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ABSTRACT
Runtime verification (RV) is the process of checking whether a run
of a computer system satisfies a specification. RV techniques often
utilise specification languages that are (i) reasonably expressive, and
(ii) relatively abstract (i.e. they operate on a level of abstraction
separating them from the monitored system). Inspired by the prob-
lem of monitoring systems involved in processing data generated by
the high energy physics experiments at CERN, we propose a spec-
ification language, Control-Flow Temporal Logic (CFTL), whose
distinguishing characteristic is its tight coupling with the control-
flow of the programs for which it is used to write specifications. The
coupling admits an efficient monitoring algorithm and optimised
instrumentation techniques based on static analysis.
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1 INTRODUCTION
Runtime verification [5, 14, 15] is often presented as the problem
of deciding whether an abstracted run of a computational system
(often called a trace) satisfies a specification (often given in temporal
logic) either whilst the system is running or after the fact. This
has led to the development of many specification languages and
runtime verification tools (e.g. [6, 17, 19, 22–24]) which often focus
on expressing complex specifications and checking them efficiently.
In our work applying RV techniques to monitor properties of web
services being used by the CMS Experiment [8] on the LHC [13]
at CERN we have found that existing approaches do not satisfy our
requirements for two reasons.

Our first observation is that most (not all) previous work assumes
that the computational system being observed is abstracted to pro-
duce events of interest i.e. specification and instrumentation are
separated. We call this the separation issue. As an example of this
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def process(value,quick):
if not quick:
rebalance()

if newValue(value):
balanceIns(value)

result = search(value)
logging.log(result)
update(value,result)
return result

□ *.
,

quick→(
(¬procU[0,5] out)
∧ ♢10 fin

) +/
-

quick ↔ call process
with quick = 1

proc ↔ (call rebalance) ∨
(call balanceIns)

out ↔ call logging.log
fin ↔ return process

Figure 1: A small example where specification and instrumen-
tation are separated.

issue consider the program, MTL formula [20], and instrumentation
mapping in Figure 1. The advantage of such an approach is that the
formula could be reused with different instrumentation mappings
and can make use of concise event names (preserving readability).
Conversely, it is necessary to maintain separate instrumentation in-
formation, which must be consulted to understand how the formula
applies to the specific program. More subtly, this separation also
implies that the structure of the monitored program and how it in-
teracts with the specification is not considered when developing
monitoring algorithms. This work introduces a specification logic
called Control-Flow Temporal Logic (CFTL), that is tightly coupled
with the control-flow of a program; propositions range over actions
taken in the program. The utility of this tight coupling is twofold.
Firstly, the author of specifications does not consider specification
and instrumentation as separate activities and the control-flow infor-
mation can be used to optimise the monitoring process. Secondly,
the low level of abstraction means that specifications can be written
directly in terms of the events that happen at runtime, rather than
propositions linked to the events by an instrumentation mapping. We
argue that this way of writing low level specifications is easier for
engineers.

Our second observation is that most (not all) previous work pri-
oritises expressiveness and flexibility over the ability to specify
low-level constraints. A typical example of this is the focus on in-
terface or API properties where the usage of the interface may be
spread across a codebase (e.g. for Java collections) and instrumenta-
tion is limited to the level of method-calls. For example, a typical
specification (see [18]) might be

Λi .(hasNextTrue(i ).hasNextTrue(i )∗.next(i ))∗
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specifying that calls to next on iterators are guarded by hasNext
calls. This leads to generic and expressive specifications but the
techniques struggle to specify the local behaviour of functions. We
call this the locality issue. We argue that for many cases it is sufficient
to be able to describe the intended relationship between behaviour
at a small number of particular program points and supporting more
than this can reduce the utility and efficiency of an approach. The
specification language developed in this paper considers the local
behaviour of a function (and is complementary to approaches that
target interface properties). One can consider this as an extension of
typical functional specifications seen in, e.g., JML [21]. As such, it
supports the instrumentation of assignments and local function calls,
but considers each run of the function in separation.

The contributions of this paper are as follows:

• We define symbolic control-flow graphs (Section 2) as a pro-
gram abstraction that preserves information about variable
updates and function calls
• We define Control-Flow Temporal Logic (Section 3) in which

formulas specify state and time constraints over dynamic runs
• We develop a monitoring algorithm (Section 5) that can ef-

ficiently check whether a run of a program satisfies a CFTL
specification
• We develop an instrumentation approach (Section 6) that

identifies the minimal set of points in a symbolic control-flow
graph required to monitor a CFTL specification and utilises
these to optimise the monitoring approach.

Further details, including examples and experiments with verification
of more complex programs, can be found in a technical report [10].

2 A PROGRAM MODEL
This section introduces an abstraction of monitored functions. To
keep our approach general we define a simple imperative program-
ming language in which to define our functions; in the remainder
of the paper we will refer to the monitoring of such programs. The
implementation discussed later uses a subset of Python. Advanced
features such as concurrency are not covered and the heap is ab-
stracted by splitting program variables into primitive and reference.
We only cover single functions; extensions would be required for
inter-procedural analysis. The programs we consider are of the form

Program := x = expr | Program; Program |
if expr then Program (else Program) |
while expr do Program | for expr in Program

expr := x | f (expr1, . . . , exprn ) | arithExpr | boolExpr

for variables x and function symbols f . We omit any information
about types (we assume programs are well-typed) and ignore the
structure of arithmetic and boolean expressions but note that they
may include expr as subexpressions. The only information we are
interested in for expressions is whether they contain function calls.
Let fn(expr ) be the set of function symbols used in expr.

