▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proof Attempts Cooperating via Models

Giles Reger

With Dmitry Tishkovsky and Andrei Voronkov

University of Manchester

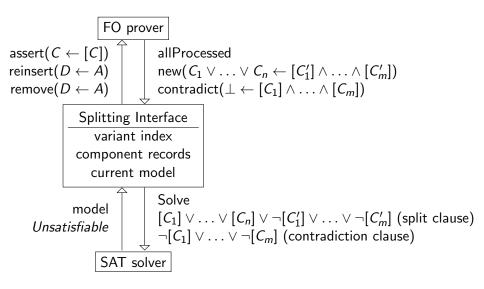
15th September 2015

AVATAR: Guiding proof search using Models

- A new architecture implemented in Vampire
- Idea presented at CAV 14 and CADE 15
- Very high level idea:
 - 1. Represent the problem in a SAT solver
 - 2. Construct a Model
 - 3. If no model, return "unsat"
 - 4. Use the Model to select a sub-problem to explore
 - 5. If sub-problem is refuted, learn something and goto 1
 - 6. If strategy is complete retun "sat"

Creating the SAT problem with Splitting

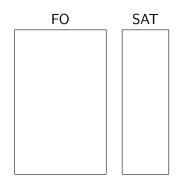
- The splitting basics:
 - For variable disjoint clauses C_1 and C_2
 - $S \cup (C_1 \vee C_2)$ is unsat iff both $S \cup C_1$ and $S \cup C_2$ are
 - Consider $S \cup C_1$ and $S \cup C_2$ separately
- For every clause C in the problem
 - Let $D_1 \vee \ldots \vee D_n$ be its <u>minimal variable-disjoint</u> components
 - Consistently introduce a name p_i for component D_i
 - Add SAT clause $p_1 \vee \ldots \vee p_n$
- A model of this SAT problem is a splitting decision


When refuting a model

- First-order reasoning tracks which parts of the model derived clauses depend on by labelling clauses
- A will depend on some part of the model
 - Derive $\perp | \{p_1, \ldots, p_n\}$
 - Learn/add the conflict clause $\neg p_1 \lor \ldots \lor \neg p_n$
 - Now reconstruct the model
- This represents backtracking
- The conflict clause blocks a family of possible models/splitting decisions

Missing details

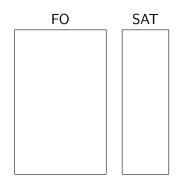
- Process is incremental, set of clauses expanding
- When updating SAT model need to add/remove clauses from FO solver
- Simplifications may be <u>conditional</u> on current model as it can change
- Many variations i.e. may not add clause that cannot be split to SAT solver


AVATAR Architecture

• Input:

 $p(a), q(b), \neg p(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation

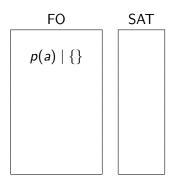


▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Input:

 $p(a), q(b), \neg p(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation

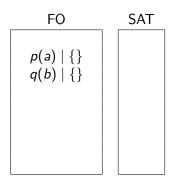


▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Input:

 $p(a), q(b), \neg p(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation

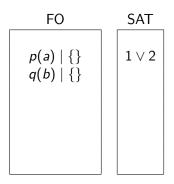


▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Input:

 $p(a), q(b), \neg p(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation

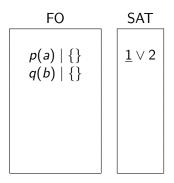

Components

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 臣 のへ⊙

Input:

 $p(a), q(b), \neg p(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation

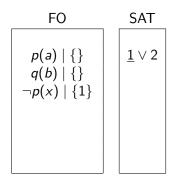


▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Input:

 $p(a), q(b), \neg p(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation

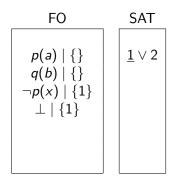


▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Input:

