)and —£(x) VvV Ok(x) i.e. for x = b
¢ Rule: Cannot allow events (in positive or negative form) at
the top level of a sliceable formula
e —f(x) U° g(x) for the trace g(a).g(a).£(b).g(b).
Never saying next
e O(£(x) = Og(x)) forx =b
e o1 =0(£(x) Vg(x)) =(£(x) Vg(x)) U false for x = b
¢ Rule: cannot restrict what happens at the next time point
Never saying never
o o = O(—£(X) A —g(x)) = trued (—£(x) A —-g(x)) forx =b
e Rule: cannot wait for the negation of things
Symmetry. Note that o1 = —¢»o

Motivation FO-LTL; Slicing Slicability Usable Fragment Translation Conclude

What are the restrictions?

k(a).f(a).£(b).g(a).g(b).h(b, a).£(b).h(b, c).g(b)
.£(b). .g(b). .£(b). .g(b)
Starting at the start
e £(x)V Ok(x)and —£(x) vV Ok(x) i.e. for x = b
¢ Rule: Cannot allow events (in positive or negative form) at
the top level of a sliceable formula
o —£(x) U° g(x) for the trace g(a).g(a).£(b).g(b).
Never saying next
e O(£(x) = Og(x)) forx =b
e o1 =0(£(x) Vg(x)) =(£(x) Vg(x)) U false for x = b
¢ Rule: cannot restrict what happens at the next time point
Never saying never
o o = O(—£(X) A —g(x)) = trued (—£(x) A —-g(x)) forx =b
e Rule: cannot wait for the negation of things
Symmetry. Note that o1 = —¢»o

Slicability

What are the restrictions?

k(a).f(a).£(b).g(a).g(b).h(b,a).£(b).h(b, c).g(b)
.£(b). .g(b). .£(b). .g(b)
Starting at the start
e £(x)V Ok(x)and —£(x) vV Ok(x) i.e. for x = b
¢ Rule: Cannot allow events (in positive or negative form) at
the top level of a sliceable formula
o —£(x) U° g(x) for the trace g(a).g(a).£(b).g(b).
Never saying next
e [(£(x) = Og(x)) forx =b
e o1 =0(£(x) Vg(x)) =(£(x) Vg(x)) U false for x = b
¢ Rule: cannot restrict what happens at the next time point
Never saying never
o o = O(—£(X) A —g(x)) = trued (—£(x) A —-g(x)) forx =b
e Rule: cannot wait for the negation of things
Symmetry. Note that o1 = —¢»o

Slicability

What are the restrictions?

k(a).f(a).£(b).g(a).g(b).h(b, a).£(b).h(b, c).g(b)
.£(b). .g(b). .£(b). .g(b)
Starting at the start
e £(x)V Ok(x)and —£(x) vV Ok(x) i.e. for x = b
¢ Rule: Cannot allow events (in positive or negative form) at
the top level of a sliceable formula
o —£(x) U° g(x) for the trace g(a).g(a).£(b).g(b).
Never saying next
e O(£(x) = Og(x)) forx =b
e o1 =0(£(x) Vg(x)) =(£(x)Vg(x)) U false for x = b
¢ Rule: cannot restrict what happens at the next time point
Never saying never
o o = O(—£(X) A —g(x)) = trued (—£(x) A —-g(x)) forx =b
e Rule: cannot wait for the negation of things
Symmetry. Note that o1 = —¢»o

Motivation FO-LTL; Slicing Slicability Usable Fragment Translation Conclude

What are the restrictions?

k(a).f(a).£(b).g(a).g(b).h(b, a).£(b).h(b, c).g(b)
.£(b). .g(b). .£(b). .g(b)
Starting at the start
e £(x)V Ok(x)and —£(x) vV Ok(x) i.e. for x = b
¢ Rule: Cannot allow events (in positive or negative form) at
the top level of a sliceable formula
o —£(x) U° g(x) for the trace g(a).g(a).£(b).g(b).
Never saying next
e O(£(x) = Og(x)) forx =b
e o1 =0(£(x) Vg(x)) =(£(x) Vg(x)) U false for x = b
e Rule: cannot restrict what happens at the next time point
Never saying never
o o = O(—£(X) A —g(x)) = trued (—£(x) A —-g(x)) forx =b
e Rule: cannot wait for the negation of things
Symmetry. Note that o1 = —¢»o

Slicability

What are the restrictions?

k(a).f(a).£(b).g(a).g(b).h(b, a).£(b).h(b, c).g(b)
.£(b). .g(b). .£(b). .g(b)
Starting at the start
e £(x)V Ok(x)and —£(x) vV Ok(x) i.e. for x = b
¢ Rule: Cannot allow events (in positive or negative form) at
the top level of a sliceable formula
e —f(x) U° g(x) for the trace g(a).g(a).£(b).g(b).
Never saying next
e O(£(x) = Og(x)) forx =b
e o1 =0(£(x) Vg(x)) =(£(x) Vg(x)) U false for x = b
¢ Rule: cannot restrict what happens at the next time point
Never saying never
o o = Q(—£(X) A —g(x)) = frued (—£(x) A —g(x)) forx =b
e Rule: cannot wait for the negation of things
Symmetry. Note that o1 = —¢»o

Slicability

What are the restrictions?