Given a program P we can associate a unique program point with
each node in the abstract syntax tree of the program. This idea is
illustrated in Figure 2. We will use these program points to label
the states of the control-flow graph. Given a subprogram P ′ of P let
p (P ′) be the program point of the next statement in P ′ e.g. in this
example p (m = a(i );x = i ) = 6.

;

for _ in _3

if _ then _5

;

x=i7m=a(i)6

i=1 to n4

;

x=-12m=01

Figure 2: Illustrating program points.

2.1 Symbolic Control-Flow Graphs
Next we introduce a control-flow graph representation of programs
that captures additional information about the usage of variable and
function symbols. In traditional control-flow graph (CFG) representa-
tions nodes represent basic blocks (sequences of statements without
any branching). In symbolic control-flow graphs (SCFG) nodes take
the form of so-called symbolic states capturing information about
the usage of variable and function symbols at the current point in
the program i.e. the information that can be extracted statically.

Let Sym be a set of symbols representing variables and functions.
A symbolic state σ is a pair ⟨p,m⟩ where p is a program point andm
is a map (partial function with finite domain) from symbols to the
set of statuses {changed, unchanged, called, undefined} i.e. symbolic
states record whether a program variable has just been changed or
whether a function has just been called. For a symbolic state σ we
write σ (x ) for the value to which σ maps x and dom(σ ) for its
domain. We abuse notation and lift symbolic states to total functions
on symbols such that σ (x ) = undefined if x < dom(σ ). Symbolic
control-flow graphs are directed graphs with symbolic states as
nodes.

Definition 2.1. A symbolic control-flow graph (SCFG) is a di-
rected graph ⟨V ,E, vs ⟩ with a finite set of symbolic states V , a finite
set of edges E ⊆ V ×V , and an initial symbolic state vs ∈ V .

A symbolic state σ is final if it has no successors e.g. there is
no edge ⟨σ ,σ ′⟩ in E. A path π through a SCFG ⟨V ,E,vs ⟩ is a finite
sequence of symbolic states σ1, . . . ,σk such that for every pair of
adjacent symbolic states σi ,σi+1 there is an edge ⟨σi ,σi+1⟩ in E. A
path is complete if σ1 = vs and σk is final.

2.2 Construction of SCFGs
Next we show how to construct a SCFG for a program P . Let
VarP,VarR, Fun ⊆ Sym be the sets of primitive variable symbols,
reference variable symbols and function symbols used in P . We
begin by defining the set of edges induced by P . These are given
by a translation function T recursively defined on the structure of
a P given in Figure 3. This takes the symbolic state σ reached by
the previous part of the program and the remaining program P ′ and
produces a set of edges from σ captured by P ′. We omit certain
cases for space reasons. In general we separate the cases where
function calls are present and where they are not - in the former
case we must assume that reference variables may be updated in
nested calls. For assignments the translation adds a single edge. For
if-then-else statements we introduce edges to the first program point
of each sub-program and translate each sub-program extended with
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T(σ ,x = expr ; P ) =
{⟨σ , ⟨p (P ), [x 7→ changed]⟩⟩} ∪ T(⟨p (P ), [x 7→ changed]⟩, P )

if fn(expr ) = ∅, and
{⟨σ , ⟨p (P ), [xi 7→ changed, fi 7→ called]⟩⟩}

∪ T(⟨p (P ), [xi 7→ changed, fi 7→ called]⟩, P )
for xi ∈ VarR and fi ∈ fn(expr ) otherwise

T(σ , if b then P1 else P2 ; P3 ) =
{⟨σ , ⟨p (P1), []⟩⟩, ⟨σ , ⟨p (P2), []⟩⟩}

∪ T(⟨p (P1), []⟩, P1; P3 ) ∪ T(⟨p (P2), []⟩, P2 ; P3 )
if fn(b) = ∅, and otherwise
{⟨σ , ⟨p (P1),m⟩⟩, ⟨σ , ⟨p (P2),m⟩⟩} ∪ T(⟨p (P1),m⟩, P1; P3 )

∪ T(⟨p (P2),m⟩, P2 ; P3 )
wherem = [xi 7→ changed, fi 7→ called] for xi ∈ VarR
and fi ∈ fn(b)

T(σ , (while b do P1); P2 ) =
{⟨σ , ⟨p (P1), []⟩⟩, ⟨σ , ⟨p (P2), []⟩⟩} ∪ T(⟨p (P2), []⟩, P2 )
∪ T(⟨p (P1), []⟩, P1) ∪ {⟨σ ′, ⟨p (P1), []⟩⟩, ⟨σ ′, ⟨p (P2), []⟩⟩}
where σ ′ is the final state of T(⟨p (P1), []⟩, P1)

if fn(b) = ∅, and otherwise the fn(b) , ∅ case extended
in a similar way to above for if-then-else

Figure 3: The translation of a program into a set of edges.

the remaining program. A similar strategy is taken with while loops;
at the end of the loop body there are two edges, one to the end of the
loop and one back to the start of the loop body.

Let the symbolic control-flow graph SCFG(P ) of a program P be

⟨{σ1,σ2 | ⟨σ1,σ2⟩ ∈ T(⟨p (P ), []⟩, P )}, T(⟨p (P ), []⟩, P ), ⟨p (P ), []⟩, ⟩

2.3 Runs based on SCFGs
A symbolic control-flow graph for a program P captures information
about its behaviour that can be constructed statically. We also want
to model a run of P over its symbolic control-flow graph.

