
Unification with Abstraction and Theory Instantiation
in Saturation-based Reasoning ?

Giles Reger1, Martin Suda2, and Andrei Voronkov1,2,3

1 University of Manchester, Manchester, UK
2 TU Wien, Vienna, Austria

3 EasyChair

Abstract. We make a new contribution to the field by providing a new method of
using SMT solvers in saturation-based reasoning. We do this by introducing two
new inference rules for reasoning with non-ground clauses. The first rule utilises
theory constraint solving (an SMT solver) to perform reasoning within a clause to
find an instance where we can remove one or more theory literals. This utilises the
power of SMT solvers for theory reasoning with non-ground clauses, reasoning
which is currently achieved by the addition of often prolific theory axioms. The
second rule is unification with abstraction where the notion of unification is ex-
tended to introduce constraints where theory terms may not otherwise unify. This
abstraction is performed lazily, as needed, to allow the superposition theorem
prover to make as much progress as possible without the search space growing
too quickly. Additionally, the first rule can be used to discharge the constraints
introduced by the second. These rules were implemented within the Vampire the-
orem prover and experimental results show that they are useful for solving a con-
siderable number of previously unsolved problems. The current implementation
focuses on complete theories, in particular various versions of arithmetic.

1 Introduction

Reasoning in quantifier-free first-order logic with theories, such as arithmetic, is hard.
Reasoning with quantifiers and first-order theories is very hard. It is undecidable in
general and Π1

1 -complete for many simple combinations, for example linear (real or
integer) arithmetic and uninterpreted functions [16]. At the same time such reasoning
is essential to the future success of certain application areas, such as program analysis
and software verification, that rely on quantifiers to, for example, express properties of
objects, inductively defined data structures, the heap and dynamic memory allocation.
This paper presents a new approach to theory reasoning with quantifiers that (1) uses an
SMT solver to do local theory reasoning within a clause, and (2) extends unification to
avoid the need to explicitly separate theory and non-theory parts of clauses.

? This work was supported by EPSRC Grants EP/K032674/1 and EP/P03408X/1. Martin Suda
and Andrei Voronkov were partially supported by ERC Starting Grant 2014 SYMCAR
639270. Martin Suda was also partially supported by the Austrian research projects FWF
S11403-N23 and S11409-N23. Andrei Voronkov was also partially supported by the Wal-
lenberg Academy Fellowship 2014 – TheProSE. Part of this work was done when Andrei
Voronkov was part-time employed by Chalmers University of Technology.



There are two directions of research in the area of reasoning with problems contain-
ing quantifiers and theories. The first is the extension of SMT solvers with instantiation
heuristics such as E-matching [12, 9]. The second is the extension of first-order reason-
ing approaches with support for theory reasoning (note that the instantiation heuristics
from SMT solvers are not appropriate in this context, as discussed in [26]). There have
been a number of varied attempts in this second direction with some approaches ex-
tending various calculi [2, 3, 8, 7, 13, 16, 28] or using an SMT solver to deal with the
ground part of the problem [20]. This second approach includes our previous work de-
veloping AVATAR modulo theories [21], which complements the approach presented in
this paper as explained later. A surprisingly effective approach to theory reasoning with
first-order theorem provers is to add theory axioms (i.e. axioms from the theory of inter-
est). Whilst this has no hope of being complete, it can be used to prove a large number
of problems of interest. However, theory axioms can be highly prolific in saturation-
based proof search and often swamp the search space with irrelevant consequences of
the theory [22]. This combinatorial explosion prevents theory axioms from being useful
in cases where deep theory reasoning is required. This paper provides a solution that
allows for a combination of these approaches i.e. the integration with an SMT solver,
the use of theory axioms, and the heuristic extension of the underlying calculi.

Our paper contains two main ideas and we start with examples (which we revisit
later) to motivate and explain these ideas. The first idea is motivated by the observation
that the theory part of a first-order clause might already be restricting the interesting
instances of a clause, sometimes uniquely, and we can use this to produce simpler in-
stances that are useful for proof search. For example, the first-order clause

14x 6' x2 + 49 ∨ p(x)

has a single solution for x which makes the first literal false with respect to the under-
lying theory of arithmetic, namely x = 7. Therefore, every instance of this clause is a
logical consequence of its single instance

p(7)

in the underlying theory. If we apply standard superposition rules to the original clause
and a sufficiently rich axiomatisation of arithmetic, we will most likely end up with
a very large number of logical consequences and never generate p(7), or run out of
space before generating it. For many clauses the solution will not be unique but can still
provide useful instances, for example by taking the clause

7 ≤ x ∨ p(x)

and using its instance
7 ≤ 0 ∨ p(0)

we can derive the clause
p(0).

This clause does not represent all solutions for 7 ≤ x, but it results in a clause with
fewer literals. Moreover, this clause is ground and can be passed to an SMT solver (this
is where this approach complements the work of AVATAR modulo theories).



Finally, there are very simple cases where this kind of approach can immediately
find inconsistencies. For example, the clause

x ≤ 0 ∨ x ≤ y

has instances making it false, for example via the substitution {x 7→ 1, y 7→ 0}.
As explained in Section 3, these observations lead to an instantiation rule that con-

siders clauses to be in the form T → C, where T is the theory part, and uses an SMT
solver to find a substitution θ under which T is valid in the given theory, thus producing
the instance Cθ. Which, in the case where C = ⊥, can find general inconsistencies.

The second rule is related to the use of abstraction. By an abstraction we mean
(variants of) the rule obtaining from a clase C[t], where t is a non-variable term, a
clause x 6' t ∨ C[x], where x is a new variable. Abstraction is implemented in several
theorem provers, including the previous version of our theorem prover VAMPIRE [18]
used for experiments described in this paper.