 $p(a), q(b), \neg p(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation

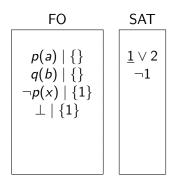


▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Input:

 $p(a), q(b), \neg p(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation

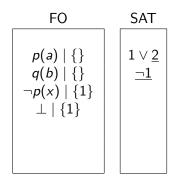


▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Input:

 $p(a), q(b), \neg p(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation

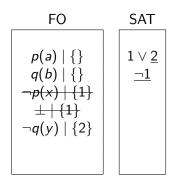


▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Input:

 $p(a), q(b), \neg p(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation

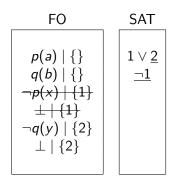


▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Input:

 $p(a), q(b), \neg p(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation

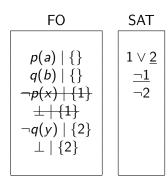


▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Input:

 $p(a), q(b), \neg p(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation

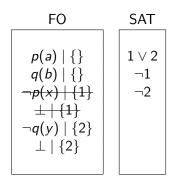


▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Input:

 $p(a), q(b), \neg p(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation

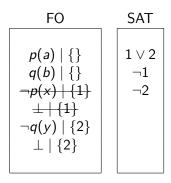

Components $1 \mapsto \neg p(x)$ $2 \mapsto \neg q(y)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Input:

 $p(a), q(b), \neg p(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation

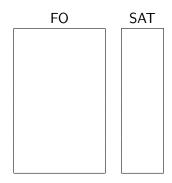


Components $1 \mapsto \neg p(x)$ $2 \mapsto \neg q(y)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Input: $p(a), q(b), \neg p(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation
- Refutation
 - From the SAT solver


▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

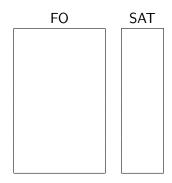
 $1 \mapsto \neg p(x)$ $2 \mapsto \neg q(v)$

• Input:

$$p(a), q(b), \neg p(x) \lor \neg q(y),$$

 $\neg p(x) \lor s(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation

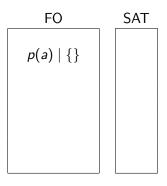


• Input:

$$p(a), q(b), \neg p(x) \lor \neg q(y),$$

 $\neg p(x) \lor s(x) \lor \neg q(y)$

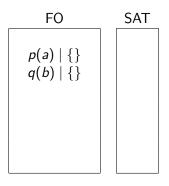
- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation



• Input:

$$\begin{array}{l} p(a), \ q(b), \ \neg p(x) \lor \neg q(y), \\ \neg p(x) \lor s(x) \lor \neg q(y) \end{array}$$

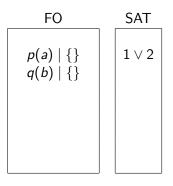
- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation



• Input:

$$\begin{array}{l} p(a), \ q(b), \ \neg p(x) \lor \neg q(y), \\ \neg p(x) \lor s(x) \lor \neg q(y) \end{array}$$

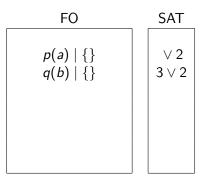
- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation



• Input:

$$p(a), q(b), \neg p(x) \lor \neg q(y), \\ \neg p(x) \lor s(x) \lor \neg q(y)$$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation


▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

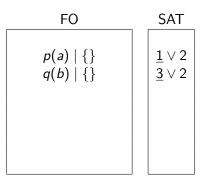
• Input:

$$p(a), q(b), \neg p(x) \lor \neg q(y), \\ \neg p(x) \lor s(x) \lor \neg q(y)$$

• Repeat

- FO: Process new clauses
 - split clauses into components
- SAT: Construct model
- FO: Use model (do splitting)
- FO: Do FO proving
 - Process refutation

