
Playing with AVATAR
How to play with AVATAR

Giles Reger, Martin Suda and Andrei Voronkov

School of Computer Science, University of Manchester

The 1st Vampire Workshop

Reger,G How to play with AVATAR 1 / 26

Overview

1 Introduction

2 Reviewing AVATAR

3 The variables

4 How to evaluate

5 Results

6 Conclusion

Reger,G How to play with AVATAR 2 / 26

Introduction

In this talk we will:

Briefly recall what the AVATAR architecture is

List the parameters that control its behaviour
I (and what effects they have)

Discuss how we should evaluate these kinds of frameworks

Present results of our experimental evaluation

Work in progress!

Reger,G How to play with AVATAR 3 / 26

Overview

1 Introduction

2 Reviewing AVATAR

3 The variables

4 How to evaluate

5 Results

6 Conclusion

Reger,G How to play with AVATAR 4 / 26

AVATAR

Input:

p(a), q(b), ¬p(x) ∨ ¬q(y)

Repeat
I FO: Process new clauses

F split clauses into
components

I SAT: Construct model
I FO: Use model (do splitting)
I FO: Do FO proving

F Process refutation

FO SAT

Components

Reger,G How to play with AVATAR 5 / 26

AVATAR

Input:

p(a), q(b), ¬p(x) ∨ ¬q(y)

Repeat
I FO: Process new clauses

F split clauses into
components

I SAT: Construct model
I FO: Use model (do splitting)
I FO: Do FO proving

F Process refutation

FO SAT

Components

Reger,G How to play with AVATAR 5 / 26

AVATAR

Input:

p(a), q(b), ¬p(x) ∨ ¬q(y)

Repeat
I FO: Process new clauses

F split clauses into
components

I SAT: Construct model
I FO: Use model (do splitting)
I FO: Do FO proving

F Process refutation

FO SAT

p(a) | {}

Components

Reger,G How to play with AVATAR 5 / 26

AVATAR

Input:

p(a), q(b), ¬p(x) ∨ ¬q(y)

Repeat
I FO: Process new clauses

F split clauses into
components

I SAT: Construct model
I FO: Use model (do splitting)
I FO: Do FO proving

F Process refutation

FO SAT

p(a) | {}
q(b) | {}

Components

Reger,G How to play with AVATAR 5 / 26

AVATAR

Input:

p(a), q(b), ¬p(x) ∨ ¬q(y)

Repeat
I FO: Process new clauses

F split clauses into
components

I SAT: Construct model
I FO: Use model (do splitting)
I FO: Do FO proving

F Process refutation

FO SAT

p(a) | {} 1 ∨ 2
q(b) | {}

Components
1 7→ ¬p(x)
2 7→ ¬q(y)

Reger,G How to play with AVATAR 5 / 26

AVATAR

Input:

p(a), q(b), ¬p(x) ∨ ¬q(y)

Repeat
I FO: Process new clauses

F split clauses into
components

I SAT: Construct model
I FO: Use model (do splitting)
I FO: Do FO proving

F Process refutation

FO SAT

p(a) | {} 1 ∨ 2
q(b) | {}

Components
1 7→ ¬p(x)
2 7→ ¬q(y)

Reger,G How to play with AVATAR 5 / 26

AVATAR

Input:

p(a), q(b), ¬p(x) ∨ ¬q(y)

Repeat
I FO: Process new clauses

F split clauses into
components

I SAT: Construct model
I FO: Use model (do splitting)
I FO: Do FO proving

F Process refutation

FO SAT

p(a) | {} 1 ∨ 2
q(b) | {}
¬p(x) | {1}

Components
1 7→ ¬p(x)
2 7→ ¬q(y)

Reger,G How to play with AVATAR 5 / 26

AVATAR

Input:

p(a), q(b), ¬p(x) ∨ ¬q(y)

Repeat
I FO: Process new clauses

F split clauses into
components

I SAT: Construct model
I FO: Use model (do splitting)
I FO: Do FO proving

F Process refutation

FO SAT

p(a) | {} 1 ∨ 2
q(b) | {}
¬p(x) | {1}
⊥ | {1}

Components
1 7→ ¬p(x)
2 7→ ¬q(y)

Reger,G How to play with AVATAR 5 / 26

AVATAR

Input:

p(a), q(b), ¬p(x) ∨ ¬q(y)