Take, for example, the formula

(∀x : int . p(2x))→ p(10)

which is ARI189=1 from the TPTP library [33]. When negated and clausified, this
formula gives two unit clauses

p(2x) and ¬p(10),

from which we can derive nothing without abstracting at least one of the clauses.
If we abstract p(10) into p(y)∨y 6' 10 then a resolution step would give us 2x 6' 10

and simple evaluation would provide x 6' 5, which is refutable by equality resolution.
However, the abstraction step is necessary. Some approaches rely on full abstraction
where theory and non-theory symbols are fully separated. This is unattractive for a
number of reasons which we enumerate here:

1. A fully abstracted clause tends to be much longer, especially if the original clause
contains deeply nested theory and non-theory symbols. Getting rid of long clauses
was one of the motivations of our previous AVATAR work on clause splitting
[34] (see this work for why long clauses are problematic for resolution-based ap-
proaches). However, the long clauses produced by abstraction will share variables,
reducing the impact of AVATAR.

2. The AVATAR modulo theories approach [21] ensures that the first-order solver is
only exploring part of the search space that is theory-consistent in its ground part
(using a SMT solver to achieve this). This is effective but relies on ground liter-
als remaining ground, even those that mix theory and non-theory symbols. Full
abstraction destroys such ground literals.

3. As mentioned previously, the addition of theory axioms can be effective for prob-
lems requiring shallow theory reasoning. Working with fully abstracted clauses
forces us to make first-order reasoning to treat the theory part of a clause differ-
ently. This makes it difficult to take full advantage of theory axiom reasoning.



The final reason we chose not to fully abstract clauses in our work is that the main
advantage of full abstraction for us would be that it deals with the above problem, but
we have a solution which we believe solves this issue in a more satisfactory way, as
confirmed by our experiments described in Section 5.

The second idea is to perform this abstraction lazily, i.e., only where it is required
to perform inference steps. As described in Section 4, this involves extending unifica-
tions to produce theory constraints under which two terms will unify. As we will see,
these theory constraints are exactly the kind of terms that can be handled easily by the
instantiation technique introduced in our first idea.

As explained above, the contributions of this paper are

1. a new instantiation rule that uses an SMT solver to provide instances consistent
with the underlying theory (Section 3),

2. an extension of unification that provides a mechanism to perform lazy abstraction,
i.e., only abstracting as much as is needed, which results in clauses with theory con-
straints that can be discharged by the previous instantiation technique (Section 4),

3. an implementation of these techniques in the VAMPIRE theorem prover (described
in Sections 3 and 4),

4. an experimental evaluation that demonstrate the effectiveness of these techniques
both individually and in combination with the rest of the powerful techniques im-
plemented within VAMPIRE (Section 5).

An extended version of this paper [32] contains further examples and discussion. We
start our presentation by introducing the necessary background material.

2 Preliminaries and Related Work

First-Order Logic and Theories. We consider a many-sorted first-order logic with
equality. A signature is a pair Σ = (Ξ,Ω) where Ξ is a set of sorts and Ω a set
of predicate and function symbols with associated argument and return sorts from Ξ .
Terms are of the form c, x, or f(t1, . . . , tn) where f is a function symbol of arity n ≥ 1,
t1, . . . , tn are terms, c is a zero arity function symbol (i.e. a constant) and x is a variable.
We assume that all terms are well-sorted. Atoms are of the form p(t1, . . . , tn), q or
t1 's t2 where p is a predicate symbol of arity n, t1, . . . , tn are terms, q is a zero arity
predicate symbol and for each sort s ∈ Ξ , 's is the equality symbol for the sort s. We
write simply ' when s is known from the context or irrelevant. A literal is either an
atom A, in which case we call it positive, or a negation of an atom ¬A, in which case
we call it negative. When L is a negative literal ¬A and we write ¬L, we mean the
positive literal A. We write negated equalities as t1 6' t2. We write t[s]p and L[s]p to
denote that a term s occurs in a term t (in a literal L) at a position p.

A clause is a disjunction of literals L1 ∨ . . . ∨ Ln for n ≥ 0. We disregard the
order of literals and treat a clause as a multiset. When n = 0 we speak of the empty
clause, which is always false. When n = 1 a clause is called a unit clause. Variables in
clauses are considered to be universally quantified. Standard methods exist to transform
an arbitrary first-order formula into clausal form (e.g. [19] and our recent work in [25]).

A substitution is any expression θ of the form {x1 7→ t1, . . . , xn 7→ tn}, where
n ≥ 0. Eθ is the expression obtained from E by the simultaneous replacement of



each xi by ti. By an expression we mean a term, an atom, a literal, or a clause. An
expression is ground if it contains no variables. An instance of E is any expression Eθ
and a ground instance of E is any instance of E that is ground. A unifier of two terms,
atoms or literals E1 and E2 is a substitution θ such that E1θ = E2θ. It is known that if
two expressions have a unifier, then they have a so-called most general unifier.

We assume a standard notion of a (first-order, many-sorted) interpretation I, which
assigns a non-empty domain Is to every sort s ∈ Ξ , and maps every function symbol f
to a function If and every predicate symbol p to a relation Ip on these domains so that
the mapping respects sorts. We call If the interpretation of f in I, and similarly for Ip
and Is. Interpretations are also sometimes called first-order structures. A sentence is a
closed formula, i.e., with no free variables. We use the standard notions of validity and
satisfiability of sentences in such interpretations. An interpretation is a model for a set
of clauses if (the universal closure of) each of these clauses is true in the interpretation.

A theory T is identified by a class of interpretations. A sentence is satisfiable in T
if it is true in at least one of these interpretations and valid if it is true in all of them. A
function (or predicate) symbol f is called uninterpreted in T , if for every interpretation
I of T and every interpretation I ′ which agrees with I on all symbols apart from f ,
I ′ is also an interpretation of T . A theory is called complete if, for every sentence F
of this theory, either F or ¬F is valid in this theory. Evidently, every theory of a single
interpretation is complete. We can define satisfiability and validity of arbitrary formulas
in an interpretation in a standard way by treating free variables as new uninterpreted
constants.