ヘロト ヘ回ト ヘヨト ヘヨト


= 900

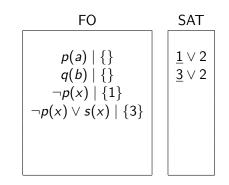
Components $1 \mapsto \neg p(x)$ $2 \mapsto \neg q(y)$ $3 \mapsto \neg p(x) \lor s(y)$

• Input:

$$p(a), q(b), \neg p(x) \lor \neg q(y),$$

 $\neg p(x) \lor s(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation



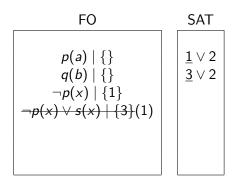
Components $1 \mapsto \neg p(x)$ $2 \mapsto \neg q(y)$ $3 \mapsto \neg p(x) \lor s(y)$

• Input:

$$p(a), q(b), \neg p(x) \lor \neg q(y),$$

 $\neg p(x) \lor s(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation


Components $1 \mapsto \neg p(x)$ $2 \mapsto \neg q(y)$ $3 \mapsto \neg p(x) \lor s(y)$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

• Input:

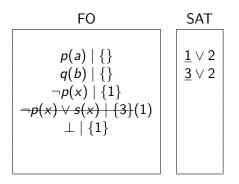
$$p(a), q(b), \neg p(x) \lor \neg q(y),$$

 $\neg p(x) \lor s(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation

(日)、

Components $1 \mapsto \neg p(x)$ $2 \mapsto \neg q(y)$ $3 \mapsto \neg p(x) \lor s(y)$


Sar

э

• Input:

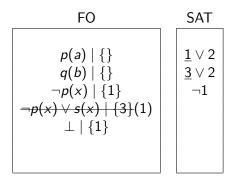
$$p(a), q(b), \neg p(x) \lor \neg q(y),$$

 $\neg p(x) \lor s(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation

Components $1 \mapsto \neg p(x)$ $2 \mapsto \neg q(y)$ $3 \mapsto \neg p(x) \lor s(y)$

(日)、


SQC

3

• Input:

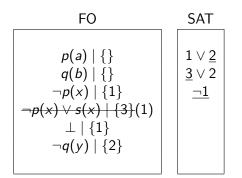
$$p(a), q(b), \neg p(x) \lor \neg q(y),$$

 $\neg p(x) \lor s(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation

Components $1 \mapsto \neg p(x)$ $2 \mapsto \neg q(y)$ $3 \mapsto \neg p(x) \lor s(y)$

(日)、


DQC

э

• Input:

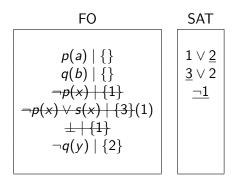
$$p(a), q(b), \neg p(x) \lor \neg q(y),$$

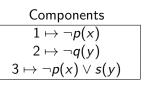
 $\neg p(x) \lor s(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation

Components $1 \mapsto \neg p(x)$ $2 \mapsto \neg q(y)$ $3 \mapsto \neg p(x) \lor s(y)$

(日)、


DAG


ъ

• Input:

$$p(a), q(b), \neg p(x) \lor \neg q(y),$$

 $\neg p(x) \lor s(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation

(日)、

э

• Input:

$$p(a), q(b), \neg p(x) \lor \neg q(y),$$

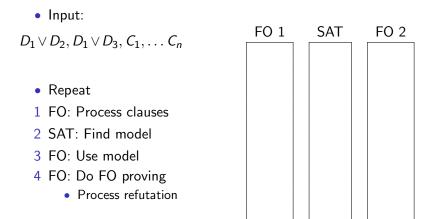
 $\neg p(x) \lor s(x) \lor \neg q(y)$

- Repeat
 - FO: Process new clauses
 - split clauses into components
 - SAT: Construct model
 - FO: Use model (do splitting)
 - FO: Do FO proving
 - Process refutation