Let Val be the finite set of all values possible at runtime. A con-
crete state is a triple ⟨t ,σ ,τ ⟩ where t ∈ R+ is a real-valued times-
tamp, σ is a symbolic state and τ : Sym ⇁ Val is a map from
variables to values. Let t(⟨t ,σ ,τ ⟩) = t . A dynamic run (modelling a
single run of P) of SCFG(P) is a finite sequence of concrete states
where the induced sequence of symbolic states forms a sub-path of
the symbolic states on some complete path in SCFG(P).

Definition 2.2. A dynamic run of SCFG(P) = ⟨V ,E,vs ⟩ is a finite
sequence D = ⟨t1,σ1,τ1⟩,. . ., ⟨tn ,σn ,τn⟩ such that timestamps ti
are strictly increasing, σ1 = vs , σn is final, and there is a path in
SCFG(P) between every pair of symbolic states σi and σi+1 i.e.
σ1, . . . ,σn can be extended to a complete path of SCFG(P).

Next we introduce the notion of a transition of a dynamic run.
A transition of D is a pair of adjacent concrete states in D. A
transition is atomic if the only (acyclic) path between σi and σi+1
is of length 1 i.e. the transition corresponds to a single edge in
the symbolic control-flow graph. A dynamic run D is most gen-
eral if every transition is atomic. Let paths(tr ) be the finite set
of acyclic paths in SCFG(P) for the transition tr . For a transition

ϕ := ∀Sq ∈ ΓS : ϕ | ∀T t ∈ ΓT : ϕ | ϕ ∨ ϕ | ¬ϕ |
ϕS | ϕT | true

ϕS := S (x ) = v | S (x ) = S (x ) | S (x ) ∈ (n,m) | S (x ) ∈ [n,m]
ϕT := duration(T ) ∈ (n,m) | duration(T ) ∈ [n,m]
ΓS := changes(x ) | futureS (q, changes(x )) |

futureS (t , changes(x ))
ΓT := calls( f ) | futureT (q, calls( f )) | futureT (t , calls( f ))
S := q | source(T ) | dest(T ) | nextS (S, changes(x )) |

nextS (T , changes(x ))
T := t | incident(S ) | nextT (S, calls( f )) | nextT (T , calls( f ))

Figure 4: Syntax of CFTL.

tr ∈ D between concrete states ⟨ti ,σi ,τi ⟩ and ⟨ti+1,σi+1,τi+1⟩ we
define duration(tr ) = ti+1 − ti , source(tr ) = ⟨ti ,σi ,τi ⟩, dest(tr ) =
⟨ti+1,σi+1,τi+1⟩, t(tr ) = ti (i.e. the time of the transition is that of
the source state), and incident(D, ⟨ti+1, σi+1,τi+1⟩) = tr .

3 CONTROL-FLOW TEMPORAL LOGIC
This section defines a logic satisfying our aims given in Section 1 i.e.
it describes constraints over state and time (including the duration of
function calls), is efficient to check at runtime (see later), and avoids
the separation problem. The last point is achieved by working at a
level of abstraction that does not require atoms in formulas to be
explicitly related to runtime events.

3.1 Syntax of CFTL
We begin by recursively defining the syntax of CFTL formulas, see
Figure 4, where q refers to state variables, t refers to transition vari-
ables, x refers to program variables, f refers to program functions,
v refers to values and n,m refer to numeric expressions. One can
express implication using the identity ϕ1 =⇒ ϕ2 ≡ ¬ϕ1 ∨ ϕ2 and
mixed intervals form > n such as S (x ) ∈ [n,m) with, for example,
S (x ) ∈ [n, (m + n)/2] ∨ S (x ) ∈ ((m + n)/2,m).

Intuitively, ∀S quantifies over states and ∀T quantifies over transi-
tions. The expressions ΓS and ΓT give state and transition conditions
respectively. These place restrictions on sets of states and transi-
tions of interest. The formulas one can write using ϕS and ϕT state
properties of individual states and transitions respectively. Finally,
S and T define state and transition terms i.e. expressions evaluated
to either states or transitions. The only temporal operators available
in the logic refer to the next state or transition satisfying some con-
dition. However, the quantifiers range over points in the dynamic
run (at different points in time) and therefore also capture temporal
behaviour.

We only consider a subset of well-formed formulas defined by
the above grammar. A formula is well-formed if:
• It is well-sorted e.g. state variables and transition variables

are used in correct places (e.g., it does not refer to the value
to which a transition maps x)
• All variables are bound exactly once, and
• It is in prenex-form, e.g. all quantification is at the top level,

and all nested quantification is dependent on the previously
quantified variable. This constraint is illustrated below and
motivated later.
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We give some examples of formulas with their intuitive meaning.

(1) “The calls to function f take less than 5 time units” can be
expressed by

∀T t ∈ calls( f ) : duration(t ) ∈ (0, 5).

(2) “All calls to function f leave the value of x unchanged” can
be expressed by

∀T t ∈ calls( f ) : source(t ) (x ) = dest(t ) (x ).

(3) “Whenever x is changed it is not zero” can be expressed by

∀Sq ∈ changes(x ) : ¬(q(x ) = 0).

(4) “Whenever x changes, its value remains unchanged until the
next call of f ”, i.e. f always sees every change to x , can be
expressed by

∀Sq ∈ changes(x ) : q(x ) = source(nextT (q, calls( f ))) (x ).

(5) Finally, “whenever x changes, if its value is in [0, 5), then all
future calls to f should take units of time in (0, 10)” can be
expressed (using [0, 5) = (0, 5) ∪ [0, 1]) by

∀Sq ∈ changes(x ) :

∀T t ∈ futureT (q, calls( f )) :
(q(x ) ∈ (0, 5) ∨ q(x ) ∈ [0, 1]) =⇒ duration(t ) ∈ (0, 10).

