
Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

From First-order Temporal Logic to
Parametric Trace Slicing

Giles Reger David Rydeheard

University of Manchester, Manchester, UK

September 25, 2015

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Outline

Motivation

FO-LTLf

Parametric Trace Slicing

Slicability

Usable Fragment

Translation

Conclude

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Motivation

• There are lots and lots of languages used for specifying RV
properties (see the competition)

• Particularly for first-order/parametric/data properties
• Whilst propositional case seems well understood, lots more

freedom with first-order
• Mainly how to organise the domain of quantification
• Languages often driven by monitoring concerns

• We should understand how they are related

• Parametric trace slicing can be efficiently monitored
• Temporal logic is well understand and widely used
• If we can understand their connection we can leverage

both advantages

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Interpreting Formulas

• Does this trace

• satisfy this formula

• In the ‘standard’ view of quantification?
• In the ‘slicing’ view of quantification?

• Other notions of quantification exist that give different
interpretations, we stick to these two for now

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Interpreting Formulas

• Does this trace

• satisfy this formula

∀x : �(p(x)→©q(x))

• In the ‘standard’ view of quantification?
• In the ‘slicing’ view of quantification?

• Other notions of quantification exist that give different
interpretations, we stick to these two for now

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Interpreting Formulas

• Does this trace

p(a).p(b).q(a).q(b).p(c).q(c).p(d).q(d)

• satisfy this formula

∀x : �(p(x)→©q(x))

• In the ‘standard’ view of quantification?
• In the ‘slicing’ view of quantification?

• Other notions of quantification exist that give different
interpretations, we stick to these two for now

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Interpreting Formulas

• Does this trace

p(a).p(b).q(a).q(b).p(c).q(c).p(d).q(d)

• satisfy this formula

∀x : �(p(x)→©q(x))

• In the ‘standard’ view of quantification?
• In the ‘slicing’ view of quantification?

• Other notions of quantification exist that give different
interpretations, we stick to these two for now

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Interpreting Formulas

• Does this trace

p(a).p(b).q(a).q(b).p(c).q(c).p(d).q(d)

• satisfy this formula

∀x : �(p(x)→©q(x))

• In the ‘standard’ view of quantification?
• In the ‘slicing’ view of quantification?

• Other notions of quantification exist that give different
interpretations, we stick to these two for now

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Interpreting Formulas

• Does this trace

p(a).p(b).q(a).q(b).p(c).q(c).p(d).q(d)

• satisfy this formula

∀x : ¬q(x) U p(x)

• In the ‘standard’ view of quantification?
• In the ‘slicing’ view of quantification?

• Other notions of quantification exist that give different
interpretations, we stick to these two for now

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Interpreting Formulas

• Does this trace

open(A).open(B).open(B).close(A).close(A)

• satisfy this formula

∀f : open(f)→ (¬open(f) U◦ close(f))

• In the ‘standard’ view of quantification?
• In the ‘slicing’ view of quantification?

• Other notions of quantification exist that give different
interpretations, we stick to these two for now

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Interpreting Formulas

• Does this trace

open(A).open(B).open(B).close(A).close(A)

• satisfy this formula

∀f : open(f)→ (¬open(f) U◦ close(f))

• In the ‘standard’ view of quantification?
• In the ‘slicing’ view of quantification?

• Other notions of quantification exist that give different
interpretations, we stick to these two for now

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Interpreting Formulas

• Does this trace

open(A).open(B).open(B).close(A).close(A)

• satisfy this formula

∀f : open(f)→ (¬open(f) U◦ close(f))

• In the ‘standard’ view of quantification?
• In the ‘slicing’ view of quantification?