FO	SAT
$p(a) \mid \{\}$ $q(b) \mid \{\}$ $ eg p(x) \lor s(x) \mid \{3\}$ $ eg q(y) \mid \{2\}$	$ \begin{array}{c} 1 \lor \underline{2} \\ \underline{3} \lor 2 \\ \underline{\neg 1} \end{array} $

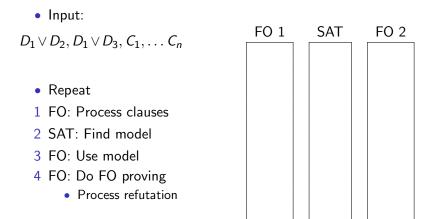
Components $1 \mapsto \neg p(x)$ $2 \mapsto \neg q(y)$ $3 \mapsto \neg p(x) \lor s(y)$

(日)、


э

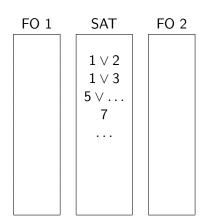
Not all vampires are equal

- Vampire uses many strategies in a portfolio mode
- Different strategies are suited to different problems
- In this year's CASC vampire used 152 strategies to solve problems and tried 351
- Further observation: not all strategies needed, but led to quicker proofs
- Intuition: if this applies to problems in general it should apply to these sub-problems


▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

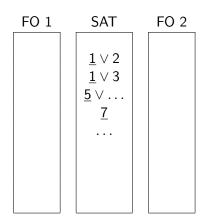
Example

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

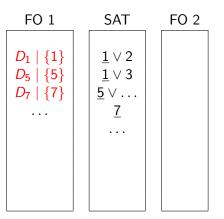

Example

• Input:

 $D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots, C_n$


- Repeat
- 1 FO 1: Process clauses
- 2 SAT: Find model
- 3 FO 1: Use model
- 4 FO 1: Do FO proving
 - Process refutation

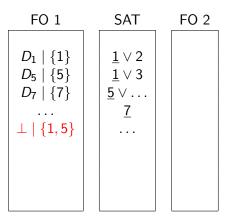
 $D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots C_n$


- Repeat
- 1 FO 1: Process clauses
- 2 SAT: Find model
- 3 FO 1: Use model
- 4 FO 1: Do FO proving
 - Process refutation

• Input:

 $D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots C_n$

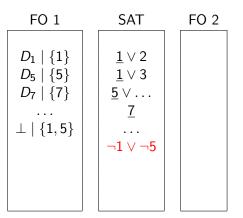
- Repeat
- 1 FO 1: Process clauses
- 2 SAT: Find model
- 3 FO 1: Use model
- 4 FO 1: Do FO proving
 - Process refutation



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

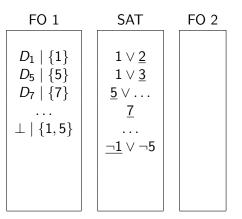
• Input:

 $D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots C_n$


- Repeat
- 1 FO 1: Process clauses
- 2 SAT: Find model
- 3 FO 1: Use model
- 4 FO 1: Do FO proving
 - Process refutation

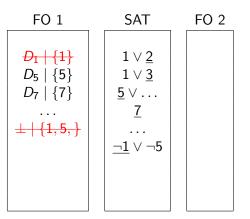
• Input:

 $D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots C_n$


- Repeat
- 1 FO 1: Process clauses
- 2 SAT: Find model
- 3 FO 1: Use model
- 4 FO 1: Do FO proving
 - Process refutation

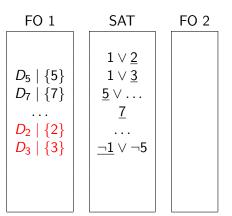
• Input:

 $D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots C_n$


- Repeat
- 1 FO 1: Process clauses
- 2 SAT: Find model
- 3 FO 1: Use model
- 4 FO 1: Do FO proving
 - Process refutation