3.2 Semantics of CFTL
The semantics of CFTL formulas is defined in two parts. Firstly,
the quantification is inspected to generate a set of points of interest
(states or transitions in the dynamic run). Secondly, the formula is
evaluated over these points. Before we give the formal definitions,
let us give a brief example.

Example 3.1. Let us assume we have a program containing a
function symbol д and we want to check the property that every call
to д takes less than 5 units of time. As seen above, this can be written

∀T t ∈ calls(д) : duration(t ) ∈ (0, 5).

Now let us consider the following dynamic run where, for concise-
ness, we omit information about program points and ignore the
runtime values as they do not matter for this property.

⟨0, [],τ1⟩, ⟨4, [д 7→ called],τ1⟩, ⟨10, [],τ2⟩), ⟨16, [д 7→ called],τ3⟩

There are two transitions of interest; between the first two labelled
concrete states, and between the last two. These are both selected
by the quantification. In this case the first duration has an allowed
duration but the second does not and the property is not satisfied by
the dynamic run.

Extracting Points of Interest. The sets over which quantification
occurs (the quantification domains) can be seen as sets of the points
of interest mentioned previously: a formula in CFTL reasons primar-
ily over these points. Further, for each point in the set over which a
formula is quantified, the formula also reasons over the set of points
derived from that point, based on the future time operators (e.g, next)
present in the formula. For example, the property

∀Sq ∈ changes(x ) : duration(nextT (q, calls( f ))) ∈ (0, 10),

D, ⟨t ,σ ,τ ⟩ ⊢ changes(x ) iff σ (x ) = changed
D,q ⊢ futureS (s, changes(x )) iff

t(q) > t(s ) and D,q ⊢ changes(x )
D, tr ⊢ calls( f ) iff

for every path π ∈ paths(tr ) there is:
some ⟨σ1,σ2⟩ ∈ π
such that σ2 ( f ) = called

D, tr ⊢ futureT (s, calls( f )) iff
t(tr ) > t(s ) and D, tr ⊢ calls( f )

eval(D, β ,q) = β (q)
eval(D, β , tr ) = β (tr )
eval(D, β , source(T )) = source(eval(D, β,T ))
eval(D, β , dest(T )) = dest(eval(D, β,T ))
eval(D, β , incident(S )) = incident(D, eval(D, β , S ))

eval
(
D, β ,
nextS (X , changes(x ))

)
= q such that:

t(q) > t(eval(D, β ,X )) and D,q ⊢ changes(x ) and there is no
q′ with t(eval(D, β ,X )) < t(q′) < t(q) and D,q′ ⊢ changes(x )

eval
(
D, β ,
nextT (X , calls( f ))

)
= tr such that:

t(tr ) > t(eval(D, β,X )) and D, tr ⊢ calls( f ) and there is no
tr ′ with t(eval(D, β,X )) < t(tr ′) < t(tr ) and D, tr ′ ⊢ calls( f )

D, β |= ∀Sq ∈ ΓS : ϕ iff
for all c ∈ ΓS we have D, β[q 7→ c] |= ϕ

D, β |= ∀T tr ∈ ΓT : ϕ iff
for all c ∈ ΓT we have D, β[tr 7→ c] |= ϕ

D, β |= true
D, β |= ϕ1 ∨ ϕ2 iff D, β |= ϕ1 or D, β |= ϕ2
D, β |= ¬ϕ iff not D, β |= ϕ
D, β |= S (x ) = v iff eval(D, β , S ) (x ) = v
D, β |= S1 (x1) = S2 (x2) iff

eval(D, β, S1) (x1) = eval(D, β , S2) (x2)
D, β |= S (x ) ∈ [n,m] iff eval(D, β , S ) (x ) ∈ [n,m]
D, β |= S (x ) ∈ (n,m) iff eval(D, β , S ) (x ) ∈ (n,m)
D, β |= duration(T ) ∈ (n,m) iff

duration(eval(D, β,T )) ∈ (n,m)
D, β |= duration(T ) ∈ [n,m] iff

duration(eval(D, β,T )) ∈ [n,m]

Figure 5: The semantic rules for CFTL.

“every time the value of x changes, the next call to f should take
time in (0, 10)”, reasons first over concrete states that change x and
then, for each of those points, the next transition that is a call to f .

To define the quantification domains, we first define what it means
for a state or transition condition to be satisfied. We introduce a
models relation ⊢ which takes a dynamic run and either a state or
transition that exists within the run and determines whether the
condition is true. This is defined in Figure 5.

We overload notation to use q ∈ ΓS to iterate over all states q
appearing in D such that D,q ⊢ ΓS , similarly for transitions. There-
fore, a single quantification defines a set of either states or transitions
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as points of interest which the formula should be evaluated over. In
the case of multiple quantifications, this implicitly produces a cross-
product of such sets. A member of this cross-product is a binding, a
map from quantification variables to concrete states or transitions.

Evaluating State and Transition Expressions. Before we can de-
fine the truth values for CFTL formulas we need to be able to eval-
uate state and transition expressions. To do this we introduce an
eval method that takes a dynamic run D, a binding β , and such
an expression and returns the relevant state or transition. This is
defined in Figure 5 and assumes that next states or transitions always
exist. This may not always be the case e.g. nextS (q, changes(x ))
where q is a final state of SCFGf . There are various solutions to this
issue however we take the approach to view formulas that lead to
such cases as not well-defined and assume formulas are well-defined
(which can be checked statically).