For example, the theory of integer arithmetic fixes the interpretation of a distin-
guished sort sint ∈ ΞIA to the set of mathematical integers Z and analogously assigns
the usual meanings to {+,−, <,>, ∗} ∈ ΩIA. We will mostly deal with theories in
which their restriction to interpreted symbols is a complete theory, for example, integer
or real linear arithmetic. In the sequel we assume that T is an arbitrary but fixed theory
and give definitions relative to this theory.
Abstracted Clauses. Here we discuss how a clause can be separated into a theory
and non-theory part. To this end we need to divide symbols into theory and non-theory
symbols. When we deal with a combination of theories we consider as theory symbols
those symbols interpreted in at least one of the theories and all other symbols as non-
theory symbols. That is, non-theory symbols are uninterpreted in all theories.

A non-equality literal is a theory literal if its predicate symbol is a theory symbol.
An equality literal t1 's t2 is a theory literal, if the sort s is a theory sort. A non-theory
literal is any literal that is not a theory literal. A literal is pure if it contains only theory
symbols or only non-theory symbols. A clause is fully abstracted, or simply abstracted,
if it only contains pure literals. A clause is partially abstracted if non-theory symbols
do not appear in theory literals. Note that in partially abstracted clauses theory symbols
are allowed to appear in non-theory literals.

A non-variable term t is called a theory term (respectively non-theory term) if its
top function symbol is a theory (respectively non-theory) symbol. When we say that a
term is a theory or a non-theory term, we assume that this term is not a variable.

Given a non-abstracted clause L[t]∨C where L is a theory literal and t a non-theory
term (or the other way around), we can construct the equivalent clause L[x]∨C∨x 6' t
for a fresh variable x. Repeated application of this process will lead to an abstracted



clause, and doing this only for theory literals will result in a partially abstracted clause.
In both cases, the results are unique (up to variable renaming).

The above abstraction process will take a+ a ' 1, where a is a non-theory symbol,
and produce x+ y ' 1 ∨ x 6' a ∨ y 6' a. There is a simpler equivalent fully abstracted
clause x+ x ' 1 ∨ x 6' a, and we would like to avoid unnecessarily long clauses. For
this reason, we will assume that abstraction will abstract syntactically equal subterms
using the same fresh variable, as in the above example. If we abstract larger terms first,
the result of abstractions will be unique up to variable renaming.

Superposition Calculus. Later we will show how our underlying calculus, the super-
position and resolution calculus, can be updated to use an updated notion of unification.
For space reasons we do not replicate this calculus here (but it is given in our previous
work [15]). We do, however, draw attention to the following Equality Resolution rule

s 6' t ∨ C
Cθ

θ is a most general unifier of s and t

as, without modification, this rule will directly undo any abstractions. This rule will be
used in Section 3 to justify ignoring certain literals when performing instantiation.

Saturation-Based Proof Search (and Theory Reasoning). We introduce our new ap-
proach within the context of saturation-based proof search. The general idea in satura-
tion is to maintain two sets of Active and Passive clauses. A saturation-loop then selects
a clause C from Passive, places C in Active, applies generating inferences between C
and clauses in Active, and finally places newly derived clauses in Passive after apply-
ing some retention tests. The retention tests involve checking whether the new clause is
itself redundant (i.e. a tautology) or redundant with respect to existing clauses.

To perform theory reasoning within this context it is common to do two things.
Firstly, to evaluate new clauses to put them in a common form (e.g. rewrite all inequal-
ities in terms of <) and evaluate ground theory terms and literals (e.g. 1 + 2 becomes 3
and 1 < 2 becomes false). Secondly, as previously mentioned, relevant theory axioms
can be added to the initial search space. For example, if the input clauses use the +
symbol one can add the axioms x+ y ' y + x and x+ 0 ' x, among others.

3 Generating Simpler Instances

In the introduction, we showed how useful instances can be generated by finding sub-
stitutions that make theory literals false. We provide further motivation for the need for
instances and then describe a new inference rule capturing this approach.

There are some very simple problems that are difficult to solve by the addition of
theory axioms. Consider, for example, the following conjecture valid in the theory of
integer arithmetic:

(∃x)(x+ x ' 2),

which yields the following unit clause after being negated for refutation

x+ x 6' 2.



It takes VAMPIRE almost 15 seconds to refute this clause using theory axioms (and
non-trivial search parameters) and involves the derivation of intermediate theory con-
sequences such as x + 1 ' y + 1 ∨ y + 1 ≤ x ∨ x + 1 ≤ y. In contrast, applying the
substitution {x 7→ 1} immediately leads to a refutation via evaluation.

The generation of instances in this way is not only useful where theory axiom rea-
soning explodes, it can also significantly shorten proofs where theory axiom reasoning
succeeds. For example, there is a proof of the problem DAT101=1 from the TPTP li-
brary using theory axioms that involves generating just over 230 thousand clauses. In
contrast, instantiating an intermediate clause

inRange(x, cons(1, cons(5, cons(2, nil)))) ∨ x < 4 (1)

with {x 7→ 4} solves the problem after generating just 171 clauses.
Theory Instantiation. From the above discussion it is clear that generating instances
of theory literals may drastically improve performance of saturation-based theorem
provers. The problem is that the set of all such instances can be infinite, so we should
try to generate only those instances that are likely not to degrade the performance.

There is a special case of instantiation that allows us to derive from a clause C a
clause with fewer literals than C. We can capture this in the following theory instantia-
tion inference rule where the notion of trivial literal has not yet been defined.