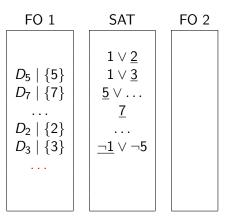
• Input:

 $D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots C_n$


- Repeat
- 1 FO 1: Process clauses
- 2 SAT: Find model
- 3 FO 1: Use model
- 4 FO 1: Do FO proving
 - Process refutation

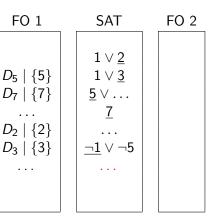
• Input:

 $D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots C_n$


- Repeat
- 1 FO 1: Process clauses
- 2 SAT: Find model
- 3 FO 1: Use model
- 4 FO 1: Do FO proving
 - Process refutation

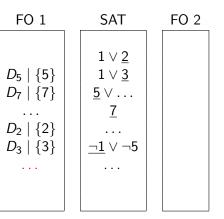
• Input:

 $D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots C_n$


- Repeat
- 1 FO 1: Process clauses
- 2 SAT: Find model
- 3 FO 1: Use model
- 4 FO 1: Do FO proving
 - Process refutation

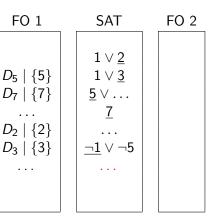
• Input:

 $D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots C_n$


- Repeat
- 1 FO 1: Process clauses
- 2 SAT: Find model
- 3 FO 1: Use model
- 4 FO 1: Do FO proving
 - Process refutation

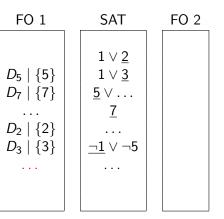
• Input:

 $D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots C_n$


- Repeat
- 1 FO 1: Process clauses
- 2 SAT: Find model
- 3 FO 1: Use model
- 4 FO 1: Do FO proving
 - Process refutation

• Input:

 $D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots C_n$


- Repeat
- 1 FO 1: Process clauses
- 2 SAT: Find model
- 3 FO 1: Use model
- 4 FO 1: Do FO proving
 - Process refutation

• Input:

 $D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots C_n$

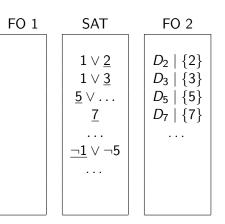
- Repeat
- 1 FO 1: Process clauses
- 2 SAT: Find model
- 3 FO 1: Use model
- 4 FO 1: Do FO proving
 - Process refutation

• Input:

 $D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots C_n$

- Repeat
- 1 FO 2: Process clauses
- 2 SAT: Find model
- 3 FO 2: Use model
- 4 FO 2: Do FO proving
 - Process refutation

FO 1	SAT	FO 2
$D_{5} \{5\} \\ D_{7} \{7\} \\ \cdots \\ D_{2} \{2\} \\ D_{3} \{3\} \\ \cdots$	$ \begin{array}{c} 1 \lor 2\\ 1 \lor 3\\ \underline{5} \lor \dots\\ \underline{7}\\ \dots\\ \underline{-1} \lor \neg 5\\ \dots \end{array} $	$D_2 \{2\} \\ D_3 \{3\} \\ D_5 \{5\} \\ D_7 \{7\} \\ \cdots$


(日)、

э

• Input:

$$D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots C_n$$

- Repeat
- 1 FO 2: Process clauses
- 2 SAT: Find model
- 3 FO 2: Use model
- 4 FO 2: Do FO proving
 - Process refutation

• Input:

$$D_1 \lor D_2, D_1 \lor D_3, C_1, \ldots C_n$$

- Repeat
- 1 FO 2: Process clauses
- 2 SAT: Find model
- 3 FO 2: Use model
- 4 FO 2: Do FO proving
 - Process refutation