• Other notions of quantification exist that give different
interpretations, we stick to these two for now

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Interpreting Formulas

• Does this trace

• satisfy this formula

• In the ‘standard’ view of quantification?
• In the ‘slicing’ view of quantification?
• Other notions of quantification exist that give different

interpretations, we stick to these two for now

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Introducing FO-LTLf

• Time is linear, discrete and future
• Finite-trace semantics
• Syntax (note use of next-Until)

φ = true | a | ∀x : φ | ¬φ | φ ∨ φ | φ U◦ φ

• Semantics

D, τ, v , i |= true
D, τ, v , i |= a if τi = v(a)
D, τ, v , i |= ¬φ if D, τ, v , i 6|= φ
D, τ, v , i |= φ1 ∨ φ2 if D, τ, v , i |= φ1 or D, τ, v , i |= φ2
D, τ, v , i |= φ1 U◦ φ2 if there exists a j > i such that either

D, τ, v , j |= φ2 or (j = |τ | and φ2 = false)
and fori < k < j we have D, τ, v , k |= φ1

D, τ, v , i |= ∀x : φ if for every d ∈ D(x) we have
D, τ, v † [x 7→ d], i |= φ

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Introducing FO-LTLf

• Time is linear, discrete and future
• Finite-trace semantics
• Syntax (note use of next-Until)

φ = true | a | ∀x : φ | ¬φ | φ ∨ φ | φ U◦ φ

• Semantics

D, τ, v , i |= true
D, τ, v , i |= a if τi = v(a)
D, τ, v , i |= ¬φ if D, τ, v , i 6|= φ
D, τ, v , i |= φ1 ∨ φ2 if D, τ, v , i |= φ1 or D, τ, v , i |= φ2
D, τ, v , i |= φ1 U◦ φ2 if there exists a j > i such that either

D, τ, v , j |= φ2 or (j = |τ | and φ2 = false)
and fori < k < j we have D, τ, v , k |= φ1

D, τ, v , i |= ∀x : φ if for every d ∈ D(x) we have
D, τ, v † [x 7→ d], i |= φ

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Introducing FO-LTLf

• Time is linear, discrete and future
• Finite-trace semantics
• Syntax (note use of next-Until)

φ = true | a | ∀x : φ | ¬φ | φ ∨ φ | φ U◦ φ

• Semantics

D, τ, v , i |= true
D, τ, v , i |= a if τi = v(a)
D, τ, v , i |= ¬φ if D, τ, v , i 6|= φ
D, τ, v , i |= φ1 ∨ φ2 if D, τ, v , i |= φ1 or D, τ, v , i |= φ2
D, τ, v , i |= φ1 U◦ φ2 if there exists a j > i such that either

D, τ, v , j |= φ2 or (j = |τ | and φ2 = false)
and fori < k < j we have D, τ, v , k |= φ1

D, τ, v , i |= ∀x : φ if for every d ∈ D(x) we have
D, τ, v † [x 7→ d], i |= φ

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Definitions

• Can define the normal things in terms of U◦

©ϕ = false U◦ ϕ
φ1 U φ2 = φ2 ∨ (φ1 ∧ (φ1 U◦ φ2))
♦φ = true U φ
�φ = φ U false

• Next is strong i.e. ©a is false at the end of the trace
• But �a will be true at the end of the trace
• And ♦a will be false at the end of the trace

• Slightly non-standard finite trace semantics, would like to
vary in the future

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Domain of quantification

• The (other) controversial bit

• We write τ |= φ if a trace τ satisfies a property φ, defined
as follows

τ |= φ iff dom(τ, φ), τ, [],0 |= φ

where the domain function dom is defined as:

dom(τ, φ)(x) =

di where
e(. . . ,di , . . .) ∈ τ ∧
e(. . . , xi , . . .) ∈ events(φ) ∧
xi = x


• The domain of quantification is dependent on the full trace

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Parametric Trace Slicing

• Given a trace τ and valuation θ let τ ↓θ be the θ-slice of τ

ε ↓θ = ε

τ.e(v) ↓θ =

{
(τ ↓θ).e(v) if ∃e(z) ∈ A(X) : θ(e(z)) = e(v)
(τ ↓θ) otherwise

• The trace τ is accepted for quantification list Λ(X) and
propositional property P(X) if τ |=P(X)

[] Λ(X), defined as

τ |=P(X)
θ ∀x : Λ if for every d ∈ dom(x) we have τ |=P(X)

θ†[x 7→d] Λ

τ |=P(X)
θ ∃x : Λ if for some d ∈ dom(x) we have τ |=P(X)

θ†[x 7→d] Λ

τ |=P(X)
θ ε if τ ↓θ∈ L(θ,P(X))