P ∨D
Dθ

(TheoryInst)

such that

1. P contains only pure theory literals;
2. ¬Pθ is valid in T (equivalently, Pθ is unsatisfiable in T ).
3. P contains no literals trivial in P ∨D;

The second condition ensures that Pθ can be safely removed. This also avoids mak-
ing a theory literal valid in the theory (a theory tautology) after instantiation. For exam-
ple, if we had instantiated clause (1) with {x 7→ 3} then the clause would have been
evaluated to true (because of 3 < 4) and thrown away as a theory tautology.

The third condition avoids the potential problem of simply undoing abstraction. For
example, consider the unit clause p(1, 5) which will be abstracted as

x 6' 1 ∨ y 6' 5 ∨ p(x, y). (2)

The substitution θ = {x 7→ 1, y 7→ 5} makes the formula x ' 1 ∧ y ' 5 valid. Its
application, followed by evaluation produces p(x, y)θ = p(1, 5), i.e. the original clause.

More generally, a clause does not need to be abstracted to contain such literals. For
example, the clause

x 6' 1 + y ∨ p(x, y)

might produce, after applying TheoryInst (without the third condition) and evaluation,
the instance p(1, 0), but it can also be used to produce the more general clause p(y+1, y)
using equality resolution.



Based on the above discussion we define literals that we do not want to use for
applying TheoryInst since we can use a sequence of equality resolution steps to solve
them. Let C be a clause. The set of trivial literals in C is defined recursively as follows.
A literal L is trivial in C if

1. L is of the form x 6' t such that x does not occur in t;
2. L is a pure theory literal;
3. every occurrence of x in C apart from its occurrence in x 6' t is either in a literal

that is not a pure theory literal, or in a literal trivial in C.

We call such literals trivial as they can be removed by a sequence of equality resolution
steps. For example, in clause (2) both x 6' 1 and y 6' 5 are trivial. Consider another
example: the clause

x 6' y + 1 ∨ y 6' z · z ∨ p(x, y, z).

The literal x 6' y + 1 is trivial, because, apart from this literal, x occurs only in the
non-theory literal p(x, y, z). The literal y 6' z · z is also trivial, because y occurs only
in non-theory literal p(x, y, z) and in a trivial literal x 6' y + 1.

It is easy to argue that all pure theory literals introduced by abstraction are trivial.
Implementation. To use TheoryInst , we apply the following steps to each given
clause C:

1. abstract relevant literals;
2. collect (all) non-trivial pure theory literals L1, . . . , Ln;
3. run an SMT solver on T = ¬L1 ∧ . . . ∧ ¬Ln;
4. if the SMT solver returns

– a model, we turn it into a substitution θ such that Tθ is valid in T ;
– unsatisfiable, then C is a theory tautology and can be removed.

Note that the abstraction step is not necessary for using TheoryInst , since it will only
introduce trivial literals. However, for each introduced theory literal x 6' t the vari-
able x occurs in a non-theory literal and inferences applied to this non-theory literal
may instantiate x to a term s such that s 6' t is non-trivial. Let us now discuss the
implementation of each step in further detail.

Selecting Pure Theory Literals. In the definition of TheoryInst we did not specify
that P contains all pure theory literals in the premise. The reason is that some pure
theory literals may be unhelpful. For example, consider

x ' 0 ∨ p(x).

Here the SMT solver could select any value for x, apart from 0. In general, positive
equalities are less helpful than negative equalities or interpreted predicates as they re-
strict the instances less. We introduce three options to control this selection:

– strong: Only select strong literals where a literal is strong if it is a negative equal-
ity or an interpreted literal.

– overlap: Select all strong literals and additionally those theory literals whose
variables overlap with a strong literal.



– all: Select all non-trivial pure theory literals.

At this point there may not be any pure theory literals to select, in which case the
inference will not be applied.

Interacting with the SMT solver. In this step, we replace variables in selected pure
theory literals by new constants and negate the literals. Once this has been done, the
translation of literals to the format understood by the SMT solver is straightforward
(and outlined in [21]). We use Z3 [11] in this work.

Additional care needs to be taken when translating partial functions, such as divi-
sion. In SMT solving, they are treated as total underspecified functions. For example,
when T is integer arithmetic with division, interpretations for T are defined in such a
way that for all integers a, b and interpretation I, the theory also has the interpretation
defined exactly as I apart from having a/0 = b. In a way, division by 0 behaves as an
uninterpreted function.

Due to this convention, Z3 may generate an arbitrary value for the result in order to
satisfy a given query. As a result, Z3 can produce a model that is output as an ordinary
solution except for the assumptions about division by 0. For example solving 2/x = 1
can return x = 0. If we accept that x ' 0 is a solution, the theorem prover may become
unsound. As an example, consider a problem consisting of the following two clauses

1/x 6' 0 ∨ p(x) 1/x ' 0 ∨ ¬p(x).

The example is satisfiable as witnessed by an interpretation that assigns false to p(z)
for every real number z and interprets 1/0 as a non-zero real, e.g. 1. However, the
TheoryInst rule could produce conflicting instances p(0) and ¬p(0) of the two clauses,
internally assuming 1/0 = 0 for the first instances and 1/0 6= 0 for the second.

To deal with this issue, we assert that s 6' 0 whenever we translate a term of the
form t/s. This implies that we do not pass to the SMT solver terms of the form t/0.

Instance Generation. The next step is to understand when and how we can turn the
model returned by the SMT solver into a substitution making T valid. Recall that T can
contain

1. interpreted symbols that have a fixed interpretation in T , such as 0 or +;
2. other interpreted symbols, such as division;
3. variables of T .

In general, there are no standards on how SMT solvers return models or solutions. We
assume that the model returned by the underlying SMT solver can be turned into a
conjunction S of literals such that

1. S is satisfiable in T ;
2. S → T is valid in T .

Note that checking that T is satisfiable and returning T as a model satisfies both condi-
tions, but does not give a substitution that can be used to apply the TheoryInst rule.