Repeat
I FO: Process new clauses

F split clauses into
components

I SAT: Construct model
I FO: Use model (do splitting)
I FO: Do FO proving

F Process refutation

FO SAT

p(a) | {} 1 ∨ 2
q(b) | {} ¬1
¬p(x) | {1}
⊥ | {1}

Components
1 7→ ¬p(x)
2 7→ ¬q(y)

Reger,G How to play with AVATAR 5 / 26

AVATAR

Input:

p(a), q(b), ¬p(x) ∨ ¬q(y)

Repeat
I FO: Process new clauses

F split clauses into
components

I SAT: Construct model
I FO: Use model (do splitting)
I FO: Do FO proving

F Process refutation

FO SAT

p(a) | {} 1 ∨ 2
q(b) | {} ¬1
¬p(x) | {1}
⊥ | {1}

Components
1 7→ ¬p(x)
2 7→ ¬q(y)

Reger,G How to play with AVATAR 5 / 26

AVATAR

Input:

p(a), q(b), ¬p(x) ∨ ¬q(y)

Repeat
I FO: Process new clauses

F split clauses into
components

I SAT: Construct model
I FO: Use model (do splitting)
I FO: Do FO proving

F Process refutation

FO SAT

p(a) | {} 1 ∨ 2
q(b) | {} ¬1
¬p(x) | {1}
⊥ | {1}
¬q(y) | {2}

Components
1 7→ ¬p(x)
2 7→ ¬q(y)

Reger,G How to play with AVATAR 5 / 26

AVATAR

Input:

p(a), q(b), ¬p(x) ∨ ¬q(y)

Repeat
I FO: Process new clauses

F split clauses into
components

I SAT: Construct model
I FO: Use model (do splitting)
I FO: Do FO proving

F Process refutation

FO SAT

p(a) | {} 1 ∨ 2
q(b) | {} ¬1
¬p(x) | {1}
⊥ | {1}
¬q(y) | {2}
⊥ | {2}

Components
1 7→ ¬p(x)
2 7→ ¬q(y)

Reger,G How to play with AVATAR 5 / 26

AVATAR

Input:

p(a), q(b), ¬p(x) ∨ ¬q(y)

Repeat
I FO: Process new clauses

F split clauses into
components

I SAT: Construct model
I FO: Use model (do splitting)
I FO: Do FO proving

F Process refutation

FO SAT

p(a) | {} 1 ∨ 2
q(b) | {} ¬1
¬p(x) | {1} ¬2
⊥ | {1}
¬q(y) | {2}
⊥ | {2}

Components
1 7→ ¬p(x)
2 7→ ¬q(y)

Reger,G How to play with AVATAR 5 / 26

AVATAR

Input:

p(a), q(b), ¬p(x) ∨ ¬q(y)

Repeat
I FO: Process new clauses

F split clauses into
components

I SAT: Construct model
I FO: Use model (do splitting)
I FO: Do FO proving

F Process refutation

FO SAT

p(a) | {} 1 ∨ 2
q(b) | {} ¬1
¬p(x) | {1} ¬2
⊥ | {1}
¬q(y) | {2}
⊥ | {2}

Components
1 7→ ¬p(x)
2 7→ ¬q(y)

Reger,G How to play with AVATAR 5 / 26

AVATAR

Input:

p(a), q(b), ¬p(x) ∨ ¬q(y)

Repeat
I FO: Process new clauses

F split clauses into
components

I SAT: Construct model
I FO: Use model (do splitting)
I FO: Do FO proving

F Process refutation

Refutation
I From the SAT solver as we

cannot construct a model

FO SAT

p(a) | {} 1 ∨ 2
q(b) | {} ¬1
¬p(x) | {1} ¬2
⊥ | {1}
¬q(y) | {2}
⊥ | {2}

Components
1 7→ ¬p(x)
2 7→ ¬q(y)

Reger,G How to play with AVATAR 5 / 26

Important points

Components are always named consistently (up to variants)

An inference between two clauses with assertions takes the union of
those assertions:

c1 | a1 c2 | a2
d | (a1 ∪ a2)

Removal of redundant clauses is conditional in general:
I assume that c2 is subsumed by c1 for clauses c1 | a1 and c2 | a2
I If a1 ⊆ a2

F Then whenever c1 | a1 is backtracked, then c2 | a2 must be also, as an
assertion in a1 is retracted, which must also be in a2

F Therefore, we can remove c2 | a2
I otherwise (a1 6⊆ a2)

F Later, if an assertion in a2/a1 is retracted then c1 | a1 would be
backtracked, but c2 | a2 would not be

F Therefore, we conditionally remove (freeze) c2 | a2
F Then, if c1 | a1 is later removed we must add (unfreeze) c2 | a2

Reger,G How to play with AVATAR 6 / 26

Overview

1 Introduction

2 Reviewing AVATAR

3 The variables

4 How to evaluate

5 Results

6 Conclusion

Reger,G How to play with AVATAR 8 / 26

Adding components (nonsplittable clauses)

If we cannot split a clause into components what do we do?