• Using the same domain of quantification dom

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Example

Given the trace

call(A).call(B).call(C).return(C).return(B).call(C).return(C).return(A)

And a property ϕ that whenever a method m2 is called inside a
method m1, the method m2 should return before m1.

events(ϕ) = {call(m1),return(m1),call(m2),return(m2)}

We get the following slices

m1 m2 slice
A B call(A).call(B).return(B).return(A)
A C call(A).call(C).return(C).call(C).return(C).return(A)
B C call(B).call(C).return(C).return(B).call(C).return(C)

Each slice can be checked by some unquantified checker
P(m1,m2)

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Goal of considering Sliceability

• Identify the properties of FO-LTLf formulas that allow the
semantics to coincide with the slicing semantics

• For now only consider globally quantified properties
• This is an artificial restriction (as our slicing definition is

restricted) that makes everything easier for now
• ... but the globally quantified fragment is still interesting
• .. and we have begun to consider the full setting

• Aim to understand correspondence
• And use this to efficiently monitor FO-LTLf properties

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Slicing Invariance
A formula ψ with free variables X is sliceable if for valuation θ
over X and trace τ . The formula ψ is sliceable if

τ, θ |= ψ ⇔ τ ↓θ, θ |= ψ.

Let L(ψ, θ) = {τ | τ, θ |= ψ} be the traces satisfying ψ. Define
LC(ψ, θ) as the non-relevance-closure of L(ψ, θ) to be the
smallest set containing

τ if τ ∈ L(ψ, θ)

τ1.τ2.τ3 if ∀a ∈ τ2 : a /∈ relevant(ψ, θ) and τ1.τ3 ∈ LC(ψ, θ)

τ1.τ3 if ∃τ1.τ2.τ3 ∈ LC(ψ, θ) : ∀a ∈ τ2 : a /∈ relevant(ψ, θ)

where relevant(ψ, θ) = {θ(a) | a ∈ events(ψ)}. The formula ψ is
slicing invariant if L(ψ, θ) = LC(ψ, θ).

The notions of sliceability and slicing invariance coincide.

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

What are the restrictions?

k(a).f(a).f(b).g(a).g(b).h(b,a).f(b).h(b, c).g(b)

. .f(b). .g(b). .f(b). .g(b)

Starting at the start
• f(x) ∨ ♦k(x) and ¬f(x) ∨ ♦k(x) i.e. for x = b
• Rule: Cannot allow events (in positive or negative form) at

the top level of a sliceable formula
• ¬f(x) U◦ g(x) for the trace g(a).g(a).f(b).g(b).

Never saying next
• �(f(x)→©g(x)) for x = b
• ϕ1 = �(f(x) ∨ g(x)) = (f(x) ∨ g(x)) U false for x = b
• Rule: cannot restrict what happens at the next time point

Never saying never
• ϕ2 = ♦(¬f(x) ∧ ¬g(x)) = true U (¬f(x) ∧ ¬g(x)) for x = b
• Rule: cannot wait for the negation of things

Symmetry. Note that ϕ1 = ¬ϕ2

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

What are the restrictions?

k(a).f(a).f(b).g(a).g(b).h(b,a).f(b).h(b, c).g(b)
. .f(b). .g(b). .f(b). .g(b)

Starting at the start
• f(x) ∨ ♦k(x) and ¬f(x) ∨ ♦k(x) i.e. for x = b
• Rule: Cannot allow events (in positive or negative form) at

the top level of a sliceable formula
• ¬f(x) U◦ g(x) for the trace g(a).g(a).f(b).g(b).

Never saying next
• �(f(x)→©g(x)) for x = b
• ϕ1 = �(f(x) ∨ g(x)) = (f(x) ∨ g(x)) U false for x = b
• Rule: cannot restrict what happens at the next time point

Never saying never
• ϕ2 = ♦(¬f(x) ∧ ¬g(x)) = true U (¬f(x) ∧ ¬g(x)) for x = b
• Rule: cannot wait for the negation of things

Symmetry. Note that ϕ1 = ¬ϕ2

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

What are the restrictions?

k(a).f(a).f(b).g(a).g(b).h(b,a).f(b).h(b, c).g(b)
. .f(b). .g(b). .f(b). .g(b)

Starting at the start
• f(x) ∨ ♦k(x) and ¬f(x) ∨ ♦k(x) i.e. for x = b
• Rule: Cannot allow events (in positive or negative form) at

the top level of a sliceable formula
• ¬f(x) U◦ g(x) for the trace g(a).g(a).f(b).g(b).