To apply this rule, we need models of a special form defined below. A conjunction
S of literals is said to be in triangle form if S has the form

x1 ' t1 ∧ . . . ∧ xn ' tn (3)



such that for all i = 1, . . . , n the variable xi does not occur in ti, . . . , tn. Any model
S in a triangle form can be converted into a substitution θ such that xiθ = tiθ for all
i = 1, . . . , n. Note that Sθ is then valid, hence (by validity of S → T ), Tθ is valid too,
so we can use θ to apply TheoryInst .

Practically, we must evaluate the introduced constants (i.e. those introduced for each
of the variables in the above step) in the given model. In some cases, this evaluation
fails to give a numeric value. For example, if the result falls out of the range of values
internally representable by VAMPIRE or when the value is a proper algebraic number,
which currently also cannot be represented internally by our prover. In this case, we
cannot produce a substitution and the inference fails.

Theory Tautology Deletion. As we pointed out above, if the SMT solver returns
unsatisfiable then C is a theory tautology and can be removed. We only do it when we
do not pass to the solver additional assumptions related to division by 0.

4 Abstraction Through Unification

As shown earlier, there are cases where we cannot perform a necessary inference step,
because we are using a syntactic notion of equality rather than a semantic one. We have
introduced an inference rule (TheoryInst) able to derive p(7) from the clause

14x 6' x2 + 49 ∨ p(x),

but unable to deal with a pair of clauses such as

r(14y) ¬r(x2 + 49) ∨ p(x),

as it only performs theory reasoning inside a clause whereas this requires us to reason
between clauses. Semantically, the terms 14y and x2 + 49 can be made equal when
y = x = 7 so we would like to get the result p(7) here also.

Notice that if the clauses had been abstracted as follows:

r(u) ∨ u 6' 14y ¬r(v) ∨ v 6' x2 + 49 ∨ p(x),

then the resolution step would have been successful, producing

u 6' 14y ∨ u 6' x2 + 49 ∨ p(x)

which could be given to TheoryInst to produce p(7). One solution would be to store
clauses in abstracted form, but we argued earlier why this is not suitable and later con-
firm this experimentally. Instead of abstracting fully we incorporate the abstraction pro-
cess into unification so that only abstractions necessary for a particular inference are
performed. This is a lazy approach, i.e., we delay abstraction until it is needed.
Unification with Abstraction. Here we define a partial function mguAbs on pairs of
terms and pairs of atoms such that mguAbs(t, s) is either undefined, in which case we
say that it fails on (s, t), or mguAbs(t, s) = (θ,D) such that

1. θ is a substitution and D is a (possibly empty) disjunction of disequalities;
2. (D ∨ t ' s)θ is valid in the underlying theory (and even valid in predicate logic).



Algorithm 1 Unification algorithm with constraints
function mguAbs(l, r)

let E be a set of equations; E := {l = r}
let D be a set of disequalities; D := ∅
let θ be a substitution; θ := {}
loop

if E is empty then return (θ,D), where D is the disjunction of literals in D
Select an equation s = t in E and remove it from E
if s coincides with t then do nothing
else if s is a variable and s does not occur in t then

θ := θ ◦ {s 7→ t}; E := E{s 7→ t}
else if s is a variable and s occurs in t then fail
else if t is a variable then E := E ∪ {t = s}
else if s and t have different top-level symbols then

if canAbstract(s, t) then D := D ∪ {s 6' t}
else fail

else if s = f(s1, . . . , sn) and t = f(t1, . . . , tn) for some f then
E := E ∪ {s1 = t1, . . . , sn = tn}

Algorithm 1 gives a unification algorithm extended so that it implements mguAbs.
The algorithm is parameterised by a canAbstract predicate. The idea here is that some
abstractions are not useful. For example, consider the two clauses

p(1) ¬p(2).

Allowing 1 and 2 to unify and produce 1 6' 2 is not useful in any context. Therefore,
canAbstract will always be false if the two terms are always non-equal in the un-
derlying theory, e.g. if they are distinct numbers in the theory of arithmetic. Beyond
this obvious requirement we also want to control how prolific such unifications can be.
Therefore, we include the following options here:

– interpreted only: only produce a constraint if the top-level symbol of both
terms is a theory symbol,

– one side interpreted: only produce a constraint if the top-level symbol of
at least one term is a theory symbol,

– one side constant: only produce a constraint if the top-level symbol of at
least one term is a theory symbol and the other is an uninterpreted constant,

– all: allow all terms of theory sort to unify and produce constraints.

Updated Calculus. So far we have only considered resolution as a rule that could use
this new form of unification, but in principle it can be used wherever we use unification.
In the extended version of this paper [32] we describe how to update the full superpo-
sition and resolution calculus to make use of unification with abstraction. Here we give
the rules for resolution and factoring:

A ∨ C1 ¬A′ ∨ C2

(D ∨ C1 ∨ C2)θ
Resolution-wA

A ∨A′ ∨ C
(D ∨A ∨ C)θ

Factoring-wA



where, for both inferences, (θ,D) = mguAbs(A,A
′) and A is not an equality literal.

Now given the problem from the introduction involving p(2x) and ¬p(10) we can
apply Resolution-wA to produce 2x 6' 10 which can be resolved using evaluation and
equality resolution as before. We note at this point that a further advantage of this up-
dated calculus is that it directly resolves the issue of losing proofs via eager evaluation,
e.g. where p(1 + 3) is evaluated to p(4), missing the chance to resolve with ¬p(x+ 3).
Implementation. In VAMPIRE, as in most modern theorem provers, inferences in-
volving unification are implemented via term indexing [30]. Therefore, to update how
unification is applied we need to update our implementation of term indexing. As the
field of term indexing is highly complex we only give a sketch of the update here.