Defining Truth for CFTL Formulas. The satisfaction relation |=
captures whether a specific binding β derived from a dynamic runD
satisfies a CFTL formula. The recursive definition of |= is given in
Figure 5. A dynamic run D satisfies a (well-formed, well-defined)
CFTL formula ϕ if D, [] |= ϕ, otherwise D violates ϕ.

4 THE MONITORING AND
INSTRUMENTATION PROBLEMS

So far we have introduced a static and dynamic abstraction of a
program P and a method for specifying properties over these abstrac-
tions. However, it is necessary to make the connection between D
and ϕ explicit. In general, we assume that the function and variable
symbols used in some property ϕ of SCFG(P) are a subset of the
symbols appearing in SCFG(P). Given this setting we can introduce
two problems (which are addressed in the following two sections).

The monitoring problem for CFTL is to check whether a dynamic
run D produced from SCFG(P) satisfies a given CFTL formula ϕ.
Clearly, it will often be the case that the full dynamic run is not
required to check a given formula. The instrumentation problem
is to determine a subset of symbolic states and edges in SCFG(P)
that must be instrumented to check a given formula. Implicitly this
implies the existence of redundant states and edges which may be
condensed into a single transition in D.

5 A SIMPLE MONITORING ALGORITHM
We introduce a simple online monitoring algorithm that solves the
monitoring problem. We refer to this as simple as we introduce
optimisations in the next section made possible via information
extracted during instrumentation. We first give a brief example of
two monitoring scenarios and then introduce the general structure of
the algorithm and details of its component parts.

Example 5.1. Consider the program in Figure 6. This is deter-
ministic and therefore admits a single set of dynamic runs that only
vary by the timestamps i.e. by running through the SCFG travelling
through the loop exactly 10 times.

a = 10;
for i in range(10) in

f(i)
a = 20;
f(a)

[] [a 7→ changed] []

[f 7→ called][]

[a 7→ changed] [f 7→ called]

Figure 6: A sample code snippet with its SCFG.

Let us consider how we should monitor two different properties
on this dynamic run. Firstly, the following formula

∀Sq ∈ changes(a) :
q(a) ∈ [0, 20] =⇒
duration(nextT (q, calls( f ))) ∈ [0, 1]

which states that whenever a changes if its value is between 0 and
20 then the duration of the next call to f is within 1 time unit. When
monitoring the dynamic run the second concrete state to be observed
will be ⟨t1, [a 7→ changed], [a 7→ 10]⟩, which is in changes(a) and
therefore a new binding is created. This binding is associated with
a formula tree, which implements a mechanism for checking the
current status ofϕ for a given binding. After processing this first state,
the tree records the obligation that duration(nextT (q, calls( f ))) ∈
[0, 1]. The next concrete state has no effect on this tree but the
following concrete state of the form ⟨t2, [f 7→ called], [a 7→ 10, i 7→
0]⟩ does. This concrete state does not change a so it does not generate
a new binding but it does update the tree associated with the binding
[q 7→ ⟨t1, [a 7→ changed], [a 7→ 10]⟩] to be true if t2 − t1 < 1 and
false otherwise. Assuming that the result is true and monitoring
continues, there are now no bindings and no more are introduced
until a changes again (as the intermediate calls to f do not change a).
This introduces a new binding with an obligation that is discharged
by the next call to f as before.

As the next example let us consider the following formula

∀Sq ∈ changes(a) :

∀T t ∈ futureT (q, calls( f )) :
q(a) ∈ [0, 20] =⇒ duration(t ) ∈ [0, 1]

which states that whenever a is changed if its value is between 0
and 20 then the duration of all following calls to f are within 1
time unit. This differs from the above as when the concrete state
⟨t2, [f 7→ called], [a 7→ 10, i 7→ 0]⟩ is observed the binding [q 7→
⟨t1, [a 7→ changed], [a 7→ 10]⟩] must be extended with the transition
that has just been observed as this transition is a member of the set
futureT (q, calls( f )). It is necessary to extend the existing binding
and copy the formula tree so that the fact that q(a) ∈ [0, 20] has
been satisfied is preserved. Furthermore, each subsequent call to f
will also extend this binding (to create a new binding). In each case
the obligation (represented by a formula tree) associated with each
binding will be immediately discharged.

We now describe the simple monitoring algorithm and formula trees.

The Simple Algorithm. The simple monitoring algorithm is given
in Algorithm 1. This iterates through the concrete states in a dynamic
run and maintains a map M from bindings of quantified variables to
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Algorithm 1 Monitoring formula ∀1s1 ∈ Γ1 : . . . : ∀nsn ∈ Γn : ϕ
assuming that Γ1 is of the form changes(x ) or calls( f ) and Γi for
i > 1 are of the form future(si−1, Γ) (i.e. the formula is well-formed).

1: M← [] ▷ empty map from bindings to formula trees
2: prev← ⟨0, [], []⟩ ▷ to store the previous state
3: for concrete state curr ∈ D do
4: %Handle the cases where a new binding should be generated
5: %New bindings are generated if the state/transition is in Γ1
6: if curr ∈ Γ1 then
7: M += ([s1 7→ curr] 7→ update(ftree(ϕ), [s1 7→ curr]))
8: if (prev, curr) ∈ Γ1 then
9: M += ([s1 7→ (prev, curr)] 7→