Never saying next
• �(f(x)→©g(x)) for x = b
• ϕ1 = �(f(x) ∨ g(x)) = (f(x) ∨ g(x)) U false for x = b
• Rule: cannot restrict what happens at the next time point

Never saying never
• ϕ2 = ♦(¬f(x) ∧ ¬g(x)) = true U (¬f(x) ∧ ¬g(x)) for x = b
• Rule: cannot wait for the negation of things

Symmetry. Note that ϕ1 = ¬ϕ2

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

What are the restrictions?

k(a).f(a).f(b).g(a).g(b).h(b,a).f(b).h(b, c).g(b)
. .f(b). .g(b). .f(b). .g(b)

Starting at the start
• f(x) ∨ ♦k(x) and ¬f(x) ∨ ♦k(x) i.e. for x = b
• Rule: Cannot allow events (in positive or negative form) at

the top level of a sliceable formula
• ¬f(x) U◦ g(x) for the trace g(a).g(a).f(b).g(b).

Never saying next
• �(f(x)→©g(x)) for x = b
• ϕ1 = �(f(x) ∨ g(x)) = (f(x) ∨ g(x)) U false for x = b
• Rule: cannot restrict what happens at the next time point

Never saying never
• ϕ2 = ♦(¬f(x) ∧ ¬g(x)) = true U (¬f(x) ∧ ¬g(x)) for x = b
• Rule: cannot wait for the negation of things

Symmetry. Note that ϕ1 = ¬ϕ2

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

What are the restrictions?

k(a).f(a).f(b).g(a).g(b).h(b,a).f(b).h(b, c).g(b)
. .f(b). .g(b). .f(b). .g(b)

Starting at the start
• f(x) ∨ ♦k(x) and ¬f(x) ∨ ♦k(x) i.e. for x = b
• Rule: Cannot allow events (in positive or negative form) at

the top level of a sliceable formula
• ¬f(x) U◦ g(x) for the trace g(a).g(a).f(b).g(b).

Never saying next
• �(f(x)→©g(x)) for x = b
• ϕ1 = �(f(x) ∨ g(x)) = (f(x) ∨ g(x)) U false for x = b
• Rule: cannot restrict what happens at the next time point

Never saying never
• ϕ2 = ♦(¬f(x) ∧ ¬g(x)) = true U (¬f(x) ∧ ¬g(x)) for x = b
• Rule: cannot wait for the negation of things

Symmetry. Note that ϕ1 = ¬ϕ2

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

What are the restrictions?

k(a).f(a).f(b).g(a).g(b).h(b,a).f(b).h(b, c).g(b)
. .f(b). .g(b). .f(b). .g(b)

Starting at the start
• f(x) ∨ ♦k(x) and ¬f(x) ∨ ♦k(x) i.e. for x = b
• Rule: Cannot allow events (in positive or negative form) at

the top level of a sliceable formula
• ¬f(x) U◦ g(x) for the trace g(a).g(a).f(b).g(b).

Never saying next
• �(f(x)→©g(x)) for x = b
• ϕ1 = �(f(x) ∨ g(x)) = (f(x) ∨ g(x)) U false for x = b
• Rule: cannot restrict what happens at the next time point

Never saying never
• ϕ2 = ♦(¬f(x) ∧ ¬g(x)) = true U (¬f(x) ∧ ¬g(x)) for x = b
• Rule: cannot wait for the negation of things

Symmetry. Note that ϕ1 = ¬ϕ2

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

What are the restrictions?

k(a).f(a).f(b).g(a).g(b).h(b,a).f(b).h(b, c).g(b)
. .f(b). .g(b). .f(b). .g(b)

Starting at the start
• f(x) ∨ ♦k(x) and ¬f(x) ∨ ♦k(x) i.e. for x = b
• Rule: Cannot allow events (in positive or negative form) at

the top level of a sliceable formula
• ¬f(x) U◦ g(x) for the trace g(a).g(a).f(b).g(b).