FO 1
 SAT
 FO 2

$$1 \lor 2$$
 $D_2 \mid \{2\}$
 $1 \lor 3$
 $D_3 \mid \{3\}$
 $5 \lor \dots$
 $D_5 \mid \{5\}$
 $\underline{7}$
 $D_7 \mid \{7\}$
 \dots
 $\underline{-1} \lor -5$
 \dots
 $D_1 \lor D_{20} \mid \{7\}$

・ロト ・ 雪 ト ・ ヨ ト

æ

• Input:

$$D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots C_n$$

- Repeat
- 1 FO 2: Process clauses
- 2 SAT: Find model
- 3 FO 2: Use model
- 4 FO 2: Do FO proving
 - Process refutation

FO 1
 SAT
 FO 2

$$1 \lor 2$$
 $D_2 \mid \{2\}$
 $1 \lor 3$
 $D_3 \mid \{3\}$
 $5 \lor \dots$
 $D_5 \mid \{5\}$
 $\underline{7}$
 $D_7 \mid \{7\}$
 \dots
 $\underline{\neg 1} \lor \neg 5$
 $1 \lor \neg 7 \lor 20$
 $D_1 \lor D_{20} \mid \{7\}$

(日)、

æ

• Input:

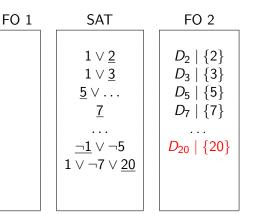
$$D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots C_n$$

- Repeat
- 1 FO 2: Process clauses
- 2 SAT: Find model
- 3 FO 2: Use model
- 4 FO 2: Do FO proving
 - Process refutation

FO 1
 SAT
 FO 2

$$1 \lor 2$$
 $1 \lor 3$
 $D_2 \mid \{2\}$
 $1 \lor 3$
 $5 \lor \dots$
 $D_5 \mid \{5\}$
 $\underline{7}$
 $D_7 \mid \{7\}$
 \dots
 $\underline{\neg 1} \lor \neg 5$
 $1 \lor \neg 7 \lor 20$
 $D_1 \lor D_{20} \mid \{7\}$

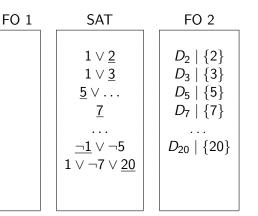
(日)、


э

• Input:

$$D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots C_n$$

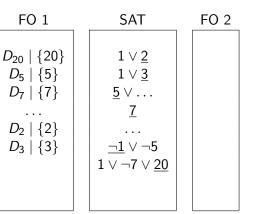
- Repeat
- 1 FO 2: Process clauses
- 2 SAT: Find model
- 3 FO 2: Use model
- 4 FO 2: Do FO proving
 - Process refutation



• Input:

$$D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots C_n$$

- Repeat
- 1 FO 2: Process clauses
- 2 SAT: Find model
- 3 FO 2: Use model
- 4 FO 2: Do FO proving
 - Process refutation

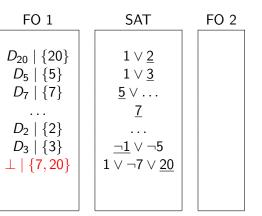


• Input:

$$D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots C_n$$

Repeat

- 1 FO 1: Process clauses
- 2 SAT: Find model
- 3 FO 1: Use model
- 4 FO 1: Do FO proving
 - Process refutation

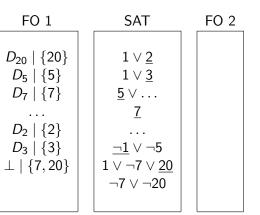


• Input:

$$D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots C_n$$

Repeat

- 1 FO 1: Process clauses
- 2 SAT: Find model
- 3 FO 1: Use model
- 4 FO 1: Do FO proving
 - Process refutation