k(a).f(a).£(b).g(a).g(b).h(b, a).£(b).h(b, c).g(b)
.£(b). .g(b). .£(b). .g(b)
Starting at the start
e £(x)V Ok(x)and —£(x) vV Ok(x) i.e. for x = b
¢ Rule: Cannot allow events (in positive or negative form) at
the top level of a sliceable formula
o —£(x) U° g(x) for the trace g(a).g(a).£(b).g(b).
Never saying next
e O(£(x) = Og(x)) forx =b
e o1 =0(£(x) Vg(x)) =(£(x) Vg(x)) U false for x = b
¢ Rule: cannot restrict what happens at the next time point
Never saying never
o o = O(—£(X) A —g(x)) = trued (—£(x) A —-g(x)) forx =b
¢ Rule: cannot wait for the negation of things
Symmetry. Note that o1 = —¢»o

Slicability

What are the restrictions?

k(a).f(a).£(b).g(a).g(b).h(b, a).£(b).h(b, c).g(b)
.£(b). .g(b). .£(b). .g(b)
Starting at the start
e £(x)V Ok(x)and —£(x) vV Ok(x) i.e. for x = b
¢ Rule: Cannot allow events (in positive or negative form) at
the top level of a sliceable formula
o —£(x) U° g(x) for the trace g(a).g(a).£(b).g(b).
Never saying next
e O(£(x) = Og(x)) forx =b
e o1 =0(£(x) Vg(x)) =(£(x) Vg(x)) U false for x = b
¢ Rule: cannot restrict what happens at the next time point
Never saying never
o o = O(—£(X) A —g(x)) = trued (—£(x) A —-g(x)) forx =b
e Rule: cannot wait for the negation of things
Symmetry. Note that 1 = =2

Slicability

Define Syntactic Fragment F

Let F be those formulas

Q1X1 :...Qan : 1/)7'

for zero or more quantifications Qjx;, with Q; =V or 3, and
quantifier-free ¢t inductively defined as :

vr
(0
YR
Yu

YU YR | b VT | b AT
true | YV y | A | —a
false | yr Ay | YRV YR | @
VLU YR [PLU YR | Yy V Yy | Yu ANy

¢ Negations only on atoms
e Left formulas (¢,) are true on non-relevant events
¢ Right formulas (vg) are false on non-relevant events

Slicability
Properties

Lemma
For any formula +) € F with free variables X, traces my and r»,
valuations 6 over X, events a ¢ relevant(v,) and indices i, j:

Case 1. Ify in+ gy and (ry.a.72); € relevant(v, 0) then

Tr.a.1m2,0,i E Y < 11.72,0,j E

i ifi < |r|

j=1i—1 otherwise

Case 2. If) isin then ty.a.12,0,|m| E ¢

Case 3. If i) isinyg then T1.@a.72, 0, |1| = ¢

Case 4. Ify isinvyt thenty.a.12,0,0 = ¢ < 741.72,0,0 =1

where j = {

Theorem
All formulas in F are sliceable.

Motivation FO-LTL; Slicing Slicability Usable Fragment Translation Conclude

Is F usable as a specification language?

e Most properties in Dwyer et al. fit, obviously some do not
e HasNext

Vi: (—next(i) U hasNext(i))A
O(next(f) — (-next (i) U° hasNext(i)))

e UnsafeMaplter

Vm:Ve:Vi: O(create(m,c) — O(iterator(c,i) —
O(update(m) — O—-use(i))))

e CallNesting

Ymy :Vmo :
(mret(my) U call(my)) A (—ret(mp) U call(me))A
O(call(m) — (mcall(m) U ret(m))) Ad(call(m) —
(call(me) — ((—ret(m) A —call(m)) U ret(mo))) U ret(my))

Translation

From F to slicing-based formalism QEA

¢ Now we have defined F we can translate formulas in F to
a formalism that can be efficiently monitored

e We choose QEA as this is our formalism

e Straightforward progression-based translation of
quantifier-free part to automaton

e Technique is not new but we couldn’t find it written down
nicely anywhere

Translation

Example
Consider HasNext

¥ = (AV(RA(=n U° h)))A(=nV(=nU° h)A((—=nV(-nU° h) UC F)

h n

— —
¢1=nh false true
¢2=h true false

3 = 1 U° P2 o ¢4
P4 = P2 V (01 N\ ¢3) true false

¢5 = ¢y V ¢3 true b4
¢e = ¢5 U° false ¢s5 N ds @5 A de
)= g4 N\ Pg o5 N pg false

°© ¢5 A e > (¢4 A 5 A p) = 1)

e We observe three states: 1, false and ¢s A ¢.

e Acceptance based on acceptance of empty trace
o ¢g = ¢5 U° false is true on empty trace

Motivation FO-LTLy Slicing Slicability Usable Fragment Translation Conclude

Example

Consider HasNext

b = (AV(RA(=RU° h))A=RV(=n U° R)A((-RV(-n U° h)) U° F)

o 65\ g6 > (b4 A g5 A) =

o We observe three states: 1, false and ¢s A ¢g.

e Acceptance based on acceptance of empty trace
o ¢g = @5 U° false is true on empty trace

Conclude

Further Work

e Is F a maximal fragment?

e Extensions

Other finite-trace semantics (multi-valued)
Arbitrary predicates

Non-global quantifiers

Freeze quantifiers

Translation in the other direction?

e Implement translation in MARQ

Conclude

Conclusions

¢ First step in understanding the correspondence between
two languages used for first-order runtime verification

¢ Important that we understand the specification language
space

e Lots more to do

	Motivation
	FO-LTLf
	Parametric Trace Slicing
	Slicability
	Usable Fragment
	Translation
	Conclude