Term indices provide the ability to use a query term t to extract terms that unify
(or match, or generalise) with t along with the relevant substitutions. Like many the-
orem provers, VAMPIRE uses substitution trees [14] to index terms. The idea behind
substitution trees is to abstract a term into a series of substitutions required to generate
that term and store these substitutions in the nodes of the tree. To search for unifying
terms we perform a backtracking search over the tree, composing substitutions from the
nodes when descending down edges and checking at each node whether the query term
is consistent with the current substitution. This involves unifying subterms of the query
term against terms at nodes and a backtrackable result substitution must be maintained
to store the results of these unifications. The result substitution must be backtracked as
appropriate i.e. when backtracking past the point of unification.

To update this process we do two things. Firstly, wherever previously a unification
failed we will produce a set of constraints using Algorithm 1. Secondly, alongside the
backtrackable result substitution we maintain a backtrackable stack of constraints so
that whenever we backtrack past a point where we made a unification that produced
some constraints we remove those constraints from the stack.

5 Experimental Results

We present experimental results evaluating the effectiveness of the new techniques. Our
experiments were carried out on a cluster on which each node is equipped with two
quad core Intel processors running at 2.4 GHz and 24GiB of memory.
Comparing New Options. We were interested in comparing how various proof option
values affect the performance of a theorem prover. We consider the two new options
referred to here by their short names: uwa (unification with abstraction) and thi (theory
instantiation). In addition, we consider the boolean option fta (full theory abstraction),
applying full abstract to input clauses as implemented in previous versions of VAMPIRE.

Making such a comparison is hard, since there is no obvious methodology for doing
so, especially considering that VAMPIRE has over 60 options commonly used in exper-
iments (see [24]). The majority of these options are Boolean, some are finitely-valued,
some integer-valued and some range over other infinite domains. The method we used
here was based on the following ideas, already described in [17].

1. We use a subset of problems with quantifiers and theories from the SMTLIB library
[5] (version 2016-05-23) that (i) do not contain bit vectors, (ii) are not trivially
solvable, and (iii) are solvable by some approach.



Table 1. Evaluation of the 24 Meaningful Combination of the Three Tested Options

fta uwa thi solutions
on off all 252
on off overlap 265
on off strong 266
on off off 276
off all all 333
off all overlap 351
off all strong 354
off one side interpreted all 364
off all off 364
off one side constant all 374
off interpreted only all 379
off one side interpreted overlap 385

fta uwa thi solutions
off one side interpreted strong 387
off off all 392
off one side constant strong 397
off one side constant overlap 401
off interpreted only overlap 407
off one side interpreted off 407
off interpreted only strong 409
off one side constant off 417
off off overlap 428
off interpreted only off 430
off off strong 431
off off off 450

2. we repeatedly select a random problem P in this set, a random strategy S and run
P on variants of S obtained by choosing possible values for the three options using
the same time limit.

We consider combinations of option values satisfying the following natural conditions:
either fta or uwa must be off, since it does not make sense to use unification with ab-
straction when full abstraction is performed. This resulted in 24 possible combinations
of values. We ran approximately 100 000 tests with the time limit of 30 seconds, which
is about 4000 tests per a combination of options. The results are shown in Table 1.

It may seem surprising that the overall best strategy has all the three options turned
off. This is due to what we have observed previously: many SMTLIB problems with
quantifiers and theories require very little theory reasoning. Indeed, VAMPIRE solves
a large number of problems (including problems unsolvable by existing SMT solvers)
just by adding theory axioms and then running superposition with no theory-related
rules. Such problems do not gain from the new options, because new inference rules
result only in more generated clauses. Due to the portfolio approach of modern theorem
provers, our focus is on cases where new options are complementary to existing ones.

Let us summarise the behaviour of three options, obtained by a more detailed anal-
ysis of our experimental results.

Full theory abstraction. Probably the most interesting observation from these re-
sults is that the use of full abstraction (fta) results in an observable degradation of
performance. This confirms our intuition that unification with abstraction is a good re-
placement for abstraction. As a result, we will remove the fta option from VAMPIRE.

Unification with abstraction. This option turned out to be very useful. Many prob-
lems had immediate solutions with uwa turned on and no solutions when it was turned
off. Further, the value all resulted in 12 unique solutions. We have decided to keep the
values all, interpreted only and off.

Theory instantiation. This option turned out to be very useful too. Many problems
had immediate solutions with thi turned on and no solutions when it was turned off. We
have decided to keep the values all, strong and off.



SMT-LIB
Logic New solutions Uniquely solved
ALIA 1 0
LIA 14 0
LRA 4 0
UFDTLIA 5 0
UFLIA 28 14
UFNIA 13 4

TPTP
Category New solutions Uniquely solved
ARI 13 0
NUM 1 1
SWW 3 1

Table 2. Results from finding solutions to previously unsolved problems.

Contribution of New Options to Strategy Building. Since modern provers normally
run a portfolio of strategies to solve a problem (strategy scheduling), there are two ways
new strategies can be useful in such a portfolio:

1. by reducing the overall schedule time when problems are solved faster or when a
single strategy replaces one or more old strategies;

2. by solving previously unsolved problems.

While for decidable classes, such as propositional logic, the first way can be more im-
portant, in first-order logic it is usually the second way that matters. The reason is that,
if a problem is solvable by a prover, it is usually solvable with a short running time.

We ran VAMPIRE trying to solve, using the new options, problems previously un-
solved by VAMPIRE. We took all such problems from the TPTP library [33] and SMT-
LIB [5] and Table 2 shows the results. In the table, new solutions are meant with respect
to what VAMPIRE could previously solve and uniquely solved stands for the number of
new problems with respect to what can be solved by other entrants into SMT-COMP4

and CASC5 where the main competitors are SMT solvers such as Z3 [11] and CVC4
[4] and ATPs such as Beagle [6] and Princess [28, 29].