Never saying next
• �(f(x)→©g(x)) for x = b
• ϕ1 = �(f(x) ∨ g(x)) = (f(x) ∨ g(x)) U false for x = b
• Rule: cannot restrict what happens at the next time point

Never saying never
• ϕ2 = ♦(¬f(x) ∧ ¬g(x)) = true U (¬f(x) ∧ ¬g(x)) for x = b
• Rule: cannot wait for the negation of things

Symmetry. Note that ϕ1 = ¬ϕ2

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

What are the restrictions?

k(a).f(a).f(b).g(a).g(b).h(b,a).f(b).h(b, c).g(b)
. .f(b). .g(b). .f(b). .g(b)

Starting at the start
• f(x) ∨ ♦k(x) and ¬f(x) ∨ ♦k(x) i.e. for x = b
• Rule: Cannot allow events (in positive or negative form) at

the top level of a sliceable formula
• ¬f(x) U◦ g(x) for the trace g(a).g(a).f(b).g(b).

Never saying next
• �(f(x)→©g(x)) for x = b
• ϕ1 = �(f(x) ∨ g(x)) = (f(x) ∨ g(x)) U false for x = b
• Rule: cannot restrict what happens at the next time point

Never saying never
• ϕ2 = ♦(¬f(x) ∧ ¬g(x)) = true U (¬f(x) ∧ ¬g(x)) for x = b
• Rule: cannot wait for the negation of things

Symmetry. Note that ϕ1 = ¬ϕ2

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

What are the restrictions?

k(a).f(a).f(b).g(a).g(b).h(b,a).f(b).h(b, c).g(b)
. .f(b). .g(b). .f(b). .g(b)

Starting at the start
• f(x) ∨ ♦k(x) and ¬f(x) ∨ ♦k(x) i.e. for x = b
• Rule: Cannot allow events (in positive or negative form) at

the top level of a sliceable formula
• ¬f(x) U◦ g(x) for the trace g(a).g(a).f(b).g(b).

Never saying next
• �(f(x)→©g(x)) for x = b
• ϕ1 = �(f(x) ∨ g(x)) = (f(x) ∨ g(x)) U false for x = b
• Rule: cannot restrict what happens at the next time point

Never saying never
• ϕ2 = ♦(¬f(x) ∧ ¬g(x)) = true U (¬f(x) ∧ ¬g(x)) for x = b
• Rule: cannot wait for the negation of things

Symmetry. Note that ϕ1 = ¬ϕ2

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

What are the restrictions?

k(a).f(a).f(b).g(a).g(b).h(b,a).f(b).h(b, c).g(b)
. .f(b). .g(b). .f(b). .g(b)

Starting at the start
• f(x) ∨ ♦k(x) and ¬f(x) ∨ ♦k(x) i.e. for x = b
• Rule: Cannot allow events (in positive or negative form) at

the top level of a sliceable formula
• ¬f(x) U◦ g(x) for the trace g(a).g(a).f(b).g(b).

Never saying next
• �(f(x)→©g(x)) for x = b
• ϕ1 = �(f(x) ∨ g(x)) = (f(x) ∨ g(x)) U false for x = b
• Rule: cannot restrict what happens at the next time point

Never saying never
• ϕ2 = ♦(¬f(x) ∧ ¬g(x)) = true U (¬f(x) ∧ ¬g(x)) for x = b
• Rule: cannot wait for the negation of things

Symmetry. Note that ϕ1 = ¬ϕ2

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Define Syntactic Fragment F
Let F be those formulas

Q1x1 : . . .Qnxn : ψT

for zero or more quantifications Qixi , with Qi = ∀ or ∃, and
quantifier-free ψT inductively defined as :

ψT = ψL U ψR | ψT ∨ ψT | ψT ∧ ψT
ψL = true | ψL ∨ ψU | ψL ∧ ψL | ¬a
ψR = false | ψR ∧ ψU | ψR ∨ ψR | a
ψU = ψL U◦ ψR | ψL U ψR | ψU ∨ ψU | ψU ∧ ψU