• Input:

$$D_1 \vee D_2, D_1 \vee D_3, C_1, \ldots C_n$$

Repeat

- 1 FO 1: Process clauses
- 2 SAT: Find model
- 3 FO 1: Use model
- 4 FO 1: Do FO proving
 - Process refutation

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

• Input:

 $D_1 \lor D_2, D_1 \lor D_3, C_1, \ldots C_n$

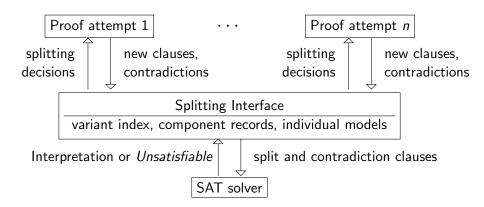
Repeat

- 1 FO 1: Process clauses
- 2 SAT: Find model
- 3 FO 1: Use model
- 4 FO 1: Do FO provingProcess refutation
- FO 1 SAT FO 2 $D_{20} \mid \{20\}$ $1 \lor 2$ $D_5 | \{5\}$ $1 \lor 3$ $D_7 | \{7\}$ 5 ∨ . . . 7 . . . $D_2 \mid \{2\}$. . . $D_3 | \{3\}$ $\neg 1 \lor \neg 5$ $\perp | \{7, 20\}$ $1 \lor \neg 7 \lor 20$ $\neg 7 \lor \neg 20$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• SAT Refutation

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

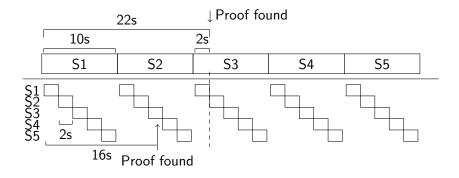

Organising many proofs

- Some technical stuff to solve
- Firstly, this required lots of reorganisation of the vampire architecture to separate data structures etc.
- How to deal with strategies that alter problem?
 - Currently restrict cooperating strategies to same preprocessed problem
- How to switch between proof attempts?
 - We introduce an interleaving architecture

(日)、

э

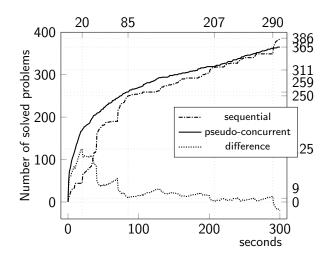
Shared AVATAR Architecture



・ロト ・ 雪 ト ・ ヨ ト

э

Interleaving Strategies


- Generally if a strategy finds a proof it finds it quickly
- By interleaving strategies we can find the quick proofs faster

Some results...

- ... but the whole architecture is currently being rewritten to remove inefficiencies
- We took
 - 1747 very hard first-order problems from TPTP
 - 30 random 'sensible' strategies
- And ran
 - Each strategy independently for 10 seconds
 - All 30 together with a per-strategy 10 second time limit
- We found
 - Problems were solved on average 1.53 times faster
 - Sharing splitting decisions led to 63 more problems being solved, often quickly.
 - It also solved some rating 1 problems
 - However some problems were lost. There are two explanations
 - SAT solver overhead goes up 20%
 - Loss of memory locality

Experiment

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Conclusion

- AVATAR uses SAT models to guide proof search
- The changing models represent different sub-problems
- As different strategies are good for different problems it makes sense to solve these sub-problems as separate proof attempts
- Some more engineering required before doing more exciting things
- Another exciting extension...
 - Replace SAT solver by SMT solver
 - We've done this for the single proof attempt version with Z3

VampireZ3... extra bits

- If a component is ground then do not name it, instead translate it to Z3 syntax
- If it uses interpreted operations or numbers, translate these into the appropriate Z3 operations or numbers
- That's it
- Z3 will only produce models consistent with the underlying theories
- The FO solver only needs to consider this (much) smaller set of sub-problems
- Note: Only ground bits go to Z3, we still need to do non-ground theory reasoning