10: update(ftree(ϕ), [s1 7→ (prev, curr)]))
11: %Bindings are extended if the state/transition is in Γi for i > 1
12: for (β = [s1 7→ v1, . . . sk 7→ vk ],T ) in M where k < n do
13: if curr ∈ Γk+1 then
14: M += (β[sk+1 7→ curr] 7→ update(T , β[sk+1 7→ curr]))
15: if (prev, curr) ∈ Γk+1 then
16: M += (β[sk+1 7→ (prev, curr)] 7→
17: update(T , β[sk+1 7→ (prev, curr)]))
18: %Now update formula trees for existing bindings
19: for (β ,T ) in M do
20: T ′← update(T , curr)
21: if T ′ = false then return Fail
22: if T ′ , true then M← M † (β 7→ T ′)

23: %Finally save the current state as the last state
24: prev← curr

25: return Success ▷M should be empty if input is well-defined

formula trees (discussed below). We use the notation M †(β 7→ T ) to
represent M updated with β mapped toT . The bindings built up here
are the points of interest described in Section 3.2. Lines 10-15 deal
with extending existing bindings in the case where there are multiple
quantifiers. This relies on the restriction that each nested quantified
variable depends on the previous quantified variable. Checks such
as curr ∈ Γ1 can be implemented by checking curr directly (in the
case of future expressions we know we must be in the future set as
the binding being extended exists).

Formula Trees. Formula trees are and-or trees whose leaves are
(possibly negated) atomic CFTL formulas. These are updated with
concrete states or transitions until they evaluate to true or false.

Definition 5.2 (Formula Tree). Given a quantifier-free CFTL for-
mula ϕ in negated normal form, let ftree(ϕ) be a directed graph
(N ,A,O,ns ) where N is a set of nodes corresponding to sub-formulas
of ϕ; A and O are sets of and and or edges respectively where
(ψ1 ∧ ψ2,ψ1), (ψ1 ∧ ψ2,ψ2) ∈ A if ψ1 ∧ ψ2 is a sub-formula of ϕ,
similarly for O; and ns is the root corresponding to ϕ.

A formula tree can be simplified by applying the standard rules
for true and false to collapse sub-trees. Given a formula tree T
let update(T , β ) be the formula tree where all formulas have s ∈
dom(β ) replaced by β (s ) and let update(T ,κ) be the formula tree
where all formulas are evaluated with respect to κ (or the implicit
transition it represents). For example, if a leaf stores q(x ) = nextS (q,

changes(x )) (x ) then updating with [q 7→ ⟨t ,σ , [x 7→ 5]⟩] produces
the leaf 5 = nextS (q, changes(x )) (x ) and updating this with the
concrete state ⟨t , [x 7→ changed], [x 7→ 4]⟩ produces the leaf 5 = 4,
which evaluates to false.

Correctness. This algorithm determines whether a dynamic run
satisfies a formula assuming that the dynamic run is most general
i.e. contains as much information about the run as possible. We use
instrumentation to relax this constraint next. Correctness follows
from the facts that (i) all bindings are necessarily generated and (ii)
the evaluation of formula trees corresponds directly to the evaluation
of quantifier-free formulas.

Complexity. The algorithm iterates over M. The size of M is
bounded by the maximum number of live bindings, which is itself
bounded by the complexity of the program e.g. if the monitored
program contains a nested loop giving quadratic behaviour then in
the worse case a (constant number of) new binding(s) may be added
and maintained for each iteration of the inner loop. Next we show
how iterations over M can be removed using static information.

6 INSTRUMENTATION
In this section we discuss a solution to the instrumentation problem
and the ways in which this can be used to optimise the simple
monitoring algorithm.

6.1 Instrumentation Points
Given the symbolic control-flow graph ⟨V ,E,vs ⟩ of a program P ,
our aim is to compute subsets Vi ⊆ V of instrumentation points
such that the dynamic run from those points is sufficient to check
a given formula ϕ. We only instrument states; to capture edges we
instrument the state at either end. We call such states instrumentation
points. A trivial solution is to pick Vi = V but we want Vi to be as
small as possible to reduce the work of the monitoring algorithm.

We compute these sets in two steps. The first step is to identify
the sets of symbolic states that can possibly generate a new binding
(i.e, the concrete states they would generate would belong to quan-
tification domains derived from some dynamic run). The second step
is to use the quantifier-free part of ϕ to detect all subsequent states
that could appear in a dynamic run and be relevant to ϕ. Notice that,
if a program has branching, not all parts of the SCFG will be part of
a dynamic run. As a final comment, once the instrumentation points
are determined, we can use the structure of the atoms found in ϕ to
determine the nature of the instruments to be placed.

This approach produces a set of instrumentation points that are
minimal with respect to reachability in the symbolic control-flow
graph from binding-generating states i.e. we only consider those
relevant states reachable from a state that generates a new binding.
Note that this is not the strictest notion of minimality as (i) it is
with respect to a fixed SCFG i.e. there could be a smaller set of
instrumentation points given a semantically equivalent SCFG, and
(ii) it does not capture any semantic notion of relevance i.e. we do
not attempt to statically determine whether constraints on values
might hold.
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Our approach can be illustrated using the SCFG in Figure 6 and
the formula

∀Sq ∈ changes(a) :
q(a) ∈ [0, 20] =⇒ duration(nextT (q, calls( f ))) ∈ [0, 1]

from Example 5.1. The two states where a changes are those that can
produce new bindings and the two states where f has been called
are implicitly of interest since they may be required to evaluate the
formula that we consider (both are the next call to f after a change
to a). This is quite a simple case but illustrates how we can identify
instrumentation points. Although we note that instrumenting the call
to f in the loop will currently lead to concrete states being generated
on every execution of the loop. An optimisation we have not yet
implemented is to unroll the loop once in cases where we only need
the first state of the loop.