With the help of the new options VAMPIRE solved 20 problems previously unsolved
by any other theorem prover or SMT solver.

6 Related Work

We review relevant related work. A more thorough review can be found in [32].

SMT Solving. SMT solvers such as Z3 [11] and CVC4 [4] implement E-matching [12,
9], model based quantifier instantiation [12, 9] and conflict instantiation [27] to handle
quantifiers. Although complete on some fragments, these instantiation techniques are
generally heuristic and cannot be directly applied in our setting (see [26]).

InDPLL(Γ ) [10] a superposition prover is combined with an SMT solver such that
ground literals implied by the SMT solver are used as hypotheses to first-order clauses.

4 http://smtcomp.sourceforge.net/
5 http://www.cs.miami.edu/˜tptp/CASC/



AVATAR Modulo Theories. Our previous work on AVATAR Modulo Theories [21]
uses the AVATAR architecture [34, 23] for clause splitting to integrate an SMT solver
with a superposition prover. The general idea is to abstract the clause search space as a
SMT problem and use a SMT solver to decide on at least one literal per clause to have in
the current search space of the superposition prover. To abstract the clause search space,
non-ground components (sub-clauses sharing variables) are abstracted as propositional
symbols whilst ground literals are translated directly. The result is that the superposition
prover only deals with a set of clauses that is theory-consistent in its ground part.

Theory Resolution. Stickel’s Theory Resolution [31] is a generalisation of the reso-
lution inference rule whose aim is to exclude the often prolific theory axioms from the
explicit participation on reasoning about the uninterpreted part of a given problem. In
[32] we show that the theory resolution rule is a re-definition of T -sound inferences.
Given this, it is too abstract per se to bear practical relevance to our approach.

Hierarchic Superposition. Hierarchic Superposition (HS) [3] is a generalisation of
the superposition calculus for black-box style theory reasoning. The approach uses full
abstraction to separate theory and non-theory parts of the problem and introduces a
conceptual hierarchy between uninterpreted reasoning (with the calculus) and theory
reasoning (delegated to a theory solver) by making pure theory terms smaller than ev-
erything else. HS guarantees refutational completeness under certain conditions that
can be rather restrictive, e.g., the clauses p(x) and ¬p(f(c)) cannot be resolved if the
return sort of function f is a theory sort. The strategy of weak abstractions introduced
by Baumgartner and Waldmann [7] partially addresses the downsides of the original
approach. However, their approach requires some decisions to be made, for which there
currently does not seem to be a practical solution. See [32] for more details.

Other Theory Instantiation. SPASS+T [20] implements a theory instantiation rule
that is analogous to E-matching in the sense that it uses ground theory terms from the
search space to perform instantiations as a last resort. This is not related to our approach.

Unification Modulo Theories. There is a large amount of work on unification modulo
various theories, such as AC. This work is not related since we are not looking for the
set of all or most general solutions to unification. Instead, we postpone finding such
solutions by creating constraints, which can then be processed by the SMT solver.

7 Conclusion

We have introduced two new techniques for reasoning with problems containing theo-
ries and quantifiers. The first technique allows us to utilise the power of SMT solving to
find useful instances of non-ground clauses. The second technique presents a solution
to the issue of full abstraction by lazily abstracting clauses to allow them to unify un-
der theory constraints. Our experimental results show that these approaches can solve
problems previously unsolvable by VAMPIRE and other solvers.

There are two directions for future research that we believe will further increase
the power of this technique. Firstly, to explore the relationship between this approach
and the AVATAR modulo theories work and, secondly, to relax the restriction of theory
instantiation to single concrete models.



References
1. B. Akbarpour and L. C. Paulson. Extending a Resolution Prover for Inequalities on Elemen-

tary Functions, pp. 47–61. Springer Berlin Heidelberg, 2007.
2. E. Althaus, E. Kruglov, and C. Weidenbach. Superposition modulo linear arithmetic

SUP(LA). In Frontiers of Combining Systems, 7th International Symposium, FroCoS 2009,
Trento, Italy, September 16-18, 2009. Proceedings, vol. 5749 of Lecture Notes in Computer
Science, pp. 84–99. Springer, 2009.

3. L. Bachmair, H. Ganzinger, and U. Waldmann. Refutational theorem proving for hierarchic
first-order theories. Appl. Algebra Eng. Commun. Comput., 5:193–212, 1994.

4. C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds, and
C. Tinelli. CVC4. In Proceedings of the 23rd International Conference on Computer Aided
Verification, number 6806 in Lecture Notes in Computer Science, pp. 171–177. Springer-
Verlag, 2011.

5. C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org, 2010.

6. P. Baumgartner, J. Bax, and U. Waldmann. Beagle - A Hierarchic Superposition Theorem
Prover. In Proceedings of the 25th International Conference on Automated Deduction, num-
ber 9195 in Lecture Notes in Computer Science, pp. 285–294. Springer-Verlag, 2015.

7. P. Baumgartner and U. Waldmann. Hierarchic Superposition With Weak Abstraction. In
Proceedings of the 24th International Conference on Automated Deduction, number 7898 in
Lecture Notes in Artificial Intelligence, pp. 39–57. Springer-Verlag, 2013.

8. M. P. Bonacina, C. Lynch, and L. M. de Moura. On deciding satisfiability by theorem proving
with speculative inferences. J. Autom. Reasoning, 47(2):161–189, 2011.

9. L. M. de Moura and N. Bjørner. Efficient e-matching for SMT solvers. In Automated Deduc-
tion - CADE-21, 21st International Conference on Automated Deduction, Bremen, Germany,
July 17-20, 2007, Proceedings, pp. 183–198, 2007.