I Just add it anyway - it might be useful later!

I Only add it as a component if it has assertions (dependencies) i.e.
F If we derive q(x) ∨ p(x)|{2, 4} we would add ¬2 ∨ ¬4 ∨ 8 (for fresh 8)
F Helps if 8 is derived again later

I Only add it as a component if it is a known component i.e.
F We previously added 2 ∨ 4 for r(y) 7→ 2 and q(x) ∨ p(x) 7→ 4
F We then derive q(x) ∨ p(x) and add 4
F The SAT solver must always choose 4 - simplifying 2 ∨ 4

I Don’t add it

Reger,G How to play with AVATAR 9 / 26

Adding components (ground components)

If a component is ground it is safe to introduce a name for its
negation (not safe for non-ground)

If we have p(x) ∨ q(a) and ¬p(x) ∨ ¬q(a) we can add

1 ∨ 2 and 3 ∨ 4

but it is better to add

1 ∨ 2 and 3 ∨ ¬2

This is something we do not play with, as previous experiments
showed that it was consistently a good idea

Note that a ground component will be a literal

Reger,G How to play with AVATAR 10 / 26

Constructing a model

In AVATAR the SAT solver is a black box that is allowed to construct
any valid model. There are two things we can consider

I How quickly a model can be constructed
I What model is constructed

It is obvious that the model produced has a very large effect on the
exploration of the search space.

We consider two SAT solvers:
I A native (two watched literals) solver
I lingeling (with relatively default options)

We also consider a buffering optimisation that buffers a clause if,
either

I it contains a fresh variable that can be made true, or
I it is already true in the model

This may lead to fewer calls to the SAT solver, but will also lead to a
different model

Reger,G How to play with AVATAR 11 / 26

Using a model

As mentioned above, we do not need the whole model

If we use a partial model we
I Have to pay to minimise the model
I But, we potentially add fewer FO clauses and do less

freezing/unfreezing

Choices:
I Total model
I Minimised model - a partial model that satisfies all added clauses
I Minimised model for split clauses - satisfy split clauses only

Note - partial model is a sub-model of the total one

If a component was previously asserted, but is now don’t care (not in
the partial model) we can either

I eagerly remove it, or
I leave it there... it might be asserted again later

Reger,G How to play with AVATAR 12 / 26

An overview of the relevant options

Adding components
I ssplitting nonsplittable components

F When to add a component that is not splittable
F known, all, all dependent, none

Constructing a model
I sat solver

F Which sat solver is used to construct the model
F lingeling or vampire, with buffering or not

Using a model
I ssplitting model

F We can minimise the model to reduce the number of components
asserted in the FO part

F total, min all, min sco

I ssplitting eager removal
F When using a non-total model we can eagerly remove components no

longer mentioned by the model
F on, off

Reger,G How to play with AVATAR 13 / 26

Overview

1 Introduction

2 Reviewing AVATAR

3 The variables

4 How to evaluate

5 Results

6 Conclusion

Reger,G How to play with AVATAR 14 / 26

How should we evaluate?

CASC mode makes use of 47 different (still valid) options

Many of these have multiple values (some are continuous)

If we stick only to values selected in CASC mode we have
493,748,224 possible combinations (some of which will not be valid)

TPTP v6.0.0 has 16,004 FOF and CNF problems

Giving one minute per experiment that takes 1,500 millennia per
value we want to compare

I That’s 144,000 millennia for the experiments here...
I To finish now we should have started at the end of the Jurassic period

We need to consider what we are looking for...

Reger,G How to play with AVATAR 15 / 26

Directly comparing options

If we want to generally compare different values for an option we need
to systematically run through the same experiments for each value.

Massive search space requires us to select a subset of options or
problems

I Select subset of options
F May miss the best strategies

I Select subset of problems
F May miss the easy/hard problems

I Probably need to do both to have a reasonable search space

Alternatively, we could use the CASC-mode approach that attempts
multiple strategies, but

I This suffers from similar restrictions i.e. the results are not
generalisable from the chosen strategies.

I Additionally it is biased as the default values for all of these options
were included in the CASC-mode training... so are more likely to be
successful.