• Negations only on atoms
• Left formulas (ψL) are true on non-relevant events
• Right formulas (ψR) are false on non-relevant events

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Properties

Lemma
For any formula ψ ∈ F with free variables X, traces τ1 and τ2,
valuations θ over X, events a /∈ relevant(ψ, θ) and indices i , j :

Case 1. If ψ in ψL,R,U and (τ1.a.τ2)i ∈ relevant(ψ, θ) then

τ1.a.τ2, θ, i |= ψ ⇔ τ1.τ2, θ, j |= ψ

where j =

{
i if i < |τ1|
j = i − 1 otherwise

Case 2. If ψ is in ψL then τ1.a.τ2, θ, |τ1| |= ψ

Case 3. If ψ is in ψR then τ1.a.τ2, θ, |τ1| 6|= ψ

Case 4. If ψ is in ψT then τ1.a.τ2, θ,0 |= ψ ⇔ τ1.τ2, θ, 0 |= ψ

Theorem
All formulas in F are sliceable.

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Is F usable as a specification language?

• Most properties in Dwyer et al. fit, obviously some do not
• HasNext

∀i : (¬next(i) U hasNext(i))∧
�(next(i)→ (¬next(i) U◦ hasNext(i)))

• UnsafeMapIter

∀m : ∀c : ∀i : �(create(m, c)→ �(iterator(c, i)→
�(update(m)→ �¬use(i))))

• CallNesting

∀m1 : ∀m2 :
(¬ret(m1) U call(m1)) ∧ (¬ret(m2) U call(m2))∧

�(call(m1)→ (¬call(m1) U ret(m1))) ∧�(call(m1)→
(call(m2)→ ((¬ret(m2) ∧ ¬call(m2)) U ret(m2))) U ret(m1))

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

From F to slicing-based formalism QEA

• Now we have defined F we can translate formulas in F to
a formalism that can be efficiently monitored

• We choose QEA as this is our formalism

• Straightforward progression-based translation of
quantifier-free part to automaton

• Technique is not new but we couldn’t find it written down
nicely anywhere

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Example
Consider HasNext

ψ = (h∨(n∧(¬n U◦ h)))∧(¬n∨(¬n U◦ h))∧((¬n∨(¬n U◦ h)) U◦ F)

h−→ n−→
φ1 = n false true
φ2 = h true false
φ3 = ¬φ1 U◦ φ2 φ4 φ4
φ4 = φ2 ∨ (¬φ1 ∧ φ3) true false
φ5 = ¬φ1 ∨ φ3 true φ4
φ6 = φ5 U◦ false φ5 ∧ φ6 φ5 ∧ φ6
ψ = φ4 ∧ φ6 φ5 ∧ φ6 false

• φ5 ∧ φ6
n−→ (φ4 ∧ φ5 ∧ φ6) = ψ

• We observe three states: ψ, false and φ5 ∧ φ6.
• Acceptance based on acceptance of empty trace
• φ6 = φ5 U◦ false is true on empty trace

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Example
Consider HasNext

ψ = (h∨(n∧(¬n U◦ h)))∧(¬n∨(¬n U◦ h))∧((¬n∨(¬n U◦ h)) U◦ F)

• φ5 ∧ φ6
n−→ (φ4 ∧ φ5 ∧ φ6) = ψ

• We observe three states: ψ, false and φ5 ∧ φ6.
• Acceptance based on acceptance of empty trace
• φ6 = φ5 U◦ false is true on empty trace

ψfalse φ5 ∧ φ6

h

n h
n

h,n

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Further Work

• Is F a maximal fragment?

• Extensions
• Other finite-trace semantics (multi-valued)
• Arbitrary predicates
• Non-global quantifiers
• Freeze quantifiers
• Translation in the other direction?

• Implement translation in MARQ

Motivation FO-LTLf Slicing Slicability Usable Fragment Translation Conclude

Conclusions

• First step in understanding the correspondence between
two languages used for first-order runtime verification

• Important that we understand the specification language
space

• Lots more to do

	Motivation
	FO-LTLf
	Parametric Trace Slicing
	Slicability
	Usable Fragment
	Translation
	Conclude