In order to make precise the idea of finding all points in the SCFG
that could generate a new binding when lifted to a dynamic run, we
introduce the idea of a symbolic support. The idea is to determine
the symbolic states/edges in the SCFG that will generate concrete
states/transitions that will be part of quantification domains.

Symbolic support. Given the formula φ = ∀1s1 ∈ Γ1 : . . .∀nsn ∈
Γn : ϕ we denote the symbolic support of a quantification domain Γi
by support(Γi ) where

σ ∈ support(changes(x )) if σ (x ) = changed
σ1,σ2 ∈ support(calls( f )) if ⟨σ1,σ2⟩ ∈ E and σ2 ( f ) = called

σ ∈ support(futureS (si , changes(x )) if
∃σ ′ ∈ support(Γi ) : reaches(σ ′,σ ) and σ (x ) = changed

σ1,σ2 ∈ support(futureT (si , calls( f ))) if
∃σ ′ ∈ support(Γi ) :
reaches(σ ′,σ1) and ⟨σ1,σ2⟩ ∈ E and σ2 ( f ) = called

where reaches(σ1,σ2) is true if it is possible to reach σ2 from σ1 in
the symbolic control-flow graph (reachability is a transitive closure
of E). We call support(Γi ) the support of si .

Note that to observe a call of f we record the state before and
after the call. This is technically only necessary if the formula ϕ
refers to the source or duration of the transition at some point. Again,
this is a possible optimisation that has not yet been implemented.

Reachable states relevant to ϕ. Next we identify the additional
symbolic states that should be instrumented. For example, if ϕ
contains next(si , changes(x )) then we also need to search through
the symbolic control-flow graph and instrument the next state that
changes x on all paths from every state in the support of si . Let
terms(ϕ) be set of state and transition terms in ϕ. The support
support(X ) of a term X ∈ terms(ϕ) is dependent on the support
of the quantified variables in X and is defined recursively as

σ ∈ support(si ) if σ ∈ support(Γi )
σ ∈ support(dest(T )) if σ ∈ support(T )
σ ∈ support(source(T )) if σ ∈ support(T )
σ ∈ support(incident(S )) if ∃σ ′ ∈ support(S ) : ⟨σ ,σ ′⟩ ∈ E

σ ∈ support(nextS (si , changes(x )) if
σ (x ) = changed and ∃σ1 ∈ support(Γi ) such that there is a
path π from σ1 to σ and there is no σ2 ∈ π with
σ2 (x ) = changed

σ1,σ2 ∈ support(nextT (si , calls( f )) if
σ2 ( f ) = called and ∃σ ′ ∈ support(Γi ) such that there
is a path π from σ ′ to σ1 and ⟨σ1,σ2⟩ ∈ E and there is no
σ ′′ ∈ π with σ ′′( f ) = called

For source and dest we only need to take the support of T as we
include the start and end of each transition by default.

Instrumentation points. Finally, the instrumentation points in
SCFG(P) given ϕ are given by⋃

X ∈terms(ϕ )

support(X )

noting that support(Γi ) is included in support(X ) if si ∈ X .

Correctness. Finally, we state that restricting a dynamic run to
the instrumentation points identified above preserves satisfiability as
identified by the previous monitoring algorithm.

THEOREM 6.1. For SCFG(P), if D satisfies ϕ then the dynamic
run produced by removing all states from D (by collapsing transi-
tions) not identified as instrumentation points also satisfies ϕ.

We give a sketch proof. SupposeD satisfies ϕ, and that we derive
a D ′ from D by removing a state s = ⟨ti ,σi ,τi ⟩ from D where si is
not in the set of instrumentation points. Suppose, with the intention
of deriving a contradiction, thatD ′ does not satisfy ϕ. Then s cannot
generate a binding, because removal of bindings does not result in
violation of ϕ, so s must contribute to the status of a formula tree
instantiated for some binding. Therefore, by construction of the set
of instrumentation points based on the symbolic support, σi of s
must be an instrumentation point, which leads to a contradiction.

6.2 Static Optimisations
The above instrumentation points are further used to optimise the
monitoring algorithm in two ways.

Generating points. Above we statically determined the instru-
mentation points that could be used to generate or extend bindings
– the points in the support of s1 generate new bindings and points
in the support of si (for i > 1) extend bindings created at points in
the support of si−1. We can include this static information in the
monitoring algorithm to remove the need to check if every piece of
data received is relevant to the monitoring process.

Binding indexing. Whilst generating the set of instrumentation
points it is possible to identify which instrumentation points will
generate the bindings that will be updated at another instrumentation
point. This immediately gives a method for organising bindings in
the monitoring algorithm that allows for immediate identification of
the relevant bindings at each instrumentation point. To achieve this
we do the following. Let a static binding be a map from quantified
variables to instrumentation points. The set of static bindings is given
by support(Γ1) × . . . × support(Γn ). We associate two sets of static
bindings with each instrumentation point σ . The set gen(σ ) stores
all static bindings containing σ . The set use(σ ) stores all static bind-
ings of the form [. . . , si 7→ σi , . . .] where σi is an instrumentation
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point where a binding is created that will be used at σ . Then during
monitoring, when a new binding is created at σ we associate it with
the static bindings in gen(σ ), and the set of bindings relevant to σ
are those associated with the static bindings in use(σ ).

Furthermore, it is possible to statically identify which parts of
the formula tree associated with each binding may be updated at an
instrumentation point. This information is used to further minimise
the amount of search required to process each concrete state during
monitoring.