10. L. M. de Moura and N. Bjørner. Engineering DPLL(T) + saturation. In Automated Reason-
ing, 4th International Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008,
Proceedings, pp. 475–490, 2008.

11. L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In Proc. of TACAS, vol. 4963
of LNCS, pp. 337–340, 2008.

12. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program checking. J.
ACM, 52(3):365–473, 2005.

13. H. Ganzinger and K. Korovin. Theory instantiation. In Logic for Programming, Artificial
Intelligence, and Reasoning, 13th International Conference, LPAR 2006, Phnom Penh, Cam-
bodia, November 13-17, 2006, Proceedings, vol. 4246 of Lecture Notes in Computer Science,
pp. 497–511. Springer, 2006.

14. P. Graf. Substitution tree indexing, pp. 117–131. Springer Berlin Heidelberg, 1995.
15. K. Hoder, G. Reger, M. Suda, and A. Voronkov. Selecting the selection. In Automated

Reasoning: 8th International Joint Conference, IJCAR 2016, Coimbra, Portugal, June 27 –
July 2, 2016, Proceedings, pp. 313–329. Springer International Publishing, 2016.

16. K. Korovin and A. Voronkov. Integrating linear arithmetic into superposition calculus. In
Computer Science Logic, 21st International Workshop, CSL 2007, 16th Annual Conference
of the EACSL, Lausanne, Switzerland, September 11-15, 2007, Proceedings, vol. 4646 of
Lecture Notes in Computer Science, pp. 223–237. Springer, 2007.

17. L. Kovács, S. Robillard, and A. Voronkov. Coming to terms with quantified reasoning. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL 2017, Paris, France, January 18-20, 2017, pp. 260–270. ACM, 2017.

18. L. Kovács and A. Voronkov. First-order theorem proving and Vampire. In CAV 2013, vol.
8044 of Lecture Notes in Computer Science, pp. 1–35, 2013.



19. A. Nonnengart and C. Weidenbach. Computing small clause normal forms. In Handbook of
Automated Reasoning (in 2 volumes), pp. 335–367. Elsevier and MIT Press, 2001.

20. V. Prevosto and U. Waldmann. SPASS+T. In Proceedings of the FLoC’06 Workshop on
Empirically Successful Computerized Reasoning, 3rd International Joint Conference on Au-
tomated Reasoning, number 192 in CEUR Workshop Proceedings, pp. 19–33, 2006.

21. G. Reger, N. Bjørner, M. Suda, and A. Voronkov. AVATAR modulo theories. In GCAI 2016.
2nd Global Conference on Artificial Intelligence, vol. 41 of EPiC Series in Computing, pp.
39–52. EasyChair, 2016.

22. G. Reger and M. Suda. Set of support for theory reasoning. In IWIL Workshop and LPAR
Short Presentations, vol. 1 of Kalpa Publications in Computing, pp. 124–134. EasyChair,
2017.

23. G. Reger, M. Suda, and A. Voronkov. Playing with AVATAR. In Automated Deduction -
CADE-25: 25th International Conference on Automated Deduction, Berlin, Germany, Au-
gust 1-7, 2015, Proceedings, pp. 399–415. Springer International Publishing, 2015.

24. G. Reger, M. Suda, and A. Voronkov. The challenges of evaluating a new feature in vampire.
In Proceedings of the 1st and 2nd Vampire Workshops, vol. 38 of EPiC Series in Computing,
pp. 70–74. EasyChair, 2016.

25. G. Reger, M. Suda, and A. Voronkov. New techniques in clausal form generation. In GCAI
2016. 2nd Global Conference on Artificial Intelligence, vol. 41 of EPiC Series in Computing,
pp. 11–23. EasyChair, 2016.

26. G. Reger, M. Suda, and A. Voronkov. Instantiation and pretending to be an SMT solver
with vampire. In Proceedings of the 15th International Workshop on Satisfiability Modulo
Theories, number 1889 in CEUR Workshop Proceedings, pp. 63–75, 2017.

27. A. Reynolds, C. Tinelli, and L. M. de Moura. Finding conflicting instances of quantified
formulas in SMT. In Formal Methods in Computer-Aided Design, FMCAD 2014, Lausanne,
Switzerland, October 21-24, 2014, pp. 195–202, 2014.

28. P. Rümmer. A Constraint Sequent Calculus for First-Order Logic with Linear Integer Arith-
metic. In Proceedings of the 15th International Conference on Logic for Programming Ar-
tificial Intelligence and Reasoning, number 5330 in Lecture Notes in Artificial Intelligence,
pp. 274–289. Springer-Verlag, 2008.

29. P. Rümmer. E-Matching with Free Variables. In Proceedings of the 18th International
Conference on Logic for Programming Artificial Intelligence and Reasoning, number 7180
in Lecture Notes in Artificial Intelligence, pp. 359–374. Springer-Verlag, 2012.

30. R. Sekar, I. Ramakrishnan, and A. Voronkov. Term indexing. In Handbook of Automated
Reasoning, vol. II, chapter 26, pp. 1853–1964. Elsevier Science, 2001.

31. M. E. Stickel. Automated deduction by theory resolution. J. Autom. Reasoning, 1(4):333–
355, 1985.

32. M. Suda, G. Reger, and A. Voronkov. Unification with abstraction and theory instantiation
in saturation-based reasoning. EasyChair Preprint no. 1, EasyChair, 2017. https://
easychair.org/publications/preprint/1.

33. G. Sutcliffe. The TPTP problem library and associated infrastructure. J. Autom. Reasoning,
43(4):337–362, 2009.

34. A. Voronkov. AVATAR: The architecture for first-order theorem provers. In Computer Aided
Verification, vol. 8559 of Lecture Notes in Computer Science, pp. 696–710. Springer Inter-
national Publishing, 2014.