Reger,G How to play with AVATAR 16 / 26

Searching for improvements

Observation: A CASC-mode-like approach makes use of many
strategies. Therefore, if a strategy can be shown to perform well for
some problems, its performance on other problems does not matter.

If our aim is to solve new problems or solve problems faster then we
want to identify cases where new options lead to these interesting
cases.

We can randomly select a strategy, a problem and an option to
experiment with. We then vary the values for this option and check
whether the result is interesting.

However, our results are not generalisable.

Reger,G How to play with AVATAR 17 / 26

Overview

1 Introduction

2 Reviewing AVATAR

3 The variables

4 How to evaluate

5 Results

6 Conclusion

Reger,G How to play with AVATAR 18 / 26

Our experiments

Systematic
I Use CASC13 problems
I Use default options

Random
I Construct an experiment by randomly selecting

F A problem
F A set of options
F An experimental option

I Vary the value for the experimental option
I However - currently keep other experimental options as default

These results
I are not complete
I can only be generalised within a certain context
I are not very exciting

Reger,G How to play with AVATAR 19 / 26

SAT solver

 100

 110

 120

 130

 140

 150

 160

 0 20 40 60 80 100 120 140 160 180

p
ro

b
le

m
s

so
lv

e
d

time (seconds)

Out of 300 problems

buf-vampire
buf-lingeling

vampire
lingeling

Reger,G How to play with AVATAR 20 / 26

SAT solver

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120 140 160

p
ro

b
le

m
s

so
lv

e
d

time (seconds)

Out of 1336 problems

vampire
lingeling

buf-vampire
buf-lingeling

Reger,G How to play with AVATAR 20 / 26

Nonsplittable Components

 200

 220

 240

 260

 280

 300

 320

 0 20 40 60 80 100 120 140 160 180

p
ro

b
le

m
s

so
lv

e
d

time (seconds)

Out of 1665 problems

known
none

all-dependent
all

Reger,G How to play with AVATAR 21 / 26

Nonsplittable Components

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140 160 180 200

n
o
n
e

known

Out of 1682 problems, cross of Time elapsed

Reger,G How to play with AVATAR 21 / 26

Nonsplittable Components

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

a
ll

known

Out of 1670 problems, cross of SAT solver-percent

Reger,G How to play with AVATAR 21 / 26

Model minimisation

 100

 105

 110

 115

 120

 125

 130

 135

 140

 145

 150

 0 20 40 60 80 100 120 140 160 180

p
ro

b
le

m
s

so
lv

e
d

time (seconds)

Out of 300 problems

vampire,total
lingeling,total

vampire,min-all
lingeling,min-all

vampire,min-sco
lingeling,min-sco

Reger,G How to play with AVATAR 22 / 26

Model minimisation

 200

 220

 240

 260

 280

 300

 320

 340

 360

 0 20 40 60 80 100 120 140 160 180

p
ro

b
le

m
s

so
lv

e
d

time (seconds)

Out of 1934 problems

min-all
min-sco

total

Reger,G How to play with AVATAR 22 / 26

Eager removal

 140

 160

 180

 200

 220

 240

 260

 280

 300

 0 20 40 60 80 100 120 140 160 180

p
ro

b
le

m
s

so
lv

e
d

time (seconds)

Out of 1662 problems

on
off

Reger,G How to play with AVATAR 23 / 26

Overview

1 Introduction

2 Reviewing AVATAR

3 The variables

4 How to evaluate

5 Results

6 Conclusion

Reger,G How to play with AVATAR 24 / 26

Unanswered questions
Can we encourage the SAT solver to construct a model that leads to
‘nice’ clauses being added to the FO part?

I i.e. light, small clauses rather than heavy, long ones

What makes a nice model?
I How constrained is the model (can we make any difference?)
I How does the constructed model interact with selection?

Can we encourage the SAT solver to construct a model with a
minimal difference from the previous model?

I Beyond phase saving and Vampire’s backtrack-to-last-valid-choice

Would giving the SAT solver more information help?
I i.e. add a clause if one component subsumes another

Can we do more from a refutation with assumptions?
I i.e. minimise them, collect multiple refutations in one FO run

Reger,G How to play with AVATAR 25 / 26

Conclusions

AVATAR is fun

There are lots of things we can tweak

Running experiments is difficult

Our results were not interesting - maybe we asked the wrong questions

Reger,G How to play with AVATAR 26 / 26

	Introduction
	Reviewing AVATAR
	The variables
	How to evaluate
	Results
	Conclusion