7 IMPLEMENTATION
We have implemented the previous techniques in a tool, called
VYPR, which is found at http://cern.ch/vypr/. The tool takes a
Python program containing the program to monitor and a property
specification file as input. Properties are specified using PyCFTL,
our library for specification of CFTL properties in Python. The
tool (i) builds the symbolic control-flow graph of the program, (ii)
identifies relevant instrumentation points and adds instruments, (iii)
runs the monitoring algorithm asynchronously alongside the moni-
tored program, and (iv) outputs a verdict report (of violations and
non-violations) once monitoring has finished.

We perform monitoring asynchronously as we currently do not
use the outcome of the monitoring algorithm to adjust the trajectory
of the program under scrutiny.

8 EXPERIMENTS
We now present an analysis of the VYPR tool when used to monitor
a sample program, on a machine with a 2.8 GHz Intel Core i7 CPU
and 16GB of RAM, with respect to two CFTL properties:

∀Sq ∈ changes(a) :
q(a) ∈ [0, 80] =⇒
duration(nextT (q, calls( f ))) ∈ [0, 1]

(1)

∀Sq ∈ changes(a) :

∀T t ∈ future(q, calls( f )) :
q(a) ∈ [0, 80] =⇒ duration(t ) ∈ [0, 1]

(2)

For both properties, we give an analysis of the mean time over-
head over 5 runs induced by VYPR. Overall the time overhead was
very low (order of ms) and the memory overhead was negligible. We
discuss percentage overhead, which is defined as 100(tm − tw )/tw
for tm and tw the running times of the program with monitoring
and without monitoring respectively. For the property in Equation
1, Figure 7a shows that the overhead induced holds approximately
constant with the size of the quantification domain increasing lin-
early. The program includes a loop and the size of the quantification
domain (i.e. number of bindings) is proportional to the number of
iterations the loop goes through at runtime. For the property in Equa-
tion 2, Figure 7b shows the overhead. The size of the quantification
domain, for n iterations of this program’s loop, is approximately∑n
k=0 k = n(n + 1)/2 ∼ n2 (a negligible number of bindings are gen-

erated outside the loop), and the overhead increases approximately
linearly.

Finally, Figure 7c shows the percentage overhead induced by
VYPR as the time between observations varies, for a fixed size quan-
tification domain. As the time between observations decreases, the
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Figure 7: Overhead Plots

overhead induced increases. At this point, we highlight that Python’s
standard interpreter uses a Global Interpreter Lock (GIL) for shared
resource control in multithreaded programs. This mechanism, in our
case, results in the monitoring algorithm running in serial with the
program when the delay between observations is not sufficiently
large. We see that, towards a delay of 50 milliseconds between obser-
vations, the overhead approaches an asymptote: in this case, there is
time between observations during which Python’s GIL gives control
to VYPR’s monitoring algorithm.

9 RELATED WORK
Runtime Verification has gained traction in the domain of specify-
ing properties of time-critical systems, which has resulted in work
on linear-time, temporal logics over timed state sequences. Such
work includes logics, such as MTL [20, 25], TLTL [7] and MDL
[6] (an extension of LDL [11] to timed state sequences), which are
in general extensions of LTL such that each one of their seman-
tics is defined over sequences of states paired with real-numbered
timestamps. Existing work on CARET [1] introduces a logic that can
specify the non-regular properties involved in (nested) function calls.
CARET, however, does not allow specification of time constraints
over functions. In contrast, CFTL allows specification of properties,
including time constraints, over (non-nested) function calls and its
formulas specify properties over transitions.

Returning to the separation issue, it is common, e.g. [1, 3, 4, 6,
7, 11, 16, 20, 25], to present a semantics and monitoring algorithm
without addressing the details of how the data is to be taken from
the monitored system. For example, to apply MDL to express a
property over a program run, one has to do additional work to decide
from which parts of the program run the propositional atoms in
the MDL formula’s alphabet are derived. This corresponds to the
instrumentation mapping demonstrated in Figure 1.

Work does exist that describes solutions to the instrumentation
problem. JAVAMAC [19] presents a complete verification tool with
a similar architecture to the one that we present: the program under

http://cern.ch/vypr/
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scrutiny is instrumented using information taken from the specifi-
cation and the instruments pass data to a monitor. However, addi-
tional instrumentation information is still required. Some tools, such
as JAVAMOP [22], include AspectJ instrumentation information
in the specification but there is still a separation identifying the
events to instrument and specifying the behaviour of those events.
E-ACSL [24] works by rewriting C programs to include additional
assertions and therefore derives instrumentation from the property
to be checked but it does not have a separation between the moni-
tored program and the monitoring algorithm. Further tools [2, 9, 12]
include their own instrumentation languages and mapping to events.

10 CONCLUSION
We have introduced a new specification logic, Control-Flow Tempo-
ral Logic, for runtime verification along with a monitoring algorithm
and optimisations based on information from static analysis. We have
aimed to provide a framework where there is no separation between
property and instrumentation and have focussed on local properties
of functions, motivated by our work verifying web services at CERN.
The techniques presented in this paper have been implemented in a
prototype tool. There are two main potential criticisms of this work,
which we address briefly here:
Do we need another logic? We could have taken the approach to
extend an existing logic with our notions of separation and locality.
However, with one of our aims being to produce a language that is
easy for CERN engineers to use, experience so far has shown that
the relationship between specifications and the system to which they
relate must be as transparent as possible. We argue that complex
temporal operators reduce transparency.
Changes in the program model or program affect the specification.
A reliance on a particular program model is necessary to achieve
the transparency mentioned above. We see the close relationship
between program and specification as an advantage as changes in
the program should require us to revisit low-level specifications.

Our next step is to carry out a detailed case study applying our tool
to specify and verify properties of web services employed at CERN.
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